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ABSTRACT OF DISSERTATION

LARGE N FIELDS AND HOLOGRAPHY

We study (nearly) AdS/CFT holography within the context of the Sachdev-Ye-
Kitaev (SYK) model. We present a systematic procedure to extract the dynamics of
the low energy Schwarzian mode in SYK type models with a single energy scale J
and emergent reparametrization symmetry in the infrared within the framework of
perturbation theory. We develop a systematic approach using Feynman diagrams in
bilocal theory to obtain a formal expression for the enhanced and O(1) corrections to
the bilocal propagator and apply this general technique to large q SYK. We show that
the Schwarzian theory describes a sector of a general class of two dimensional CFTs
using conformal bootstrap techniques. We also provide a gravitational interpretation
of this fact by showing that the dynamics in the near horizon throat of a specific
class of BTZ black holes is described very well by Jackiw-Teitelboim (JT) gravity
which gives rise to the Schwarzian action. We study the highly nontrivial conformal
matter spectrum of the SYK model at arbitrary q. We provide a three dimensional
bulk interpretation and carry out Kaluza-Klein (KK) reduction to reproduce the
SYK spectrum and more significantly, the conformal bilocal propagator. We provide
an interpretation of the two dimensional dual spacetime of the conformal sector of
the SYK model using techniques from bilocal holography. We present a resolution
of a conundrum about the signature of the dual spacetime using nonlocal integral
transformations.

KEYWORDS: AdS/CFT correspondence, 1/N expansion, Sachdev-Ye-Kitaev, col-
lective field theory, BTZ black holes, conformal bootstrap
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Chapter 1
Introduction

Two of the major developments in theoretical physics in the twentieth century
have been quantum mechanics (whose relativistic version is described by quantum
field theory) and general relativity. These constitute the two pillars on which most
of modern theoretical physics is based on. The former describes the physics of mi-
croscopic particles while the latter becomes relevant at the cosmological scale which
describes the largest entities in the universe like stars and galaxies. Both theories are
extremely successful within their regime of validity, but they have resisted unification.

One of the major recent developments in theoretical physics has been to view
quantum theory and general relativity as equivalent descriptions of the same physics,
a lesson that string theory has taught us via various dualities. This has sparked a lot
of interest in trying to develop a theory for quantum gravity which would describe
physics at all scales.

Even though these discussions are in principle well motivated, one can ask why
should we even study quantum gravity. After all, achieving the energy scales at which
quantum gravitational effects become relevant (∼ 1019 GeV) seems to be ridiculous in
comparison to the energy scales that present day colliders can achieve (∼ 104 GeV).
However, nature has already given us such high energy colliders for free: the Big
Bang. So if we can rewind the cosmological clock, we should encounter an era when
it is unavoidable to ignore quantum gravity effects. This is a very interesting and
complicated problem.

Another area where quantum gravity effects become important are black holes.
Apart from being interesting from an astronomical point of view (since even light
cannot escape from their event horizon), a naive application of quantum mechanics
and general relativity to them leads to various contradictions. The most famous
of these was first noticed by Hawking [1]. He discovered that black holes have a
temperature TH associated with them, which depends on their mass M as

TH =
MPl

8πM
TPl, (1.1)

whereMPl ∼ 10−8 kg and TPl ∼ 1032 K denote the Planck mass and Planck tempera-
ture respectively. This implies that black holes emit thermal radiation which contains
no information about the initial state of the black hole when it was formed. This is
in contradiction with the basic principle of unitarity which says that information can
never be destroyed, and leads to the famous information paradox. Thus, resolving
this paradox is crucial for understanding quantum gravity. One of the major tri-
umphs of string theory was to provide a microscopic understanding of the black hole
entropy [2], which eventually led to a non-perturbative understanding of quantum
gravity by means of gauge/gravity duality [3]. It is of fundamental importance in
modern theoretical physics since it provides new links between quantum mechanics
and gravity based on string theory. Among its many advantages, the duality maps

1



strongly coupled quantum field theories which are generically hard to study to more
tractable classical gravity theories.

Gauge/gravity duality is a concrete realization of the holographic principle, which
was first suggested by Susskind [4] (see also [5]), and is therefore also referred to as
holography. The holographic principle states that the entire information content of
a theory of quantum gravity in a given volume can be encoded in an effective theory
at the boundary surface of this volume. The theory describing the boundary degrees
of freedom thus encodes all information about the bulk degrees of freedom and their
dynamics, and vice versa. The holographic principle is of a very general nature and
is expected to be realized in many examples. In many of these cases, however, the
precise form of the boundary theory is unknown, so that it cannot be used to describe
the bulk dynamics.

The most concrete realization of gauge/gravity duality is the AdS/CFT corre-
spondence, proposed by Maldacena in 1997 [3]. AdS refers to anti-deSitter space
which arises as a solution to Einstein’s equations with a negative cosmological con-
stant and CFT refers to conformal field theory. This consisted of a duality between
type IIB string theory in an AdS5 × S5 background with a SU(N) gauge theory,
N = 4 supersymmetric Yang-Mills (SYM), living in the four dimensional boundary
of AdS (without gravity). The rank of the gauge group N ∼ g−1

s (for fixed L/`s)
where gs refers to the string coupling constant, L refers to the AdS radius and `s
refers to the string length. Since string theory is currently well understood only in
the perturbative regime (gs � 1), the N = 4 SYM theory is tractable only in the
large N limit, sometimes also referred to as the ’t Hooft limit. In this limit, a 1/N
expansion on the field theory side corresponds to a genus expansion (in gs) on the
string theory side.

There have been several attempts to generalize the above conjecture to claim
that any d-dimensional (conformal) field theory on the boundary is dual to a (d+ 1)-
dimensional theory of quantum gravity in the bulk. One of the extra dimensions in
the bulk corresponds to a ‘radial’ coordinate which is interpreted as an energy scale
of the CFT living on the boundary. The deep interior of AdS corresponds to the IR
while the boundary corresponds to the UV. Radial evolution in AdS corresponds to
a renormalization group (RG) flow in the CFT.

Another important application of AdS/CFT duality is to provide a non-perturbative
description of black holes in the bulk, which are considered to be dual to a thermal
state in the boundary. The extended geometry of a black hole in AdS is believed to
be dual to two identical, non-interacting copies of the conformal field theory (denoted
by CFTL and CFTR) and picking a particular entangled state [6]

|TFD〉 '
∑
n

e−βEn/2|n〉L ⊗ |n〉R, (1.2)

which is called the thermofield double state. It purifies the thermal state on one of
the boundaries. The Hawking temperature and Bekenstein entropy of the black hole
are equal to the boundary temperature and entropy respectively.

To extend the validity of AdS/CFT, we can ask the following question: given
a CFT, does the dual gravity theory support black holes? In order to answer this

2



question, we need to understand some basic facts about quantum chaos.
Classical chaos gives a measure of the sensitivity of a dynamical many body system

to initial conditions. In a chaotic system, this sensitivity is very high and is quantified
by an exponential growth of the derivative of a phase space trajectory q(t) with respect
to the initial condition q(0) (which is related to the Poisson bracket) with time

∂q(t)

∂q(0)
= {q(t), p(0)} ∼ eλLt, (1.3)

where λL is called the Lyapunov exponent and is a measure of chaos.
The classical discussion can be extended to quantum systems by replacing the

phase space by a Hilbert space, classical observables by operators acting on this
Hilbert space and Poisson brackets by commutators. In particular, one can consider
the thermal expectation value of the commutator squared of two operators V (t) and
W (0) (in order to avoid phase cancellations) and see the Lyapunov growth as a
characteristic of quantum chaos

〈[V (t),W (0)]2〉β ∼
1

N2
eλLt, 〈O〉β ≡

1

Z
Tr[e−βHO], (1.4)

where Z denotes the partition function, N2 roughly corresponds to the number of
degrees of freedom (and would be characterized by the central charge of a CFT for
example) and β denotes the inverse temperature of the system. The time during
which the exponential growth is visible lies in the regime td � t � ts where td ∼ β
denotes the dissipation time and ts ∼ β logN denotes the scrambling time of the
system (when the commutator saturates to a constant value). Since we are usually
interested in macroscopic systems, N is very large and there is a clear distinction
between the dissipation and scrambling times.

We can expand (1.4) to get two kinds of correlators: time ordered correlators
(TOC) or out-of-time-ordered correlators (OTOC). The OTOCs are the interesting
ones which are responsible for the Lyapunov growth for chaotic systems. So, the
following equation summarizes the statement of quantum chaos for large N systems

F (t) ≡ 〈V
†(t)W †(0)V (t)W (0)〉

〈V (t)W (0)〉〈W (t)W (0)〉 ∼ f0 −
f1

N2
eλLt + . . . , (1.5)

where f0 and f1 denote order one coefficients. In an important paper [7], Maldacena,
Shenker and Stanford obtained the following bound on the Lyapunov exponent which
under reasonable assumptions is valid for any quantum system

λL ≤
2π

β
. (1.6)

The bulk interpretation of the exponential growth of the OTOCs was realized by
Shenker and Stanford [8, 9], where they interpreted the OTOC as the inner product
of two states |Ψi〉 and |Ψf〉 created by acting the operators V and W (both acting
on the right CFT) on the thermofield double state (1.2) which is dual to an eternal
AdS black hole as follows

|Ψf〉 = W (t)V (−t)|TFD〉, |Ψi〉 = V (−t)W (t)|TFD〉. (1.7)

3



For times lying in between the dissipation and scrambling times, the bulk OTOC is
given by

F (t) = 1− κGNe
2π
β
t + . . . (1.8)

where κ is some order one positive constant. The Lyapunov behavior arises as a
consequence of kinematics, which says that if we throw in a particle of energy E,
then the invariant energy of a collision near the horizon is given by s ∼ e

2π
β
t. The

holographic dictionary tells us that GN ∼ 1/N2, and by comparing (1.5) and (1.8),
we can easily see that black holes in Einstein gravity saturate the chaos bound.

From the above discussion, it is clear that OTOCs play a key role in answering the
question of whether the bulk dual of a given CFT contains a black hole. If the OTOC
for all operators in the CFT grows with a maximal Lyapunov exponent λL = 2π/β,
we can expect the gravity dual to contain black holes.

However, studies of holography have been hampered by the lack of a model that
is simple enough to solve as well as has a gravity dual which contains black holes.
For example, matrix models are simple to solve but they do not lead to black holes
[10]. On the other hand, N = 4 super Yang Mills theory at strong ’t Hooft coupling
certainly leads to black holes, and exact results are known at large N for many anoma-
lous dimensions and some vacuum correlation functions, but at finite temperature the
theory is difficult to study.

In order to deal with these problems, Kitaev has recently proposed to study a
quantum mechanical model of N Majorana fermions interacting with random inter-
actions. This model, which goes by the name of the Sachdev-Ye-Kitaev (SYK) model
is notable because of the confluence of the following interesting properties:

• Solvable at strong coupling: At large N one can sum all Feynman diagrams,
and thereby compute correlation functions at strong coupling.

• Maximally chaotic: The OTOCs of this model grow exponentially at late
times with a maximal value of the Lyapunov exponent. Thus, the dual theory
is expected to contain black holes.

• Emergent conformal symmetry: There is an emergent reparametrization
invariance in the infrared. This (combined with a maximal value for the Lya-
punov exponent) implies that the model has some kind of dual description in
terms of Einstein gravity.

The combination of these three items makes the SYK model a potential candidate
for a solvable model of holography. Since we study this model in a large part of this
dissertation, we provide an overview of this model now.

1.1 Overview of the SYK model

The SYK model [11, 12] is a quantum mechanical many body system with all-
to-all interactions on fermionic N sites (N � 1), represented by the Hamiltonian
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H = (i)
q
2

∑
1≤i1<i2<···<iq≤N

Ji1i2···iq χi1 χi2 · · ·χiq , (1.9)

where q denotes the number of interacting fermions and needs to be even. χi denote
Majorana fermions, which satisfy the following anticommutation relation

{χi, χj} = δij (1.10)

The coupling constants Ji1i2···iq are random with a Gaussian distribution with width
J .

P (Ji1i2···iq) ∝ exp

[
−
N q−1J2

i1i2···iq

4(q − 1)J2

]
(1.11)

The mean is zero and the variance is given by

〈J2
i1i2···iq〉 =

J2(q − 1)!

N q−1
(1.12)

It is a simple variant of a model introduced by Sachdev and Ye [13], which was first
discussed in relation to holography in [14].

We can perform a disorder averaging of the random couplings (which corresponds
to annealed averaging at large N). There is an emergent O(N) symmetry as a conse-
quence of this disorder averaging. Subsequently, we can define a bilocal field Ψ(τ1, τ2)
as

Ψ(τ1, τ2) ≡ 1

N

N∑
i=1

χi(τ1)χi(τ2) , (1.13)

which leads to the following effective bilocal action

Scol[Ψ] =
N

2

∫
dτ
[
∂τΨ(τ, τ ′)

]
τ ′=τ

+
N

2
Tr log Ψ − J2N

2q

∫
dτ1dτ2

[
Ψ(τ1, τ2)

]q
,

(1.14)
which is of orderN and thus has a systematic 1/N expansion. τ denotes the Euclidean
time. It is useful for computing n-point connected correlators of the bilocal field which
correspond to 2n-point connected correlation functions of the original SYK fermions.

