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ABSTRACT OF DISSERTATION 
 
 
 
 

THE DEVELOPMENT OF TEMPERATURE AND PH RESPONSIVE HYDROGELS 
AND MEMBRANES FOR SELECTIVE SORPTION OF PERFLUOROORGANICS 
AND NANOPARTICLE INTEGRATED CATALYTIC DEGRADATION OF PCB 

 
The functionalization and use of responsive and catalytic polymeric membranes 

and materials were explored for contaminant capture and degradation. While membranes 
have a wide variety of uses across multiple industries, the inclusion of materials that are 
temperature and pH responsive in the membrane pore domain yields a wide range of 
applications and possibilities for water treatment. Temperature and pH responsive 
polymers, as well as controlled nanostructured materials, were synthesized in membrane 
pores for advanced adsorption-desorption and catalytic treatment of emerging organic 
contaminants in water. In this study, supported by the NIEHS, poly-N-
isopropylacrylamide (PNIPAm) was used as a model thermo-responsive polymer, while 
perfluorochemicals (PFCs) and polychlorinated biphenyls (PCBs) are used as model 
emerging water contaminants. A stimuli-responsive membrane-based adsorptive-
desorptive system was developed by incorporating PNIPAm and poly-methyl 
methacrylate (PMMA) into a PVDF membrane structure and quantified through in-situ 
characterizations. Furthermore, a novel membrane system was developed for enhanced 
degradation of emerging halo-organics that is both stimuli-responsive and catalytic due to 
the incorporation of Fe-Pd nanoparticles into the polymeric membrane matrix.  

By incorporating a thermo-responsive polymer into a membrane platform, 
temperature was used to control permeability, hydrophilicity, and pollutant partitioning. 
Solubility parameters of the model contaminants and of the thermo-responsive polymer 
in its different conformational states were determined. This was used to develop a 
fundamental understanding of the interaction between the polymer domain and halo-
pollutant domain in order to conduct reversible temperature swing adsorption through 
manipulation of external stimuli. In doing so, PNIPAm’s temperature-responsive 
behavior and hydrophilic/hydrophobic transition was leveraged for reversible adsorption 
and desorption of perfluoro-organics from water. Adsorption of perfluorooctanoic acid 
(PFOA) onto PNIPAm hydrogels yielded adsorption capacities lower than commercially 
used adsorbents. However, the initial rates of 28 mg/g/h and 41 mg/g/h for adsorption and 
desorption, respectively, and the ability to reversibly desorb with ease through external 
temperature manipulation make the use of stimuli-responsive polymeric membranes an 



 

exciting avenue for the development of advanced adsorbents that can be easily 
regenerated. Temperature swing adsorption-desorption of pollutants using the thermo-
responsive membrane was demonstrated and quantified.  

The incorporation of stimuli-responsive polymers as well as reactive bimetallic 
nanoparticles into membrane pores enabled the development of an advanced stimuli-
responsive catalytic membrane for enhanced halo-organic degradation. Iron nanoparticles 
were used due to iron’s ability to react with water and form hydrogen species, unlike 
other reactive metal-based nanoparticles that would require a hydrogen source, with 
Palladium as a reaction catalyst. By adding stimuli-responsive polymers into the catalytic 
membrane matrix, temperature variations were used to selectively control adsorption and 
diffusion of model halo-organic contaminants into the membrane’s catalytic domain. 
Chloro-organic degradation in batch and convective flow mode was achieved via the 
reductive pathway and modeled using advanced material characterization. The effect of 
temperature on the reaction process was evaluated as a means of increasing contaminant 
degradation efficiency by using the conformational change of the thermo-responsive 
polymer. Convective flow degradation of PCB-1 using the PNIPAm-PMMA-
functionalized membranes with immobilized Fe-Pd nanoparticles yielded first-order kSA 
values of 0.13 L/m2/g, 0.28 L/m2/g, 0.72 L/m2/g, and 1.36 L/m2/g at 15 ºC, 25 ºC, 35 ºC, 
and 45 ºC, respectively, with an activation energy of 60 kJ/mol. Batch degradation of 
PCB-1 resulted in first-order kSA values of 0.12 L/m2/h and 0.35 L/m2/h at 25 °C and 
35 °C, respectively. Stimuli-responsive, functionalized polymeric membranes for 
reversible contaminant adsorption with high initial rates provide a very exciting 
technology for the removal of toxic organic contaminants from water. 

 
 

KEYWORDS: Responsive Membrane, Reactive Membrane, Reversible Adsorption, 
Chloro-organics Removal, Water Treatment 
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CHAPTER 1: INTRODUCTION 
 

1.1 Overview 

While membrane processes provide a highly flexible separation process, the 

continued development of both sustainable and efficient membrane separation techniques 

for selective solute separation and water recycling and reuse remains of utmost 

importance. The development of stimuli responsive membranes is an exciting avenue for 

novel water treatment membranes [1]. The incorporation of responsive polymeric 

materials into membrane pores enables added functionality, such as adsorptive, catalytic, 

and renewable properties. Incorporating pH and temperature responsive polymers like 

poly-methyl methacrylate (PMMA) and poly-N-isopropylacrylamide (PNIPAm), an 

LCST polymer commonly used in biomedical applications, into membrane processes can 

add functionality that can enhance adsorptive and catalytic processes. While a common 

issue with commercial adsorbents is their regeneration capabilities, stimuli-responsive 

polymeric membranes could provide an alternative by leveraging their stimuli-responsive 

conformational changes to perform reversible adsorption. PH-responsive materials like 

PMMA can be used to immobilize reactive nanoparticles via ion exchange methods. 

Additional responsive polymers can be added to provide additional functionality to 

reactive membrane systems. By taking advantage of conformational changes due to 

external stimuli, catalytic membrane processes, such as the dechlorination of halo-

organics, can be enhanced by increasing reactant adsorption and diffusion.  
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1.2 Background: 

1.2.1 Stimuli-responsive water treatment membranes: 

Membrane processes, such as Reverse Osmosis, Nanofiltration, Ultrafiltration, 

and Microfiltration, have generated many successful applications for recovering material 

from water streams and producing high quality water. The incorporation of responsive 

polymers, materials, or nanoparticles in macro-porous membranes provides an avenue for 

increased value in the area of water treatment [1, 2]. Providing access to safe drinking 

water has been identified as one, and possibly the most important, of the grand challenges 

facing scientists in the 21st century [3]. Increasing water reuse would tremendously 

impact the supply of water to a variety of industries, even in geographies where cyclical 

droughts make current supplies unreliable [4]. Non-conventional water treatment 

methods exist, including coagulation and flocculation, depth filtration, activated carbon 

filtration, biological treatment, ion exchange deionization, distillation, chemical 

treatment, UV treatment, and chlorination [5]. New membrane technologies are proving 

to be effective in meeting the need for higher quality water through selective separation 

of small molecules, enhanced durability, simultaneous separation and reaction processes, 

and selectively removing components from difficult mixtures [4], while challenges still 

exist with achieving low energy consumption, zero waste, and increased recovery and 

reusability [6].  

 Polymeric membranes have gained significant interest for water treatment 

applications because of their high flexibility, broad range of pore sizes and structure, 

simple manufacturing processes and low associated costs [7-10]. Advances to membrane 

technology, specifically the creation of nanocomposite and responsive membranes have 
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led to advancements in emerging applications, such as antifouling/selectivity [11, 12], 

flux enhancement [13], nanoparticle synthesis [11, 14], responsive nanomaterials [15], 

advanced reduction/oxidation [16], metal capturing [17], and adsorption [18]. 

Technological advancement goals for these membranes include obtaining high selectivity 

and high permeability at low costs and combining reactions within the pore structures to 

avoid further downstream unit operations, avoiding membrane fouling, and increasing 

membrane physical durability [9, 19]. These polymeric membranes are fabricated using 

improved or novel materials mixed with nanomaterials. Responsive and/or nanoscale 

materials can be added or in-situ synthesized onto the porous surface of commercial 

membranes to obtain functionalized, responsive, and reactive membranes [20-22]. Figure 

1.1 shows a process of functionalizing a membrane pore with a responsive polymer. 

Responsive polymers can be affected by a variety of external stimuli and react with 

different mechanisms according to the polymer structure. Table 1.1 details several 

stimuli, including temperature, pH, magnetic field, ionic strength, electrical signal, and 

light, as well as examples of polymers that respond to the aforementioned stimuli, as well 

as the mechanism of said response [23].  

1.2.2 Temperature responsive membranes and surfaces: 

Some polymers exhibit a physical response to temperature variations, which can 

be used to create polymeric membranes that have attractive thermo-responsive properties 

for water treatment applications. Polymers that react to temperature have shown 

substantial differences in observed physical properties, mostly having to do with 

solubility. Thermo-responsive polymers are polymers that have been known to display a 

miscibility gap in their temperature-composition diagrams. These polymers are typically 
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known as LCST or UCST (upper critical solution temperature) polymers depending on 

whether this gap exists above a certain temperature (LCST polymers) or below a certain 

temperature (UCST polymers) [24-28]. Because of their environmental and biological 

relevance (specifically if the polymer’s transition temperature is in the physiological 

range), much research has focused on the thermo-responsive nature of polymers in 

aqueous solutions in contrast to organic mixtures.  

1.2.2.1 LCST/UCST Polymer Membranes for Selective Permeation/Separation 

The most common temperature responsive polymer/hydrogel is poly(N-

isopropylacrylamide), or PNIPAm, because of the phase transition it experiences from its 

hydrophilic state to hydrophobic state at its LCST of around 32 °C. This transition occurs 

due to alterations in the hydrogen bonding interactions of the amide group [26] – this 

makes it applicable to physiological processes [29]. By increasing temperature, the 

polymer side chains undergo property changes that hinder the hydrogen bonds that 

enabled favorable interaction with water molecules. PNIPAm’s isopropyl groups will 

dehydrate first upon raising temperature above its LCST, causing the polymer chains or 

hydrogel network to collapse in an aqueous environment. Therefore, manipulating the 

side chains and their properties can effectively alter the LCST of a polymer.  The 

polymer’s LCST value can be influenced by manipulating the  hydrophobic/hydrophilic 

balance in the polymer, adding hydrophobic branches, or controlling the length of the 

hydrophobic side chains [27].  

The ability to control the hydrophobicity of a polymer through slight temperature 

changes is important for water treatment applications. Firstly, it enables selective control 

over water permeability through the membrane [30]. Water flux through a PNIPAm-
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functionalized membrane can be significantly augmented by raising temperature above its 

LCST, or hindered by lowering the temperature below its LCST of 32 °C [31]. Xiao et al. 

and Zhao et al. demonstrate this phenomenon by conducting water permeation 

experiments at various temperatures, which can be seen in Figure 1.2 [20, 31]. The LCST 

can be varied through several means such as introducing salts that interact with the amide 

group in the PNIPAm side chain to reduce the LCST [32, 33] and using ionic liquid to 

weaken the hydrogen bonds formed between PNIPAm’s amide group and surrounding 

water molecules [34]. Hydrophilic and hydrophobic monomers can also be added to the 

PNIPAm network to manipulate its response temperature [35]. By varying temperature 

around the response, membrane fouling caused by pore size oscillations can be reduced. 

Furthermore, by using temperature to control pore diameter through polymer swelling 

within the pores, hydrophobicity and permeation of nanoparticles of different sizes can be 

selectively controlled. One can take advantage of sharp property changes to create 

thermo-responsive gating membranes that are only permeable to certain compounds at 

temperatures above its LCST, with important potential applications in smart separations 

[35].  

1.2.2.2 Controlling Pore Size for Selective Particle Fractionation 

Frost and Ulbricht demonstrated that temperature can be used to control pore size 

in membranes functionalized with a temperature responsive polymer, in order to 

selectively reject nanoparticles of various sizes. They used poly(ethylene terephthalate) 

ultrafiltration membranes functionalized with PNIPAm to reject silica nanoparticles of 

different sizes based on external temperature [36]. Raising the temperature increases the 

effective pore size because of the collapse of PNIPAm chains in the membrane matrix. 
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By measuring water permeation through the membrane and applying Hagen-Poiseuille 

law, shown in Eq. (1-1), hydrodynamic pore diameters can be estimated at various 

temperatures [36]: 

         (1-1) 

Here, J is the transmembrane flux, N represents the number of pores, A represents the 

area of permeation, η represents viscosity, L represents the membrane thickness, ΔP 

represents the pressure drop, and D represents the pore diameter. The water flux is 

corrected for viscosity changes due to temperature, so the changes in diameter are solely 

due to the thermo-responsive collapse of the polymer chains. It was shown that by 

changing the operating temperature from 23 °C to 45 °C, effective pore size was 

increased from 21 nm to 69 nm, allowing larger particles to pass through the membrane, 

and simultaneously increasing the transmembrane flux. Using 21 nm silica NPs as a 

model solute, particle rejection decreased from 99 % to 35 % because of the larger 

effective diameter caused by the temperature change. This confirms that PNIPAm-

functionalized thermo-responsive membranes can be used for size-selective NP 

fractionation [31, 36]. Using PNIPAm to control pore size has also been used to control 

drug release kinetics due to its biocompatibility [37]. Liu et al created thermo-responsive 

hydrogel composite graphene oxide membranes with tunable microchannels, with 

potential applications in smart gating and separation systems [38]. These results confirm 

that increasing feed temperature for a PNIPAm-functionalized membrane causes 

increased flux and reduced rejection; increasing pore size enables transport of more 

molecules and larger molecules at higher temperatures.  
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1.2.2.3 The effect of Polymerization Time and Chain Length/Density on Membrane 

Separations 

Other means exist to control PNIPAm chains within membrane pores. PNIPAm 

chain length grafted within the membrane pores can be controlled by the polymerization 

time, enabling switchable size-selective particle fractionation [36]. Figure 1.3 

demonstrates that hydrodynamic membrane pore diameter can be reduced by increasing 

polymer chain length by simply increasing polymerization time [36]. Wandera et al. have 

varied polymerization time of PNIPAm-co-poly(poly(ethylene glycol) 

monomethacrylate, PPEGMA) block copolymer nanolayers to functionalize thermo-

responsive, low molecular weight cellulose ultrafiltration membranes to study its effect 

on transmembrane flux, membrane fouling, and oil-water separations [39]. In order to do 

so, surface-initiated atom transfer radical polymerization (ATRP) was used to grow 

polymer nanolayers on the membrane surface, and polymer chain density was varied 

through polymerization time manipulation in order to optimize produced water treatment 

performance [39]. Higher polymer chain density and longer polymerization times lead to 

the synthesis of membranes with more stable flux, whereas lower chain density and 

shorter polymerization times lead to higher instantaneous flux, but do not completely 

eliminate fouling-related flux decline. Figure 1.4 demonstrates that higher chain density 

leads to lower, more stable trans-membrane water permeability. The membrane surface 

can be modified to optimize both permeate flux and flux decline due to fouling for 

separation of oil emulsion from produced water by varying the structural properties of 

polymer coating [39].  While PNIPAm can be used to control pore size via control over 

external temperature due to its thermo-responsive conformational change, other stimuli 
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responsive materials can also be used for gating membranes in order control substance 

concentration in reactors, control drug release, perform size-based separations, affinity-

based separations, and enhance self-cleaning of membrane surfaces [40].  

1.2.2.4 Temperature Responsive behavior for catalysis and metal sorption: 

Reactive nanoparticles have been incorporated into temperature responsive 

hydrogels and also into membranes functionalized with temperature responsive polymers 

to enhance reactivity [31]. Zero-valent metals, such as iron NPs, have received significant 

attention for their use in the remediation of chlorinated compounds in contaminated 

groundwater [41]. Fe and Fe/Pd NPs have been immobilized in poly(acrylic acid)-co-

PNIPAm (PAA-co-PNIPAm)-functionalized membranes for the remediation of 

trichloroethylene (TCE) in water [31, 42]. Slight variations in temperature affect not only 

NP reactivity by affecting the reaction rate constant, but can also affect adsorption of 

hydrophobic/hydrophilic species; as temperature is increased above the polymer’s LCST, 

transition to the hydrophobic state caused increased TCE adsorption onto the membrane 

surface because of the hydrophobic nature of this solute [43]. Figure 1.5 demonstrates the 

increase in TCE adsorption percentage onto a P(NIPAAm-AA) hydrogel from 30% to 

65% as temperature is increased above the LCST because of enhanced hydrophobicity 

[43]. Water can also oxidize the Fe NPs and decrease reactivity. By controlling the 

hydrophilicity of the polymeric membrane, water content within the membrane pores can 

be controlled, thereby allowing for selective tuning of the reduction reaction [43].  

Varying temperature affects NP reactivity because as we know, reaction kinetics are a 

function of temperature, and also affects diffusivity through the membrane as shown in 

the Wilke-Chang equation [44]. By incorporating a thermo-responsive polymer into the 
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membrane matrix, transmembrane flux can also be controlled, thereby allowing the 

optimization of polychlorinated biphenyl (PCB) degradation by bimetallic Fe/Pd 

nanoparticles through regulation of temperature [43]. Xiao et al. studied TCE 

dechlorination using Fe/Pd nanoparticles (1.5 wt% Pd relative to Fe) in a P(NIPAAm-

AA) hydrogel matrix above and below the LCST to verify the effect of temperature on 

reaction rate constant. The normalized reaction rate for the dechlorination reaction (kSA) 

increased by a factor of three, from 0.0156 to 0.0411 L/(m2·h), due to a temperature 

increase of only a few degrees above the LCST [43]. Figure 1.6 shows how TCE 

concentration versus time changes during the dechlorination reaction by Fe/Pd NPs in a 

P(NIPAAm-AA) hydrogel at 30 °C and 34 °C [43].  

Thermo-responsive polymers have been used in membranes to improve chelation 

of copper ions from wastewater [45, 46]. It was reported that large metal-polymer 

complexes can cause significant concentration polarization on the membrane active layer 

in polymer-enhanced ultrafiltration [47]. By using PNIPAm in the polymer-metal 

complex, copper retention could be increased at low temperatures due to increased 

binding sites on the polymer in the swollen state, while fouling could be dramatically 

reduced at higher temperatures because the polymer aggregates and unblocks membrane 

pores in the hydrophobic state, thereby reducing the formation of the cake layer [45, 48]. 

1.2.3 pH Responsive Properties 

Membranes and surfaces can also be functionalized with polymers that display pH 

responsiveness, also called hydrogels. By having ionizable functional groups that have 

the ability to gain or lose protons based on the surrounding pH, such polymer chains can 

be collapsed or extended based on fluctuation of hydrophobic volume (swelling) caused 
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by generated electrostatic repulsions [49]. Functional groups such as amino and amine 

groups in polymer chains with pKa values around 5 will lose their protons in basic pH 

conditions and are responsible for the responsive behavior [50]. While some pH-

responsive polymers, like polyacrylic acid, expand at higher pH due to deprotonation, 

some pH-responsive polymers swell due to electrostatic repulsions at lower pH and 

deprotonation at higher pH neutralizes the repulsions to collapse the polymer chains. 

Figure 1.7 demonstrates the physical response of a pH responsive polymer when 

subjected to pH values above and below its pKa  [50].   

The swelling behavior of a hydrogel can be predicted by first-order or second-

order kinetics [51], as shown in Eq. (2)-(3). This behavior has an increment in the mesh 

size of the polymer, showed in Eq. (4), which is a parameter of cross-linking density by 

calculating the average distance of neighbor polymer chains between two cross-linked 

points [52-55]:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾�𝑊𝑊𝑒𝑒𝑒𝑒 −𝑊𝑊�          (1-2) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾�𝑊𝑊𝑒𝑒𝑒𝑒 −𝑊𝑊�2          (1-3) 

𝜉𝜉 = 𝑙𝑙�𝑣𝑣2𝑒𝑒𝑒𝑒�
−1 3� ∙ �𝐶𝐶𝑛𝑛

𝑋𝑋
         (1-4) 

Here, W = (m – m0)/m with m0 and m are the weights of the dry polymer (xerogel) 

and the swollen hydrogel, respectively and K is the swelling constant. W approaches the 

value of one when it reaches the highest water uptake possible in equilibrium, Weq. In Eq. 

(4), ξ is the mesh size, l is the bond length along the backbone chain (1.54×10-10 m for 

carbon-carbon bonds), v2eq is the swollen polymer volume fraction for isotropic swelling 
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(xerogel/hydrogel), Cn is the Flory characteristic ratio (for PAA, Cn = 6.7) and X is the 

degree of cross-linking (mol % with respect to monomer concentration) [54].  

The fabrication of pH responsive polymers that display high hydrophilicity at low 

pH values is important for water treatment applications. In the past little research was 

done on wettability of surfaces based on pH responsive membranes that display such 

characteristics. A pH responsive surface was created by a poly(N-N’-dimethylaminoethyl 

methacrylate) (PDMAEMA) thin film on silicon substrates. This homopolymer can be 

prepared via surface-initiated atom transfer radical polymerization. The polymer is 

deprotonated at high pH and protonated at low pH, thereby allowing it to interact with 

anionic substances through electrostatic attraction [50]. More recently, hydrophilic and 

pH-responsive characteristics were incorporated into a polysulfone membrane by 

blending polyethylene glycol methyl ether and humic acid for recovery of H2SO4 from 

water [56].  