To reveal the holographic behavior we focus at low energies (the IR limit) which
correspond to 1 � βJ � N at finite temperature. The first term in (1.14) can be
ignored in the IR limit, and this results is an emergent reparametrization symmetry
in the IR where the saddle point solution of the bilocal theory transforms as follows
under an arbitrary reparametrization τ → f(τ)

Ψ(τ1, τ2) → Ψf (τ1, τ2) ≡
∣∣∣f ′(τ1)f ′(τ2)

∣∣∣ 1
q

Ψ(f(τ1), f(τ2)) . (1.15)

It is easy to recognize that (1.15) looks similar to the transformation of a conformal
two point function with scaling dimension 1/q. This dictates the IR saddle point to
have the form

Ψ(0)(τ1, τ2) = b
sgn(τ12)

|τ12|
2
q

. (1.16)
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where b is some function of q and J . It is the breaking of this conformal symmetry
at finite coupling which is responsible for the IR dynamics and the emergence of a
gravitational mode, which has an action

S[f ] = − αN
J

∫
dτ

[
f ′′′(τ)

f ′(τ)
− 3

2

(
f ′′(τ)

f ′(τ)

)2
]
, (1.17)

where the quantity in square brackets denotes the Schwarzian derivative of the sym-
metry mode f(τ) and α is some order one number.

The connected four point function of the SYK fermions (which is of order 1/N)
is given by the two point function of the quantum fluctuations around the IR saddle
point (1.16). This quantity receives contribution from an infinite number of modes.
However, all but one of these modes lead to a finite contribution and represent the
conformal sector of the SYK model. The “zero-mode” is special since it leads to a
divergence in the bilocal two point function, which arises as a consequence of the
conformal symmetry in the IR. In order to get a finite answer, we need to treat
(βJ)−1 as a perturbation parameter and carry out systematic perturbation theory.
This allows us to write the connected bilocal two point function as

Gc(τ1, τ2; τ3, τ4) =
βJ

N
G(−1)(τ1, τ2; τ3, τ4) +

1

N
G(0)(τ1, τ2; τ3, τ4) +O

(
1

βJ

)
, (1.18)

where G(−1) denotes the enhanced Schwarzian contribution and G(0) denotes an O(1)
correction to it. Calculating (1.18) up to O(1) will be one of the main goals of Chapter
2.

The above discussion makes it clear that the Schwarzian mode plays an important
role in the IR limit, and controls the entropy, free energy and Lyapunov exponent of
the model. So we now discuss how this mode emerges from a bulk perspective.

1.2 Holography in the SYK model

The dynamics of the Schwarzian mode f(τ) arises from the Jackiw-Teitelboim
(JT) theory, which is a two dimensional theory of dilaton gravity with a negative
cosmological constant. It has the following action (after coupling to matter)

S =
1

16πGN

[∫
M

Φ(R + 2) +

∫
∂M

KΦ∂

]
+ SM (1.19)

where Φ denotes the dilaton, K denotes the trace of the extrinsic curvature on the
boundary of some two dimensional manifoldM (which we denote by ∂M), and SM
denotes some matter action coupled to gravity. The size of the dilaton corresponds
to the radius of the S2 which arises as a consequence of dimensional reduction on
AdS2 × S2, which describes the near horizon geometry of a near extremal Reissner
Nordstrom black hole.

At a classical level, the solution to the dilaton equation of motion sets the geometry
to be AdS2, which has the following metric in Euclidean signature

ds2 =
dτ 2 + dz2

z2
. (1.20)
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(1.20) has an isometry group of SL(2,R) and is a good description of the geometry
deep in the IR, where the dilaton is a constant Φ0. However, the asymptotic AdS2

region suffers from a backreaction problem in the sense that the presence of any
nonzero matter destroys the asymptotic geometry [15]. Therefore, we need to study
small perturbations of the dilaton around its extremal value Φ0,

Φ = Φ0 + φ (1.21)

This breaks the conformal symmetry (similar to the pattern of breaking of reparametriza-
tion symmetry in SYK) and is thus expected to lead to the Schwarzian action (1.17).

In order to see how the Schwarzian action arises in JT gravity, we first consider a
boundary trajectory of the form (τ, z)→ (f(τ), z(τ)), where τ denotes the boundary
time now. The fluctuation φ blows up linearly close to the boundary, which forces us
to put a holographic cutoff ε� 1 on the AdS geometry otherwise perturbation theory
would break down. Subsequently, if we impose the following boundary conditions on
the induced metric and the dilaton

g|∂M = ε−2, Φ∂ =
φr
ε

(1.22)

we get z(τ) = εf ′(τ) which implies that f(τ) is the only dynamical degree of freedom
in the gravitational model. If we now evaluate the Gibbons-Hawking-York term in
(1.19), we get the Schwarzian action

S = − φr
8πGN

∫
dτ

[
f ′′′(τ)

f ′(τ)
− 3

2

(
f ′′(τ)

f ′(τ)

)2
]

(1.23)

as expected.
The emergent O(N) symmetry after performing a disorder average in SYK makes

it analogous to O(N) vector models, which have a holographic description in terms
of higher spin gauge fields in an AdS background in one higher dimension [16–22].
This analogy can be used for an explicit implementation of bilocal holography in SYK.
In this method, we interpret the center of mass and difference coordinates in bilocal
space as the time and space coordinates in the Poincaré patch of AdS2 respectively

t =
τ1 + τ2

2
, z =

τ1 − τ2

2
. (1.24)

This identification is a consequence of the fact that SL(2,R) symmetry in bilocal
space (in the IR limit) is the isometry group of AdS2. A consequence of this is that
the SL(2,R) Casimir in bilocal space is the AdS2 Laplacian. This identification of
symmetry allows us to interpret the bilocal fluctuation two point function as a scalar
propagator in AdS2. We will describe this identification in detail in Chapter 5.

In summary, although we have a bulk understanding of the Schwarzian action and
the conformal sector, a complete understanding of the bulk dual of the SYK model
is still lacking. The reason for this is that the O(1) correction to the bilocal two
point function receives contribution from non conformal matter interacting with the
Schwarzian mode, whose bulk interpretation is still unknown.
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1.3 Overview of the Dissertation

In Chapter 2, we will focus on the low energy soft mode and present a systematic
procedure to extract the Schwarzian dynamics which govern it. This is given in
the framework of a perturbative scheme based on a specific (off-shell) breaking of
conformal invariance in the UV, adjusted to yield the exact large N saddle point.
While this breaking term formally vanishes on-shell, it has a nontrivial effect on
correlation functions and the effective action. In particular, it leads to the Schwarzian
action with a specific coupling to bilocal matter. The method is applied to the
evaluation of O(1) corrections to the correlation function of bi-locals. As a byproduct
we confirm precise agreement with the explicit, symmetry breaking procedure. We
provide a verification in the large q limit (Liouville theory), where the correlators can
be calculated exactly at all length scales. In this case, we can see how the enhanced
O(J) and the subleading O(1) contributions originate from the Schwarzian dynamics
of the soft mode and its interaction with non conformal bilocal matter.This chapter
is based on a paper with S.R. Das, A. Jevicki and K. Suzuki [23].

In Chapter 3, we will show that an extremely generic class of two dimensional
CFTs contains a sector described by the Schwarzian theory. This applies to theo-
ries with no additional symmetries and large central charge, but does not require a
holographic dual. Specifically, we use bootstrap methods to show that in the grand
canonical ensemble, at low temperature with a chemical potential sourcing large angu-
lar momentum, the density of states and correlation functions are determined by the
Schwarzian theory, up to parametrically small corrections. In particular, we compute
out-of-time-order correlators in a controlled approximation. For holographic theo-
ries, these results have a gravitational interpretation in terms of large, near-extremal
rotating BTZ black holes, which have a near horizon throat with nearly AdS2 × S1

geometry. The Schwarzian describes strongly coupled gravitational dynamics in the
throat, which can be reduced to Jackiw-Teitelboim (JT) gravity interacting with a
U(1) field associated to transverse rotations, coupled to matter. We match the physics
in the throat to observables at the AdS3 boundary, reproducing the CFT results. It
is based on a paper with H. Maxfield and G.J. Turiaci [24].

In Chapter 4, we show that the conformal spectrum and bilocal propagator of the
SYK model with q fermion interactions can be realized as a three dimensional model
in AdS2×S1/Z2 with nontrivial boundary conditions in the additional dimension. The
three dimensional realization is given on a space whose metric is conformal to AdS2×
S1/Z2 and is subject to a nontrivial potential in addition to a delta function at the
center of the interval. In particular, we show that a Horava-Witten compactification
reproduces the exact SYK spectrum and a nonstandard propagator between points
which lie at the center of the interval exactly agrees with the bilocal propagator. As
q → ∞, the wave function of one of the modes at the center of the interval vanish
as 1/q, while the others vanish as 1/q2, in a way consistent with the fact that in the
SYK model only one of the modes contributes to the bilocal propagator in this limit.
This chapter is based on a paper with S.R. Das, A. Jevicki and K. Suzuki [25].

In Chapter 5, we will consider the question of identifying the bulk spacetime
of the conformal sector of the SYK model. Focusing on the signature of emergent
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spacetime of the (Euclidean) model, we explain the need for nonlocal (Radon type)
transformations on external legs of n point Green’s functions. This results in a dual
theory with Euclidean AdS signature with additional leg factors. We speculate that
these factors incorporate the coupling of additional bulk states similar to the discrete
states of two dimensional string theory.This chapter is based on a paper with S.R.
Das, A. Jevicki and K. Suzuki [26].

Some technical results are relegated to the Appendices.

Copyright © Animik Ghosh, 2020.
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Chapter 2
Near Conformal Perturbation Theory in SYK type Models

In the large N dynamics of models of SYK type [11–13, 26–34] (including tensor
models [35? –53]), a central role is played by the emergent Schwarzian mode which is
dual to the gravitational mode in the dual theory. While the origin of this mode can
be traced to (time) reparametrization symmetry of the critical theory, its dynamics
and its couplings to the matter degrees of freedom emerges in the near-critical region.

Generally, the low energy dynamics of the soft modes arising from the spontaneous
breaking of an approximate symmetry in a quantum field theory is an important
problem which appears in many areas of physics. In quantum field theories with a
set of global symmetries in many physical situations, one is interested in fluctuations
around a classical solution which break some of these symmetries (e.g. a soliton
solution [54, 55]). Then a naive perturbation theory around this solution will be
infrared divergent because of a zero mode associated with the broken symmetry. The
way to deal with this is well known: one needs to introduce collective coordinates
whose dynamics provides the essential low energy physics.

In many cases, however, the symmetry is approximate, and there is a parameter
λ such that only when λ = 0 the action has the symmetry. This would cause the
saddle point to shift and the zero mode will be lifted to an eigenvalue of order λ.
There is no need for a collective coordinate and the answer for e.g. the connected
correlation function would be then proportional to λ−1 which is large for small λ,
hence “enhanced”. Nevertheless, we would like to have an understanding of this
enhanced contribution in terms of an effective low energy description.

In the present case, the bilocal collective picture offers a framework to study in
detail the emergent zero mode dynamics coupled to bilocal matter. In particular
in [30] a framework was given for both evaluating the leading Schwarzian action,
and also developing a systematic perturbation expansion near criticality. It relied
on understanding the mechanism for (spontaneously) broken conformal symmetry in
these nonlinear theories: which was introduced in [29] through an off-shell (source)
mechanism. A related scheme was also used in [34].

In addition to the Schwarzian action, there is the action of fluctuations with
conformal dimension h = 2 (which should not be confused with the infinite tower
corresponding to operators with conformal dimensions hn > 2) which we call (h = 2)
“matter” and interaction between this fluctuation field and the Schwarzian mode. The
interpretation of these fluctuations in the gravity dual is not clear at this moment.
The importance of a full understanding of the emergence of the Schwarzian mode (and
even more of its interaction with matter) lies in the fact that this relates to the dual
description of the gravitational mode in Jackiw-Teitelboim gravity in two dimensions
[56–61], and its various possible interactions with matter. Several possibilities for the
dual gravity theory for the SYK model are investigated for example in [25, 62–72] In
this chapter we discuss further and complete the scheme of [29, 30] developing fully
the Schwarzian-matter coupled description. The key idea is to replace the explicit
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symmetry breaking term in the SYK action by a regularized O(1/J) source term. A
systematic diagrammatic picture is then established, which will allow evaluation of
perturbative effects. The singular nature of interactions following from [29] makes the
explicit evaluations of contributions nontrivial. One of the improvements provided
by the present work will be a clear, systematic procedure for their evaluation (where
each diagram will reduce to well defined matrix elements of perturbation theory).
Specifically, we prove that once the regularized source is chosen such that one gets the
correct large N saddle, this diagrammatic procedure yields the correct 1/J expansion
of the exact two point correlation function. These results receive a verification as
follows.

In the q → ∞ limit, the SYK model can be solved with large N for any finite
J . In this limit, the bilocal theory reduces to Liouville theory. The fact that the
Dyson-Schwinger equations reduce to those which follow from a Liouville action is
well known. Here we show that the action itself reduces to the Liouville action.
Correlators in the large q limit are discussed in [12, 32, 73–75].

The situation here is a bit different from the finite q model where an explicit
symmetry breaking term in the action for finite J is present. This breaking term plays
an essential role in the large q limit. Nevertheless, as is well known, the resulting
Liouville theory has an emergent conformal symmetry. The large-N saddle point
breaks this symmetry. However, the finite J theory comes with a boundary condition
- and the expansion around the saddle point which obeys this boundary condition
does not lead to a zero mode since a candidate zero mode does not obey this boundary
condition. Therefore a calculation for correlators of fluctuations around this saddle
is well defined. This calculation was performed in [12] at finite temperature T and
expanded in an expansion in powers of T/J . We perform this calculation at zero
temperature in a different way and reproduce the zero temperature limit of the result
of [12]. Instead of expanding around this saddle point one could have expanded
around the saddle point appropriate to the large J (or long distance) limit. Now
one gets a zero mode and the formalism developed above can be applied. We then
compare an expansion of the exact result with this collective coordinate calculation
and show a perfect agreement as expected.

This chapter is organized as follows: In Section 2.1, we review the bilocal formal-
ism leading to the coupled Schwarzian/(bilocal) matter system and a corresponding
diagrammatic scheme. For correlation functions we describe techniques for evaluation
of contributing Feynman diagrams using various Schwarzian identities. We apply this
to the O(1) correction to the enhanced propagator and show agreement with a per-
turbative expansion around the exact saddle point solution of the theory. In Section
2.2 we consider the explicit example of large q SYK/ Liouville theory and perform
explicit computations implementing the general method. We conclude with some
open questions in Section 2.3.
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2.1 Schwarzian Dynamics in SYK

2.1.1 The Method

In this subsection, we will give a brief review of our formalism [29, 30] which was
introduced to exhibit the Schwarzian mode and generate a perturbative expansion
around the conformal point. The Sachdev-Ye-Kitaev model [11] is a quantum me-
chanical many body system with all-to-all interactions on fermionic N sites (N � 1),
represented by the Hamiltonian

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (2.1)

where χi are Majorana fermions, which satisfy {χi, χj} = δij. The coupling constant
Jijkl are random with a Gaussian distribution,

P (Jijkl) ∝ exp

[
−
N3J2

ijkl

12J2

]
(2.2)

The original model is given by this four-point interaction, with a simple generalization
to analogous q-point interacting model [11, 12]. In this chapter, we follow the more
general q model, unless otherwise specified.

After the disorder averaging of the random couplings (which corresponds to an-
nealed averaging at large N), the effective action is written as

Sq = − 1

2

∫
dτ

N∑
i=1

n∑
a=1

χai ∂τχ
a
i −

J2

2qN q−1

∫
dτ1dτ2

n∑
a,b=1

 N∑
i=1

χai (τ1)χbi(τ2)

q

,

(2.3)
where a, b denote the replica indices. Here τ is treated as an Euclidean time. We do
not expect a spin glass state in this model [27] and we can restrict to replica diagonal
subspace [29]. Therefore, introducing a (replica diagonal) bi-local collective field:

Ψ(τ1, τ2) ≡ 1

N

N∑
i=1

χi(τ1)χi(τ2) , (2.4)

the model is described by a path-integral

Z =

∫ ∏
τ1,τ2

DΨ(τ1, τ2) µ(Ψ) e−Scol[Ψ] , (2.5)

with an appropriate O(N0) measure µ and the collective action:

Scol[Ψ] =
N

2

∫
dτ
[
∂τΨ(τ, τ ′)

]
τ ′=τ

+
N

2
Tr log Ψ − J2N

2q

∫
dτ1dτ2

[
Ψ(τ1, τ2)

]q
,

(2.6)
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where the trace log term comes from a Jacobian factor due to the change of path-
integral variable, and the trace is taken over the bi-local time. This action being
of order N gives a systematic 1/N expansion, while the measure µ found as in [76]
begins to contribute at one loop level (in 1/N).

At zero temperature, one can redefine the time τ to get rid of the energy scale
J . This also shows that in the IR the theory is strongly coupled and the first term
linear in the bi-local field can be dropped. At finite temperature T this redefinition
rescales the thermal circle to have dimensionless size J/T , which then becomes the
coupling. In this paper we will deal with the zero temperature limit.

In the IR with the strong coupling J |τ | � 1, the collective action reduces to the
critical action

Sc[Ψ] =
N

2
Tr log Ψ − J2N

2q

∫
dτ1dτ2

[
Ψ(τ1, τ2)

]q
, (2.7)

which exhibits an emergent conformal reparametrization symmetry τ → f(τ) with

Ψ(τ1, τ2) → Ψf (τ1, τ2) ≡
∣∣∣f ′(τ1)f ′(τ2)

∣∣∣ 1
q

Ψ(f(τ1), f(τ2)) . (2.8)

The first term in (4.5) explicitly breaks this symmetry.
The saddle point solution of the effective action (2.7) gives the critical classical

solution,

Ψ(0)(τ1, τ2) = b
sgn(τ12)

|τ12|
2
q

, Ψ
(0)
f (τ1, τ2) = b

( |f ′(τ1)f ′(τ2)|
|f(τ1)− f(τ2)|2

) 1
q

, (2.9)

where τij ≡ τi − τj and b is given by

bq =

(
1

2
− 1

q

)
tan(π/q)

πJ2
. (2.10)

In general, for a bilocal primary field φh(τ1, τ2) with the conformal dimension h, the
transformation is given by

φh(τ1, τ2) → φh,f (τ1, τ2) ≡ |f ′(τ1)f ′(τ2)|hφh(f(τ1), f(τ2)) . (2.11)

For an infinitesimal transformation f(τ) = τ + ε(τ), we get the variation of the field

δφh(τ1, τ2) =

∫
dτ ε(τ)d̂h,τ (τ1, τ2)φh(τ1, τ2) +

1

2

∫
dτdτ ′ ε(τ)ε(τ ′) d̂

(2)
h,τ,τ ′φh(τ1, τ2) + · · · ,

(2.12)
where

d̂h,τ (τ1, τ2) = h
(
δ′(τ1 − τ) + δ′(τ2 − τ)

)
+ δ(τ1 − τ)∂τ1 + δ(τ2 − τ)∂τ2 , (2.13)
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and

d̂
(2)
h,τ,τ ′(τ1, τ2) = 2h2δ′(τ1 − τ)δ′(τ2 − τ ′)

+ h(h− 1)
(
δ′(τ1 − τ)δ′(τ1 − τ ′) + δ′(τ2 − τ)δ′(τ2 − τ ′)

)
+ 2h

(
δ′(τ1 − τ) + δ′(τ2 − τ)

)(
δ(τ1 − τ ′)∂τ1 + δ(τ2 − τ ′)∂τ2

)
+ δ(τ1 − τ)δ(τ1 − τ ′)∂2

τ1
+ δ(τ2 − τ)δ(τ2 − τ ′)∂2

τ2

+ 2δ(τ1 − τ)δ(τ2 − τ ′)∂τ1∂τ2 , (2.14)

The critical saddle point spontaneously breaks the conformal reparametrization sym-
metry, leading to the appearance of zero modes in the strict IR critical theory.
This problem was addressed in [29] in analogy with the quantization of extended
systems with symmetry modes [54]. The above symmetry mode representing time
reparametrization can be elevated to a dynamical variable introduced according to
[55] through the Faddeev-Popov method which we summarize below. We insert into
the partition function (5.3), the functional identity:∫ ∏

τ

Df(τ)
∏
τ

δ
(
∫ u ·Ψf

) ∣∣∣∣∣δ
(∫

u ·Ψf

)
δf

∣∣∣∣∣ = 1 , (2.15)

so that after an inverse change of the integration variable, it results in a combined
representation

Z =

∫ ∏
τ

Df(τ)
∏
τ1,τ2

DΨ(τ1, τ2) µ(Ψf ) δ
(
∫ u ·Ψ

)
e−Scol[Ψf ] , (2.16)

with an appropriate Jacobian. Here

Scol[Ψf ] = Sc[Ψ] +
N

2

∫
dτ
[
∂τΨf (τ, τ

′)
]
τ=τ ′

(2.17)

where we have used the invariance of the critical action.
The symmetry breaking term implies a modification of the critical, conformal

theory, which we would like to calculate perturbatively (in 1/J) in a long distance
expansion. However since the breaking term is singular and non-vanishing only at
short distances, the corrected solution cannot be obtained by treating it as an ordinary
perturbation. To see this more clearly, let the exact classical solution be

Ψcl = Ψ(0) + Ψ(1) + · · · (2.18)

Here Ψ(1) is the lowest order shift which should satisfy the linearized equation∫
dτ3dτ4K(0)(τ1, τ2; τ3, τ4)Ψ(1)(τ3, τ4) = ∂1δ(τ12) , (2.19)

where the kernel is given by

K(0)(τ1, τ2; τ3, τ4) =
δ2Sc[Ψ(0)]

δΨ(0)(τ1, τ2)δΨ(0)(τ3, τ4)
(2.20)

=
[
Ψ(0)

]−1

?
(τ1, τ3)

[
Ψ(0)

]−1

?
(τ2, τ4) + (q − 1)J2 δ(τ13)δ(τ24) Ψq−2

(0) (τ1, τ2) ,
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where the inverse
[
Ψ(0)

]−1

?
is defined in the sense of the star product (i.e. matrix

product):
∫
dτ ′A(τ1, τ

′)
[
A
]−1

?
(τ ′, τ2) = δ(τ12) and explicitly given by

[
Ψ(0)

]−1

?
(τ1, τ2) = − J2bq−1 sgn(τ12)

|τ12|2−
2
q

. (2.21)

Since the kernel transforms under scaling with a dimension 4− 4
q
, i.e. K(0) ∼ |τ |−4+4/q,

one might expect Ψ(1) to have the form Ψ(1)(τ1, τ2) ∝ sgn(τ12)|τ12|−4/q which, however
is in disagreement with the desired δ′-source of (2.19). Indeed, one sees that the
exact δ′-source could only be matched at the non-perturbative level, where the 1/J
corrections are all summed up.

Nevertheless, it was shown in [30] that a consistent 1/J perturbation theory
around the critical solution is possible. The key idea is to replace the explicit sym-
metry breaking term in (4.5) by a regularized source term which is determined as
follows. One considers an off-shell extension (of Ψ(1)):

Ψ(1)
s (τ1, τ2) = B1

sgn(τ12)

|τ12|
2
q

+2s
, (2.22)

with a parameter s > 0, because the dimension of Ψ(1) needs to be less than the
scaling dimension of Ψ(0). At the end of the calculation we will take the on-shell limit
s→ 1/2. With this ansatz, we have∫

dτ3dτ4K(0)(τ1, τ2; τ3, τ4)Ψ(1)
s (τ3, τ4) = (q − 1)B1b

q−2γ(s, q)
sgn(τ12)

|τ12|2−
2
q

+2s
. (2.23)

The coefficient γ is uniquely specified by the integral with γ(1/2, q) = 0 [30], so
that the ansatz (2.22) reduces to the homogeneous (on-shell) equation in the limit
s → 1/2. The overall coefficient B1 obviously does not follow from the above, but
must be taken from the numerical result found in [12]. In turn, this overall coefficient
can be left arbitrary and its value is only fixed after summing the expansion.

The RHS in Eq.(2.23) defines an off-shell regularized source term, which takes the
form

Qs(τ1, τ2) ≡
∫
dτ3dτ4K(0)(τ1, τ2; τ3, τ4)Ψ(1)

s (τ3, τ4)

∝ (s− 1
2
)

sgn(τ12)

|τ12|2−
2
q

+2s
+ O

(
(s− 1

2
)2
)
, (2.24)

and replaces the non-perturbative source in (2.17) through∫ [
Ψf

]
s
≡ − lim

s→ 1
2

∫
dτ1dτ2 Ψf (τ1, τ2)Qs(τ1, τ2) . (2.25)

We stress that on-shell (with the limit s→ 1/2) so that Ψ
(1)
1/2(τ1, τ2) this vanishes. It

is a highly nontrivial feature (of this breaking procedure) that it leads to systematic
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nonzero effects. In particular, separating the critical classical solution from the bilocal
field: Ψ = Ψ(0) + Ψ̄ we get

Scol[Ψ, f ] = S[f ] + lim
s→ 1

2

∫
Ψf ·Qs + Sc[Ψ] , (2.26)

where S[f ] is the action of the collective coordinate

S[f ] = lim
s→ 1

2

∫
Ψ

(0)
f ·Qs . (2.27)

This can be evaluated by using the Qs given above. Taking s → 1/2 at the end of
the calculation one gets the Schwarzian action [29, 30].

S[f ] = − αN
J

∫
dτ

[
f ′′′(τ)

f ′(τ)
− 3

2

(
f ′′(τ)

f ′(τ)

)2
]
, (2.28)

where α is a dimensionless coefficient [30]. The limit s → 1/2 is nontrivial because
the evaluation of the integral (2.27) leads to a simple pole at s = 1/2. This cancels
the overall s− 1/2 in Qs to yield a finite result. In this sense we can view the source
Qs as an off-shell extension.

The above strategy can alternatively be described as follows. Suppose we knew the
correction to the saddle point solution by e.g. solving the equation of motion following
from the SYK action exactly and then performing a long distance expansion. Then
we can define a source Qs using (2.24), and replace the symmetry breaking term in
the SYK action by the source term

∫
dτ1dτ2 Qs(τ1, τ2)Ψ(τ1, τ2). In the rest of this

section we will show that once this is done, a well defined perturbation expansion
around the critical solution can be developed. The nontrivial aspect of this scheme
is that a specification of this off-shell source is all that is needed to obtain a full
near-conformal perturbation expansion. We will show for the example of sub-leading
corrections for the two point correlation function that the method produces results
which agree with a 1/J expansion of the exact answer.