Since membrane fouling properties and solute rejection are correlated with 

membrane surface charge, coating membranes with a polymer that can be selectively 

deprotonated are able to significantly enhance anti-fouling properties while maintaining 

high solute rejection [57]. Lowering the surface free energy of the membrane, which 

lowers the interfacial interactions with foulant molecules, can also significantly reduce 

membrane fouling [58]. Grafting perfluoroalkyl groups onto NF membrane surface has 

been shown to reduce fouling by reducing adsorptive interactions and enhancing 

repulsive interactions between the membrane and foulants [58]. 

Bhattacharyya’s group have reported the functionalization of PVDF with PAA 

and PMMA to create pH responsive membranes onto which iron and iron oxide NPs can 
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be immobilized for water remediation [42, 55, 59-62]. PAA and PMMA can be 

transformed into the ionized state at environmental pH values above their pKa of about 

4.5. Membrane functionalization with PAA enables selective pore size tunability and 

therefore control over water permeability through the membrane. Figure 1.8 shows the 

effect of environmental pH on water flux and permeation through a PVDF-PAA 

membrane [59]. Hernández, Papp and Bhattacharyya  reported this effect with an 

approximated 50% decrease in pore size by shifting the pH from 3.0 to 9.0, with a 

simultaneous increase in the polymer mesh size [55]. The PAA functionalization is made 

by free radical polymerization using strong oxidants (e. g. persulfate) at 70 – 90 °C 

depending on the cross-linker used (ethylene glycol (EG); N,N′- methylenebis 

(acrylamide) (NMBA), etc.), or starting at room temperature  using metallic salts as 

accelerants (redox reactions) and antioxidants, such as ascorbic acid, to control the 

reaction process [55, 60].   

Full-scale PVDF-PAA flat sheet membranes (1×91 m and 70 μm of PVDF 

thickness, 45-55% porosity and backing fabric for stability) and membrane modules 

(0.465 m2 of surface area) were developed by joint work with the industry, see Figure 

1.9. The polymerization in solution process at industrial scale is similar to the reported 

bench-scale studies using EG as cross-linker with a lower amount of acrylic acid to 

reduce the viscosity of the solution and shorter polymerization times [60, 63, 64]. Pure 

water permeabilities of these full-scale membranes can vary from 1355 to 383 L/ 

(m2·h·bar), when the pH increased from acidic to neutral (3.0-7.3), and have a constant 

flux at different temperatures with constant pH (see insert in Figure 1.10), whereas the 

modules can go from around 320 to 230 L/ (m2·h·bar) when the pH goes from 4.0 to 9.0 
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[31, 59, 62]. These full-scale membranes and modules have also been post-functionalized 

with iron and iron oxide NPs for degradation and metal capture studies and with PNIPAm 

to get both temperature and pH responsive behaviors, see Figure 1.11 [31, 59, 62].  

Other studies have reported the fabrication of smart fiber membranes for gravity-

driven oil-water separations by depositing poly(methyl methacrylate)-block-poly(4-

vinylpyridine) (PMMA-b-P4VP) pH responsive copolymer fibers on stainless steel mesh 

[65]. The pH responsiveness allows for switchable wetting states of the membrane from a 

superhydrophobic/superoleophilic to superhydrophilic/underwater superoleophobic state. 

A pH-responsive sponge has been developed to do the same [66]. By wetting the 

membrane with acidic water, the smart fiber membrane switches from allowing oil to 

selectively pass through the membrane with high separation efficiency, to allowing water 

to selectively pass through the membrane with similar high efficiency [65]. High flux, 

gravity driven flow with switchable wettability for many cycles makes the smart fiber-pH 

responsive membrane cost-effective and appropriate for large-scale oil recovery and 

water purification applications [65].  

1.2.3.1 Other responsive properties 

Electromagnetic responsiveness can also be achieved by incorporating photo-

sensitive molecules that rearrange based on ionization upon exposure to electromagnetic 

irradiation; photo-induced polymer chains can expand/shrink because of the reversible 

exchange of electrostatic repulsion between ionic states [49]. Molecular structures of 

photo-responsive monomers have the ability to isomerizes, dimerize, and ionize given a 

certain irradiation, either inducing a change in charge or conformation. Structures of 

some photo-responsive monomers are shown in Figure 1.12 at various wavelengths [49].  
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Much like membranes functionalized with temperature and pH responsive 

polymers which can be varied to control effective pore diameter and therefore control 

both transmembrane flux and size-selective exclusion of particles, the use of 

superparamagnetic NPs can also be used to achieve the same phenomena due to their 

instantaneous response to an electric field [67, 68]. Himstedt et al. grafted poly(2-

hydrocyethyl methacrylate) (polyHEMA) onto polyethyleneterephthalate membranes and 

attached superparamagnetic Fe3O4 NPs to the end of the grafted polymer chains in order 

to control effective membrane pore diameter through external stimuli. By varying the 

magnetic field orientation, the NPs cause the polyHEMA chains to extend, thereby 

reducing water flux through the membrane [69]. Increasing the magnetic field and 

therefore decreasing pore diameter and reducing permeation of larger particles can enable 

a nano-valve character. Yang et al. also grafted polyHEMA onto thin film composite 

polyamide nanofiltration membranes and attached superparamagnetic Fe3O4 NPs to 

obtain magneto-responsive membranes for salt rejection with antifouling properties [67]. 

Membrane rejection of CaCl2 and MgSO4 was measured in dead-end filtration mode both 

in the absence and presence of an oscillating magnetic field [67]. Both permeate flux and 

salt rejection was greater in the presence of the magnetic field, and was also greater with 

increased magnetic NP density [67]. However, permeate flow decreases with increased 

grafting and NP density, thereby implying that the trade-off between permeate flow and 

membrane performance can be optimized for the desired application [67].  

Schacher et al. have reported the use of block copolymers displaying 

responsiveness to more than one stimuli to create functionalized membranes and surfaces 

that are controllable by multiple environmental factors [70]. They demonstrated that for 
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PDMAEMA, both pH and temperature can be independently varied with significant 

resulting effects on the transmembrane water flux [70]. Incorporating stimuli responsive 

materials into membrane processes opens the door to an array of functionalities that can 

enhance current techniques and for the treatment of prevalent, hazardous water 

contaminants such as perfluorinated compounds and halo-organics.  

1.2.4 Perfluorinated compounds 

Perfluorinated compounds (PFCs) such as Perfluorooctanoic acid (PFOA) have 

gained much attention as emerging pollutants due to their environmentally persistent 

nature and toxicity concerns that threaten water safety [71, 72]. Due to their thermal 

stability, these highly hydrophobic compounds have been used since the 1960s for a 

variety of purposes including: protective coatings, lubricants, surfactants, additives, and 

repellants. Methods to remove them from contaminated wastewater, groundwater, and 

drinking water continue to gain importance due to their continued production and toxicity 

[73-75].  PFC concentrations in contaminated wastewater and groundwater samples range 

from below 0.1ng/L to over 1000 mg/L values [75-77].  

1.2.4.1 Treatment of Perfluorinated compounds in water 

To date, various methods have been explored for the removal of PFCs from 

aqueous media, such as reverse osmosis [78], incineration [79], anaerobic defluorination 

[80], photochemical defluorination [81], oxidation [82, 83], reduction [84], electrostatic 

exclusion by nanofiltration [85], and adsorption [86-89]. The current advised US EPA 

level for PFCs is 70 ng/L. Adsorption has proven to be an effective method of removing 

PFCs from contaminated water, and Yao et al. have shown the efficiency of PFOA 

removal using a variety of commercially available adsorbents, including granulated and 
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powdered activated carbon, anion-exchange resin (AER), alumina, silica, and non-ion 

exchange polymers. AER has a very high adsorption constant of 200 mg(1-n) Ln g-1 

compared to a value of 63 mg(1-n) Ln g-1 for granular activated carbon (GAC) [75].  Due to 

their hollow nanostructures that create high surface areas, carbon nanotubes have been 

effectively used as a PFC adsorbent, yet their practical application in PFC treatment is 

limited by available recycling technology [90]. Li et al. used multi-walled carbon 

nanotubes (MWCNs) to remove PFCs using electrochemical assistance by varying 

polarization potentials, and demonstrated some regeneration capabilities [90]. Polymeric 

membranes have also been used to reject PFOA from water using size exclusion and 

electrostatic forces. Boo et al. used negatively charged nanofiltration membranes in order 

to achieve approximately 90% PFOA rejection [85]. Patterson et al. used reverse osmosis 

(RO) membranes to reject PFOA and perfluorooctane sulfonate (PFOS) from drinking 

water [91].  

1.2.4.2 PNIPAm-functionalized PVDF membranes: 

The use of responsive polymeric materials provides an alternative opportunity to 

increase the efficiency of treating perfluorinated contaminant (PFC) contaminated water. 

Not only could they remove PFCs from water through adsorption mechanisms, but they 

could also controllably and reversibly desorb the PFCs by changing the environmental 

conditions. While the adsorption capacity of responsive polymeric materials may be 

lower than commonly used adsorbents such as activated carbon, the ease of recycling at 

low cost provides a benefit that makes them attractive pollutant adsorbents for the 

treatment of contaminated water. Poly-N-isopropylacrylamide (PNIPAm) has been 

widely studied as a lower critical solution temperature (LCST) polymer that exhibits a 
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phase transition from a hydrophilic hydrated state to a dehydrated state at its LCST of 

32 °C. By increasing the temperature, property changes in the polymer chains affect the 

hydrogen bonding of water molecules as the chains collapse in an aqueous environment 

[26]. PNIPAm exhibits one of the largest known volume phase transitions (VPTs) in 

response to environmental stimuli due to motion of the mobile water phase within the 

cross-linked polymer network [92]. Studies have shown that the hydrophobicity of 

PNIPAm can be controlled using slight temperature variations of a few degrees, thereby 

affecting adsorption of organic compounds [43]. Understanding of the mechanism behind 

PNIPAm’s VPT has been limited and inconsistent until recently, with some asserting that 

the amide groups dehydrate first, while others state that the isopropyl groups dehydrate 

first and cause the chain to collapse [92-96]. Wu et al., used non-resonance Raman 

temperature-jump spectrometry in order to determine that the hydrophobic isopropyl and 

methylene groups dehydrate much faster than the amide groups, and are thus responsible 

for initiating PNIPAm’s VPT [92]. Furthermore, the partitioning of nonpolar and polar 

solutes in both collapsed and swollen PNIPAm chains has been studied, with findings 

that nonpolar solutes tend to reside in the dryer regions of the polymer [97]. The 

dehydration and rehydration of isopropyl groups on PNIPAm can therefore be leveraged 

for reversible adsorption of hydrophobic contaminants. Figure 1.13 demonstrates the 

expected behavior of PNIPAm hydrogels as well as PNIPAm-functionalized membranes 

when the temperature is increased above its LCST of 32 °C. In an aqueous environment, 

PNIPAm hydrogels shrink at higher temperature. When functionalized within membrane 

pores, PNIPAm collapses at higher temperatures, increasing the apparent membrane pore 

size. The NIPAm concentration and PNIPAm degree of functionalization also have an 
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impact. Increasing the NIPAm content in the polymerization mixture increases the 

polymer density when functionalized in membrane pores, thereby reducing permeance 

[31, 98].  

Polyvinylidene fluoride (PVDF) membranes have been used as a base membrane 

for microfiltration and ultrafiltration processes due to their chemical resistance and 

mechanical stability [16, 99-102]. Functionalizing PVDF membranes with responsive 

polymers gives the membrane new properties for advanced water separation. PVDF 

membranes have also been functionalized with PNIPAm to create temperature-responsive 

surfaces and pores [31, 98, 103]. When PNIPAm is formed inside PVDF membrane 

pores, controlling its hydrophobicity enables control over effective pore size, and 

therefore over water flux through the membrane. PNIPAm has been used to increase the 

adsorption of chlorinated organic compounds such as trichloroethylene (TCE) by raising 

the temperature just 3 degrees above the LCST [43].  

1.2.5 Chlorinated Organic Compounds: 

 The degradation of chlorinated organic compounds (COCs) has gained 

interest due to their environmental prevalence and toxicity. Poly chlorinated biphenyls 

(PCBs) are a group of prevalent, toxic COCs that have been released by poorly 

maintained hazardous waste sites, contaminating soil and groundwater, thereby causing a 

serious threat to the environment along with drastic health effects [104]. The 

development of low-cost methods to treat wastewater containing PCBs continues to carry 

significance because of the potential impact such technologies could have on human 

health.  
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1.2.5.1 Treatment of chlorinated organic compounds with reactive membranes:  

The use of reactive polymeric membranes has been studied for the degradation of 

PCBs [99-102, 105]. Specifically, polyvinylidene fluoride (PVDF) membranes have been 

used as a base membrane for microfiltration and ultrafiltration processes due to their 

chemical resistance and mechanical stability. They have been used in various water 

treatment methods through surface modification, such as dip coating [106], surface 

grafting [107], layer-by-layer assembly [108], and nanoparticle immobilization [109, 

110]. Functionalizing PVDF membranes with responsive polymers gives the membrane 

new properties for advanced water separation [31, 111-114]. Poly methyl methacrylate 

(PMMA) and Poly acrylic acid (PAA) have been used to functionalize membranes and 

create responsive surfaces because of its ability to deionize at high pH. Due to its 

ionizable functional carboxylic group, it can gain or lose protons, generating electrostatic 

repulsions that can collapse or expand polymer chains [49, 50, 54, 99]. Furthermore, the 

carboxylic groups in the PAA chain and the COOCH3 group in PMMA can be 

deprotonated at high pH and through ion exchange methods, and metal nanoparticles can 

be immobilized in the polymer domain [102, 115, 116].  

1.2.5.1.1 Integrating Fe-Pd nanoparticles: 

Reactive metal nanoparticles have been integrated into the polymeric domain of 

functionalized membranes in order to render them reactive [98, 117]. They have been 

used in solution and has been immobilized in membranes through ion exchange methods 

with the PAA domain for the degradation of COCs [98, 99, 101, 117-119]. Zero-valent 

iron (ZVI) and iron-based bimetallic nanoparticles have gained considerable attention 

because of their ability to reduce chlorinated organic compounds in water by electron 
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transfer reactions [120-123]. Zero-valent iron and other metal NPs have also been studied 

and implemented for chlorinated organic compounds through reductive pathways as 

shown in Eq. (1-5) [124-132]: 

𝑚𝑚𝑚𝑚𝑚𝑚0 + 𝑅𝑅𝑅𝑅𝑙𝑙𝑚𝑚 + 𝑚𝑚𝑚𝑚+ → 𝑚𝑚𝑚𝑚𝑚𝑚2+ + 𝑅𝑅𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑅𝑅𝑙𝑙−     (1-5) 
 
Here, RClm is a chlorinated organic compound. For a more rapid and complete reductive 

dechlorination, a second metal is often added, resulting in creation of bimetallic NPs. ZVI 

has been synthesized through reduction of ferrous iron using reducing agents, such as 

sodium borohydride (NaBH4), in aqueous solutions [42, 100, 102, 123, 131]. ZVI 

nanoparticles have large surface area, making them appealing for reaction, yet also 

vulnerable to oxidation by water and dissolved oxygen, which causes aggregation and 

iron oxide formation, reducing reactivity [133-137]. The introduction of a noble metal 

can result in enhanced reactivity [138, 139]. Palladium (Pd) has been widely used as a 

hydro-dechlorination catalyst. Numerous bimetallic systems that are designed to 

dechlorinate toxic chlorinated organic compounds have been reported in literature [140], 

including: Fe/Cu [141, 142], Fe/Ni [122, 143] or Fe/Pd [144-149]. Among these, the 

Fe/Pd bimetallic system has emerged as the most efficient and most commonly used 

system for dechlorination of various chloro-organics due to its low activation barrier 

[144]. The Fe acts as an electron source, which reacts with water to generate hydrogen 

gas, which is made reactive by the Pd catalyst by producing reactive hydrogen radical 

species for de-chlorination [99, 101, 150-154]. This redox reaction is hindered by oxygen 

dissolved in water, because it causes oxidation of the ZVI, rendering it unreactive. 

Bhattacharyya’s group has immobilized Fe/Pd bimetallic nanoparticles in functionalized 
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membranes for the de-chlorination of PCBs such as chlorobiphenyl, dichlorobiphenyl, 3-

3’-4-4’-5-pentachlorobiphenyl, etc. [99, 110]. 

1.2.5.2 Incorporation of PNIPAm for PCB degradation: 

PVDF membranes have also been functionalized with poly-N-

isopropylacrylamide (PNIPAm) to create temperature-responsive surfaces and pores [31, 

98, 103]. PNIPAm is a lower critical solution temperature (LCST) polymer that exhibits a 

phase transition from a hydrophilic state to a hydrophobic state at its LCST of 32 °C. By 

increasing temperature, property changes in the polymer chains affect hydrogen bonding 

with water molecules, causing the chains to transition and collapse in an water [26, 155]. 

PNIPAm’s hydrophobicity can therefore be controlled using temperature variations, 

thereby enabling control over adsorption of organic compounds [43]. When PNIPAm is 

formed inside PVDF membrane pores, controlling its hydrophobicity enables control 

over effective pore size, and therefore over transmembrane permeance. Furthermore, the 

environment surrounding immobilized nanoparticles can be controlled. Upon raising the 

temperature above PNIPAm’s LCST, dehydration initially occurs around the 

hydrophobic isopropyl groups of PNIPAm, initiating the backbone to change structure 

[92-96]. This transformation reduces the water content and oxidation of immobilized ZVI 

particles, and further exposing them to the hydrophobic PCB contaminants.  

Immobilizing the reactive nanoparticles in membranes gives them a platform that 

enables their reuse and reduces particle aggregation [110]. Our group has reported the 

immobilization of Fe/Pd bimetallic nanoparticles in PAA-PVDF membranes for the 

successful degradation of PCBs. PNIPAm, however, has never been incorporated into the 

reactive membrane matrix to enhance reaction conditions for PCB degradation. Other 
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than yielding control over effective pore size for particle fractionation, integrating 

PNIPAm into membrane pores can affect catalysis and PCB adsorption. Varying 

temperature affects the adsorption of hydrophobic and hydrophilic species into the 

PNIPAm domain, as well as the intrinsic reaction rate constant of the degradation 

reaction. PNIPAm has been used to increase the adsorption of trichloroethylene (TCE), 

another COC by raising the temperature a few degrees above the LCST [43]. It has also 

been incorporated into a PVDF membrane for temperature swing adsorption of 

perfluorooctanoic acid, showing reversible adsorption over several cycles by varying 

temperature around its LCST [155].  Since water can oxidize the ZVI nanoparticles and 

reduce reactivity, and water content within the membrane pores can be controlled using 

temperature in the presence of PNIPAm, selective modification of the reduction reaction 

is possible.  

1.2.6 Challenges: 

While commercial adsorbents exist for the removal of PFCs from water through 

adsorption, the regeneration and reuse of these adsorbent tends to be difficult and 

expensive.  The longevity of adsorbents has been of interest; Du et al. used Fe3O4-loaded 

fluorinated vermiculite nanoparticles to selectively adsorb PFOS and regenerated the 

adsorbent using methanol for five cycles [156]. Despite such options, the regeneration 

ability of PFC adsorbent materials is limited. For example, activated carbon must 

undergo thermal regeneration in order to be reused. Therefore, it is important to explore 

adsorptive materials that are easier and cheaper to regenerate and reuse.  

Practical concerns arise with the long-term use of Fe-Pd nanoparticles for the 

degradation of PCB through the reductive pathway. The presence of oxygen causes 
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nanoparticle oxidation, thereby reducing its reactivity over time. Studies have shown that 

particles can be regenerated and reused through reductive treatment with sodium 

borohydride [157]. Limiting the amount of water contacting the nanoparticles effectively 

enhances particle longevity. In order to further limit the oxidation of particles, materials 

that can attract more hydrophobic contaminants while limiting the presence of water in 

the reactive domain can be incorporated.  

Separation and degradation using membrane-based systems can be pressure-

intensive processes where a certain operating pressure is required to achieve given 

residence times. In order to reduce system pressure requirements while maintaining 

transmembrane permeance, stimuli responsive polymers can be incorporated that change 

conformation based on external stimuli. A cost trade-off arises when incorporating such 

materials between the pressurization cost and the cost of the external stimulus required to 

instigate the stimuli responsive material’s response.  
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Table 1.1: Environmental stimuli that trigger polymers with conformational transitions. 
(Reprinted with permission from [23]. Copyright (2019) Elsevier).  
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Figure 1.1: Membrane pore functionalization with responsive polymer; (a and b) 
membrane filled with reaction mixture, and equilibration, (c) in-situ polymerization is 
initiated by UV (d) hydrogen created within the membrane pore. (Reprinted with 
permission from [29]. Copyright (2012) Royal Society of Chemistry). 
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Figure 1.2: Reversible water flux response to temperature variations above and below the 
LCST through a multiple different PVDF-SiO2-PNIPAm membranes for multiple cycles. 
(Reprinted from [20]. Copyright (2020) Elsevier). 
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Figure 1.3: Effect of polymerization time on hydrodynamic pore diameters based on 
Hagen-Poiseuille law for PNIPAm-functionalized poly(ethylene terephthalate) 
ultrafiltration membranes. (Reprinted with permission from [36]. Copyright (2013) 
Elsevier). 
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Figure 1.4: (a) Produced water flux of an unmodified membrane (5 kDa Hydrosart 
membrane), membrane modified by PNIPAAm for 0.5 h and PPEGMA for 3 h, and 
membrane modified by PNIPAAm for 2 h and PPEGMA for 3 h. (b) Produced water flux 
of an unmodified membrane (5 kDa Hydrosart membrane), membrane modified by 
PPEGMA for 1.5 h and PNIPAAm for 1 h, and membrane modified by PPEGMA for 6 h 
and PNIPAAm for 1 h. All experiments conducted at 210 kPa and 45 °C (Reprinted with 
permission from [39]. Copyright (2012) Elsevier). 
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Figure 1.5: Normalized TCE (trichloroethylene) adsorption through temperature 
responsive P(NIPAAm‐AA) hydrogel below LCST (15 and 23°C) and above LCST 
(34°C), feed concentration: 0.2 mM TCE in water, 20 mL, pH = 6.8. (Reprinted from 
[43]. Copyright (2012) Elsevier). 
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Figure 1.6: Batch dechlorination of TCE with 70 nm Fe/Pd NPs (Pd = 1.5 wt. %) 
immobilized in P(NIPAAm‐AA) hydrogel at 30°C (below LCST) and 34°C (above 
LCST). Vol. = 43 mL, pH = 6.8; initial TCE concentration: 30 mg/L, iron loading 
amount: 0.3 g/L. (Reprinted from [43]. Copyright (2012) Elsevier). 
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Figure 1.7: Amine functionalized membranes: pH responsive behavior of PDMAEMA 
above and below pKa, characterized by deprotonation of the amine group at high pH, 
thereby reducing repulsion between chains and allowing for higher water permeability. 
(Reprinted with permission from [50]. Copyright (2008) Royal Society of Chemistry). 
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Figure 1.8: COOH functionalized membranes: pH responsive behavior of poly acrylic 
acid (PAA) functionalized bench-scale PVDF membranes is demonstrated by water 
permeation tests. (A) Water flux is determined at 5.5 bar and (B) pure water permeability. 
Thickness of PVDF membranes: 125 μm. (Reprinted with permission from [59]. 
Copyright (2013) American Chemical Society). 
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Figure 1.9: Top: Full-scale PVDF-PAA Functionalized Membrane and Module 
(Nanostone Water Inc.). Bottom: PVDF-PAA functionalization with zero-valent iron and 
iron oxide NPs. (Reprinted with permission from [158]. Copyright (2016) Elsevier).  
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Figure 1.10: pH and temperature responsive behavior of PAA-co-PNIPAm functionalized 
full-scale PVDF membranes is demonstrated by water permeation tests. Water flux is 
determined at 0.3 bar. Sharp flux transition is seen at 32 °C. Insert shows flux behavior of 
membrane without PNIPAm constant pH of 6.5. (Reprinted with permission from [31]. 
Copyright (2014) Journal of Membrane Science).  
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Figure 1.11: Full-scale PVDF-PAA membrane module water flux and reactivity in 
selenium oxyanion removal. (A) Water permeability with pH at 25 °C; (B) selenium 
removal results by passing synthetic selenium solution through iron immobilized module 
convectively, [Fe]0 = 0.68 g, [Se(VI)]0 = 1.00±0.05 mg/L, [Se(IV)]0 = 1.00±0.05 mg/L 
(2.0±0.1 mg/L in total) in synthetic feed solution. pH = 6.2, Jw=110.4 L/(m2·h) and τ 
=1.2 s. Effective membrane area: 0.465 m2. In the pH responsive study, water flux was 
measured after being stabilized for 15 min. (Reprinted from [62]. Copyright (2015) 
Elsevier). 
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Figure 1.12: Examples of molecular structures of photoresponsive monomers: cis-trans 
isomer of azobenzene (A); ionization monomers of leucos (B’) of spiropyran (B”); 
dimerization of monomer of cinnamate (C), (Reprinted with permission from [49]. 
Copyright (2010) Elsevier).  
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Figure 1.13: Schematic of thermo-responsive behavior of PNIPAm hydrogels and 
PNIPAm-functionalized membranes in aqueous environment: (A) isopropyl groups 
followed by polymer backbone are the first to dehydrate when temperature is raised 
above LCST (B) PNIPAm hydrogels swell and expand in aqueous environment below 
LCST (C) effective pore opening of a PNIPAm-functionalized membrane is larger when 
the polymer is in the collapsed state above its LCST. Reprinted from [155]. 
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CHAPTER 2: RESEARCH OBJECTIVES 
 

The primary objectives are the use of temperature responsive PNIPAm and its 

properties in order to achieve reversible adsorption of perfluoroorganic contaminants and 

secondly, to enhance PCB degradation via bimetallic polymeric membrane system. 

Multiple sub-objectives were pursued in order to achieve the primary objective. PNIPAm 

was synthesized in hydrogel form, and also incorporated into PVDF membrane pores in 

order to study its characteristics.  Interaction parameters of PNIPAm and contaminant 

functional groups were used to describe adsorption/desorption phenomena. Furthermore, 

Fe-Pd bimetallic nanoparticle immobilization in membrane pores and subsequent 

characterization yielded degradation model characteristics. Understanding adsorption and 

diffusion of PCB into the polymeric PNIPAm-functionalized membrane is important in 

evaluating the effect of incorporating PNIPAm on PCB degradation. The structures of the 

polymers used in this study, specifically PNIPAm and PMMA, and of the contaminants 

examined, specifically PFCs and PCBs, are displayed in Figure 2.1 and a schematic of 

research goals can be found in Figure 2.2. The specific objectives of this research are 

divided into the following categories: 

Synthesis and characterization of polymeric membranes and Fe-Pd nanoparticles: 

• Development of temperature and pH responsive membrane by filling pores with 

responsive polymers 

• Characterization of PNIPAm swelling and transmembrane flux at various thermal 

conditions for reaction model characteristics 

• Immobilization of Fe-Pd nanoparticles in PVDF membrane pores via ion 

exchange methods 
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• Characterization of the bimetallic nanoparticles within membrane pores for 

reaction model characteristics 

PFC treatment in water via reversible adsorption: 

• Determination of the adsorption isotherms of PFOA onto PNIPAm hydrogels 

• Determination of the adsorption and desorption kinetics of PFOA onto PNIPAm 

hydrogels in water around PNIPAm’s LCST using a pseudo-second order 

adsorption kinetics model 

• Evaluation of the interaction properties between PNIPAm and PFOA versus 

PFOS in order to describe the relationship between interaction parameters of the 

functional groups involved in adsorption and desorption 

• Performance of temperature swing adsorption using PNIPAm-functionalized 

PVDF membranes for continuous adsorption and desorption over multiples cycles 

PCB degradation in water via PNIPAm-PMMA functionalized PVDF membrane with 

reactive Fe-Pd nanoparticles: 

• Evaluation of the effect of introducing PNIPAm into the reactive membrane 

domain on PCB adsorption at various thermal conditions 

• Evaluation of the effect of introducing PNIPAm into the reactive membrane 

domain on PCB diffusion at various thermal conditions 

• Evaluation of the effect of introducing PNIPAm into the reactive membrane 

domain on PCB degradation rates at various thermal conditions 

• Combination of transmembrane flux data at various thermal conditions, 

nanoparticle characterization, and PCB degradation data in order to effectively 

model the reaction 
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Figure 2.1: Structure of compounds used in this study  
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Figure 2.2: Schematic of research goals and processes  
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CHAPTER 3: EXPERIMENTAL 
 
  

This chapter explains the experimental procedure, in detail, for each of the 

undertaken experiments. Details about the synthesis of polymeric hydrogels, of polymers 

in membrane pores, and of reactive Fe-Pd nanoparticles in membrane pores are shown. 

Furthermore, the analytical characterization methods, including attenuated total 

reflectance Fourier transform infrared, dynamic light scattering, energy dispersive X-ray 

spectroscopy, liquid chromatography mass spectrometry, inductively coupled plasma 

optical emission spectroscopy, are each explained. Experiments conducted to evaluate 

stimuli-responsive flux behavior, adsorption/desorption behavior, and catalytic behavior 

are detailed.  

 
3.1 Materials  

 Full scale hydrophilized polyvinylidene fluoride 700 (PVDF-700) membranes 

were obtained from Nanostone Water, Inc., Oceanside, CA (average pore size: 250 nm, 

thickness: 0.172 mm, porosity: 0.4). All chemicals used were reagent grade. N-

isopropylacrylamide (NIPAm) was purchased from VWR at 97% purity. N,N’-

methylenebisacrylamide (BIS, 99%) and ammonium persulfate (APS, 98%) were 

received from Acros Organics. Ethanol (>99.9%), and methanol (>99.9%) were 

purchased form Sigma-Aldrich. Perfluorooctanoic acid (PFOA, 97%) was purchased 

from Alfa Aesar as Sodium perfluorooctanoate and Perfluorooctanesulfonic acid (PFOS, 

98%) were obtained from Matrix Scientific as Potassium perfluorooctanesulfonate. 

Sodium borohydride (99.99%) and acrylic acid (99%) were purchased from Sigma-

Aldrich. Sodium hydroxide (1 M), ferrous chloride tetrahydrate (FeCl2•4H2O), and 
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palladium(II) acetate (Pd(OAc)2) were obtained from Fisher Scientific. Ultra-high purity 

(UHP) nitrogen gas was purchased from Scott Specialty Gases. Deionized ultra-filtered 

water (DIUF) was acquired from Fisher Scientific.  

3.2 Synthesis: 

3.2.1 Synthesis of PNIPAm hydrogels  

 The PNIPAm hydrogels were prepared by temperature initiated free radical 

polymerization. First the DIUF was purged with UHP Nitrogen for 30 minutes because 

the presence of oxygen affects polymerization. The pre-polymerization mixture consisted 

of 30 g of NIPAm monomer in 200 mL of de-oxygenated DIUF, with 3 mol% BIS cross-

linker and 2 mol% APS initiator for a molar ratio of NIPAm:BIS of 97:3.The solution 

was placed into petri dishes in a vacuum oven at 70 °C for two hours. The hydrogels 

were then removed from the plates, freeze dried, and crushed using a mortar and pastel. 

The broken up cross-linked PNIPAm hydrogels were then placed in deionized water to 

wash away any unreacted NIPAm monomer.  

3.2.2 Synthesis of PNIPAm-PMMA hydrogels: 

The PNIPAm-PMMA hydrogels were prepared by temperature initiated free 

radical polymerization. The pre-polymerization mixture consisted of 13.5g of NIPAm 

monomer in 100mL of DIUF (deoxygenated with UHP Nitrogen for 30 minutes), and 

MMA and BIS crosslinker were added for a molar ratio of NIPAm:MMA:BIS of 90:5:5, 

along with 2 mol% APS initiator relative to NIPAm. The solution was placed into petri 

dishes in a vacuum oven at 70 °C for two hours. The hydrogels were then removed from 

the plates and washed in deionized water to remove any unreacted NIPAm and MMA 

monomer.  
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3.2.3 Synthesis of PNIPAm-functionalized PVDF membranes 

 PNIPAm monomer (6g, 13 wt%), BIS cross-linker (3 mol%), and APS initiator (2 

mol%) were dissolved in de-oxygenated DIUF at room temperature to create the pre-

polymerization mixture. The full-scale PVDF 700 membranes were developed in 

collaboration with Nanostone Sepro, Oceanside, CA. These hydrophilized membranes are 

supported by a backing fabric for increased stability, with a relatively open structure 

uniform geometry.  The full-scale membrane sheets were cut into circles with diameters 

of 14 cm and were weighed prior to being mixed in the pre-polymerization mixture for 5 

minutes. The pre-polymerization mixture was then passed through the membrane at least 

3 times using a vacuum pump in order to ensure the mixture was inside the membrane 

pores rather than only on the surface. The membrane surface was then dried using UHP 

nitrogen gas and placed between two glass plates and heated in an oven at 70 °C while 

being purged with UHP nitrogen for 2 hours. The PNIPAm-functionalized PVDF 700 

membrane was then removed from the oven and washed with dilute ethanol to remove 

any unreacted monomer and stored in DIUF overnight. The membrane’s mass increased 

an average of 15% post-functionalization. Figure 3.1 is a schematic of the membrane 

functionalization process.  

 
3.2.4 Synthesis of PNIPAm-PMMA-functionalized PVDF membranes: 

NIPAm monomer (6g, 13 wt %) was mixed with MMA monomer and Methylene-

bisacrylamide (MBA) cross-linker in the same ratio as the hydrogel preparation of 90:5:5, 

with Ammonium Persulfate initiator (1 mol %) in de-oxygenated DIUF water at room 

temperature. The PVDF 400 B membrane from Nanostone Sepro was weighed and mixed 
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in the monomer solution for 5 minutes. The solution was then passed through the 

membrane using a vacuum funnel to ensure coating of the membrane pores. The 

membrane was then placed between two glass plates and heated at 70 °C while being 

purged with Nitrogen for 2 hours. The surface of the functionalized membrane was then 

washed with water and ethanol, and stored in DIUF water overnight. Mass of membranes 

increased an average of 20% post-functionalization. Figure 3.2 is a schematic of the 

membrane functionalization process.  

3.2.5 Synthesis of Fe/Pd nanoparticles in functionalized PVDF membrane pores: 

The bimetallic nanoparticles were immobilized in the functionalized membrane 

pores via an ion exchange method developed by our lab [99]. Functionalized PNIPAm-

PMMA-PVDF membranes were soaked in a 70 mM NaCl solution with an adjusted pH 

of 11.5 overnight to enhance ion exchange capability with Fe2+. The high pH enabled the 

carboxyl groups of the PMMA chains to chelate with Na+ and release H+. A drop in pH 

of the solution confirms the presence of ion exchange. Next, an aqueous solution 

containing 4 mM Fe2+ as FeCl2•4H2O was passed through the membrane using a 

pressurized permeation cell several times to ensure ion exchange within the membrane 

pores. The membranes were then placed in an aqueous 25mM NaBH4 solution for 30 

minutes to reduce the Fe2+ to Fe0. The membranes were then washed, and then a 

water:ethanol solution with a molar ratio of 10:90 containing Pd as Pd(OAc)2 was passed 

through the membrane several times to coat the Fe0 particles with Pd. The Pd 

concentration was 3 mol% of the Fe solution previously used. The membranes were 

washed with deionized water and stored in ethanol to avoid oxidation. The Fe content in 

each membrane was calculated using inductively coupled plasma (ICP) spectroscopy, 
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where Fe solution concentration was measured before and after the ion exchange process, 

and immobilization content determined via mass balance. Figure 3.3 is a schematic of the 

ion exchange method and degradation reaction scheme.   

 

3.3 Characterization and analytical methods 

3.3.1 Attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

 Attenuated total reflectance Fourier transform infrared (ATR-FTIR Varian 7000e) 

was used in order to confirm the presence of PNIPAm in the PVDF membrane. Samples 

of PNIPAm hydrogels as well as non-functionalized and PNIPAm-functionalized PVDF 

700 membranes were analyzed to confirm successful polymerization of the blank PVDF 

membranes. PVDF membrane’s CF2 group’s characteristic absorption band would be 

found at 1120-1280 cm-1 [31, 159]. NIPAm’s –NH and –C=O groups’ characteristic 

absorption bands would be found at 1540 cm-1 and 1650 cm-1, respectively [31, 160-162].   

 

3.3.2 Dynamic Light Scattering (DLS) for particle size 

 Dynamic light scattering (DLS) was used in order to determine the apparent 

number average hydrodynamic diameter of the hydrogels, and the temperature was varied 

from 25 ºC to 35 ºC for 7 cycles to observe swelling behavior. The crosslinking density 

of the hydrogels was then increased and DLS was used to determine the average 

hydrodynamic diameter by raising the temperature above the LCST for 3 cycles. The 

swelling capacity was then compared to the less cross-linked hydrogel.  
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3.3.3 Energy dispersive X-ray spectroscopy (EDS) analysis of PNIPAm hydrogels with 

PFOA 

 After PFOA adsorption, PNIPAm hydrogel samples were dried and analyzed 

using energy dispersive X-ray spectroscopy (EDS, Oxford Instruments X-MaxN 80 

detector). Hydrogel samples were freeze dried and mounted on the holder inside the 

scanning electron microscope chamber (FEI Helios Nanolab 660) and EDS analysis was 

performed in order to find the relative ratios of carbon, nitrogen, oxygen, and fluorine. 

Using the atomic ratios of fluorine, which only exists in PFOA, versus nitrogen, which 

only exists in PNIPAm, the adsorbed amount can be loosely predicted and compared to 

the equilibrium adsorption data.  

 

3.3.4 Liquid Chromatography Mass Spectrometry (LC-MS/MS) 

All PFOA and PFOS samples were analyzed by liquid chromatography mass 

spectrometry (LC-MS/MS) separation. UPLC coupled electrospray ionization tandem 

mass spectrometry was used in this study. A bench top binary prominence Shimadzu 

chromatograph (Model: LC-20 AD) equipped with SIL 20 AC HT autosampler that was 

interfaced with an electrospray ionization (ESI) of AB SCIEX Flash Quant mass 

spectrometer (MS/MS) (Model: 4000 Q TRAP).  Filtered and diluted water samples were 

spiked with 64 ng/L isotopic mass labeled surrogate perfluoro-n-[1,2,3,4-13C4] octanoic 

acid (SS) and 30 ng/L isotopic mass labeled internal standard perfluoro-n-[1,2,3,4-13C4] 

heptanoic acid (IS) were added to 1.0 mL volume of sample solution. SS spiked samples, 

continuous calibration verification (CCV), reagent blank and IS-blank were used as 



 

 48 

quality controls (QC).  Target analyte concentrations and QC performance of the method 

were determined using IS based calibration curves.   A gradient elution of mobile phase 

containing 20 mM ammonium acetate in pure water (A) and pure methanol (B) was used 

with a Macherey Nagel analytical column EC 125/2 NUCLEODUR C18 Gravity packed 

with 5 µm particle (length 125 x 2 mm ID) at a constant flow rate of 0.4 mL/min.  A 

13.51 min gradient with composition of B was started 40% at 0.01 min, 65% at 1 min, 

90% at 6 min, 95% at 11.5 min, 40% at 13.51 min with 2 min equilibration time.  A 

volume of 5 µL of standard or samples was injected. Data were collected in negative 

multiple reaction monitoring (MRM) mode with monitoring of quantitation and qualifier 

ions for PFOA and PFOS, SS and IS.  Data acquisition and process were performed using 

AB Sciex Analyst version 1.4.2 and Multiquant version 3.0, softwares, respectively. The 

precursor and product ions monitored were PFOA 412.912 > 368.7, 168.7 m/z; PFOS 

498.88 > 79.9, 98.8 m/z; SS 416.946 > 371.9 171.7 m/z; IS 366.897 > 321.7, 171.6 m/z 

were obtained. Bold face indicates the quantitation ions.  The PFOA, PFOS, SS and IS 

were eluted from column at retention times of 4.24, 4.78, 4.22, 3.73 min, respectively. 

Average spiked SS recovery was for 108.5% and CCV was 97.5%. Limit of detections 

(LOD) for target analytes were 0.25 ng/L at S/N= 4.  Seven calibration points with linear 

dynamic range (LDR) were 2.5 - 320 ng/mL with R2 values of 0.99968.  MS was 

operated with curtain gas 30 psi, negative ESI 4500 volt, temperature 3000C, and ion 

sources gas (GS1/GS2) 30 psi. 
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3.3.5 Metal loading analysis using ICP-OES 

In order to measure the Fe content in solution, inductively coupled plasma optical 

emission spectroscopy ICP-OES, VARIAN) was used. Firstly, when preparing the 

aqueous Fe solution for ion exchange, samples were taken before and after the ion 

exchange process and analyzed in order to determine the change in Fe concentration. 

Using mass balance, the amount of Fe immobilized in the membrane was determine. As a 

secondary check, after using the membrane for PCB degradation, the membrane was 

digested in dilute nitric acid using heat, and the Fe/Pd content in the entire membrane 

could be measured using ICP-OES.  