2.1.2 Vertices

From (2.16) and (2.26), near the critical theory, we have the partition function

Z =

∫
Df
∫
DΨµ(f,Ψ) δ

(
∫ u ·Ψf

)
e
−
(
S[f ] + lim

s→ 1
2

∫
Ψf ·Qs +Sc[Ψ]

)
, (2.29)

where S[f ] is given by the Schwarzian action (2.28). This leads to the interaction
between the Schwarzian mode and the bilocal matter Ψ.

First taking an infinitesimal transformation f(τ) = τ + ε(τ), we expand the
Schwarzian action (2.28) to obtain

S[ε] =
αN

2J

∫
dτ
[
(ε′′)2 + (ε′)2ε′′′ + O(ε4)

]
. (2.30)
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which gives the Schwarzian propagator〈
ε(τ1)ε(τ2)

〉
=

J

12αN
|τ12|3 ,

〈
ε(ω)ε(−ω)

〉
=

J

αN

1

ω4
, (2.31)

and the cubic vertex

V (3)(τ1, τ2, τ3) =
αN

6J

[
∂3

1∂2∂3 + (permutations)
]
. (2.32)

Because of the projector δ
(
∫ u · Ψf

)
which projects out the zero mode, the matter

bilocal propagator is given by the non-zero mode propagator Dc (2.51).
Finally the interaction between the Schwarzian mode and the bilocal matter is

given by the interaction term
∫

Ψf ·Qs. Taking an infinitesimal transformation f(τ) =
τ + ε(τ) with (2.12), we have the interaction term

lim
s→ 1

2

∫
dτ1dτ2Qs(τ12)

[
1 +

∫
dτ ε(τ)d̂τ (τ1, τ2)

+
1

2

∫
dτdτ ′ ε(τ)ε(τ ′) d̂

(2)
τ,τ ′ + · · ·

]
Ψ(τ1, τ2) . (2.33)

where we have used a shorthand notation d̂τ ≡ d̂ 1
q
,τ . This leads to the ε(τ)Ψ(τ1, τ2)

vertex:

Qs(τ12)d̂τ (τ1, τ2) , (2.34)

the ε(τ)ε(τ ′)Ψ(τ1, τ2) vertex:

1

2
Qs(τ12)d̂

(2)
τ,τ ′(τ1, τ2) , (2.35)

and so on.

2.1.3 Critical SYK eigenvalue problem

Now we focus on the eigenvalue problem of the critical theory. We have the
conformal symmetry: τ → f(τ) in the critical theory (i.e. strict large J):

δSc[Ψ
(0)]

δf(τ)
= 0 , (2.36)

where S[Ψ(0) + J−1Ψ(1) + · · · ] = Sc[Ψ
(0)] + · · · . This leads to a zero mode in the

strict large J limit:

χ
(0)
0,ω(τ1, τ2) =

∫
dτ eiωτχ

(0)
0,τ (τ1, τ2) , χ

(0)
0,τ (τ1, τ2) =

(
N

(0)
0

)− 1
2
δΨ

(0)
f (τ1, τ2)

δf(τ)

∣∣∣∣
f(τ)=τ

,

(2.37)
with λ(0)

0,ω = 0. The normalization factor N (0)
0 for the second equation is fixed by the

orthonormality condition of the eigenfunction χ(0) (2.41). This zero mode leads to
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= χ
(0)
0 ∝ 1

= Qs ∝ N/J

= 〈εε〉 ∝ J/N

= Dc ∝ N−1

= d̂ ∝ 1

= d̂(2) ∝ 1

Figure 2.1: Diagrammatic expressions for the Feynman rules.

the enhanced contribution of the Green’s function G(−1), which will be discussed in
Section 2.1.4 as well as in Appendix A. Also for the notation we will use below for
the perturbation theory, readers are referred to Appendix A.

For general modes, the second term in (2.20) is already diagonal, but contains an
extra factor Ψq−2

(0) . Because of this extra factor, the eigenvalue problem of this kernel
must be like∫

dτ3dτ4K(0)(τ1, τ2; τ3, τ4)χ(0)
n,ω(τ3, τ4) = λ(0)

n,ω Ψq−2
(0) (τ1, τ2)χ(0)

n,ω(τ1, τ2) . (2.38)

The extra factor appearing in the RHS can be compensated by defining new eigen-
functions by χ(0) = Ψ

1−q/2
(0) χ̃(0) and a new kernel [12, 28, 29] by

K̃(τ1, τ2; τ3, τ4) = Ψ
1− q

2

(0) (τ1, τ2)K(τ1, τ2; τ3, τ4) Ψ
1− q

2

(0) (τ3, τ4) , (2.39)

so that the new kernel and eigenfunctions obey the standard eigenvalue problem∫
dτ3dτ4 K̃(0)(τ1, τ2; τ3, τ4) χ̃(0)

n,ω(τ3, τ4) = λ(0)
n,ω χ̃

(0)
n,ω(τ1, τ2) . (2.40)

We note that the eigenvalue does not change under this new definition. Since the new
eigenfunctions χ̃(0) obey the standard eigenvalue problem, we impose the orthonor-
mality ∫

dτ1dτ2 χ̃
(0)
n,ω(τ1, τ2)χ̃

(0)
n′,ω′(τ1, τ2) = δ(n− n′)δ(ω − ω′) , (2.41)

and the completeness∑
n,ω

χ̃(0)
n,ω(τ1, τ2)χ̃(0)

n,ω(τ3, τ4) = δ(τ13)δ(τ24) . (2.42)
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For the eigenvalue problem (2.38), we denote that χ(0)
n,ω = χ

(0)
h,ω and λ(0)

n,ω = λ
(0)
q (h)

by using the fact that the complete eigenfunctions are spanned by the conformal
dimension h containing the continuous modes (h = 1/2 + ir, 0 < r < ∞) and the
discrete modes (h = 2n, n = 0, 1, 2, · · · ) with ω (−∞ < ω < ∞) [12, 28]. The
eigenvalue is known to be independent of ω and we can parametrize it as

λ(0)
q (h) = (q − 1)J2

(
1 − g̃(q;h)

)
, (2.43)

which excludes the trivially diagonalized second term in (2.20). Therefore, the non-
trivial eigenvalue problem becomes∫

dτ3dτ4

[
Ψ(0)

]−1

?
(τ1, τ3)

[
Ψ(0)

]−1

?
(τ2, τ4)χ

(0)
h,ω(τ3, τ4)

= − (q − 1)J2 g̃(q;h) Ψq−2
(0) (τ1, τ2)χ

(0)
h,ω(τ1, τ2) , (2.44)

where the explicit form of the inverse is given in (2.21).
Next we note that the eigenvalue problem of the following form was solved in [12]:

− 1

α0(q)

∫
dτ3dτ4

sgn(τ13)sgn(τ24)

|τ13|
2
q |τ24|

2
q |τ34|2−

4
q

˜̃χ
(0)
h,ω(τ3, τ4) = kc(q;h) ˜̃χ

(0)
h,ω(τ1, τ2) , (2.45)

where the eigenfunctions are independent of q with

α0(q) =
1

(q − 1)J2bq
, (2.46)

and the eigenvalue

kc(q;h) = −(q − 1)
Γ(3

2
− 1

q
)Γ(1− 1

q
)Γ(1

q
+ h

2
)Γ(1

2
+ 1

q
− h

2
)

Γ(1
2

+ 1
q
)Γ(1

q
)Γ(3

2
− 1

q
− h

2
)Γ(1− 1

q
+ h

2
)
. (2.47)

We note that this eigenvalue has a symmetry

kc
(

q
q−1

;h
)

=
1

kc(q;h)
. (2.48)

Therefore, from (2.45) transforming q → q/(q − 1), we obtain

− 1

α0( q
q−1

)

∫
dτ3dτ4

sgn(τ13)sgn(τ24)

|τ13|2−
2
q |τ24|2−

2
q |τ34|

4
q
−2

˜̃χ
(0)
h,ω(τ3, τ4) =

1

kc(q;h)
˜̃χ

(0)
h,ω(τ1, τ2) .

(2.49)
This is related to our eigenvalue problem (2.44) by ˜̃χ(0) = Ψq−2

(0) χ
(0). Therefore com-

paring these expressions, we find

g̃(q;h) =
α0( q

q−1
)

(q − 1)2α0(q)

1

kc(q;h)
=

1

kc(q;h)
. (2.50)
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After determining the eigenfunctions [12, 28, 29], one can obtain the non-zero
mode bilocal propagator Dc. This propagator contains three types of contributions:

Dc = D′ + D′′ +
∞∑
m=1

Dm . (2.51)

The h = 2 contributions consist of a non vanishing single-pole D′ and a gauge-
dependent D′′ contribution. Detailed evaluation of these are given in Section 2.2.4
and Appendix D. The former is given by

D′(t, z; t′, z′) =
|zz′| 12
Ng̃′(3

2
)

∫ ∞
−∞

dω

2π
e−iω(t−t′) 3π

2
J− 3

2
(|ωz>|)J 3

2
(|ω|z<) , (2.52)

while the latter contribution is given by

D′′(t, z; t′, z′) = − |zz
′| 12

Ng̃′(3
2
)

∫
dω

2π
e−iω(t−t′)

(
3∂ν + 2− 3g̃′′(3

2
)

2g̃′(3
2
)

)(
Jν(|ωz|)Jν(|ωz′|)

)
ν= 3

2

,

where we used the change of variables in (2.106). The other contributions are given
by single-poles located at h = pm + 1/2 > 2. [29]

Dm(t, z; t′, z′) = − |zz′| 12
Ng̃′(pm)

∫
dω

2π
e−iω(t−t′) πpm

sin(πpm)
Z−pm(|ωz>|)Jpm(|ω|z<) .

(2.53)

2.1.4 Enhanced contribution: G(−1)

In this and next subsections, we consider the bilocal two-point function:〈
Ψ(τ1, τ2)Ψ(τ3, τ4)

〉
, (2.54)

where the expectation value is evaluated by the path integral (5.3). After the Faddeev-
Popov procedure and changing the integration variable as we discussed in Section ??,
this two-point function becomes〈

Ψf (τ1, τ2)Ψf (τ3, τ4)
〉
, (2.55)

where now the expectation value is evaluated by the gauged path integral (2.16). We
expand the bilocal field around the critical saddle-point solution Ψ = Ψ(0) + Ψ, so
that the two-point function is now〈

Ψf (τ1, τ2)Ψf (τ3, τ4)
〉

=
〈(

Ψ
(0)
f + Ψf

)
(τ1, τ2)

(
Ψ

(0)
f + Ψf

)
(τ3, τ4)

〉
. (2.56)

Taking an infinitesimal transformation f(τ) = τ + ε(τ) with (2.12), we find the order
O(J) contribution

G(−1)(τ1, τ2; τ3, τ4) =

∫
dω

2π

dω′

2π

(
N

(0)
0,ωN

(0)
0,ω′

) 1
2 χ

(0)
0,ω(τ1, τ2)

〈
ε(ω)ε(ω′)

〉
χ

(0)
0,ω′(τ3, τ4) ,

(2.57)
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where we used the zero mode expression (2.37) With the explicit form of the Schwarzian
propagator this leading contribution is of order O(J) .

Following the standard perturbation theory, (which is described in detail in Ap-
pendix A), the exact Green’s function can be written as

G̃(ex) =
∑
n

χ̃
(ex)
n χ̃

(ex)
n

λ
(ex)
n

≡ Ψ
q
2
−1

cl G(ex) Ψ
q
2
−1

cl . (2.58)

In the following, we will be interested in the contribution coming from the zero mode
of the lowest order kernel, n = 0. Since λ(0)

0 = 0, we have

G(−1) =
χ

(0)
0 χ

(0)
0

λ
(1)
0

(2.59)

G(0) =
χ

(0)
0 χ

(1)
0

λ
(1)
0

+
χ

(1)
0 χ

(0)
0

λ
(1)
0

− λ
(2)
0 χ

(0)
0 χ

(0)
0

(λ
(1)
0 )2

+Dc, Dc =
∑
n6=0

χ
(0)
n χ

(0)
n

λ
(0)
n

. (2.60)

Here we suppressed all τ (and ω) dependence since they don’t play any crucial role
here. The expression of the perturbative kernels are obtained as (see Appendix A)

K(0)(τ1, τ2; τ3, τ4) = S(2)
c (τ1,2; τ3,4) , (2.61)

K(1)(τ1, τ2; τ3, τ4) =

∫
dτ5dτ6 S

(3)
c (τ1,2; τ3,4; τ5,6) Ψ(1)(τ56) , (2.62)

K(2)(τ1, τ2; τ3, τ4) =
1

2

∫
dτ5dτ6dτ7dτ8 S

(4)
c (τ1,2; τ3,4; τ5,6; τ7,8) Ψ(1)(τ56)Ψ(1)(τ78)

+

∫
dτ5dτ6 S

(3)
c (τ1,2; τ3,4; τ5,6) Ψ(2)(τ56) , (2.63)

where we used the short-hand notation for S(n)
c defined in (A.17). The first and

second order eigenvalue and eigenfunction corrections are given by

λ
(1)
0 =

∫
χ

(0)
0 · K(1) · χ(0)

0 , (2.64)

χ
(1)
0 = −

∑
k 6=0

χ
(0)
k

λ
(0)
k

∫
χ

(0)
k · K(1) · χ(0)

0 , (2.65)

λ
(2)
0 = −

∑
k 6=0

1

λ
(0)
k

∣∣∣∣∫ χ
(0)
k · K(1) · χ(0)

0

∣∣∣∣2 +

∫
χ

(0)
0 · K(2) · χ(0)

0 , (2.66)

where for the first order shift of the zero-mode eigenfunction χ(1)
0 we used (A.22).