3.3.6 Characterization of Fe/Pd nanoparticles inside functionalized membranes: 

In order to analyze nanoparticle sizes within membrane pores, a lamella was 

prepared using FIB-SEM (FEI Helios Nanolab 660) [109, 110]. The lamella sample was 

imaged using the scanning electron microscope (FEI Helios Nanolab 660) and the Fe 

nanoparticles could be observed directly. Elemental composition of the lamella was 

determined using energy dispersive X-ray spectroscopy (EDX Oxford Instruments X-

MaxN 80 detector) in order to confirm the presence of Fe as the corresponding particles in 

the lamella.  

3.3.7 PCB-1 and Biphenyl analysis: 

PCB-1 and Biphenyl analysis was conducted using a gas chromatograph (GC, 

Varian-3900), which was equipped with an ion-trap mass spectrometer (MS, Saturn-

2100T). Hexane was used as the extractant for both PCB-1 and Biphenyl. An equal 

volume of hexane was added to each aqueous sample and shaken for 2 hours to reach 

extraction equilibrium prior to moving 1 mL of hexane with extracted PCB-1/Biphenyl 
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into a 2-mL analysis glass vial. Biphenyl-d10 was used as an internal standard (10 ppm). 

The internal standard was injected into the aqueous solution prior to hexane extraction to 

ensure extraction efficiency. External standards of PCB-1 and Biphenyl were used to 

prepare calibration curves, which were linear over the concentration range of 0.1-5 ppm 

(R2>0.99) using a 6-point calibration.  

3.4 Swelling studies for PNIPAm-PMMA hydrogels: 

Swelling studies were conducted using the PNIPAm hydrogels in order to verify 

their thermo-responsive behavior in an aqueous solution. Hydrogels were weighed and 

placed in water baths at 25 °C and 35 °C. The hydrogels were then removed, wiped to 

remove any water on the surface, and weighed. Five samples were used at each 

temperature, and the swelling ratio (Q) was calculated for each individual sample as 

Q=Ws/Wd, where Ws is the mass of the swollen samples and Wd is the mass of the dry 

sample.  

3.5 Temperature-responsive flux measurements for PNIPAm-PVDF membranes: 

 The PNIPAm-functionalized membrane was placed in a stirred cell acquired from 

Millipore in order to study its temperature responsive flux behavior. The cell was filled 

with DIUF and temperature was maintained using electrical heating tape. The cell had a 

digital thermocouple that enabled continuous monitoring of the temperature of the DIUF 

inside the cell. UHP nitrogen was used to pressurize the cell, which had a maximum 

pressure limit of 5.5 bars. Whenever the pressure was varied, water flux through the 

membrane was allowed to reach steady state before any samples were taken. When the 

temperature was varied, samples were only taken once the permeated water temperature 

was equal to the cell’s internal temperature. Triplicate samples were taken to measure 
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water flux by measuring permeated volume versus permeation time. Final runs were 

always conducted at conditions equal to the first run in order to test reversibility. Flux 

tests were performed using pure water at both 22 ºC and at 35 ºC with varying pressure in 

order to test the stability of the membrane. In order to further examine the temperature 

responsive nature of the PNIPAm functionalized membrane, the pressure was held 

constant and flux was measured as temperature was varied from 22 ºC to 40 ºC.  

3.6 Temperature and pH-responsive flux measurements for PNIPAm-PMMA-PVDF 

membranes: 

PNIPAm-PMMA-functionalized membranes were placed in a dead-end stirred 

cell acquired from Millipore in order to examine thermo-responsive transmembrane 

permeance. The cell was filled with DIUF water and wrapped with an electrical heating 

tape with a temperature controller and digital thermocouple to measure temperature 

inside the cell. The cell was pressurized with UHP nitrogen with a limit of 6 bars. 

Pressure was varied and flow through the membrane was allowed to reach steady state 

before samples were collected in allotted time intervals. Three samples were taken at 

each pressure in order to use permeated volume and time to calculate transmembrane 

flux. When temperature was varied, samples were taken once the permeated water 

temperature was equal to the water temperature inside the cell, and three samples were 

taken at each point. Flux tests were performed by varying pressure at constant 

temperature to test membrane stability. Temperature was then varied at constant pressure 

and pH, from 20 °C to 40 °C to test thermo-responsivity. Finally, temperature was varied 

again at a different pH to test the pH responsive nature of the membrane because of the 



 

 52 

PMMA, which deionizes at pH values above the pKa of PMMA (about 4.5), causing 

increased interaction with the water and lower transmembrane permeance.  

 

3.7 PFOA and PFOS equilibrium adsorption onto PNIPAm hydrogels  

 Adsorption of aqueous perfluorooctanoic acid (PFOA) using PNIPAm hydrogels 

was studied in order to determine the equilibrium adsorption values for aqueous PFOA-

PNIPAm systems at near freezing (4ºC), ambient (22ºC), and above LCST (35ºC) 

temperatures. Aqueous PFOA solutions (20 mL) were made using DIUF with 

concentrations ranging from 25 mg/L to 250 mg/L and adsorption was conducted using 

0.5 g of PNIPAm hydrogels in each 20 mL vial. Three independent samples were 

analyzed for each concentration point, at each temperature. By plotting the equilibrium 

amount of PFOA adsorbed onto the hydrogels (qe) versus the equilibrium PFAO 

concentration remaining in the aqueous phase (Ce), equilibrium adsorption curves can be 

experimentally determined for each isotherm.  

 The equilibrium adsorption isotherms of PFOA and PFOS were compared to 

calculated interaction parameter values. The different functional groups in the 

compounds yield different interaction parameters for the compounds. The apparent 

hydrogen bonding and dispersion interaction parameters of the various functional groups 

can be compared to the adsorption extent at temperatures above and below PNIPAm’s 

LCST in order to explain relative adsorption behavior. 
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3.8 PFOA adsorption/desorption kinetics using PNIPAm hydrogels  

 The ability of PNIPAm particles to adsorb PFOA was studied as a function of 

time to determine the adsorption and desorption rates. Two grams of PNIPAm hydrogels 

were placed in 500 mL of water concentrated with 1000 ppm PFOA and shaken at 100 

rpm in a temperature-controlled shaker set at 35 ºC, with samples taken at various time 

intervals up to 24 hours. After reaching equilibrium, the hydrogels were removed from 

the aqueous PFOA solution and placed in DIUF and shaken at 100 rpm at 20ºC, with 

samples taken at various time intervals up to 18 hours. A sample volume of 1 mL was 

used in order to minimize the impact on the total solution concentration. Triplicate 

samples were always taken. Once taken, the sample was then analyzed using LCMS. 

Knowing the concentration of the aqueous phase at each point, the amount of adsorbed 

PFOA at each time interval was calculated by mass balance.  

 

3.9 PFOA adsorption onto PNIPAm-functionalized PVDF membranes via convective 

flow  

 The PNIPAm-functionalized membrane was placed in a stirred cell acquired from 

Millipore in order to study its ability to adsorb and reversibly desorb PFOA as it is passed 

convectively through the membrane. In order to study adsorption, the cell was filled with 

80 mL of DIUF concentrated with PFOA (0.5 mg/L) while the temperature was 

maintained at 35 ºC using electrical heating tape. The cell had a digital thermocouple that 

enabled continuous monitoring of the temperature of the DIUF inside the cell. UHP 

nitrogen was used to pressurize the cell to 3.5 bar, yielding an average flux of 11 LMH. 

80 mL of aqueous PFOA was passed through the membrane and the permeate was all 



 

 54 

collected in approximately 10 mL aliquots and PFOA concentrations were analyzed by 

LCMS using triplicate samples from each aliquot. Using mass balance, the amount of 

PFOA adsorbed in the membrane at each point could be calculated. Next, 80 mL of DIUF 

was placed in the cell at 22 ºC with the pressure maintained at 3.5 bar in order to force 

the entire volume through the membrane to measure its desorption ability. Again, the 

entire permeate was collected in approximately 10 mL aliquots and the associated 

concentrations were analyzed using LCMS in order to determine the amount of desorbed 

PFOA. This adsorption/desorption study was repeated 5 times in order to test the long-

term stability of the membrane and explore its ability for temperature swing adsorption. 

 

3.10 Adsorption/desorption of PCB-1 in PNIPAm-PMMA hydrogels: 

Hydrogels were placed in 20mL aqueous PCB-1 and Biphenyl solutions and 

shaken for 24 hours at 25 °C and 35 °C in order to determine relative adsorption. 

PNIPAm-PMMA-functionalized PVDF membranes, as well as pristine PVDF 

membranes with no functionalization, were also placed in the same volume and 

concentration of PCB and Biphenyl at 25 °C and 35 °C and shaken for 24 hours. Three 

independent samples were taken for each material, at each of the two temperatures. 

Samples before and after adsorption were analyzed using GCMS-MS, and adsorbed 

quantity was calculated via mass balance. Next, vials with PNIPAm hydrogels and 20 mL 

of aqueous PCB-1 that were shaken at 35 °C were then shaken at 25 °C for 24 hours, and 

samples were analyzed for any changes in PCB-1 concentration, and therefore in 

adsorbed PCB-1. The vials were then shaken at 35 °C again for 24 hours to measure any 

subsequent change, and temperature was varied above and below the LCST over three 
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cycles to determine whether adsorption/desorption was reversible. There was no head 

space in the vials to avoid PCB-1 and Biphenyl loss due to their semi-volatile nature.  

3.11 Diffusion of PCB-1 through Fe-Pd-PNIPAm-PMMA-functionalized PVDF 

membranes: 

The diffusivity of PCB-1 was measured in order to understand the mass transport 

influence in PCB batch and convective flow degradation. Two metal diffusion cells were 

used with a thin membrane in between. One one side, a 300-mL aqueous PCB-1 solution 

was injected on one side (the feed side), while 300 mL of pure water was simultaneously 

injected in the other side (the permeate side). As soon as the solutions were injected, 

PCB-1 started to diffuse through the membrane to the permeate side. A PNIPAm-

PMMA-PVDF membrane of area 3.5 cm2 with immobilized Fe particles was used, 

without the presence of Pd to avoid any reaction. Triplicate samples were taken from 

both sides simultaneously at various time points. All samples were mixed with an equal 

volume of hexane for extraction, along with naphthalene d_8 internal standard, followed 

by analysis using gas chromatography mass spectrometry.  Diffusion experiments were 

conducted at 25 °C and 35 °C.  

3.12 2-chlorobiphenyl degradation: 

3.12.1 Convective flow degradation: 

For the convective flow degradation, a piece of PNIPAm-PMMA-functionalized 

PVDF membrane with immobilized Fe/Pd was placed in a dead-end filtration cell 

(surface area of 13.2 cm2) surrounded with an electric heating tape, connected to a 

temperature controller. Aqueous PCB-1 was also pre-heated or cooled to the desired 

temperature of the experiment. An initial PCB-1 solution of 5ppm in water was placed in 
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the cell and was pressurized through the reactive membrane. The solution was 

pressurized through the membrane until the temperature of the permeate was equal to the 

temperature of the filtration cell prior to conducting experiments. Pressure was varied in 

10-minute intervals and permeate was collected in triplicate samples at each pressure. 

Transmembrane flux was measured at each pressure in order to determine residence time 

in the membrane. Aqueous permeate was collected in 5 mL samples, which were placed 

in 5 mL of hexane for extraction of unreacted PCB-1 for analysis via GCMS-MS. 

Residence time was varied by changing pressure within the range of 0.7 to 3.5 bars. 

Triplicate samples were collected at each of 4 different pressures for each given 

temperature. Degradation was conducted at four different temperatures: 15 °C, 25 °C, 

35 °C, and 45 °C.  

3.12.2 Batch degradation: 

2-chlorobiphenyl (PCB-1) was degraded in a batch experiment using the 

PNIPAm-PMMA-functionalized PVDF membranes with Fe/Pd nanoparticles. An initial 

PCB-1 solution of 5ppm in water was used, due to solubility limits, in 8 mL EPA glass 

vials. Two pieces of reactive functionalized membranes were placed in each vial (surface 

area of 13.2 cm2). Once the membranes were placed in the vials (shaken at 200 rpm), the 

reaction started. In order to end the reaction at various time points, the membrane was 

removed from the vial, and the unreacted PCB-1 and Biphenyl product was extracted by 

mixing the 8 mL of aqueous PCB-1 with 8 mL of hexane for analysis via GCMS-MS. In 

addition to using the Fe/Pd-PNIPAm-PMMA-PVDF membranes, experiments were also 

conducted with PNIPAm-PMMA-PVDF membranes with only Fe, and without any 

membrane at all as controls. A temperature-controlled shaker was used to shake the vials 
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during the experiments in order to be able to control the environmental temperature of the 

reaction and evaluate thermo-responsive behavior. Batch degradation experiments were 

conducted at 25 °C and 35 °C. Three samples were taken at each time point for each 

experiment. There was zero head space in the vials during the degradation experiment in 

order to avoid any biphenyl loss due to its semi-volatile nature.  
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Figure 3.1: Schematic of the membrane functionalization process for PNIPAm-
functinoalized PVDF membrane  with BIS crosslinker. In step 1, the pre-polymerization 
mixture is passed through the PVDF membrane in order to wet the pores. In step 2, the 
soaked membrane is placed between two glass plates and heated at 70 ºC for two hours. 
In step 3, the functionalized membrane is washed in ethanol to remove unreacted 
monomer. Reprinted from [155].  
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Figure 3.2: Schematic of the in-situ membrane functionalization process for PNIPAm-
PMMA-functionalized PVDF membrane with BIS crosslinker.  
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Figure 3.3: Schematic of in-situ nanoparticle immobilization process through ion 
exchange with PMMA functional groups to immobilize Fe/Pd nanoparticles for PCB 
degradation along with reaction scheme for PCB dechlorination via oxidative pathway.    
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CHAPTER 4: SYNTHESIS OF STIMULI RESPONSIVE PNIPAm HYDROGELS 
AND MEMBRANES AND Fe-Pd NANOPARTICLES 
 

This chapter details the development of temperature and pH responsive membrane 

by filling pores with responsive polymers. Temperature and pH responsive membranes 

are synthesized by functionalizing PVDF membranes with thermo-responsive PNIPAm 

and pH-responsive PAA/PMMA. The stimuli-responsive nature of the polymers is first 

tested in hydrogel form, before being polymerized in PVDF membrane pores to create 

stimuli-responsive membranes with effective pore size control. Stimuli-responsive 

character is evaluated through characterization of polymer swelling and transmembrane 

flux at various thermal and pH conditions. The stimuli-responsive functionality is then 

leveraged for the rejection of dextran, a model compound used for size-based rejection. 

Next, Fe-Pd bimetallic nanoparticles are immobilized in membrane pores via ion 

exchange and characteristics are evaluated.  

4.1. Swelling studies of PNIPAm hydrogels using dynamic light scattering  

When the diameters of the 3 mol% crosslinked PNIPAm hydrogels were 

measured, the apparent hydrogel diameter decreased approximately by a factor of 10 

when the temperature of the water was raised above its LCST. As shown in Figure 4.1, 

the hydrogel diameter decreased from about 1000 nm to about 100 nm, indicating the 

successful polymerization and formation of the thermoresponsive PNIPAm hydrogels, 

and also indicating the repeatable thermoresponsive behavior of the hydrogels over 

several cycles. Adding a crosslinker is necessary for the stability of the hydrogels, and 

higher crosslinking density leads to more rigid particles [163]. Xiao et al. showed that 

even though 0.5 mol% BIS crosslinker enabled the greatest swelling change, a more 

stable polymer network was required to avoid the polymer chain being washed out when 
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formed within membrane pores [31]. Wu et al. compared individual linear PNIPAm 

chains to corsslinked PNIPAm gels and found that crosslinked gels have a higher 

transition temperature [164]. While Tanaka et al. claimed that chains located in loosely 

crosslinked domains deform significantly upon swelling compared to chains in densely 

crosslinked domains, Varga et al. showed that crosslinking density distribution within 

gels does not affect the VPT temperature, but rather only the system swelling capacity 

[165-167]. The crosslinking density of the PNIPAm hydrogels was varied in order to 

determine the effect on swelling capacity, which can be described as: 

𝑆𝑆 = 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
𝑑𝑑𝑢𝑢𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛

   (4-1)  

Here, S represents the swelling capacity as the ratio of the apparent diameter of the 

hydrogels in the swollen state (25 ºC) versus their apparent diameter in the un-swollen 

state (35 ºC). The average swelling capacity was observed to be 10.3 for the hydrogels 

formed with 3 mol% crosslinker and 3.4 for the hydrogels formed with 10 mol% 

crosslinker, indicating that the swelling capacity of PNIPAm hydrogels is inversely 

related to crosslinking density. Furthermore, average diameter was larger for hydrogels 

made with higher cross-linking density in both swollen and collapsed states. The large 

standard deviation of hydrogel diameters in the swollen state can be attributed to the 

complexity of the chain entanglements, which will not always swell to the same extent. 

 
4.2 Swelling studies of PNIPAm-PMMA hydrogels: 

PNIPAm-PMMA hydrogels were successfully formed with a molar ratio of 

NIPAM:MMA:BIS of 90:5:5. The addition of the BIS crosslinker is necessary for 

hydrogel stability. Increasing the BIS molar ratio would lead to more rigid and inelastic 

hydrogels, with 0.5 mol% enabling the greatest swelling capacity, but a higher percentage 
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necessary to avoid the polymer being washed away when functionalizing membrane 

pores [31, 163]. The swelling ratio (Q) was calculated for 5 hydrogels formed in water 

baths with temperatures of 25 °C and 35 °C. Upon raising the temperature above the 

LCST of PNIPAm, molecular dynamic simulations have shown that the isopropyl groups 

dehydrate first, causing the backbone to bend and collapse, and the hydrophilic amide 

groups preferentially release bound water and hydrogen bond with each other [92-96]. 

The average Q for hydrogels placed in water was calculated to be 1.4 at 25 °C and 3.6 at 

35 °C. Hydrogel particles were then freeze dried and crushed into very small pieces in 

order to analyze swelling capacity using dynamic light scattering. The dynamic light 

scattering machine has a temperature controller and can analyze hydrodynamic diameter 

of small hydrogel particles in aqueous solution. The hydrogels were placed in the 

chamber and temperature was varied from 25 °C to 35 °C over 5 cycles, shown in Figure 

4.2. Here, instead of using a swelling ratio (Ws/Wu), swelling capacity (S) was found to 

be 5.3.  

4.3 Characterization of PNIPAm-functionalized PVDF membranes 

4.3.1 Attenuated total reflectance Fourier transform infrared radiation (ATR-FTIR) 

The characterization of the PNIPAm hydrogel, blank PVDF 700 membrane, and 

PNIPAm-functionalized PVDF 700 membrane by ATR-FTIR is shown in Figure 4.3. 

Line 1 indicates the presence of CF2 in the blank PVDF membrane due to its 

characteristic adsorption band at 1120-1280 cm-1, which is not present in the spectrum of 

the PNIPAm hydrogel [31, 159]. Line 2 indicates the presence of PNIPAm’s isopropyl 

group, with characteristic adsorption bands at 1366-1466 cm-1 corresponding to isopropyl 

group bonds [31]. Lines 3 and 4 indicate the presence of the N-H (amide I) and C=O 
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(amide II) stretching of the O=C-NH groups of the PNIPAm chains, respectively, with 

characteristic adsorption bands at 1540 cm-1 and 1650 cm-1 [31, 160-162]. The presence 

of the characteristic peaks of PNIPAm’s functional groups in the spectrum of the 

functionalized PVDF membrane confirms the polymerization of PNIPAm inside the 

PVDF membrane pores.  

4.3.2 Functionalized membrane morphology characterization by SEM  

The morphologies of a blank PVDF membrane and PNIPAm-functionalized 

PVDF membrane were analyzed via SEM, shown in Figure 4.4. The blank PVDF 

membrane shows a highly porous structure with predominantly circular-shaped non-

uniform pores. After functionalization with PNIPAm, the membrane is much less porous 

with smaller effective pore sizes. The PNIPAm hydrogels formed within the membrane 

pores did not leach and were not washed away, indicating strong attachment of the 

PNIPAm hydrogels in the PVDF membrane pores [168]. The effect of temperature on the 

functionalized membrane was also examined. When temperature was increased from 

25 °C to 40 °C, a conformational change occurs with the PNIPAm chains, and pore size 

can be seen to be larger. When temperature is below the LCST, PNIPAm hydrogels in the 

membrane pores swell and occupy more space, resulting in a smaller unoccupied pore 

volume.  

4.4 Temperature responsive water flux through PNIPAm-functionalized PVDF 700 

membranes 

PNIPAm is known to exhibit a conformational change as temperature is raised 

above its LCST of 32 ºC. As temperature is increased, the isopropyl and methylene 

groups dehydrate, causing the backbone to collapse and causing the hydrophilic 
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functional groups in the PNIPAm to release bound water and hydrogen bond with each 

other instead. When functionalized within membrane pores, the collapsing of PNIPAm 

chains at higher temperatures results in larger effective pore diameters. The linearity of 

the flux tests at constant temperature while varying pressure indicates membrane 

stability, and yielded fluxes of 1.6 LMH/bar at 22 ºC and 28.8 LMH/bar at 35 ºC, shown 

in Figure 4.5. 

4.4.1 Membrane Permeance aspects 

Due to laminar flow through membrane pores and assuming no slip at the wall, the 

Hagen-Poiseuille equation can be used to estimate relative pore diameters: 

  (4-2) 

Here,  represents the pressure differential (3.5 bar), N represents the number of pores, 

A represents the area of permeation (45 cm2),  represents viscosity of water, L 

represents the membrane thickness (0.172 mm), and D represents the pore diameter. The 

viscosity of water is adjusted for temperature over the temperature range using the 

following equation: 

  (4-3) 

Here, T represents temperature in Kelvin. Number of pores can be related to pore 

diameter and membrane void fraction: 

    (4-4) 
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Here, Vm is the total volume of the membrane, defined as the membrane surface area 

multiplied by the length of the membrane, and is the membrane void fraction.  

Combining equations 2, 3, and 4, we get the following relationship: 

 (4-5)
 

The relative pore diameters can then be estimated from the flux data, and constant values 

such as Vm, A, L cancel out, operating under the assumption that number of pores and 

membrane length are constant. 
 

Number of pores and pore length are assumed to be constant, confirmed by measuring 

membrane thickness across the temperature range. The recorded water permeance values 

increased with temperature, displaying a sharper increase of over 2-fold from between 28 

ºC and 34 ºC, shown in Figure 4.6. The estimated relative effective pore diameters over 

the temperature range are also shown, demonstrating an increase of about 3.5-fold. This 

perceived coil-to-globule transition is explained by Oliveira et al., who show that the 

radius of gyration for PNIPAm decreases by a factor of about two when the temperature 

is raised above the LCST, but only when the number of monomer repeat units in the 

polymer chain is at least 32 [169].  

 

4.4.2 Effects of PNIPAm crosslinking extent in membrane   

 The effect of PNIPAm cross-linking extent was investigated as it relates to the 

functionalized membrane’s flux response to changes in temperature. Permeance data was 

adjusted for water viscosity changes due to temperature, and was normalized to 

 viscosity at 25 ºC. The content of methylene bisacrylamide crosslinker was varied 
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from 0.1 mol % to 2 mol % relative to NIPAm when functionalized in PVDF membranes. 

For each membrane, transmembrane flux was measured at constant pressure at both 30 ºC 

(below LCST) and 34 ºC (above LCST), which is can be found in Figure 4.7. The ratio of 

permeance above the LCST versus permeance below the LCST is referred to as the valve 

ratio, since it is representative of the change in pore size, and therefore also of the 

compounds that would be rejected. The valve ratio increased until it reached a value of 15 

at 0.5 mol% crosslinker content, and then decreased as crosslinker was further increased.  

 Even though 0.5 mol% crosslinker content achieved the largest valve ratio, there 

are other factors to consider when determining the optimal crosslinker content for PVDF 

membrane functionalization. The PVDF membranes are functionalized with PNIPAm via 

a pore filling method, where the monomer solution is polymerized in situ in the PVDF 

membrane pores, without covalent attachment. An increase in permeance by 15 times 

could cause the polymer to be washed out. When crosslinker content is increased above 

the 0.5 mol% value, permeance is not as drastically affected by temperature variations, 

which results in a more stable network. The increased crosslinker content reduces the 

movement of PNIPAm chains within the PVDF membrane pores and reduces swelling 

capacity of PNIPAm hydrogels. There are also other considerations when determining 

crosslinking content, such as its effect on contaminant diffusion through the 

functionalized membrane. If the functionalized membrane system is used to immobilize 

reactive nanoparticles for chlorinated organic degradation, too high a degree of 

crosslinking could lead to diffusion limitations and ultimately reduced reaction rate.  
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4.4.3 Effects of monomer concentration  

Monomer concentration in the PNIPAm pre-polymerization mixture can also 

impact permeance when functionalized in PVDF membrane pores. NIPAm concentration 

in the pre-polymerization mixture is varied, with constant methylene bisacrylamide cross-

liking density and persulfate initiator content. Transmembrane permeance decreased as 

NIPAm concentration was increased. It has been proven that NIPAm concentration is 

directly correlated to grafting amount when concentration is in the range of 0 – 15 % by 

weight  [170]. Since more polymer is occupying the PVDF membrane pores, water 

permeability is reduced. Figure 4.8 shows the effect of NIPAm monomer concentration 

on effective pore diameter, calculated using the Hagen Poiseuille equation, where an 

increase in monomer concentration from 1 to 5 % by weight led to a reduction in 

calculated effective pore diameter from 230 nm to 100 nm. Manipulating monomer 

concentration yields control over the pore coverage by PNIPAm hydrogels, thereby 

enabling effective pore size control as well as further regulation of PNIPAm’s thermo-

responsive behavior when functionalized in membrane pores.  

4.5 Temperature and pH responsive water flux through PNIPAm-PMMA-functionalized 

PVDF membranes: 

PNIPAm has been known to exhibit a thermo-responsive conformational change 

around its LCST of 32 ºC, as shown in the PNIPAm-PMMA hydrogel swelling studies. 

When functionalized in membrane pores, the thermo-responsive behavior of PNIPAm 

can be used to control effective pore diameter and therefore transmembrane permeance. 

The introduction of PMMA into the polymeric membrane matrix, in order to be able to 

immobilize Fe-Pd nanoparticles through ion exchange methods, additionally provides 
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pH-responsive functionality. With a pKa of about 4.5, PMMA is deprotonated at high pH 

and protonated at low pH, thereby displaying increased hydrophilicity at low pH values 

and consequently increased swelling in an aqueous environment. Incorporating a pH 

responsive polymer has been known to aid in reducing membrane fouling because fouling 

properties are correlated with surface charge, which can be selectively tuned by 

controlling pH [57]. A PNIPAm-PMMA functionalized PVDF membrane was placed in a 

dead-end filtration cell, and permeance was measured across a range of temperatures for 

three distinct pH values. As temperature is raised around PNIPAm’s LCST of 32 ºC, the 

isopropyl groups begin to dehydrate and initiate a chain collapse, increased effective 

diameter and transmembrane flux. Figure 4.9 shows the increase in permeance across the 

temperature range, with the largest increase occurring between 28 ºC and 35 ºC. At lower 

pH values, when the PMMA is in its protonated collapsed state, the PNIPAm chain 

collapse is less restricted and therefore exhibits a much larger change in transmembrane 

permeance (about 4-fold at pH=2.5). However, at high pH, when PMMA is in its 

deprotonated swollen state, PNIPAm chain collapse is more restricted resulting in a 

smaller change in transmembrane permeance (about 2-fold at pH=10). The increase in 

transmembrane permeance due to the PNIPAm chain collapse into a hydrophobic state 

provides an opportunity for enhanced adsorption of hydrophobic contaminants into the 

polymer matrix as they pass through the membrane. Furthermore, the reduced water 

content in the polymer matrix provides an ideal environment for the degradation capacity 

of Fe nanoparticles that have been proven to deactivate over time through oxidation due 

to oxygen content in the water.  
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4.6 Dextran rejection through PNIPAAm–PVDF membranes  

 The ability to manipulate effective pore size of PNIPAm-functionalized PVDF 

membranes by controlling temperature can be leveraged to create a gating functionality in 

order to separate compounds of different sizes. Dextran was used as a model compound 

to evaluate the effect of temperature on separation ability. Dextran’s molecular weight is 

2,000,000 g/mol, and the feed concentration used was 2 g/L. As temperature is increased 

above PNIPAm’s LCST, solution flux increases through the membrane and dextran 

rejection decreases. Raising temperature leads to a larger effective pore size due to 

collapse of the PNIPAm chains, thereby allowing greater amounts to pass through. GPC 

experiments were conducted to measure dextran concentration in the feed and in the 

permeate. Monomer concentration was also varied in order to evaluate its effect on 

dextran rejection. As monomer concentration was raised, increased pore filling led to 

smaller effective pore sizes, thereby leading to increased dextran rejection. At 30 ºC, 

dextran rejection was almost 100% when a 5 % NIPAm monomer concentration was 

used in the pre-polymerization mixture. When temperature was raised above the LCST to 

34 ºC, rejection fell to below 40%. At both temperatures, when NIPAm concentration 

was reduced from 5 % to 3 %, rejection fell by about a factor of 3. These results are 

shown in Figure 4.10.   

 PVDF membranes were also functionalized with both PNIPAm and PAA in order 

to evaluate the effect of not only temperature, but also of pH as it relates to dextran 

rejection. As pH is increased above PAA’s pKa value of about 4.5, the carboxylic groups 

in the PAA chains deprotonate and swell in an aqueous environment, thereby reducing 

effective membrane pore size. Figure 4.11 shows that as pH was increased from 4 to 7.3 
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at constant temperature, dextran rejection increased due to reduced effective pore opening 

and increased mass transfer resistance caused by PAA polymer chain swelling. Dextran 

rejection was also tested in a PVDF membrane functionalized with the same quantity of 

PAA, but without PNIPAm, which showed no rejection at pH values of 4 and 6, but 

showed 9% rejection at pH 7.3. The addition of the formed PNIPAm chains significantly 

increases rejection through the membrane.   
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Figure 4.1: (A) Hydrodynamic diameter (number average) of PNIPAm hydrogels (13 
wt% NIPAm, 3mol% Bisacrylamide crosslinker, 2 mol% APS initiator) in aqueous 
solution measured using DLS changing the solution temperature from 25 ºC to 35 ºC over 
seven cycles. (B) Hydrodynamic diameter (number average) of PNIPAm hydrogels (13 
wt% NIPAm, 10 mol% Bisacrylamide crosslinker, 2 mol% APS initiator) in aqueous 
solution measured using DLS changing the solution temperature from 25 ºC to 35 ºC, 
over three cycles. Reprinted from [155]. 
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Figure 4.2: Hydrodynamic diameter (number average) of PNIPAm-PAA hydrogels (15 
wt% NIPAm, 5 mol% Acrylic Acid, 5 mol% Bisacrylamide crosslinker, 2 mol% APS 
initiator) in aqueous solution measured using DLS changing the solution temperature 
from 25 ºC to 35 ºC over five cycles.   
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Figure 4.3: ATR-FTIR spectrum of PNIPAm hydrogel, blank PVDF 700 membrane, and 
PNIPAm-functionalized PVDF 700 membrane. Reprinted from [155]. 
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Figure 4.4: SEM images of blank PVDF (A) and PNIPAAm–PVDF Millipore 
membranes (B: 25 °C (below LCST); C: 40  °C (above LCST)). (Reprinted with 
permission from [31]. Copyright (2014) Journal of Membrane Science). 
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Figure 4.5: PNIPAm-functionalized PVDF membrane (15 wt% PNIPAm in water, 3 
mol% Bisacrylamide crosslinker relative to NIPAm, 2 mol% APS initiator, area of 45 
cm2) demonstrates stability with linear flux relationship to pressure at 22 °C and 35 °C  
with flux values of 1.6 LMH/bar and 28 LMH/bar respectively. Reprinted from [155]. 
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Figure 4.6: The effect of temperature on the viscosity-corrected water permeation and 
effective membrane pore size of a PNIPAm-functionalized PVDF membrane (15 wt% 
PNIPAm in water, 3 mol% Bisacrylamide crosslinker relative to NIPAm, 2 mol% APS 
initiator, area of 45 cm2). As temperature is gradually increased form 22 ºC to 41 ºC  at 
3.5 bar, a sharp permeance increase (approximately 2-fold) occurs between 28 ºC  and 34 

ºC , and relative effective membrane pore opening increases over 3-fold for the 
temperature range. Reprinted from [155]. 
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Figure 4.7: Dependence of thermal on-off ratio on the cross-linker amounts in the range 
from 0.1 to 2.0 mol% for PNIPAAm–PVDF Millipore membrane (P1⁄41.4 bar). For all 
the membranes, the NIPAAm concentration for polymerization solution was 5 wt%. Data 
was corrected with viscosity and normalized by permeability at 30 ºC. (Reprinted with 
permission from [31]. Copyright (2014) Journal of Membrane Science).   
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Figure 4.8: Effect of monomer (NIPAAm ) concentration on water flux at 1.4 bar and 
calculated effective pore size for PNIPAAm–PVDF Millipore membrane (cross-linker 
concentration = 1 mol%). (Reprinted with permission from [31]. Copyright (2014) 
Journal of Membrane Science).   
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Figure 4.9: The effect of temperature and pH on the viscosity-corrected water permeation 
of a PNIPAm-PMMA-functionalized PVDF membrane (15 wt% NIPAm in water, 5 
mol% MMA, 3 mol% Bisacrylamide crosslinker, 2 mol% APS initiator, area of 14 cm2). 
As temperature is gradually increased form 22 ºC to 41 ºC at 1.7 bar, permeance 
increases. Decreasing the acidity of the water causes swelling of the PMMA and 
decreased permeance, as well as a minimized temperature effect on permeance. 
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Figure 4.10: The effects of temperature and monomer concentration on dextran rejection 
with PNIPAm-PVDF Millipore membrane (5 mol% crosslinker) (MW = 2,000,000 g/mol; 
Stokes radius rs=26.1 nm, calculated from rs=0.27Mw0.498). (Reprinted with permission 
from [31]. Copyright (2014) Journal of Membrane Science).   
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Figure 4.11: The effects of temperature and pH on dextran rejection of PNIPAm-PAA-
PVDF membrane (Mw=2,000,000 g/mol; Stokes radius rs=26.1 nm, calculated from 
rs=0.27Mw0.498). (Reprinted with permission from [31]. Copyright (2014) Journal of 
Membrane Science).   
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CHAPTER 5: THERMO-RESPONSIVE ADSORPTION-DESORPTION OF PFOA 
FROM WATER  
 

In this chapter, the thermo-responsive nature of PNIPAm hydrogels, examined in 

the previous chapter, is leveraged for reversible contaminant adsorption in both hydrogel 

form and when functionalized in PVDF membrane pores. While commercial adsorbents, 

such as GAC, are available for the adsorptive treatment of PFCs from wastewater, the use 

of stimuli responsive PNIPAm is examined to address current adsorbent recycling and 

reuse issues. In order to evaluate adsorptive ability and the effect of temperature thereon, 

equilibrium adsorption isotherms are found, followed by determination of adsorption and 

desorption kinetics. In order to more quantitatively describe relative adsorption of 

compounds onto PNIPAm in its different conformational states, interaction parameters 

are calculated for the PFCs and for PNIPAm’s exposed functional groups. The ability to 

use PNIPAm to conduct temperature swing adsorption over multiple cycles is then 

examined to test the reversibility of the adsorption mechanism.  

5.1 PFOA equilibrium adsorption onto PNIPAm hydrogels 

Adsorption of PFOA onto PNIPAm hydrogels was evaluated at various PFOA 

concentrations for three different temperatures. Due to relatively low water solubility, 

PFOA concentrations were varied between 25 and 250 ppm. For this low concentration 

range, the adsorption isotherms can be fitted using a Freundlich isotherm equation, which 

empirically describes adsorption of solutes from a liquid onto a solid.  

𝑞𝑞𝑒𝑒 = 𝐾𝐾𝑑𝑑𝑅𝑅𝑒𝑒
1 𝑛𝑛�    (5-1) 

Here, 𝑞𝑞𝑒𝑒 (mg/g) represents the amount of solute (PFOA) adsorbed per unit weight 

of solid (PNIPAm) at equilibrium, in units of mg/g, while 𝑅𝑅𝑒𝑒 (mg/L) represents the 
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equilibrium concentration of solute in solution (water) when the adsorbed amount is 

equal to 𝑞𝑞𝑒𝑒, and 𝐾𝐾𝑑𝑑 (L/g) is the distribution coefficient, and n is the correction factor. 

While, the Freundlich isotherm does not predict that adsorption maximum, this 

experiment explores the linear part of the isotherm. 

The observed isotherms fit the experimental data well, as shown in Figure 5.1. 

The 𝐾𝐾𝑑𝑑 values increased significantly as temperature was raised, with a larger jump 

between 20 ºC and 35 ºC due to the polymer’s LCST value of 32 ºC. Freundlich 

adsorption isotherms for PFOA on PNIPAm gels yields Kd values of 0.073 L/g at 35 °C, 

0.026 L/g at 22 °C, and 0.007 L/g at 4 °C. As temperature is increased, the isopropyl 

groups of the PNIPAm particles dehydrate fast, and increase adsorption of PFOA due to 

its hydrophobic tail. This behavior, where hydrophobic contaminants will partition into 

the more dehydrated parts of the polymer, is shown in Figure 5.1.  

The large increase in hydrogel adsorption capacity of PFOA from 4 °C to 22 °C 

cannot be attributed to the LCST conformational change of PNIPAm and therefore 

requires another explanation. Futscher et al. studied the conformational changes of 

PNIPAm versus its NIPAm monomer using Fourier transform infrared spectroscopy to 

probe changes, and found that NIPAm exhibits a nearly linear change with temperature 

compared to PNIPAm, which displays a discontinuous shift across the LCST [171]. The 

presence of NIPAm in the hydrogels is a reasonable explanation for the difference. Xiao 

et al. demonstrated decreased partitioning of hydrophilic orange II onto PNIPAm 

hydrogels by raising temperature. There was a significant change in partitioning when 

temperature was raised in the region below PNIPAm’s LCST [43]. PFOA however is 

structured like a surfactant with a long hydrophobic tail and a hydrophilic carboxylic 
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head, leading to interaction with both the hydrophobic and hydrophilic functional groups 

of PNIPAm. Another explanation could be the effect of temperature on ionization, where 

increasing temperature increases Ka and decreases pKa, thereby increasing ionization in 

weak acids. The counter ion for PFOA in these experiments is Na+, which has been 

shown to interact with the amide group of PNIPAm, showing greater interaction at higher 

temperatures [172].  

5.2 PFOA adsorption/desorption kinetics using PNIPAm hydrogels  

In order to further understand and model the adsorption kinetics, a pseudo-second 

order (PSO) model that has been used to explain sorption rate whereby adsorption 

capacity is proportional to sorbent active sites occupied was used [173]. 

  (5-2) 
 

Here, qt and qe (mg/g) represent the amount of PFOA adsorbed at time, t (hrs), 

and at equilibrium respectively, while k2 is the second order adsorption rate constant and 

 is the initial adsorption rate (mg/g/h). By integrating from time 0 to time t, equation 4 

can be rearranged as follows: 

  (5-3)
 

By plotting t/qt vs. t, a linear fit enables the determination of qe and k2 values for 

both adsorption and desorption, as shown in Table 5.1 along with values for other 

adsorbents for comparison. These plots are shown in Figure 5.2. Kinetic adsorption and 

desorption values were calculated, and then used to calculate adsorption and desorption 

data points to compare with the experimental data, which are shown in Figure 5.3. Over 

half of the adsorbed amount adsorbs in the first hour, and over half of the desorbed 
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amount desorbs within the first hour. There is no longer any appreciable adsorption or 

desorption after 15 hours.  

Here, the qe values can be compared to the equilibrium isotherm experimental 

data for consistency, and fall within 20% of the predicted value from the adsorption 

isotherms. The initial desorption rate was greater than the initial adsorption rate, both in 

the same range as PFOA adsorption onto GAC, reported as 16.2 mg/g/h [75], even 

though the distribution coefficients are lower.   

 

5.3 EDS analysis of PNIPAm hydrogels with adsorbed PFOA 

The molar ratio of Nitrogen (N) to Fluorine (F) is a good indicator of the amount 

of PFOA adsorbed, since Nitrogen is only present in the PNIPAm hydrogel and Fluorine 

is only present in the PFOA molecules. The approximate molar ratio of N:F is 52:1, and 

since there is 1 N present per PNIPAm monomer, and 15 F present per PFOA molecule, 

the molar ratio of PNIPAm monomers in the hydrogel to PFOA molecules can be 

approximated as 780:1, yielding an estimated 4.7 mg/g adsorbed. In the experimental 

equilibrium adsorption data found in Table 5.2, the amount adsorbed for that hydrogel 

was 3.5 mg/g, which is on the same order of magnitude. This analysis confirms the 

presence and adsorption of PFOA onto the PNIPAm hydrogels, but should not be used as 

a quantitative tool because of the high standard deviation of values between the three 

different sites of the sample. Table 5.3 shows full EDS analysis results of three different 

sample sites. The standard deviation for F content is 0.37 for the three sites, indicating 

that F is not evenly distributed throughout the hydrogel. 
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5.4 Adsorption of PFOA and PFOS onto PNIPAm hydrogels using interaction parameters 

 The adsorption of contaminants such as PFOA and PFOS onto PNIPAm in an 

aqueous environment can be explained using interaction parameters. When the 

temperature is below PNIPAm’s LCST, the polymer swells with bound water (to its 

hydrophilic amide functional groups) and bulk water [171]. Therefore, the adsorption of 

PFOA and PFOS onto the hydrogel will can be partly explained by the difference 

between 1) the hydrogen bonding interaction (𝛿𝛿h) between the polymer’s hydrophilic 

functional group and the hydrophilic groups of PFOA and PFOS (carboxylic and 

sulfonate groups respectively) and 2) the hydrogen bonding interaction (𝛿𝛿h) between the 

hydrophilic functional groups of PFOA and PFOS and the water. As temperature is raised 

and the isopropyl groups dehydrate to initiate chain collapse, adsorption can be partly 

explained by the difference between 1) the dispersion interaction (𝛿𝛿d) between the 

hydrophobic functional groups of PNIPAm (isopropyl) and of the target perfluorinated 

compound (fluorinated carbon tail) and 2) the hydrogen bonding interaction (𝛿𝛿h) between 

the hydrophilic functional groups of PFOA and PFOS (carboxylic and sulfonate groups 

respectively) and the water. The difference occurs because the amide groups in PNIPAm 

will release the bound water and interact with other PNIPAm amide groups following 

chain collapse. Any ionization effects on interaction are not considered here. These basic 

interactions between the aqueous environment, PFOA, and PNIPAm hydrogels are 

depicted in Figure 5.4.   