In the rest of this subsection, we relate the diagrammatic expression of G(−1) in
(2.57) to the eigenvalue perturbation expression (2.59).

Now we note that the Schwarzian action is given by

SSch[f ] = − lim
s→1/2

∫
dτ1dτ2Qs(τ1, τ2) Ψ

(0)
f (τ1, τ2) (2.67)

21



Expanding f(τ) = τ + ε(τ) we know that in the s→ 1/2 limit, the first nonzero term
in an expansion in ε(τ) is the term which is quadratic in ε(τ) and given by

S
(2)
Sch[ε] =

∫
dτ1dτ2 Qs(τ1, τ2)

∫
dω

2π
ε(ω)ε(−ω)d̂

(2)
ω,−ωΨ(0) . (2.68)

For the zero mode (2.37) with λ(0)
0,ω = 0, the eigenvalue problem is written as

0 =

∫
dτ3dτ4

δ2Sc[Ψ
(0)
f ]

δΨ
(0)
f (τ1, τ2)δΨ

(0)
f (τ3, τ4)

δΨ
(0)
f (τ3, τ4)

δf(τ)
. (2.69)

Taking one more variation respect to f(τ ′), we obtain∫
dτ3dτ4dτ5dτ6

δ3Sc[Ψ
(0)]

δΨ(0)(τ1, τ2)δΨ(0)(τ3, τ4)δΨ(0)(τ5, τ6)
χ

(0)
0,ω(τ3, τ4)χ

(0)
0,ω′(τ5, τ6)

= −
(
N

(0)
0,ωN

(0)
0,ω′

)− 1
2

∫
dτ3dτ4K(0)(τ1, τ2; τ3, τ4)d̂

(2)
ω,ω′Ψ

(0)(τ3, τ4) , (2.70)

where after the variation we set f(•) = • and then Fourier transformed τ to ω (and
τ ′ to ω′). Multiplying Ψ(1)(τ1, τ2) and integrating, the first term becomes K(1) (2.62).
Therefore, now we find

1

J

∫
χ

(0)
0,ω · K(1) · χ(0)

0,ω′ = −
(
N

(0)
0,ωN

(0)
0,ω′

)− 1
2

∫
Qs ·

(
d̂

(2)
ω,ω′Ψ

(0)
)
. (2.71)

Then, the first order zero-mode eigenvalue correction λ(1)
0,ω (2.64) is written as

λ
(1)
0,ω

J
δ(ω + ω′) = −

(
N

(0)
0,ω

)−1
∫
dτ1dτ2Qs(τ1, τ2)

(
d̂

(2)
ω,−ωΨ(0)

)
(τ1, τ2) . (2.72)

Now this equation immediately shows that

J

λ
(1)
0,ω

δ(ω + ω′) =
N

(0)
0,ω

2π

〈
ε(ω)ε(ω′)

〉
. (2.73)

Therefore, λ(1)
0 is the quadratic kernel of the Schwarzian action.

Hence, using this relationship, we relate the diagrammatic expression (2.57) to
the perturbation expression (2.59) as

G(−1)(τ1, τ2; τ3, τ4) = J

∫
dω

2π

χ
(0)
0,ω(τ1, τ2)χ

(0)
0,−ω(τ3, τ4)

λ
(1)
0,ω

. (2.74)

2.1.5 Diagrams for G(0)

Next we consider the subleading O(J0) contribution G(0). Besides the non-zero
mode contribution Dc, the contributions to G(0) given by four diagrams( in Fig 2)
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b1 =

b2 =

b3 =

b4 =

Figure 2.2: Diagrammatic expressions for the O(J0) contributions of the Green’s
function.

that arise from interactions between the Schwarzian mode and the bilocal field, and
also the Schwarzian redefinition of the field itself:

G(0) = b1 + b2 + b3 + b4 +Dc . (2.75)

The corresponding Feynman diagrams are shown in Figure 2.1 and they are given by

b1 ≡
〈∫

dω

2π
ε(ω)χ

(0)
0,ω(τ1, τ2)

∫
dω′

2π
ε(ω′)d̂ 1

q
,ω′(τ3, τ4)

∫
dτ5dτ6Dc(τ3, τ4; τ5, τ6)Qs(τ56)

〉
,

b2 ≡
〈∫

dω

2π
ε(ω)χ

(0)
0,ω(τ1, τ2)

∫
dτ5dτ6Qs(τ56)

∫
dω′

2π
ε(ω′)d̂ 1

q
,ω′(τ5, τ6)Dc(τ3, τ4; τ5, τ6)

〉
,

b3 ≡
1

2

〈∫
dωa
2π

ε(ωa)χ
(0)
0,ωa(τ1, τ2)

∫
dωb
2π

dωc
2π

ε(ωb)ε(ωc)

∫
dτ5dτ6dτ7dτ8Qs(τ56)

× d̂ (2)
1
q
,ωb,ωc

(τ5, τ6)Dc(τ5, τ6; τ7, τ8)Qs(τ78)

∫
dωd
2π

ε(ωd)χ
(0)
0,ωd

(τ3, τ4)

〉
, (2.76)

b4 ≡
〈∫

dωa
2π

ε(ωa)χ
(0)
0,ωa(τ1, τ2)

∫
dτ5dτ6Qs(τ56)

∫
dωb
2π

ε(ωb)d̂ 1
q
,ωb

(τ5, τ6)

〉
×
〈∫

dωc
2π

ε(ωc)χ
(0)
0,ωc(τ3, τ4)

∫
dτ7dτ8Qs(τ78)

∫
dωd
2π

ε(ωd)d̂ 1
q
,ωd

(τ7, τ8)

〉
Dc(τ5, τ6; τ7, τ8) ,

where we defined d̂h,ω is the Fourier transform of d̂h,τ defined in Eq.(2.13). In this
subsection, we always omit the normalization factor N (0)

0,ω introduced through (2.37)
in order to simplify the notation. This factor does not play any crucial role here
and the final expressions are independent of this factor. For b1 and b2, there are
also (τ1,2 ↔ τ3,4) contributions we did not write explicitly above. We note that the
integration by parts of this operator is given by a shadow transform:∫

dτ1dτ2A(τ1, τ2)d̂h,τ (τ1, τ2)B(τ1, τ2) = −
∫
dτ1dτ2B(τ1, τ2)d̂1−h,τ (τ1, τ2)A(τ1, τ2) .

(2.77)
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From the definition of this operator (2.13), also the action of this operator onto a
product can be written as

d̂hA+hB ,τ (τ1, τ2)
(
A(τ1, τ2)B(τ1, τ2)

)
= B(τ1, τ2)d̂hA,τ (τ1, τ2)A(τ1, τ2) + A(τ1, τ2)d̂hB ,τ (τ1, τ2)B(τ1, τ2) . (2.78)

Now we evaluate the diagrams. For b1, using (2.24) and (2.73), we find

b1 =

∫
dω

2π

dω′

2π
χ

(0)
0,ω(τ1, τ2)

〈
ε(ω)ε(ω′)

〉
d̂ 1
q
,ω′(τ3, τ4)Ψ(1)(τ3, τ4)

= J

∫
dω

2π

χ
(0)
0,ω(τ1, τ2)

λ
(1)
0,ω

(
d̂ 1
q
,−ωΨ(1)

)
(τ3, τ4) . (2.79)

For b2, first using (2.60) and (2.73) we have

b2 = J

∫
dω

2π

χ
(0)
0,ω(τ1, τ2)

λ
(1)
0,ω

∫
dω′

2π

∑
k 6=0

χ
(0)
k,−ω′(τ3, τ4)

λ
(0)
k,ω′

∫
dτ5dτ6Qs(τ56)

(
d̂ 1
q
,−ωχ

(0)
k,ω′

)
(τ5, τ6) .

(2.80)
Now following the same manipulation as in (2.69) - (2.71), but now for non-zero
mode, we find

1

J

∫
χ

(0)
0,ω ·K(1) ·χ(0)

k,ω′ +

∫
Qs ·
(
d̂ 1
q
,ωχ

(0)
k,ω′

)
= λ

(0)
k,ω′

∫
Ψ(1) ·d̂1− 1

q
,ω

(
Ψq−2

(0) χ
(0)
k,ω′

)
. (2.81)

For the RHS, we can move d̂ onto Ψ(1) by the shadow transform (2.77). Using this
relation, b2 is now written as

b2 = − J
∫
dω

2π

χ
(0)
0,ω(τ1, τ2)

λ
(1)
0,ω

(
d̂ 1
q
,−ωΨ(1)

)
(τ3, τ4)

−
∫
dω

2π

χ
(0)
0,ω(τ1, τ2)

λ
(1)
0,ω

∫
dω′

2π

∑
k 6=0

χ
(0)
k,−ω′(τ3, τ4)

λ
(0)
k,ω′

∫
χ

(0)
k,ω′ · K(1) · χ(0)

0,−ω , (2.82)

where for the first term, we used the completeness of χ̃(0) (2.42). The first term cancels
with b1, while the second term combines into the first order shift of the eigenfunctions
(2.65). Therefore, we find

b1 + b2 =

∫
dω

2π

χ
(0)
0,ω(τ1, τ2)χ

(1)
0,−ω(τ3, τ4)

λ
(1)
0,ω

+ (τ1,2 ↔ τ3,4) , (2.83)

where we implemented the explicit symmetrization of the external legs.
For b3, using (2.24) and (2.73), we find

b3 =
J2

2

∫
dω

2π

dω′

2π

χ
(0)
0,ω(τ1, τ2)χ

(0)
0,ω′(τ3, τ4)

λ
(1)
0,ω λ

(1)
0,ω′

S(2)
c

[
Ψ(1); d̂

(2)
h,−ω,−ω′Ψ

(1)
]
. (2.84)
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Now we consider the equation of motion of Ψ(1) (2.24) with the on-shell limit (s →
1/2):

∫
K(0)
f ·Ψ

(1)
f = 0, where we transformed Ψ→ Ψf . Taking variations respect to

f(τ) and f(τ ′), then multiplying another Ψ(1), we find∫
Ψ(1) · K(0) ·

(
d̂

(2)
1
q
,τ,τ ′

Ψ(1)
)

= − 1

J

∫
χ

(0)
0,τ · K(1) ·

(
d̂ 1
q
,τ ′Ψ

(1)
)
− (τ ↔ τ ′)

− 2

J2

∫
χ

(0)
0,τ · K(2) · χ(0)

0,τ ′ . (2.85)

Therefore, we can write b3 as

b3 = −
∫
dω

2π

dω′

2π

χ
(0)
0,ω(τ1, τ2)χ

(0)
0,ω′(τ3, τ4)

λ
(1)
0,ω λ

(1)
0,ω′

×
[
J

∫
χ

(0)
0,−ω · K(1) ·

(
d̂ 1
q
,−ω′Ψ

(1)
)

+

∫
χ

(0)
0,τ · K(2) · χ(0)

0,τ ′

]
. (2.86)

For b4, first using (2.59) and (2.73) we have

b4 = J2

∫
dω

2π

dω′

2π

χ
(0)
0,ω(τ1, τ2)χ

(0)
0,ω′(τ3, τ4)

λ
(1)
0,ω λ

(1)
0,ω′

∫
dτ5dτ6dτ7dτ8Qs(τ56)Qs(τ78)

×
∫
dω′′

2π

∑
k 6=0

1

λ
(0)
k,ω′′

(
d̂h,−ωχ

(0)
k,ω′′

)
(τ5, τ6)

(
d̂h,−ω′χ

(0)
k,−ω′′

)
(τ7, τ8) . (2.87)

Again using the relation (2.81), this is written as

b4 =

∫
dω

2π

dω′

2π

χ
(0)
0,ω(τ1, τ2)χ

(0)
0,ω′(τ3, τ4)

λ
(1)
0,ω λ

(1)
0,ω′

∫
dω′′

2π

∑
k 6=0

1

λ
(0)
k,ω′′

×
[
Jλ

(0)
k,ω′′

∫
Ψ(1) · d̂1− 1

q
,−ω

(
Ψq−2

(0) χ
(0)
k,ω′′

)
−
∫
χ

(0)
0,−ω · K(1) · χ(0)

k,ω′′

]

×
[
ω → ω′ , ω′′ → −ω′′

]
. (2.88)

For the first term, we use the shadow transform (2.77) to move d̂ onto Ψ(1). After
using the completeness of χ̃(0) (2.42), we obtain

b4 =

∫
dω

2π

dω′

2π

χ
(0)
0,ω(τ1, τ2)χ

(0)
0,ω′(τ3, τ4)

λ
(1)
0,ω λ

(1)
0,ω′

(2.89)

×
[
J

∫
χ

(0)
0,−ω · K(1) ·

(
d̂ 1
q
,−ω′Ψ

(1)
)

+

∫
dω′′

2π

∑
k 6=0

1

λ
(0)
k,ω′′

∣∣∣∣∫ χ
(0)
k · K(1) · χ(0)

0

∣∣∣∣2
]
.
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The first term precisely cancels with b3, while the second term combines with the other
term in b3 to give the second order eigenvalue shift. Therefore, we finally obtain

b3 + b4 = −
∫
dω

2π

λ
(2)
0,ω χ

(0)
0,ω(τ1, τ2)χ

(0)
0,−ω(τ3, τ4)

λ
(1)
0,ω λ

(1)
0,−ω

. (2.90)

The first and second order eigenvalue and eigenfunction corrections which will be
needed below are given by (2.64) - (2.66).
We now found that the diagrammatic expressions denoted by b1 - b4 shown in Figure
2.2 are given by the matrix elements (2.83) and (2.90). These are in agreement
with the standard perturbative evaluations summarized in Appendix A. In the next
section, we will explicitly evaluate these matrix elements in the large q SYK model
as an example.
The total O(J0) contribution to the correlation function is given by the following

G(0) = b1 + b2 + b3 + b4 +Dc , (2.91)

It is seen that the gauge-dependent contribution D′′ is precisely cancelled by the
diagrams b3 + b4 and part of b1 + b2. The result is therefore given by the non-
vanishing single pole propagator D′ and the remaining piece of the diagrams b1 + b2

which, as we have shown above involves the first order correction to the zero mode
eigenfunction. We evaluate this (and the other matrix elements) in the large q case
in the following section. In this limit (with higher massive modes decoupling) the
result reads:

〈η(t, z)η(t′, z′)〉 ' (zz′)
1
2

2

∫ ∞
−∞

dω eiω(t−t′)

[
J− 3

2
(|ω|z>)J 3

2
(|ω|z<) (2.92)

+
1

|ω|

(
1

2z
+

1

2z′
+ ∂z + ∂z′

)
J 3

2
(|ω|z)J 3

2
(|ω|z′)

]
.