The effective interaction parameters for various compounds can be calculated 

using a group contribution method developed by Hansen and Beerbower [174]. Barton 

found that it is convenient and reliable to use structural combination methods to estimate 
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interaction parameters, and assumes additive cohesion parameter components for groups 

present in a molecule [174].  

Ferrell et. al used a similar method for calculating solubility parameters of functional 

groups to quantify interaction between water and poly(styrene sulfonate) [175]. The 

molar attraction constant was observed by Scatchard and Small by plotting the square 

root of the product of the molar cohesion energy and molar volume versus chain length 

and realizing a linear relationship, yielding the F-method, where: [174] 

δ𝑑𝑑 = ∑ 𝑚𝑚𝑑𝑑,𝑧𝑧/∑ 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧   (5-4) 

Here, V (cm3/mol) is the molar volume and F (J1/2 cm3/2 mol-1) is the molar attraction 

constant.  

The F-method is not applicable directly to calculating δh. Assume hydrogen bonding 

cohesive energy is additive. Using estimates of Uh (J/mol), 𝛿𝛿h can be estimated [174].  

δℎ = �∑ 𝑈𝑈ℎ,𝑧𝑧/∑ 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧 �1/2
 (5-5) 

The reported group contribution values of molar attraction constants, molar 

volumes, and molar cohesive energy can be found in Table 5.4, while calculated values 

for solubility parameter values of interest can be found in Table 5.5 and Table 5.6, as 

well as reference values of compounds with similar structures [176].  

In order to compare the impact of these described interaction parameters on 

adsorption capacity, adsorption of PFOA and PFOS was compared. The hydrophobic 

fluorinated tail of both PFOA and PFOS are the same, and the dispersion interaction 

parameter associated with the tail is predicted to be around 20.8 MPa1/2. However, the 

hydrophilic head groups of the two molecules differ. PFOA has a carboxylic group, 

which has a hydrogen bonding interaction parameter of 13.2 MPa1/2 while PFOS has a 
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sulfonate group, which has a higher hydrogen bonding interaction parameter. Sulfonic 

groups’ affinity to form hydrogen bonds with OH groups has been shown to increase the 

interaction of compounds with polar solvents upon sulfonation [175, 177]. Therefore, it 

would be expected that PFOS would partition less into the PNIPAm hydrogels than 

PFOA because of the stronger hydrogen bonding interaction between its sulfonate head 

group and the surrounding aqueous environment. The lack of measured cohesive energy 

density (CED) values for sulfonated polymers causes uncertainty in using group 

contribution calculations to determine interaction parameters [175]. Adsorption isotherm 

data for PFOS can be found in Figure 5.5, with Kd values for PFOA and PFOS are 

detailed in Table 5.7. The ratio of Kd values for PFOS adsorption at 35 ºC versus 20 ºC is 

only 1.1, compared to a much larger ratio of 2.8 for PFOA. While equilibrium adsorption 

of PFOS by PNIPAm is higher than adsorption of PFOA below the LCST, much like 

PFOS adsorption onto GAC and other adsorbents, it is much lower above the LCST due 

to the presence of the sulfonate group [73-75]. Therefore, conducting temperature swing 

adsorption of PFOS using PNIPAm would not provide any new information.   

5.5 Predicting aqueous PFOA solution concentrations: 

Using the adsorption isotherm values, the potential to concentrate aqueous PFOA 

solutions can be examined. Given an initial aqueous PFOA concentration, the equilibrium 

adsorption isotherm can be used to determine the extent of adsorption by computing qe 

and Ce from equations 5-6 and 5-7:  

𝑞𝑞𝑒𝑒 = 𝐾𝐾𝑑𝑑𝑅𝑅𝑒𝑒
1 𝑛𝑛�     (5-6)  

   (5-7) 
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Equation 5-6 represents the adsorption isotherms. In equation 5-7, Ci is the initial 

aqueous PFOA concentration, Vw is the total water volume, and mh is the hydrogel mass. 

Equation 7 can be combined with equation 8 in order to determine both Ce and qe values 

if the other values (Vw, mh, Ci) are known, and then equation 5 can be used to find qt 

versus t values in order to predict adsorption versus time data.  

Assuming 1g of PNIPAm hydrogels were placed in 20 mL of 20 mg/L aqueous 

PFOA and allowed to reach equilibrium at 35 °C, the Kd values indicate that 0.31 mg/g 

would be adsorbed, resulting in a final equilibrium concentration of 4.3 mg/L. Assuming 

the PNIPAm hydrogels with adsorbed PFOA are then removed and placed in 3 mL of 

pure water at 22 °C, the Kd values would indicate that 0.28 mg/g would remain adsorbed, 

resulting in a final equilibrium concentration of 11 mg/L. The final equilibrium 

concentration achieved was 10 mg/L, agreeing with the adsorption isotherm experiments.  

5.6 Membrane Adsorption/Desorption: 

PNIPAm-functionalized membrane adsorption and desorption of PFOA is plotted 

in Figure 5.6. Using the hydrogel equilibrium isotherms, a value of 0.5 mg/L for Ce 

would yield qe values of 0.04 mg/g for the PFOA adsorption isotherm. The upper limit of 

functionalized membrane adsorption of PFOA is on the same order of magnitude. 

Desorption was conducted with pure DIUF water at 20 °C. After 300 mL of pure DIUF 

water was permeated, 80% of previously adsorbed PFOA was desorbed. The initial rates 

were calculated in terms of mg PFOA adsorbed/L of solution permeated. The initial 

adsorption rate was 0.14 mg/L, while the initial desorption rate was 0.17 mg/L. It was 

shown that after 80 mL of permeated solution (aqueous 0.5 mg/L PFOA for adsorption 

and pure DIUF for desorption), both adsorption and desorption rates were much lower. 
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Therefore, for conducting temperature swing adsorption studies, only 80 mL was used for 

each adsorption and desorption cycle.  

Temperature swing adsorption was conducted over 5 cycles, shown in Figure 5.7. 

About 0.01 mg of PFOA was adsorbed after 80 mL of 0.5 mg/L of aqueous PFOA was 

permeated through the membrane at 3.5 bar and 35 °C, meaning that about 25% of the 

0.04 mg of permeated PFOA was adsorbed. Residence time would have an impact on 

membrane adsorption performance, but this paper focuses on the ability to regenerate the 

membrane and perform temperature swing adsorption. When 80 mL of pure water was 

passed through the membrane at the same pressure of 3.5 bar, at a temperature of 20 °C, 

about 60% of the adsorbed PFOA was desorbed. For the next 4 cycles, adsorption 

capacity seemed to be constant after passing 80 mL of aqueous PFOA through the 

membrane at the same 3.5 bar pressure. Also, desorption was relatively constant at 

between 50-60% of the adsorbed amount. After the first adsorption/desorption cycle, 

however, more than 90% of the PFOA adsorbed in consequent adsorption cycle was 

desorbed in each following desorption cycle, indicating promise for the use of PNIPAm-

functionalized membranes for temperature swing adsorption. While the pressure was held 

constant, the flux was maintained throughout each cycle with little deviation. Every time 

the temperature was raised to 35 °C for adsorption, the flux was around 10.6 LMH, while 

the flux dropped to around 1.2 LMH when the temperature was dropped to 20 °C, with 

standard deviations of 0.5 LMH and 0.1 LMH, respectively. The ability to quickly and 

easily desorb contaminant from the functionalized membrane is encouraging for use as an 

adsorbent with greater regeneration ability than other adsorbents. 



 

 92 

In order to confirm that desorption using pure water must be conducted below 

LCST, two adsorption/desorption cycles were conducted using 0.5mg/L aqueous PFOA 

for each adsorption cycle and pure DIUF for each desorption cycle, shown in Figure 5.8. 

In both cases, adsorption was conducted above PNIPAm’s LCST, while the first 

desorption cycle was conducted below PNIPAm’s LCST. However, for the second 

desorption cycle, pure DIUF at 35 °C was used rather than at 20 °C to prove that 

desorption is insignificant if T > LCST. For the first cycle, 0.016 mg of PFOA was 

adsorbed, followed by about 60% desorption using pure water at 20 °C. A second 

adsorption cycle yielded the same adsorption capacity as the first cycle. However, only 

13% of adsorbed PFOA was desorbed using water above LCST, compared to 60% with 

20 °C water, thereby proving that LCST behavior plays a role in enhancing desorption. In 

the control run, where PFOA was permeated through a blank PVDF membrane, less than 

1% was adsorbed, indicating that adsorption takes place in the polymeric PNIPAm 

domain. Flux above LCST was constant at 37 LMH, while flux below LCST was 2.5 

LMH. Pressure was set at 2.75 bar because the functionalized membrane used was not as 

tight as the one used for the temperature swing adsorption cycles.  
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Table 5.1: Pseudo-second order adsorption/desorption kinetic rate values derived from 
experimental data with comparisons to other studied adsorbents 
 
Adsorbent qe (mg/g) k2 (g/mg/h) (mg/g/h) R2 

PNIPAm-PVDF membrane 
adsorption at 35 °C 

48 0.012 28 0.99 

PNIPAm-PVDF membrane 
desorption at 20 °C 

11 0.31 41 0.99 

Anion exchange resin [75] 22.2 0.63 313 1.00 

Multi-walled carbon 
nanotube [75] 

12.4 0.049 7.6 0.99 

Granular actiated carbon [75] 22.7 0.032 16.2 1.00 
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Table 5.2: EDS elemental ratio analysis of PFOA (A) and of the PNIPAm hydrogel with 
adsorbed PFOA (B) 
 
(A) PFOA (B) PNIPAm hydrogel with PFOA 

Element  At % Element At % 

F 62.0 C 66.4 

C 28.8 N 18.7 

Na 7.2 O 14.3 

O 2.0 F 0.49 
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Table 5.3: EDS analysis of a PNIPAm hydrogel sample post PFOA adsorption. The 
hydrogel used was taken from the experiment in Figure 5, where 1 g of hydrogel was 
placed in 20 mL of 250 mg/L aqueous PFOA solution and allowed to reach equilibrium. 
 

Weight Percentage (%) 

Element Site 1 Site 2 Site 3 Average Standard 

Deviation 

Carbon (C) 66.1 65.5 67.6 66.4 1.08 

Nitrogen 

(N) 

19.7 18.8 17.6 18.7 1.05 

Oxygen (O) 13.7 15 14.1 14.3 0.67 

Fluorine (F) 0.06 0.7 0.7 0.49 0.37 
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Table 5.4: Values of molar volume, molar attraction constants, and molar cohesive 
energy for the prediction of functional group solubility parameter values.  
 
Functional group V (cm3/mol) Fd (J1/2cm3/2mol-1) Uh (J mol-1) 

-CONH 16.8 516 5985 

-COOH 27.8 530 4887 

-SO3H 23.6 597 11347 

-OH 10 210 20000 

-

isopropyl  

2 x CH3 31.7 419 0 

1 x CH2 16.6 270 0 

-C7F15 7 x C -19.2 -70 0 

15 x F 18 221 0 
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Table 5.5: Predicted dispersion interaction parameters of functional groups involved in 
hydrophobic interaction. 
 

Component δd (MPa1/2) 

Water 15.6 

Methanol 15.1 

Isopropyl 13.8 

-C7F15 20.8 
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Table 5.6: Predicted hydrogen bonding interaction parameters of functional groups 
involved in hydrophilic interaction. 
 

Component δh (MPa1/2) 

Water 42.3 

Methanol 22.3 

CONH 18.9 

COOH 13.2 

*Sulfonate 23.3 

 

*The lack of measured CED values for sulfonated polymers causes uncertainty in using 

group contribution calculations to determine interaction parameters [175].  
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Table 5.7: Freundlich distribution coefficients of PFOA and PFOS onto PNIPAm 
hydrogels above and below PNIPAm’s LCST. 
 
 Kd at 20 °C (L/g) Kd at 35 °C (L/g) 

PFOA 0.026 0.073 

PFOS 0.041 0.047 
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Figure 5.1: (A) Adsorption isotherms of PFOA onto PNIPAm hydrogels in water. Initial 
aqueous PFOA samples had concentrations ranging from 25 mg/L to 250 mg/L, with 0.5g 
of PNIPAm hydrogels (13 wt% NIPAm, 3 mol% BIS crosslinker, 2 mol% APS) and 
shaken at 100 rpm until equilibrium. Experimental data is fitted with Freundlich 
isotherms. (B) Schematic of adsorption of hydrophobic contaminants onto PNIPAm 
hydrogels in water above PNIPAm’s LCST, where PFOA’s hydrophobic tail 
preferentially resides in the dehydrated isopropyl groups of PNIPAm. Reprinted from 
[155]. 
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Figure 5.2: Fitting second order adsorption equation to experimental data to determine 
adsorption rate constants, including initial adsorption/desorption rates and second order 
rate constants. (A) Adsorption (35 °C) of PFOA using 2 g of PNIPAm hydrogels (d=1000 
nm at 20 °C) in 500 mL of water with initial concentration of 1000 mg/L and (B) 
desorption (20 °C). Reprinted from [155]. 
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Figure 5.3: Adsorption (35 °C) and desorption (20 °C) of PFOA using 2 g of PNIPAm 
hydrogels (d=1000 nm at 20 °C) in 500 mL of water with initial concentration of 1000 
mg/L. PSO model was fit to the experimental data. (A) PFOA adsorption and desorption 
over one day and (B) Zoomed in PFOA adsorption and desorption for the first 100 
minutes. Reprinted from [155]. 
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Figure 5.4: Schematic depicting interaction of hydrophilic and hydrophobic functional 
groups for the adsorption and desorption of aqueous PFOA onto PNIPAm, above and 
below its LCST. The compound labeled 1 refers to PNIPAm, while compounds 2 and 3 
refer to PFOA and water respectively. The hydrogen bonding interaction parameters are 
labeled using 𝛿𝛿h, while the dispersion interaction parameters are labeled using 𝛿𝛿d. 
Reprinted from [155]. 
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Figure 5.5: Adsorption of PFOS onto PNIPAm hydrogels in water at various 
temperatures. Initial aqueous PFOA samples had concentrations ranging from 25 mg/L to 
200 mg/L, with 0.5g of PNIPAm hydrogels (15wt% NIPAm, 3 mol% BIS crosslinker, 2 
mol% APS) and shaken at 100 rpm until equilibrium. Experimental data is fitted with 
linear isotherms. Reprinted from [155]. 
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Figure 5.6: Adsorption and desorption of PFOA using PNIPAm functionalized PVDF 
400 membrane (17% weight gain post polymerization, area of 45 cm2) by convective 
flow at constant pressure of 3.5 bar in a dead-end filtration cell. The functionalized 
membrane adsorbed 20 μg after 300 mL of 0.5 mg/L aqueous PFOA was permeated at 
35 °C. 80% of adsorbed PFOA was desorbed after 300 mL of pure DIUF water was 
permeated. Reprinted from [155]. 
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Figure 5.7: Adsorption and desorption of PFOA using PNIPAm functionalized PVDF 
400 membrane (17% weight gain post polymerization, area of 45 cm2) by convective 
flow over five adsorption/desorption cycles of 0.5 mg/L aqueous PFOA solution followed 
by pure water, at constant pressure of 3.5 bar. (A) Five adsorption/desorption cycles 
demonstrate consistent temperature swing adsorption. (B) Average flux above LCST is 
10.6 LMH, while flux below LCST is 1.2 LMH, and is not affected by the presence of 
PFOA. Reprinted from [155].  
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Figure 5.8: (A) Two adsorption/desorption cycles of PFOA using PNIPAm 
functionalized PVDF 700 membrane (15% weight gain post polymerization, area of 45 
cm2) by convective flow at constant pressure of 2.75 bar. Desorption in cycle 1 was 
conducted at 20 °C compared to 35 °C in cycle 2, both with pure DIUF. (B) Comparison 
of desorption percentage using pure water at 20 °C versus pure water at 35 °C shows 
much higher desorption using pure water at 20 °C as expected from LCST behavior. 
Reprinted from [155]. 
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CHAPTER 6: NANOPARTICLE INTEGRATED CATALYTIC DEGRADATION OF 
PCB 
 

In this chapter, the thermo-responsive adsorptive ability of PNIPAm 

functionalized in membrane pores, shown in the previous chapter, is used to enhance 

catalytic degradation of PCB. While PCB has been degraded using bimetallic Fe-Pd 

immobilized in membrane pores, the incorporation of stimuli-responsive materials could 

enhance degradation through increased contaminant adsorption and diffusion. The effect 

on introducing PNIPAm into the reactive Fe/Pd-PMMA-PVDF membrane system is 

evaluated at various thermal conditions for its effect on PCB adsorption and diffusion. 

Next, its effect on PCB-1 degradation via oxidative pathway is evaluated in convective 

flow mode (negligible mass transfer resistance) and in batch mode (increased mass 

transfer resistance). Transmembrane flux data and nanoparticle characterization data, 

examined in chapter 4 for various thermal conditions, is combined with PCB degradation 

data to effectively model the reaction.  

6.1 Adsorption/desorption of biphenyl and PCB-1 onto PNIPAm-PMMA hydrogels and 

functionalized membranes:  

The ability of PNIPAm functionalized membranes to selectively and reversibly 

adsorb and desorb hydrophobic contaminants by varying temperature was demonstrated 

using perfluorooctanoic acid (PFOA) in our previous publication [155]. It was shown that 

the apparent interaction parameter of PNIPAm varies according to its exposed functional 

groups, depending on its conformational state. Therefore, adsorption of compounds also 

varies when temperature is changed and PNIPAm changes conformation accordingly. In 

its swollen state, surrounding water is much more exposed to PNIPAm’s amide group, 

thereby reducing the polymer’s interaction with hydrophobic compounds. As the 
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temperature is raised, the isopropyl groups dehydrate first, and attract hydrophobic 

compounds into the polymeric PNIPAm domain. We have shown the potential for 

temperature-swing adsorption using PNIPAm functionalized membranes as a means of 

providing a new avenue for contaminant adsorption by adsorbents that can easily release 

the contaminant and are therefore easier to clean than commercial adsorbents currently 

used [155]. The increased hydrophobic contaminant adsorption capacity of PNIPAm is 

used here to increase adsorption of PCB-1 with the goal of increasing degradation 

efficiency.  

Apparent interaction parameters of PNIPAm and PCB-1 can be used to 

qualitatively explain changes in adsorption as temperature is varied. In our previous 

publication, the change equilibrium Freundlich distribution coefficients of 

perfluorooctanoic acid (PFOA) onto PNIPAm-functionalized membranes was related to 

changes in apparent interaction parameter values [155]. In this case, the PCB contaminant 

is a conjugated aromatic compound compared to the previously studied perfluorinated 

carboxylic acid. Furthermore, carboxylic groups are now present in the polymeric domain 

due to the presence of PMMA. As temperature is raised, PNIPAm’s apparent hydrogen 

bonding parameter decreases significantly as the hydrophilic functional groups collapse 

and bond with themselves. Raising temperature causes PNIPAm’s apparent dispersion 

interaction parameter to increase, as the isopropyl groups dehydrate and attract 

contaminants with similar dispersion interaction. The PMMA groups, unlike PNIPAm, 

have exposed hydrophilic carboxylic groups when temperature is raised, thereby reducing 

the hydrophobicity of the polymeric domain. Nevertheless, the dehydration of the 

isopropyl groups caused by the thermo-responsive collapse of PNIPAm affect the 
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apparent hydrophobicity of the polymeric domain substantially enough that PCB-1 

preferentially adsorbs as temperature is raised above 32 ºC.  

Using an initial 5 mg/L solution of PCB-1 in water, both PNIPAm-PMMA 

hydrogels as well as PNIPAm-PMMA functionalized PVDF membranes were used to 

quantify relative adsorption above and below PNIPAm’s LCST of 32 ºC, depicted in 

Figure 6.1.  

The PNIPAm-PMMA hydrogels showed a significant increase in equilibrium 

adsorption (Qe) of PCB-1 adsorption, from about 40% (0.035 mg PCB-1 / g hydrogel) to 

about 70% (0.062 mg PCB-1 / g hydrogel), when temperature was raised from 25 ºC to 

35 ºC. The PNIPAm-PMMA functionalized membranes also showed an increase in PCB-

1 adsorption, from about 6% of total PCB-1 to 10%, while adsorption onto the pristine 

PVDF membrane without any PNIPAm remained approximately constant over the 

temperature range. The increased interaction of the hydrophobic phenyl groups with the 

isopropyl groups of PNIPAm as they dehydrate when temperature is raised causes 

increased partitioning into the PNIPAm domain. As temperature is then lowered back 

down below PNIPAm’s LCST of 32 ºC, the polymer rehydrates and exposes its amide 

functional groups, releasing some of the adsorbed contaminant. The 

adsorption/desorption mechanism is reversible and repeatable over multiple cycles. Using 

PNIPAm-PMMA hydrogels, temperature is varied from 35 ºC to 25 ºC and repeated over 

5 adsorption/desorption cycles, demonstrating the reversible nature of thermo-responsive 

adsorption using PNIPAm, as has been demonstrated with PFOA in our previous 

publication [155]. Adsorption of PCB-1 is constant at approximately 70% (0.07 mg PCB-

1 / g hydrogel), while desorption releases approximately 40% of the adsorbed 70% over 
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each cycle, as shown in Figure 6.2. Trans-membrane permeation was also measured 

using PNIPAm-PMMA functionalized PVDF membranes before and after PCB-1 

adsorption in order to determine the effect of adsorbed PCB-1 on the polymeric 

conformation. Permeation was consistent in both cases indicating that adsorption of PCB-

1 did not substantially affect polymer conformational properties.  

Controlling the aqueous environment around polymers containing reactive 

nanoparticles can yield control over reaction conditions, since the presence of oxygen 

causes nanoparticle oxidation and consequent deactivation of reactivity. Controlling 

adsorption into the reactive polymeric domain can also yield control over reaction 

conditions, by increasing partitioning of PCB-1 into the nanoparticle-immobilized 

polymeric domain. 

6.2 Nanoparticle immobilization and characterization: 

Fe and Pd nanoparticles were immobilized within the membrane pores through 

the ion exchange method. In order to determine nanoparticle size distribution within 

membrane pores, a scanning electron microscope (FEI Helios Nanolab 660) was used to 

acquire images and ImageJ software was used to automatically analyze particle size 

distribution for 100 nanoparticles. The particle sizes are summarized in Figure 6.3 for the 

Fe/Pd-PNIPAm-PMMA-PVDF membrane, which also shows the corresponding energy 

dispersive x-ray image of Fe, indicating that the nanoparticles shown are in fact Fe. The 

mean particle diameter was found to be 16 nm with a standard deviation of 6 nm. These 

particle properties are important for determining PCB degradation model values. The 

particle sizes and distribution were very similar to those properties determined in our 

previous study where the bimetallic nanoparticles were immobilized in PAA-PVDF 
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membranes, which examined nanoparticle size and distribution on the surface, shown in 

Figure 6.4, and at various depths through the membrane, shown in Figure 6.5 [110]. The 

consistency of nanoparticle size and distribution throughout the membrane enables the 

assumption that particles are uniformly distributed for the PCB degradation model. In 

order to verify the immobilization of Pd, a membrane was functionalized with much 

higher Pd content (10 wt% compared to 3 wt% of Fe) in order to eliminate noise 

interference. The presence of Pd is confirmed and shown in Figure 6.6. 

6.3 Diffusion of PCB-1 and Biphenyl through Fe/Pd-PNIPAm-PMMA-PVDF 

membranes: 

Bulk diffusion can readily be calculated using the Stokes-Einstein equation, 

𝐷𝐷𝑠𝑠 = 𝑘𝑘𝐵𝐵𝑇𝑇
6𝜋𝜋𝜋𝜋𝜋𝜋

   (6-1) 

Here, Ds is the bulk diffusion coefficient, kB is Boltzmann’s constant, 𝜇𝜇 is the dynamic 

viscosity of solvent (𝜇𝜇𝑤𝑤𝑤𝑤𝑑𝑑𝑒𝑒𝜋𝜋 = 8.9 × 10−4 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠), and r is the particle radius. The radius 

can be calculated for PCB-1 using its molar volume. At 25 °C, Ds for PCB-1 was 

calculated to be 6.0 x 10-10 m2/s. Diffusion is inherently reliant on temperature as shown 

in equation 2. Therefore, an increase in temperature is expected to increase the diffusion 

coefficient. At 35 °C, Ds was calculated to be 6.2 x 10-10 m2/s, displaying a small increase 

of just over 3%. However, PCB-1 diffusion through the functionalized membrane is 

expected to be much slower due to the hindrances and constraints caused by the 

crosslinked PNIPAm and PMMA chains and the PVDF matrix. In order to determine 

diffusion coefficients at 25 °C and 35 °C, data was fit to the equation derived by Yang et 

al [178].    
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𝐶𝐶𝑃𝑃𝑃𝑃𝐵𝐵
𝐶𝐶𝑃𝑃𝑃𝑃𝐵𝐵,𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠

= �𝐷𝐷𝐷𝐷
𝑙𝑙
� �𝐴𝐴

𝑉𝑉
� �𝑡𝑡 − 𝑙𝑙2

6𝐷𝐷
� (6-2) 

 

Here, D is the diffusion coefficient (m2/s), H is the partition coefficient, A refers to the 

membrane area (m2), V refers to the permeate solution volume (m3), and l refers to the 

membrane thickness (m). By plotting the change in concentration versus time, shown in 

Figure 6.7, the lag time (l2/6D) can be found from the x-intercept and the diffusion 

coefficient can be derived from the slope and intercept. There was negligible change in 

the feed side, while the permeate side increased linearly with time. The diffusion 

coefficients for PCB-1 were derived to be 6.6 x 10-11 m2/s and 8.7 x 10-11 m2/s at 25 °C 

and 35 °C, respectively.  

As expected, the transmembrane diffusion coefficients are significantly lower 

than the bulk diffusion coefficients. The change in temperature led to an increase in 

transmembrane diffusion coefficient for PCB-1 of 25% compared to an increase in bulk 

diffusion coefficient of 3%. As temperature is raised above PNIPAm’s LCST of 32 °C, 

the isopropyl groups dehydrate first and cause PNIPAm chains to collapse in an aqueous 

environment. PNIPAm’s apparent hydrogen bonding interaction parameter decreases 

above its LCST, making it closer to that of PCB-1 [155]. Simultaneously, the PNIPAm 

chain collapse results in larger apparent membrane pore diameters. The large increase in 

transmembrane diffusion coefficient could be utilized to increase PCB degradation 

efficiency in systems where diffusion plays a role. The partition coefficient values were 

also calculated using equation 3, resulting in a ratio of partition coefficient at 35 °C to 

partition coefficient at 25 °C of 1.3.  
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6.4 Convective flow degradation of PCB-1: 

The residence time (𝜏𝜏) within the membrane was varied by changing pressure 

within the range of 0.7 to 3.5 bar. Residence time can be calculated by dividing the void 

volume in the membrane (𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑) by the transmembrane flux (𝐽𝐽𝑤𝑤) multiplied by the area, 

where the void volume is available space within the membrane pores, which can be 

calculated from the mass difference between a dry and wet Fe/Pd-PNIPAm-PMMA-

PVDF membrane.   

 

𝜏𝜏 = 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑 ⁄ (𝐽𝐽𝑤𝑤 𝐴𝐴)  (6-3)  

 

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑 = ∅𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝜋𝜋𝑤𝑤𝑛𝑛𝑒𝑒   (6-4)  

 

Here, ∅ represents surface porosity, which can also be described as the area of all 

membrane pores divided by the total membrane area: 

 

∅ = 𝑛𝑛𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝜋𝜋𝑅𝑅2

𝐴𝐴𝑀𝑀
  (6-5) 

 

For Re << 1, there is laminar flow through cylindrical pores: 

𝑢𝑢(𝑟𝑟) = 2𝑢𝑢0(1 − 𝜋𝜋
𝑅𝑅

)2   (6-6) 

Here, R is the radius of the membrane pore, 𝑟𝑟 is the point of interest in the pore’s radius, 

𝑢𝑢0 is velocity at the pore center, and 𝑢𝑢(𝑟𝑟) is the velocity at radius point r. The average 

velocity through a pore can then be defined as: 
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𝑢𝑢𝑝𝑝𝑣𝑣𝜋𝜋𝑒𝑒 = ∫ 𝑢𝑢(𝜋𝜋)2𝜋𝜋𝜋𝜋𝑑𝑑𝜋𝜋𝑅𝑅
0  

𝜋𝜋𝑅𝑅2
  (6-7) 

Total flux through the membrane can then be defined as the number of pores, multiplied 

by the average pore velocity, divided by the membrane area (𝐴𝐴𝑀𝑀).  

𝐽𝐽𝑤𝑤 =
𝑛𝑛𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 ∫ 𝑢𝑢(𝜋𝜋)2𝜋𝜋𝜋𝜋𝑑𝑑𝜋𝜋𝑅𝑅

0
𝐴𝐴𝑀𝑀

= ∅𝑢𝑢0
2

   (6-8) 

The pore mean velocity (𝑢𝑢�) can then be defined as:  

𝑢𝑢� = 𝐽𝐽𝑠𝑠𝐴𝐴𝑀𝑀
𝑛𝑛𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝜋𝜋𝑅𝑅2

= 𝐽𝐽𝑠𝑠
∅

= 𝑢𝑢0
2

  (6-9) 

The residence time can then be related to pore length (L=75 µm) and velocity: 

𝜏𝜏 = 𝑉𝑉𝑣𝑣𝑠𝑠𝑖𝑖𝑣𝑣
𝐽𝐽𝑠𝑠𝐴𝐴𝑀𝑀

= 2𝐿𝐿
𝑢𝑢0

   (6-10) 

Unlike our previous publication where membrane void fraction was unchanging [109, 

110], the thermo-responsive collapse of PNIPAm chains at higher temperatures causes 

void fraction to grow as relative effective pore diameter increases. This is accounted for 

in calculating velocity through the pore, where the ratio of pore areas is estimated. By 

using the Hagen-Poiseuille equation due to laminar flow through cylindrical pores, 

relative pore diameters can be found based on membrane permeance data and change in 

area can therefore be calculated. The permeability data for the convective flow runs can 

be found in Figure 6.8, along with a comparison to permeability through the same 

membrane prior to the addition of the nanoparticles. The permeability is lower with the 

presence of nanoparticles, and the effect of temperature on flux is reduced due to 

additional restrictions on PNIPAm chain expansion. An increase in viscosity-corrected 

permeability is shown with temperature increases for the Fe-Pd-PNIPAm-PMMA-PVDF 

membrane with 5 mol% crosslinking. Rather than seeing a sharp step change at 

PNIPAm’s LCST, the stimuli-response is gradual for the membrane with immobilized 
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nanoparticles, which is incorporated into the reaction model. Liu et al. recently showed 

that PNIPAm thin films are sensitive to humidity that can affect temperature dependence 

behavior based on interfacial boundary condition properties [179].  

With laminar flow through membrane pores and assuming no slip at the wall, the 

following Hagen-Poiseuille equation can be used to estimate relative pore diameters.  

   (6-11) 

Here Jw refers to the transmembrane flux, N is the number of pores,  By knowing the flux 

values at the different temperatures, ∆P refers to the pressure differential, A is the 

membrane area, η is the viscosity, which is adjusted for temperature, L is the membrane 

thickness, and D is the effective pore diameter. When temperature is changed, N, ∆P, A, 

L are all constant. Viscosity can be corrected for temperature according to the following 

equation:  

  (6-12) 

Once adjusted for viscosity, the flux ratio at two different temperatures is proportional to 

the respective ratio of diameters to the fourth power. After finding relative diameter, 

relative void fraction can be calculated because relative void fraction is proportional to 

the ratio of the square of relative diameters. Relative diameter and void fraction 

calculations can be found in Table 6.1.  These void volumes are also necessary for the 

calculation of metal loading density because unlike batch degradation, the volume being 

reacted is confined to the void volume within the reactive membrane pores, detailed in 

Table 6.2.  
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In order to determine final concentration, a first order reaction is assumed, and is 

integrated along the pore axial distance, z. In order to determine whether mass diffusion 

(𝐷𝐷𝑀𝑀) can be neglected, the Peclet number is calculated as follows: 

𝑃𝑃𝑚𝑚 = 𝐿𝐿𝑢𝑢
𝐷𝐷𝑀𝑀

 (6-13) 

Since Pe is large (>103), 𝐷𝐷𝑀𝑀 can be neglected. Using equation 6-14, derived in our 

previous publication by averaging the mass balance for first order reaction across the 

pore radius, pseudo-first order reaction rate constant (𝑘𝑘𝑣𝑣𝑚𝑚𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑤𝑤𝜌𝜌𝑚𝑚𝑃𝑃𝑠𝑠) can be 

determined [110]:  

�̅�𝑅𝑓𝑓𝑣𝑣𝑛𝑛𝑤𝑤𝑙𝑙 =
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  (6-14) 

Unlike in our previous publication [110], stimuli responsive PNIPAm causes a 

dependence of residence time on temperature through its effect on void fraction due to 

PNIPAm’s changing conformation. Average rate constants (kobs) were determined at 15 

ºC, 25 ºC, 35 ºC, and 45 ºC. At each temperature, pressure was varied four times, with 

three samples taken at each given pressure in order to determine an average observed rate 

constant. These determined rate constants were then used to plot an expected extent of 

degradation for each temperature across residence times ranging from 0 to 40 s, shown in 

Figure 6.9. At a residence time of 10 s, 70% of PCB-1 remains unreacted at 15 ºC while 

only about 10% remains unreacted at 45 ºC and the drastic effect of temperature on 

reactive efficiency can be seen. In order to find kSA, the observed rate constants must be 

divided by nanoparticle loading capacity (𝜌𝜌𝑚𝑚) and the surface area to mass ratio (as). In 

order to determine 𝜌𝜌𝑚𝑚 (g/L), metal loading of 2 mg Fe per membrane is divided by the 

void volume in the membrane, which varies with temperature as shown in Table 6.1 and 
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Table 6.2. Like in batch degradation, as is calculated using average spherical nanoparticle 

size from TEM imaging (16nm) and iron density of 7870 g/L. MatLab was used to 

calculate the observed rate constant for each sample point for each temperature. Equation 

6-14 can be used to determine rate constant values given feed concentration, permeate 

concentration, and residence time. MatLab was used to create a loop where an initial rate 

constant was assumed, permeate concentration was calculated, and the loop changed the 

rate constant until the calculated permeate concentration was equal to the experimental 

one. For each temperature, the average calculated rate constant was found. Surface area-

normalized reaction rate constants (kSA) were then calculated by dividing the observed 

rate constants by nanoparticle surface area to mass ratio (as) and by the corresponding 𝜌𝜌𝑚𝑚 

value found in Table 6.2. Calculations for kSA can be found in Table 6.3.  

The determined kSA values are 0.13 L/m2/g, 0.28 L/m2/g, 0.72 L/m2/g, and 1.36 

L/m2/g at 15 ºC, 25 ºC, 35 ºC, and 45 ºC, respectively. Solution phase degradation of 

PCB-1 was conducted at 20 ºC using Fe-Pd nanoparticles (0.5 wt% Pd) yielding a kSA 

value of 0.12 L/m2/h [157]. Multiple control runs were carried out using PNIPAm-

PMMA-functionalized membranes with only Fe and no Pd in order to measure any 

potential PCB loss not attributed to dechlorination via the reductive pathway. Control 

runs yielded <5% PCB-1 loss indicating minor potential adsorption onto the membrane. 

Furthermore, biphenyl recovery was measured for 4 points, resulting in product recovery 

values of 88%, 85%, 80%, 81% at 15 °C, 25 °C, 35 °C, and 45 °C, respectively, resulting 

in an average recovery value of 84%. The slight biphenyl product loss can be attributed to 

membrane adsorption, as well as minor evaporative losses due to the semi-volatile nature 

of biphenyl, especially as temperature is raised.  
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According to the Arrhenius equation, rate constants will naturally vary with 

temperature without the increased adsorptive ability of PNIPAm present, 

ln �𝑘𝑘2
𝑘𝑘1
� = −𝐸𝐸𝑖𝑖

𝑅𝑅
� 1
𝑇𝑇2
− 1

𝑇𝑇1
� (6-15) 

 Here, k refers to the kSA values, Ea is the activation energy (J/mol), R is the gas constant 

(8.314 J/mol/K), and T is the temperature (K). By plotting the natural log of the surface 

area-normalized rate constant values versus the reciprocal of temperature, effective 

activation energy values can be determined for the reaction. Figure 6.10 shows the 

Arrhenius plot with a R2 value > 0.99.  

The activation energy was calculated to be 60 kJ/mol. An activation energy of 20 

kJ/mol was reported with Pd content of 0.5 wt% relative to Fe [157, 180], which accounts 

for the difference. The purpose of incorporating thermo-responsive PNIPAm into the 

reactive membrane domain is to increase degradation efficiency by increasing 

temperature above PNIPAm’s LCST of 32 ºC due to increased contaminant diffusion and 

adsorption into the reactive polymeric domain, whilst simultaneously increasing flow 

through the membrane due to the increased effective pore diameters attributed to the 

PNIPAm chain collapse. However, in convective flow degradation, mass transfer is 

negligible due to the pressurization of aqueous PCB-1 through the dead-end filtration 

cell, as shown by the Peclet number. Therefore, increased diffusion above PNIPAm’s 

LCST does not enhance PCB-1 degradation in this case.  

6.5 Batch phase degradation of PCB-1: 

For batch phase degradation of PCB-1, PNIPAm-PMMA functionalized PVDF 

membranes with immobilized Fe-Pd nanoparticles were placed in vials with known 

concentrations of aqueous PCB-1 and degradation was conducted for multiple time points 
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at both 25 ºC and 35 ºC. After 40 minutes, 8% of PCB-1 remained at 25 ºC while less 

than 1% remained at 35 ºC. Biphenyl product was also measured, showing 90% recovery 

of degraded PCB-1 at 25 ºC and 85% recovery of degraded PCB-1 at 35 ºC. Adsorption 

of biphenyl product onto the membrane is the cause of the discrepancy between measured 

biphenyl product and degraded PCB-1. Others have also shown a discrepancy between 

expected biphenyl product and consumed PCB [110, 150]. Lower biphenyl product 

recovery above PNIPAm’s LCST is expected. In order to account for the slight 

discrepancy between degraded PCB-1 and measured biphenyl product, adsorption of 

biphenyl onto the functionalized membrane was tested. A functionalized membrane was 

placed in an aqueous biphenyl (5 ppm) solution and shaken for several hours. There was 

no head space to ensure no biphenyl loss. The membrane was then removed, and the 

biphenyl was extracted from the aqueous solution using hexane for GCMS analysis. This 

experiment was carried out at 25 °C and 35 °C. Triplicate samples were carried out at 

each temperature. It was found that there was greater adsorption at 35 °C, due to 

hydrophobic nature of PNIPAm above its LCST. Results can be seen in Table 6.4. These 

adsorption values account for the discrepancy between PCB-1 degraded and biphenyl 

product measured.  

Control runs were also conducted, where vials were sampled with no membrane 

at all, as well as with a PNIPAm-PMMA functionalized PVDF membrane with only Fe, 

and no Pd catalyst, which is required for the formation of the reactive hydrogen species in 

order to dechlorinate the PCB-1. Concentrations of PCB-1 and biphenyl are plotted 

versus degradation time in Figure 6.11, with the plot of the natural log of PCB-1 

concentration versus time for determination of the observed rate constant shown in Figure 
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6.12. For the batch study, the PCB-1 degradation reaction can be modeled as a pseudo-

first-order reaction: 

 

𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑣𝑣𝑚𝑚𝑠𝑠𝑅𝑅 = −𝑘𝑘𝑠𝑠𝑤𝑤𝜌𝜌𝑚𝑚𝑃𝑃𝑠𝑠𝑅𝑅  (6-16) 

 

Here, C is the PCB-1 molar concentration, ksa is the surface normalized reaction rate 

(L/m2/h), 𝜌𝜌𝑚𝑚 is the nanoparticle loading density (g/L), and as is the surface area to mass 

ratio (m2/g). The ksa values are calculated for 25 ºC and 35 ºC and tabulated in Table 6.5, 

where as is calculated using average spherical nanoparticle size from SEM imaging 

(16nm) and iron density of 7870 g/L. In order to calculate 𝜌𝜌𝑚𝑚, metal loading of 2 mg per 

membrane was divided by the PCB-1 aqueous solution volume in the degradation vial.  