This result consists of two terms: the first one due to Schwarzian interaction with
the bilocal and the second representing the contribution of the h = 2 matter. For
general q one would have the further contribution of massive mode propagators. We
also mention that a similar evaluation in [34] gave a different result. We are not sure
why the method of [34] disagrees at O(J0), however we have compared the above
result in the large q limit, where a finite J evaluation is possible.

2.2 Large q: Liouville Theory

The scheme described in the previous section ensures that once we have an ex-
pression for the first correction to the critical saddle point, Ψ(1), an unambiguous
perturbation theory (which is really a derivative expansion) can be developed by re-
placing the actual symmetry breaking source term by a new source term which would
give rise to this Ψ(1). This procedure is necessary since the symmetry breaking term
is singular and nonzero only at short distances, which implies that this cannot be
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used as a perturbation in a long distance expansion. This means one has to make an
ansatz for Ψ(1) given in (2.22).

In the large q limit, the SYK model simplifies considerably and at the leading
order the action is that of Liouville theory on the bilocal space. At large N this
model can be now solved exactly at all scales, i.e. for any finite J . Even though
the symmetry breaking term of the SYK model needs to be included to obtain this
large q limit, the resulting Liouville action acquires an emergent reparametrization
symmetry. The large N saddle point breaks this symmetry. However, this does
not lead to a zero mode, and a calculation of the exact bilocal function proceeds
without any obstruction. In particular, in this exact calculation there is no emergent
Schwarzian dynamics.

Nevertheless, we would like to understand the long distance derivative expansion
in this limit, and extract the dynamics of the soft mode, since the Schwarzian action
is the most direct link to a dual description in terms of JT gravity. In this section
we develop this expansion using the scheme of the previous section. However, now
we can simply use the leading correction to the critical saddle point to determine
the regularized source Qs. The result of the previous section then ensures that the
scheme using this source reproduces the large J expansion of the exact answer for
correlation functions.

2.2.1 Bilocal theory at large q

Let us begin with the collective action for SYK model (4.5)

Scol[Ψ] = − N
2

∫
dτ
[
∂τΨ(τ, τ ′)

]
τ ′→τ

+
N

2
Tr log Ψ− 2q−2J 2N

q2

∫
dτ1dτ2

[
Ψ(τ1, τ2)

]q
,

(2.93)
where we have defined

J 2 ≡ q

2q−1
J2 . (2.94)

This J is kept fixed as q →∞. At large q, we can do the following field redefinition

Ψ(τ1, τ2) =
sgn(τ12)

2

[
1 +

Φ(τ1, τ2)

q

]
. (2.95)

Using (2.95) in (2.93), and performing a 1/q expansion we get a field independent
O(1) term and the next contribution is O(1/q2), given by the Liouville action

SL[Φ] = − N

16q2

∫
dτ1dτ2

[
∂1

(
sgn(τ12)Φ(τ1, τ2)

)
∂2

(
sgn(τ21)Φ(τ2, τ1)

)
+ 4J 2 eΦ(τ1,τ2)

]
+ O(q−3) . (2.96)

The details of the derivation of (2.96) is given in Appendix B. Note that there is no
O(1/q) term in this expansion. The kinetic term of SYK - the first term of (2.93)-
provides a 1/q piece which cancels with a 1/q piece coming from the second term.
The inclusion of the symmetry breaking term is crucial.
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Nevertheless the action SL[Φ] has an emergent reparametrization symmetry for
τi → f(τi),

Φ(τ1, τ2) → Φ(f(τ1), f(τ2)) + log |f ′(τ1)f ′(τ2)| (2.97)

At finite temperature and finite J , we need to impose the physical requirement
that the expectation value of the bilocal field 〈Ψ(τ1, τ2)〉 should be equal to the free
fermion two point function 1

2
sgn(τ12) in the short distance limit. This means we need

to impose a boundary condition

Φ(τ, τ) = 0 . (2.98)

At zero temperature the expansion is really in J |τ12|: this means that we cannot
really access the point τ1 = τ2. However the zero temperature theory should be really
thought of as a limit of the finite temperature theory. Accordingly we should impose
the condition (2.98) even at zero temperature. In fact, as is well known, the Liouville
action on an infinite plane has a symmetry which has two copies of Virasoro, i.e.
τ1 and τ2 can be reparametrized by different functions. The restriction to the same
function as in (2.97) comes from this boundary condition (2.98).

The above derivation is in a 1/q expansion. The fact that the resulting action
is a standard two derivative action signifies that to leading order of this expansion
there is a single pole of the two point correlation function of the bilocal field. This
appears to be in conflict with the well known fact that even for q = ∞ there are an
infinite number of poles in the conformal limit, i.e. an infinite number of solutions of
g̃(q;h) = 1 where g̃(q;h) is defined in (2.50). In fact at large q the solutions to this
equation are given by h = 2 and the tower [32]

h = 2n+ 1 +
2

q

2n2 + n+ 1

2n2 + n− 1
+O(1/q2), n = 1, 2, . . . (2.99)

However the residues of these poles all vanish as q → ∞ except for h = 2 [25]. The
1/q expansion of the function g̃(q;h) is given by

g̃(q;h) =
h(h− 1)

2

[
1 +

1

q

(
2

h(h− 1)
+ 3

− 2

[
2γ + log 4 + ψ

(
1

2
− h

2

)
+ ψ

(
h

2

)])
+O(q−2)

]
,

(2.100)

where ψ(x) denotes the digamma function and γ is the Euler-Mascheroni constant.
Since ψ(−n) for integer n has a pole, the coefficient of the 1/q term is singular for
h = 2n + 1. This is the signature of the infinite number of solutions of the spectral
equation in a 1/q expansion. In the following, however, we will restrict our attention
to values of h close to 2. Therefore these other solutions will not be relevant for us.
Note, however, on-shell modes corresponding to these infinite tower of solutions do
have nontrivial higher point correlation functions [32].
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2.2.2 Quantum fluctuations at leading order

The equation of motion which follows from the action (2.96) is given by

∂1∂2

(
sgn(τ12)Φ(τ1, τ2)

)
= − 2J 2 sgn(τ12) eΦ(τ1,τ2) . (2.101)

We should really view the zero temperature theory as a limit of the finite temperature
theory. At finite temperature, periodicity in both τ1 and τ2, together with the bound-
ary condition (2.98) determines the solution uniquely [12] and its zero temperature
limit is given by

Φcl(τ12) = − 2 log
(
J |τ12|+ 1

)
, (2.102)

where τ12 ≡ τ1 − τ2. Let us now consider quantum fluctuations around the saddle
point solution (2.102) by defining

Φ(τ1, τ2) = Φcl(τ12) +

√
2

N
η(τ1, τ2) , (2.103)

where η denotes the quantum fluctuations. The fluctuation must also obey the bound-
ary condition

η(τ, τ) = 0 . (2.104)

Substituting (2.103) in (2.96), we get the quadratic action for quantum fluctuations
as

S(2)[η] = − 1

8q2

∫
dτ1dτ2 η(τ1, τ2)

[
∂1∂2 + 2J 2 eΦcl(τ12)

]
η(τ1, τ2) . (2.105)

Using the bilocal map

t ≡ τ1 + τ2

2
, z ≡ τ1 − τ2

2
(2.106)

we can write, using (2.102)

S(2)[η] =
1

16q2

∫ ∞
−∞

dt

∫ ∞
0

dz η(t, z)

[
−∂2

t + ∂2
z −

8J 2

(2J z + 1)2

]
η(t, z) (2.107)

The operator which appears in the square bracket is the expression for Kex which is
defined in (A.2).
In the following it will be convenient to define

z̃ ≡ z +
1

2J . (2.108)

It is convenient to define a conformally covariant operator K̃L (similar to(2.39))

K̃L = z̃

[
−∂2

t + ∂2
z −

2

z̃2

]
z̃ , (2.109)
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and redefine the field
η̃(t, z) ≡ η(t, z)

z̃
. (2.110)

The eigenvalue problem we need to solve is

K̃L χ̃
(ex)
ν (t, z) = λ(ex)

ν χ̃(ex)
ν (t, z) (2.111)

These eigenfunctions are given by

χ̃(ex)
ν,ω (t, z) =

eiωtz̃−
1
2√

2πN̂ν,ω

Ẑν(|ω|z̃) , (2.112)

where
Ẑν(|ω|z̃) = Jν(|ω|z̃) + ξω(ν)J−ν(|ω|z̃), (2.113)

ξω(ν) = −
Γ
(

1
4
− ν

2
− ω

2πJ

)
Γ
(

3
4

+ ν
2

+ ω
2πJ

)
Γ
(

1
4

+ ν
2
− ω

2πJ

)
Γ
(

3
4
− ν

2
+ ω

2πJ

) . (2.114)

and the eigenvalue λ(ex)
ν is given by

λ(ex)
ν ≡

[
ν2 − 9

4

]
(2.115)

The eigenfunctions satisfy the following orthonormality condition which follows from
self-adjointness of the operator K̃L in the interval [0,∞) with the boundary condition
χ̃ex
ν,ω(t, 0) = 0 ∫ ∞

−∞
dt

∫ ∞
0

dz χ̃(ex)
ν,ω (t, z)χ̃

(ex)
ν′,ω′(t, z) = δ(ν − ν ′)δ(ω + ω′) (2.116)

Here N̂ν,ω appears in the orthonormality relation∫ ∞
0

dz

z̃
Ẑν1(|ω|z̃)Ẑν2(|ω|z̃) = N̂ν1,ω δ(ν1 − ν2) (2.117)

We do not have an analytic expression for N̂ν,ω, but we can determine it perturbatively
in ω/J to get for the discrete modes

N̂ν =
1

2ν
+ O

( |ω|
2J

)3

(2.118)

For the continuous modes, we will not need to know the ω/J corrections since there
is no enhancement. So, we use

N̂ν =
2 sinπν

ν
+ O

( |ω|
2J

)
(2.119)
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We now perform a mode expansion of the fluctuation field in terms of these exact
eigenfunctions as follows

η(t, z) = z̃

∫ ∞
−∞

dω

∫
dν Φ̃ν,ω χ̃

(ex)
ν,ω (t, z)

=

∫ ∞
−∞

dω

∫
dν Φ̃ν,ω χ

(ex)
ν,ω (t, z)

(2.120)

The operator Kex is the zero temperature version of the operator considered in [12],
where the finite temperature exact eigenfunctions were determined. So our exact
eigenfunctions should arise as the zero temperature limit of those eigenfunctions. We
discuss details of how to take this zero temperature limit and the derivation of various
properties of the exact eigenfunctions in Appendix C.

The boundary condition (2.104), i.e. η(t, z = 0) = 0 determines the allowed values
ν. These are of the form

ν = ir +O
(
ω

J

)
, r ∈ Real

ν = 2n+
3

2
+ a1

(
ω

J

)
+ a2

(
ω

J

)2

+ . . . , n = 0, 1, 2, . . .