Unlike convective flow degradation, mass transfer plays a larger role in batch 

degradation. However, when temperature is raised above the LCST, diffusion is less 

limiting than it is below PNIPAm’s LCST. In order to determine whether the increased 

contaminant diffusion and adsorption caused by raising temperature enhances PCB-1 

degradation, the activation energy of the reaction calculated from the kSA values in 

convective flow mode can be used. In batch mode, kSA was calculated to be 0.12 L/m2/h 

at 25 ºC. Using the activation energy of 60 kJ/mol, the expected kSA at 35 ºC can be 

calculated using the Arrhenius equation, shown in the supporting information. The 

expected kSA at 35 ºC was calculated to be 0.26 L/m2/h. However, the actual kSA found at 

35 ºC was 0.35 L/m2/h, approximately 35% higher than the expected value, indicating the 

enhanced reactivity in batch mode due to PNIPAm’s presence. Increased diffusion and 

partitioning impact the reactivity in batch phase due to mass transfer resistance, 
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characterized by the ratio of PCB-1 partitioning coefficients into the polymeric domain at 

35 ºC versus 25 ºC of 1.3. The partitioning of PCB-1 into the reactive polymeric matrix 

has an influence on the observed reaction rate constant. It is important to note that the 

observed batch-mode kSA values were approximately half of the observed convective 

flow degradation kSA values due to the increased diffusion limitation present in batch 

degradation. When there is a diffusion limitation, increasing PCB diffusion and 

adsorption into the reactive polymeric domain within the membrane pores by leveraging 

PNIPAm’s hydrophobicity shift at its LCST can enhance reactivity and PCB degradation. 

Stimuli responsive catalytic membranes present an opportunity to enhance catalytic 

activity through leveraging conformational changes of the responsive material through 

control of external stimuli.  
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Table 6.1: Void fraction calculations of PNIPAm-PMMA-functionalized PVDF 
membranes (15 wt% NIPAm, 5 mol% MMA, 5 mol% BIS crosslinker, 2 mol% APS) 
with immobilized Fe-Pd nanoparticles (2 mg Fe per membrane with 3 wt% Pd) using 
permeance data. 
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Table 6.2: Void fraction and iron loading density calculations for each temperature.  
Temperature (°C) Vvoid (L) 𝜌𝜌𝑚𝑚 (g/L) 

15 0.0000964 20.7 
25 0.000105 19.0 
35 0.000121 16.5 
45 0.000129 15.5 
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Table 6.3: kSA calculations using experimentally determined kobs values from convective 
flow PCB-1 degradation. 

Temperature (ºC) kobs (s-1) 𝜌𝜌𝑚𝑚(g/L) as (m2/g) ksa (L/m2/h) 

15 0.037 20.7 
 

48 0.13 

25 0.072 19.0 48 0.28 

35 0.16 16.5 48 0.72 

45 0.28 15.5 48 1.36 
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Table 6.4: Adsorption of Biphenyl (5 ppm) onto PNIPAm-PMMA-functionalized PVDF 
membrane with Fe-Pd nanoparticles. 
Temperature 
(°C) 

Adsorption for 
sample 1 (%) 

Adsorption for 
sample 2 (%) 

Adsorption for 
sample 3 (%) 

Average 
adsorption (%) 

25 11.2 10.3 9.2 10.2 
35 16.1 15.4 17.3 16.2 
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Table 6.5: kSA calculations using experimentally determined kobs values from batch phase 
PCB-1 degradation using PNIPAm-PMMA-functionalized PVDF membranes (15 wt% 
NIPAm, 5 mol% MMA, 5 mol% BIS crosslinker, 2 mol% APS) with immobilized Fe-Pd 
nanoparticles (2 mg Fe per membrane with 3 wt% Pd). 

Temperature (ºC) kobs (min-1) 𝜌𝜌𝑚𝑚(g/L) as (m2/g) ksa (L/m2/h) 

25 0.049 0.5 48 0.12 

35 0.14 0.5 48 0.35 
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Figure 6.1: Equilibrium adsorption of PCB-1 onto PNIPAm-PMMA hydrogels, 
PNIPAm-PMMA-PVDF membranes, and pristine PVDF microfiltration membranes in 
water. Initial aqueous PCB-1 sample concentrations were 5 ppm in 20 mL. 1 g of 
PNIPAm-PMMA hydrogels was used (15 wt% NIPAm, 5 mol% MMA, 5 mol% BIS 
crosslinker, 2 mol% APS). One 14 cm2 functionalized PVDF membrane (20% wt gain 
post-functionalization) and a pristine PVDF 400 membrane were used in 20 mL. Samples 
were shaken at 100 rpm until equilibrium. 
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Figure 6.2: Adsorption percentage of PCB-1 onto PNIPAm-PMMA hydrogels in water 
followed by desorption by changing ambient temperature, repeated over 5 
adsorption/desorption cycles. Initial aqueous PCB-1 sample concentration was 5ppm in 
40mL. 2 g of PNIPAm-PMMA hydrogels were used per vial (15 wt% NIPAm, 5 mol% 
MMA, 5 mol% BIS crosslinker, 2 mol% APS). Samples were shaken at 100 rpm until 
equilibrium. 
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Figure 6.3: SEM image of the inside of a pore, taken from a piece 10 um below the 
membrane surface. (A) Sem image of Fe nanoparticles inside PNIPAm-PMMA-
functionalized PVDF membrane. (B) EDX image of (A) for Fe. (C) Fe nanoparticle 
distribution (100 sample points) acquired using ImageJ software, with average 
nanoparticle diameter of 16 nm.  
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Figure 6.4: FIB-SEM image of the surface on the Fe/Pd-PAA-PVDF 700 membrane 
(13.4 wt % PAA, 1 mol % initiator and 1 mol % of cross-linker, 4.1 mg Fe, 1.3 wt % Pd) 
and the summary of observed Fe/Pd nanoparticles (more than 500 counts). (Reprinted 
with permission from [110], Copyright (2017) Elsevier).  
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Figure 6.5: Correlation between Fe/Pd nanoparticle size, surface coverage (nanoparticle 
occupation of the membrane matrix) and depth under the membrane surface (more than 
200 counts selected for each sample) for Fe/Pd-PAA-PVDF 700 membrane (13.4 wt % 
PAA, 1 mol % initiator and 1 mol % of cross-linker, 4.1 mg Fe, 1.3 wt % Pd). (Reprinted 
with permission from [110], Copyright (2017) Elsevier).



 

 133 

 
 
Figure 6.6: EDX mapping image of Fe/Pd-PAA-PVDF lamella sample prepared by FIB. 
High Pd:Fe ratio was used in this membrane to eliminate interference from noise. 
(Reprinted with permission from [110], Copyright (2017) Elsevier).   
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Figure 6.7: Diffusion of PCB-1 through a PNIPAm-PMMA-functionalized PVDF 
membrane with Fe nanoparticles. Effective surface area: 3.5 cm2. [PCB-1]Feed = 25 µM. 
Diffusion cell volume = 300 mL. (Data points prior to breakthrough not included in linear 
fit to determine parameters).  
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Figure 6.8: Flux through PNIPAm-PMMA-functionalized PVDF membrane (15 wt% 
NIPAm, 5 mol% MMA, 5 mol% BIS crosslinker, 2 mol% APS) with reactive Fe-Pd 
nanoparticles (2mg Fe loading, 16nm mean Fe particle diameter) at 15 °C, 25 °C, 35 °C, 
and 45 °C, all at pH 6.5. Effective surface area: 3.5 cm2. [PCB-1]Feed = 25 µM. (Insert: 
Permeability as a function of temperature, compared with permeability as a function of 
temperature for the same membrane without nanoparticles).  
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Figure 6.9: Convective flow study of PCB-1 degradation by PNIPAm-PMMa 
functionalized PVDF 400 membranes with Fe-Pd. Fe-PNIPAm-PMMA-PVDF 
membrane and run without any membrane served as control groups. Laminar flow reactor 
model was used for experimental data fitting. Effective surface area: 14 cm2. [PCB-1]0 = 
25 µM, 2 mg Fe per membrane, [Pd] = 2.8 wt % as Fe, pH = 6.5.  
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Figure 6.10: Arrhenius plot of the natural log of the surface area-normalized rate constant 
values derived from PCB-1 degradation experiment versus the reciprocal of temperature 
to determine activation energy for PCB-1 degradation by Fe-Pd-PNIPAm-PMMA-PVDF 
membrane (2 mg Fe per membrane, [Pd] = 2.8 wt % as Fe, pH = 6.5).  
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Figure 6.11: Batch study of PCB-1 degradation by PNIPAm-PMMA functionalized 
PVDF 400 membranes with Fe-Pd. Fe-PNIPAm-PMMA-PVDF membrane and run 
without any membrane served as control groups. Effective surface area: 14 cm2. [PCB-1]0 
= 25 µM, 2 mg Fe per membrane, [Pd] = 2.8 wt % as Fe, pH = 6.5.  
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Figure 6.12: Plot of natural log of the ratio of PCB-1 present to the initial PCB-1 
concentration versus time to determine observed rate constant coefficients for batch 
phase degradation of PCB-1 by Fe-Pd-PNIPAm-PMMA-PVDF membrane (2 mg Fe per 
membrane, [Pd] = 2.8 wt % as Fe, pH = 6.5).  
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CHAPTER 7: CONCLUSION 

7.1 Overview 

 This dissertation explored the incorporation of PNIPAm into adsorptive and 

reactive membrane systems for the remediation of PFCs and PCBs through reversible 

adsorption and degradation via the reductive pathway, respectively. While commercial 

adsorbents exist with high adsorptive capacity for PFC adsorption from water, 

regeneration and reuse issues were tackled using the thermo-responsive hydrophobicity 

switch of PNIPAm. Interaction parameters of component functional groups were used to 

explain relative adsorption of PFOA versus PFOS, and shed light onto the types of 

contaminants that can be reversible adsorbed and desorbed. For PCB degradation via the 

reductive pathway, PNIPAm’s thermo-responsiveness was leveraged to increase PCB 

adsorption and diffusion into the reactive membrane domain by manipulating 

temperature, in order to increase degradation efficiency in situations where mass transfer 

plays a role.  

7.2 Chapter-specific accomplishments 

CHAPTER 4: SYNTHESIS OF TEMPERATURE RESPONSIVE HYDROGELS AND 

MEMBRANES AND BIMETALLIC NANOPARTICLES 

• PNIPAm was successfully polymerized in PVDF membrane pores, confirmed by 

FTIR, resulting an approximately 20% weight gain. PMMA was also successfully 

polymerized in PVDF membrane pores with PNIPAm for pH-responsive 

functionality and for the immobilization of Fe nanoparticles via ion exchange.  

• The average swelling capacity was observed to be 10.3 for the hydrogels formed 

with 3 mol% crosslinker and 3.4 for the hydrogels formed with 10 mol% 
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crosslinker, indicating that the swelling capacity of PNIPAm hydrogels is 

inversely related to crosslinking density. The average swelling capacity was found 

to be 5.3 for PNIPAm-PMMA functionalized PVDF membrane. By controlling 

crosslinking density and PNIPAm content, effective membrane pore sizes can 

effectively be controlled with gating functionality.  

• Hagen Poiseuille equation was applied to transmembrane permeance data in to 

determine relative pore sizes at various temperatures. The recorded water 

permeance values increased with temperature, displaying a sharper increase of 

over 2-fold from between 28 ºC and 34 ºC, shown in Figure 4. The estimated 

relative effective pore diameters over the temperature range are also shown, 

demonstrating an increase of about 3.5-fold. 

• At lower pH values, when the PMMA is in its protonated collapsed state, the 

PNIPAm chain collapse is less restricted and therefore exhibits a much larger 

change in transmembrane permeance (about 4-fold at pH=2.5). However, at high 

pH, when PMMA is in its deprotonated swollen state, PNIPAm chain collapse is 

more restricted resulting in a smaller change in transmembrane permeance (about 

2-fold at pH=10). 

• Fe and Pd nanoparticles were immobilized within the membrane pores through 

the ion exchange method. The mean particle diameter was found to be 16 nm with 

a standard deviation of 7.5 nm. Assuming a normal distribution, the 95% 

confidence interval is 14.5 nm to 17.5 nm.  
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CHAPTER 5: THERMO-RESPONSIVE ADSORPTION-DESORPTION OF PFOA 

FROM WATER  

• Equilibrium adsorption Freundlich distribution coefficients (Kd) of PFOA onto 

PNIPAm hydrogels were determined to be values of 0.073 L/g at 35 °C, 0.026 L/g 

at 22 °C, and 0.007 L/g at 4 °C. 

• Adsorption kinetics of PFOA onto PNIPAm hydrogels were examined, 

determining initial adsorption rate of 28 mg/g/h and an initial desorption rate of 

41 mg/g/h, with determined equilibrium adsorption values of 48 mg/g at 35 °C 

and 11 mg/g at 20 °C. The initial PFOA adsorption rate of 28 mg/g/h onto 

PNIPAm hydrogels is comparable to published PFOA adsorption rates using other 

adsorbents such as GAC (16.2 mg/g/h). 

• Interaction parameters of component functional groups were used to explain 

relative adsorption onto PNIPAm in its different conformational states. PFOS 

partitioned less into the PNIPAm hydrogels than PFOA at 35 ºC because of the 

stronger hydrogen bonding interaction between its sulfonate head group and the 

surrounding aqueous environment. The ratio of Kd values for PFOS adsorption at 

35 ºC versus 20 ºC is only 1.1, compared to a much larger ratio of 2.8 for PFOA. 

While equilibrium adsorption of PFOS by PNIPAm is higher than adsorption of 

PFOA below the LCST, much like PFOS adsorption onto GAC and other 

adsorbents, it is much lower above the LCST due to the presence of the sulfonate 

group, since sulfonic groups’ affinity to form hydrogen bonds with OH groups 

has been shown to increase the interaction of compounds with polar solvents upon 

sulfonation.  
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• PVDF membranes were successfully functionalized with PNIPAm for PFOA 

adsorption and desorption. Functionalized membrane adsorptive capacity of 

PFOA was around the same value estimated from hydrogel adsorption data, based 

on the relative amount of PNIPAm in the membrane. Desorption by water 

permeation through the membrane led to 80% desorption of adsorbed PFOA. 

Initial adsorption and desorption rates were found to be 0.14 mg/L and 0.17 mg/L, 

respectively.  

• Temperature swing adsorption was conducted over 5 cycles. As temperature was 

raised and aqueous PFOA was permeated, quantity adsorbed was constant for 

each 80 mL cycle. As temperature was then lowered below PNIPAm’s LCST and 

water was permeated, 50-60% of adsorbed PFOA was desorbed consistently for 

each cycle, indicating promise for the use of PNIPAm-functionalized membranes 

for temperature swing adsorption.  

CHAPTER 6: NANOPARTICLE INTEGRATED CATALYTIC DEGRADATION OF 

PCB 

• Fe-Pd nanoparticles were immobilized through ion exchange with PMMA, 

resulting in a mean nanoparticle diameter of 16 nm within PVDF membrane 

pores. 

• As temperature was raised above PNIPAm’s LCST of 32 ºC, diffusion coefficient 

for PCB-1 through the membrane increased from 6.6 x 10-11 m2/s to 8.7 x 10-11 

m2/s at 25 °C and 35 °C, respectively. Adsorption of PCB-1 onto PNIPAm-

PMMA hydrogels increased from 40% to 70% over the same temperature range, 

while PCB-1 adsorption onto PNIPAm-PMMA functionalized membranes 
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increased from 6% to 10%, indicating increased diffusion through the membrane 

and adsorption into the polymeric domain above PNIPAm’s LCST.  

• Using PNIPAm-PMMA hydrogels, temperature is varied from 35 ºC to 25 ºC and 

repeated over 5 adsorption/desorption cycles, demonstrating the reversible nature 

of thermo-responsive adsorption using PNIPAm, as has been demonstrated with 

PFOA. Adsorption of PCB-1 is constant at approximately 70% (0.07 mg PCB-1 / 

g hydrogel), while desorption releases approximately 40% of the adsorbed 70% 

over each cycle 

• Convective flow degradation of PCB-1 using the PNIPAm-PMMA-functionalized 

PVDF membranes with immobilized Fe-Pd nanoparticles yielded first-order kSA 

values of 0.13 L/m2/g, 0.28 L/m2/g, 0.72 L/m2/g, and 1.36 L/m2/g at 15 ºC, 25 ºC, 

35 ºC, and 45 ºC, respectively, with an activation energy of 60 kJ/mol. Here, mass 

transfer resistance is negligible and PNIPAm’s incorporation into the reactive 

membrane domain does not enhance reactivity.  

• The effect of temperature on transmembrane flux and relative pore diameter was 

incorporated into the laminar flow first-order reaction model to effectively model 

PCB degradation in convective flow mode.  

• Batch degradation of PCB-1 resulted in first-order kSA values of 0.12 L/m2/h and 

0.35 L/m2/h at 25 °C and 35 °C, respectively, with Thiele moduli of 2.7 and 3.6. 

As temperature was raised above PNIPAm’s LCST, kSA increased due to not only 

energetic effects according to the Arrhenius equation, but also due to increased 

diffusion and adsorption of PCB-1 into the reactive membrane domain attributed 

to PNIPAm’s hydrophobicity switch. 
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7.3 Key science and engineering advancements 

 
• Temperature and pH responsive polymers, as well as controlled nanostructured 

materials, were synthesized in membrane pores to create advanced stimuli 

responsive catalytic membranes with selective control over pore size and 

permeability for selective size-based rejection.  

• Thermo-responsive membranes were developed and used for reversible 

temperature swing adsorption-desorption of emerging water pollutants (perfluoro-

organics) with initial adsorption rates comparable to commercial adsorbents, but 

with the additional ability to readily desorb by temperature variations.  

• Solubility parameters were calculated for the responsive polymer, in its different 

conformational states, and for the model compounds to develop an understanding 

of the interaction between the polymer domain and halo-pollutant domain in order 

to conduct reversible temperature swing adsorption. 

• Fe-Pd bimetallic nanoparticles were in-situ immobilized in membrane pores to 

form catalytic stimuli-responsive (pH and temperature) polymeric membranes for 

enhanced halo-organic remediation with advanced properties.  

• Advanced nanoparticle characterization in membrane pores combined with 

thermo-responsive permeability data and PCB degradation results enabled 

reaction modeling and evaluation of the effect of temperature variations on 

catalytic ability.  

 

 

 



 

 146 

7.4 Implications of this work: 

 The development of stimuli-responsive polymeric membranes that are also 

catalytic has exciting implications. It has been shown that the addition of a stimuli-

responsive polymer into a membrane support can enable antifouling, gating, and selective 

filtration characteristics. Leveraging the conformational change of the responsive 

polymers in order to enhance degradation is an attractive means by which to improve 

existing catalytic membrane processes. It has been shown that membrane-based 

degradation of chloro-organics can be enhanced through increasing contaminant 

adsorption and diffusion into the reactive membrane domain. It is important to note that 

the incorporation of stimuli-responsive polymers into catalytic membranes can also 

present antifouling properties. When using catalytic membranes in real water, 

conformational changes can be leveraged to de-foul the membrane. Polymers that exhibit 

conformational changes to readily desorb reaction products can be chosen based on 

interaction parameter analysis. For practical applications, post functionalization of 

membrane modules for in-situ synthesis of catalytic nanoparticles will further provide 

organic degradation flexibility.  
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CHAPTER 8: FUTURE WORK 
 

This research sets the foundation for using stimuli responsive polymers to conduct 

reversible responsive adsorption/desorption of contaminants from water and for 

leveraging the conformational change of stimuli-responsive polymers in catalytic 

membrane to enhance halo-organic degradation. These developed stimuli-responsive 

catalytic membranes provide an exciting opportunity for improvements to current 

technologies. As this research continues, there are several avenues through which these 

stimuli responsive catalytic membranes can be further examined and improved. 

Following is a list of possible ways to further this research: 

• The reversible adsorption of hydrophobic contaminants from water using thermo-

responsive PNIPAm was shown. While PNIPAm has shown a large volume phase 

transition at its LCST, other responsive polymers that react to other stimuli can be 

examined for the reversible adsorption of contaminants from water, based on the 

interaction parameters of its functional groups.  

• The adsorption of hydrophobic contaminants onto PNIPAm can be further 

examined to quantify the adsorption sites present, and whether adsorption is a 

single or multi-layer phenomenon.  

• Real water samples will evidently contain many more contaminants and 

compounds, and the examination of how multi-component mixtures preferentially 

adsorb onto different stimuli-responsive polymers based on solubility parameter 

interactions would be useful to test viability for treatment of real contaminated 

water and for scale-up. 
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• Methods to increase adsorption capacity could be explored through various 

means, such as incorporating additional functional groups or increasing polymer 

surface area within membrane pores.  

• For the catalytic degradation of halo-organics, adsorption of other natural 

organics that would be present in real water samples could be investigated to 

determine interference with the reaction.  

• Adsorption/desorption of products from stimuli-responsive membrane-based 

catalytic reactions could be determined, because increased reaction product 

adsorption could hinder the reaction. Stimuli-responsive catalytic membranes 

provide an avenue by which to desorb reaction product compounds through 

stimuli-responsive conformational changes.  
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