(2.121)

In the following we will not need the correction to the continuous series. The co-
efficients a1 and a2 for the n = 0 case are given by 1/π and zero respectively (see
Appendix C for details). Using (2.117)− (2.120) in (2.107), we get

S(2) =
1

16q2

∫ ∞
−∞

dω

2π

∫
dν Φ̃ν,ωλ

(ex)
ν Φ̃ν,−ω (2.122)

Note that the eigenvalue λ(ex)
ν arises from the large q limit of the eigenvalue of the

finite q bilocal kernel (see (2.47), (2.50)), with h = ν + 1/2

g̃(ν,∞) =
1

2

(
ν2 − 1

4

)
. (2.123)

From (2.122), we can read off the momentum space bilocal correlator

〈Φ̃ν1,ω1Φ̃ν2,ω2〉 '
8q2

λ
(ex)
ν1

δ(ν1 − ν2)δ(ω1 + ω2) (2.124)

Since the solution (2.102) breaks the symmetry (2.97), one might expect that there
is a zero mode given by its variation δΦcl. This would be of the form

η(0)(t, z) ∼ z̃1/2

∫
dω eiωtε(ω)

[
cos(|ω|/J )J 3

2
(|ω|z̃) + sin(|ω|/J )J− 3

2
(|ω|z̃)

]
(2.125)

As expected this solves the equation of motion which follows from (2.107), but does
not satisfy the boundary condition (2.104) at any finite J . Indeed, (2.121) shows that
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there is no eigenfunction with ν = 3
2
. Since there is no zero mode, a calculation of

the bilocal two point function proceeds in a straightforward fashion.
Using (2.120) and (2.124), we can write down the exact bilocal two point correlator
in position space as

〈η(t, z)η(t′, z′)〉 = 8q2

∫ ∞
−∞

dω

2π

∫
dν

χ
(ex)
ν,ω (t, z)χ

(ex)
ν,−ω(t′, z′)

λ
(ex)
ν

= 4q2(z̃z̃′)
1
2

∫ ∞
−∞

dω

2π
eiω(t−t′)

∫
dν

N̂ν

Ẑ∗ν (|ω|z̃)Ẑν(|ω|z̃′)
g̃(ν,∞)− 1

(2.126)

2.2.3 Perturbative expansion

In this subsection, we calculate the various ingredients needed to obtain a pertur-
bative expansion of the bilocal propagator, which are the matrix elements given by
(2.64)− (2.66) for Liouville theory. The full (or “exact") kernel K̃L can be expanded
in powers of (|ω|J −1) as follows. This is the analog of the expansion (A.7).

K̃L = K̃(0) +
1

J K̃
(1) +

1

J 2
K̃(2) + . . . (2.127)

where
K̃(0) = z2(−∂2

t + ∂2
z ) + 2z∂z − 2 (2.128)

K̃(1) = z(−∂2
t + ∂2

z ) + ∂z (2.129)

K̃(2) =
−∂2

t + ∂2
z

4
(2.130)

The kernel K̃(0) now has a zero mode,

λ
(0)
0 = 0 (2.131)

χ̃
(0)
0,ω(t, z) =

√
3

2π
z−

1
2 eiωtJ 3

2
(|ω|z) (2.132)

The eigenvalue and eigenfunction for this mode will be corrected by the perturbations.
The corresponding exact eigenvalue is λ0,ω which has the expansion

λ0,ω = λ
(0)
0 +

1

J λ
(1)
0 +

(
1

J

)2

λ
(2)
0 + · · · (2.133)

analogous to (A.10). The corrections to the eigenvalues can be read off from (2.121)
and (2.115),

λ
(1)
0 =

3|ω|
π

. (2.134)
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Similarly, for the first order correction to the eigenfunction, we get

χ̃
(1)
0,ω(t, z) =

√
3

2π

|ω|
2J z−

1
2 eiωt

(
1

|ω| ∂z −
1

2|ω|z +
2

3π
+

2

π
∂ν

)
Jν(|ω|z)

∣∣∣∣
ν= 3

2

, (2.135)

and
λ

(2)
0 =

ω2

π2
. (2.136)

While we have written these down using the expansion of the known exact eigenvalue
and eigenfunction, one can of course calculate these directly in perturbation theory.
The first order correction follows easily from (2.129) and (2.132) in (2.64). For the first
order correction to the eigenfunction, we were unable to perform the sum analytically
in (2.66). The expression (2.135) can be used to verify that standard perturbation
theory indeed leads to the correct second order correction to the eigenvalue. The
details of this calculation have been included in Appendix F. These calculations are
in agreement with the results of [12].

2.2.4 Evaluation of bilocal two point function

We now have all the necessary ingredients to evaluate the bilocal two point func-
tion (2.126) perturbatively in

(
|ω|J −1

)
using the formalism of Section 2.1 and Ap-

pendix A. First, we note that the values of ν to be integrated over are given by
(2.121). The imaginary and discrete values give rise to a continuous and discrete
contribution respectively. The discrete sum receives an enhancement from the zero
mode so it needs to be treated separately. We separate it from the non zero modes
in order to write

〈η(t, z)η(t′, z′)〉 = G(−1)(t, z; t′, z′) + G(0)(t, z; t′, z′) , (2.137)

where G(−1) and G(0) are given by equations (2.59) and (2.60) respectively. The
perturbative corrections to the zero mode eigenvalue and eigenfunction can be sub-
stituted in these expressions to write down the bilocal propagator explicitly. Using
(2.134) and (2.132) in (2.59), we get the enhanced propagator

G(−1)(t, z; t′, z′) = 8q2J
∫ ∞
−∞

dω
χ

(0)
0,ω(t, z)χ

(0)
0,−ω(t′, z′)

λ
(1)
0

= 4q2J (zz′)
1
2

∫ ∞
−∞

dω

|ω| e
iω(t−t′)J 3

2
(|ω|z)J 3

2
(|ω|z′)

(2.138)

Next, let us consider the O(1) contribution G(0). It receives a contribution from Dc,
which for the Liouville case is given by

Dc(t, z; t′, z′) = 8q2

∫ ∞
−∞

dω

[
∞∑
n=1

χ
(0)
νn,ω(t, z)χ

(0)
νn,ω(t′, z′)

λ
(0)
νn

+

∫
dν

χ
(0)∗
ν,ω (t, z)χ

(0)
ν,ω(t′, z′)

λ
(0)
ν

]
.

(2.139)
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The details of evaluation of Dc is given in Appendix D. The result is

Dc(t, z; t′, z′) = 4q2(zz′)
1
2

∫ ∞
−∞

dω eiω(t−t′)

[
J− 3

2
(|ω|z>)J 3

2
(|ω|z<)

2

− 1

π

(
d

dν
+

1

3

)
Jν(|ω|z)Jν(|ω|z′)

∣∣∣∣
ν= 3

2

]
. (2.140)

We identify the first term in (2.140) with the non-vanishing single pole term D′
and the second term with the gauge-dependent piece D′′ in (2.51) respectively. The
remaining terms in (2.60) can also be evaluated using (2.131)− (2.135) to get

8q2

∫ ∞
−∞

dω

χ(0)
0,ω(t, z)χ

(1)
0,−ω(t′, z′)

λ
(1)
0

+
χ

(1)
0,ω(t, z)χ

(0)
0,−ω(t′, z′)

λ
(1)
0

− λ
(2)
0 χ

(0)
0,ω(t, z)χ

(0)
0,−ω(t′, z′)

(λ
(1)
0 )2


=4q2(zz′)

1
2

∫
dω eiω(t−t′)

[
1

π

(
d

dν
+

1

3

)
+

1

2|ω|

(
∂z + ∂z′ +

1

2z
+

1

2z′

)]

× Jν(|ω|z)Jν(|ω|z′)
∣∣∣∣
ν= 3

2

. (2.141)

From (2.140) and (2.141), we see that the gauge-dependent piece D′′ precisely cancels.
This is an explicit illustration of the claim made in Section 2.1 that the final answer
for the bilocal propagator receives contribution only from the simple pole in Dc (which
corresponds to h = 2 matter) and from the b1 +b2 diagrams. Collecting all the terms,
we get the bilocal propagator for Liouville theory up to O(1) to be

〈η(t, z)η(t′, z′)〉 = 2q2(zz′)
1
2

∫ ∞
−∞

dω eiω(t−t′)

[
2J
|ω| J 3

2
(|ω|z)J 3

2
(|ω|z′)

+ J− 3
2
(|ω|z>)J 3

2
(|ω|z<)

+
1

|ω|

(
∂z + ∂z′ +

1

2z
+

1

2z′

)
J 3

2
(|ω|z)J 3

2
(|ω|z′)

]
. (2.142)

2.2.5 Comparison with zero temperature limit of four-point function

We now show that the zero temperature limit of the finite temperature four point
function calculated in [12] agrees with (2.142). The SYK four point function at finite
temperature up to O(1) is given by

F(x, y;x′, y′) =
[
βJ − 2

[
−1 +

(
y − π

2

)
∂y + (x− π)∂x + (x′ − π)∂x′

] ]
×
∑
|n|≥2

e−in(y−y′) fn(x)fn(x′)

π2n2(n2 − 1)
(2.143)
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It should be noted that the explicit calculation of the O(1) contribution in [12] is
obtained by writing the propagator in terms of eigenfunctions of

−∂2
x̃ +

1

2 sin2 x̃
2

rather than

−sin2 x̃
2

v2
∂2
y + 4 sin2 x̃

2
∂2
x̃ +

1

4
which is the finite temperature version of the Bessel operator we consider. They, of
course, lead to the same result since at finite temperature the periodicity conditions
ensure a unique Green’s function.
Let us define

y =
2πt

β
x =

4πz

β
ω =

2πn

β
(2.144)

In the zero temperature limit the h = 2 eigenfunctions become Bessel functions

fn(x) =
sin nx

2

tan x
2

− n cos
nx

2

=
βω

2π

√
πωz

2
J 3

2
(ωz)

(2.145)

Using (2.145) in (2.143) and replacing the sum over the discrete Fourier index n by
a continuous integral over ω, we get

F(t, z; t′, z′) =
1

2
(zz′)

1
2

∫ ∞
−∞

dω e−iω(t−t′)

[
2J
|ω| J 3

2
(|ω|z)J 3

2
(|ω|z′)

+
1

|ω|

(
∂z + ∂z′ +

1

2z
+

1

2z′

)
J 3

2
(|ω|z)J 3

2
(|ω|z′)

]

− (zz′)
1
2

∫ ∞
0

dω sinω(t− t′) J 3
2
(ωz)J 3

2
(ωz′) . (2.146)

Now, we use the following integrals expressed in terms of the quantity ξ ≡ −(t−t′)2+z2+z′2

2zz′

(zz′)
1
2

∫ ∞
−∞

dω e−iω(t−t′)J− 3
2
(|ω|z)J 3

2
(|ω|z′) =

{
0, for |ξ| > 1

P1(−ξ), for |ξ| < 1

and

(zz′)
1
2

∫ ∞
0

dω sinω(t− t′) J 3
2
(ωz)J 3

2
(ωz′) =

{
0, for |ξ| > 1
1
2
P1(ξ), for |ξ| < 1

The details of the derivation of these integrals are given in Appendix E. Using these
integrals, we see from (2.142) and (2.146),

〈η(t, z)η(t′, z′)〉 = 4q2F(t, z; t′, z′) (2.147)

The proportionality factor of 4q2 arises as a consequence of the field redefinition in
(2.95).
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2.2.6 Expansion around the critical saddle point

In the J |τ12| � 1 limit (2.102) becomes

Φ(0) = −2 log(J |τ12|) (2.148)

We will call this the “critical saddle point". This is in fact what follows from the large
q limit of Ψ(0) in (2.9) and plays its role. There is, however, an important difference.
For finite q the critical solution J |τ12| is not a solution of the full theory because of
the term which breaks the reparametrization symmetry. In this case (2.148) is also
a solution of the classical equations of motion. Φ(0), however, does not satisfy the
boundary condition (2.98). In fact, in an expansion around the critical limit, there
is no reason to impose this boundary condition. Keeping this point in mind we will
call Φcl the “exact" solution and develop a perturbative expansion around the critical
solution following the same steps as in the finite q SYK model.

An expansion around this solution would in fact lead to a normalizable zero mode
given by (2.132) which needs to be treated properly in precisely the same way as the
finite q SYK model. In order to deal with this, we introduce a source term given by

N

8q2J

∫
dτ1dτ2 Q

L
s (τ1, τ2)Φ(τ1, τ2) (2.149)

where the source is again a regularized version of (2.24). The fact that this source
term goes as J −1 is reminiscent of the conformal breaking term in finite q SYK. It
should be noted that if we add other source terms which are suppressed by higher
powers of J , that would be inconsistent with the finite q picture. In this case, the
kernel K(0)

L can be read off from the first line of (2.107) as

K(0)
L (t, z) = −∂2

t + ∂2
z −

2

z2
(2.150)

The source is then related to the O(1/J ) correction to the classical solution by

QL
s (t, z) = K(0)

L Φ(1)
s (t, z) (2.151)

The O(1/J ) correction to the classical solution is given by

Φcl − Φ0 ≡ Φ(1)(z) = −1

z
(2.152)

We have stripped off the power of J in the expression for Ψ(1) in order to maintain
consistency in notation with Section 2.1. Also, since the domain of integration of the
z coordinate is always positive, we drop the absolute sign. As expected, the source
in (2.24) with this non-regularized Φ(1)(z) vanishes. Following the treatment in finite
q SYK, we therefore introduce a regulator s to define

Φ(1)
s (z) ≡ − lim

s→ 1
2

1

z2s
(2.153)
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This results in a regularized version of the source QL
s given by

QL
s (τ1, τ2) ' − lim

s→ 1
2

(
s− 1

2

)
s+ 1

|τ12|2s+2
(2.154)

Since the exact classical solution is now known, the coefficient of the resulting Schwarzian
action for the soft mode can be now determined unambiguously. The Schwarzian ac-
tion is given by

SL
Sch[f ] = − N

8q2J lim
s→ 1

2

∫
dτ1dτ2 Q

L
s (τ1, τ2)Φf

0(τ1, τ2) (2.155)

where Φf
0 corresponds to the transformed classical solution

Φf
0(τ1, τ2) = log

[
f ′(τ1)f ′(τ2)

|f(τ1)− f(τ2)|2
]

(2.156)

To determine the coefficient one could proceed by writing f(τ) = τ + ε(τ), evaluate
(2.155) in an expansion in ε(t), perform the limit s→ 1/2 and resum to obtain the full
expression. Since we know that the answer should be proportional to the Schwarzian
it is adequate to expand to second order in ε(t). We have performed this calculation,
but will omit the details here.

Alternatively we can calculate the propagator of the Fourier transform of ε(τ),
which we call ε(ω) given in (2.73) which we reproduce below

J
λ

(1)
0,ω

δ(ω + ω′) =
N

(0)
0,ω

2π
〈ε(ω)ε(ω′)〉 (2.157)

The main ingredient is contained in the set of conformal Ward identities which are
described for the arbitrary q model in equations (2.69)-(2.71). These equations can
be explicitly verified in our case with the expressions for K(0)

L given in (2.150) and
K(1)

L given by

K(1)
L = − 2

z2
Φ(1) (2.158)

For our case λ(1)
0 is given in (2.134). To determine the normalization N (0)

0,ω, we need

χzero,ω(τ1, τ2) =

∫
dτ eiωτ

δΦ(0)
f (τ)

δf(τ ′)


f(τ)=τ

(2.159)

It is straightforward to see that

χzero,ω(τ1, τ2) = −
√

2π iω
3
2 z

1
2J 3

2
(|ω|z) (2.160)

Comparing with (2.132), we get (from the definition)

N
(0)
0,ω =

4π2|ω|3
3

(2.161)
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To apply (2.73) we need to note that while the source term for finite q was defined
by (2.24) while in the Liouville theory we defined the source term by (2.149). Thus
in Liouville theory we have

〈ε(ω)ε(ω′)〉 =
8q2J
N

2πδ(ω + ω′)

λ
(1)
0,ωN

(0)
0,ω

=
4q2J
Nω4

(2.162)

where we have used (2.161) and (2.134). This propagator can be easily seen to follow
from the Schwarzian action

SL
Sch[f ] = − N

4q2J

∫
dτ {f(τ), τ} (2.163)

The coefficient is in precise agreement with the large q limit of the action given in
[12]. The calculation of the bilocal two point function now follows the diagrammatic
technique of Section 2.1.

2.3 Conclusion

In this chapter, we concentrated on the development of a complete understanding
of systematic near conformal perturbation expansion in SYK type models. It develops
further the initial work of [29, 30] where the soft mode with Schwarzian dynamics is
extracted from the bilocal field in a systematic fashion and arises as an emergent de-
gree of freedom. This mode interacts with the remaining “matter" degrees of freedom
which include a component dual to an operator with conformal dimension h ∼ 2, in a
manner which is completely determined. The nontriviality of exhibiting this interact-
ing representation lies in the fact that, as we explain, the symmetry breaking effects
responsible both for the Schwarzian and Schwarzian-matter interactions comes from
a very subtle off-shell regularization which produces non-zero effects when removed in
the limiting procedure. This leaves a series of interacting vertices that are determined
explicitly. Representing these corrections in a diagrammatic picture provides a com-
plete and transparent scheme. This allows for a concrete perturbation calculation of
corrections to leading (conformal) correlation functions and other physical quantities.
We do this for the bilocal two point functions by considering the evaluation of the
first correction (in a low energy expansion) to the leading (enhanced) answer. The
evaluation of these is facilitated by a series of conformal identities.

We applied this formalism to the large q limit, where the model is reduced to the
Liouville theory which is exactly solvable. In this case, expansion around the correct
saddle-point does not result in a zero mode and the correlators can be calculated
exactly. We can nevertheless expand around a saddle point appropriate for a long
distance expansion and apply the perturbation scheme described above. In addition,
it is instructive to see the workings of the method in this example of a prototype
conformal field theory. We note that it is of interest to consider the complex SYK
model already, since issues related to applicability of perturbation theory have been
observed recently [77]. Indeed we believe that the applicability of the scheme goes
beyond the SYK model, applying generally to perturbations in conformal field theory
and more generally quantum field theory.
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Returning to the case of SYK theories , the present systematic reformulation of the
model as a bilocal matter coupled Schwarzian theory might offer the needed insight
into the outstanding question of its gravity dual. The Liouville theory in particular
provides the simplest limiting case. In this limit the higher h modes decouple and we
find an interacting picture of the soft mode with bilocal h = 2 matter. We emphasize
this fact since most studies of the gravity dual focus on the dilaton gravity sector of
the dual theory. In [58–61], the enhanced part of the bilocal two point function has
been reproduced in a dual theory which contains bulk fields which can be thought
to be dual to the SYK fermions. Our preliminary results indicate that some parts of
the subleading correction may be obtainable by considering the effect of a coupling
to the nontrivial dilaton background [78].

However, additional ingredients, related to the contribution of h = 2 bilocal mat-
ter, are probably necessary to understand the low energy sector completely. We hope
to return to this problem in future studies.

Copyright © Animik Ghosh, 2020.
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Chapter 3
A Universal Schwarzian Sector in two dimensional Conformal Field

Theories

Our understanding of near-extremal black holes has been recently revolutionized
by the improved understanding of a universal dynamics which emerges at low tem-
perature [27, 58–61, 79]. It has long been known that black holes near extremality
develop a long AdS2 throat near the event horizon, which behaves rather differently
from the analogous higher-dimensional AdS regions near black branes [15, 80]. The
underlying reason for this is that the AdS2 region does not completely decouple from
the physics far from the black hole in the low-temperature limit. Instead, there is
a single mode which becomes increasingly important at low temperature, specifying
the relationship between the time in AdS2 and the time far from the black hole. This
mode is governed by the Schwarzian theory (described gravitationally inside the AdS2

throat by Jackiw-Teitelboim gravity [56, 57]), with action

ISchw = −C
∫ β

0

dtE

{
tan
(
π
β
f(tE)

)
, tE

}
, (3.1)

where tE is the asymptotic (Euclidean) time and f(tE) a time measured in the AdS2

region, with {·, ·} denoting the Schwarzian derivative. The coefficient C, with dimen-
sions of time, marks the inverse temperature β at which the Schwarzian dynamics
becomes strongly coupled, with quantum fluctuations of f unsuppressed. This is
a theory of a pseudo-Goldstone mode, determined by the nature of the symmetry
breaking, which therefore appears in more general circumstances, not least the SYK
model [12, 13, 28–30, 34].

In this chapter, we show that, in extremely generic circumstances, two-dimensional
conformal field theories (CFTs) contain a sector described by the Schwarzian theory.
This sector has a gravitational description in terms of a near-horizon AdS2 region of
near-extremal rotating BTZ black holes, but exists even in theories without a local
weakly coupled AdS3 dual!

Since our results are very general, we will not make use of details of a particular
theory to derive the Schwarzian. The discussion in this chapter is orthogonal to
previous constructions of SYK-like models in two dimensions [81–83]. Rather, we
will use conformal bootstrap methods to study observables in states that enhance
the effects of the Schwarzian sector, with very large angular momentum and low
temperature. More specifically, we explicitly construct correlation functions in an
appropriate limit of the grand canonical ensemble for angular momentum, requiring
only a theory with a large central charge c � 1 and no conserved currents besides
those of local conformal symmetry. With these general assumptions, we will show
that the density of states and all correlators are dictated by the Schwarzian theory,
with parametrically small corrections. To achieve this, we rigorously demonstrate
that the correlators are dominated by a Virasoro identity block in an appropriate
channel, before showing that the block reduces to the Schwarzian correlator in the

40



appropriate limit. The methods for the latter calculation are much the same as used
in [84] to compute correlation functions of the Schwarzian at strong coupling from
Liouville theory, though the interpretation in this chapter is rather different. This
result is a striking example of the universality of gravity as a description of chaotic
quantum systems.

This chapter is organized as follows. For the remainder of the introduction, we
will summarise our main results. In section 3.1, we discuss the partition function and
spectrum of BTZ black holes and of CFTs in the limit of interest, which illustrates
the main ideas while avoiding too many technical details. The main results appear
in section 3.2, where we show how correlation functions of CFTs reduce to those of
the Schwarzian. Finally, in section 3.3 we study near-extremal rotating BTZ black
holes, to obtain a detailed gravitational interpretation of our CFT calculations.

3.0.1 A near-extremal limit of CFT2

For our main results, we study correlation functions of two-dimensional, compact
unitary CFTs with large central charge c � 1 in the grand canonical ensemble.
Instead of using a temperature and chemical potential for angular momentum J ,
this ensemble can be described by independent temperatures TL, TR for left- and
right-moving conformal dimensions h, h̄. We study a regime which we call the near-
extremal limit, where TL is of order c−1, and TR is taken to be very large. This ensures
that the physics is dominated by states with very large angular momentum J � c
(controlled by the large TR) and low temperature T of order c−1 (controlled by the
small TL). These states are related to CFT operators with a very large right-moving
scaling dimension h̄ ∼ J , and left-moving dimension close to c−1

24
, with h − c−1

24
of

order c−1.
The physics in this regime is exemplified by the simplest correlator, namely a

two-point function of light operators in the grand canonical ensemble. In our near-
extremal limit, we find that the real-time two-point function (using light-cone coor-
dinates z = ϕ− t and z̄ = ϕ+ t) is given by

G(CFT)(z, z̄; βL, βR) ∼
(
c

6

)−2h [
1

πTR
sinh (πTRz̄)

]−2h̄

G
(Schw)
h (−z), (3.2)

where G(Schw)
h (−z) is the exact (that is, strong coupling) real-time Schwarzian two

point function at a temperature proportional to TL. This is valid for large time
separations t of order the inverse temperature T−1

L (and for z̄ of order one, but
not too large, as described in section (3.2.1)). Note that the Schwarzian appears
most naturally in real time, not Euclidean time. There is another regime where the
Euclidean time Schwarzian appears, related by a modular transformation. Taking
very low or zero right-moving temperature, and left-moving temperature of order c,
the left-moving block gives a Schwarzian evaluated at Euclidean time z.

To show this, we first use the limit of large TR and modular invariance: in a
modular S-dual channel, this becomes very small right-moving temperature, which
effectively projects the sum over intermediate states onto the smallest value of h̄,
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corresponding to the vacuum state and its left-moving descendants. This is where
the restrictions on our theory are important, namely that it is unitary (so all operators
have h, h̄ ≥ 0), compact (having a unique sl(2)-invariant vacuum state, with h = h̄ =
0), and has a twist gap (so no primary states besides the vacuum have h̄ = 0). With
mild kinematic restrictions on z̄, we conclude that the correlation function is given
in this limit by a single conformal block with the vacuum state exchanged. This
explains why the result (3.2) has factorised dependence on left- and right-moving
variables z, TL and z̄, TR.

Next, we show that the left-moving Virasoro vacuum block in the appropriate
limit becomes the Schwarzian correlation function, with a calculation closely related
to [84]. At low left-moving temperature, the conformal blocks are simplest in a
‘direct’ channel, where the OPE coefficients can be interpreted as matrix elements of
intermediate states in the thermal trace, but we must compute the vacuum block in
a dual channel related by the modular transformation. To relate these two channels,
we use the sequence of modular S and fusion transformations pictured in figure 3.2,
and the associated kernels can then be interpreted in terms of the density of states
and matrix elements of light operators in the Schwarzian theory. These Schwarzian
data in fact follow from a particular limit of the universal density of states and OPE
coefficients recently discussed in [85].

These considerations extend to higher-point functions and general time-orderings,
discussed in section 3.2.5, giving formulas analogous to (3.2) in appropriate ranges
of kinematics. In particular, correlation functions of partial waves are always given
by the Schwarzian. This applies to out-of-time order four-point functions (OTOC),
implying that the Lyapunov exponent in this limit saturates the chaos bound of [7].
This is the first calculation of OTOC in 2d CFT in a fully controlled approximation,
thanks to the large TR limit.

In this work, we assume the absence of any conserved current beyond Virasoro.
With knowledge of the appropriate representation theoretic objects (the modular S-
matrix and fusion kernel), our methods could be generalized to extended symmetry
algebras (including supersymmetric CFTs). This would enhance the Schwarzian the-
ory by an extra mode associated to the additional symmetry. For the case of an extra
U(1), this is analogous to the IR theory that appears in complex SYK [31]. One
could also apply the same methods to study near-extremal states with a large charge
associated to this extra symmetry. We leave such generalizations for future work.

3.0.2 Near-extremal BTZ black holes

In AdS3/CFT2, our results have a dual interpretation in terms of large, near-
extremal rotating BTZ black holes. In section 3.3 we will perform the bulk analysis
for Einstein gravity coupled to light matter fields. As stressed in the previous section,
our 2d CFT results are valid even beyond holographic theories. The underlying
reason is that, while the Schwarzian mode is strongly interacting, the other bulk
interactions are suppressed by an additional scale, namely the very large horizon
radius. Therefore, even an effective bulk dual with a cutoff on the AdS scale or larger
(for example, from strings with AdS scale tension) is useful for describing physics
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at these very long distances. This is very much in the spirit of previous results
recovering AdS long-distance physics from generic CFTs [86–89], but rather more
striking because a strongly interacting mode remains.

We discuss the details of this gravitational dual in section 3.3. We study this
from the perspective of a Kaluza-Klein (KK) reduction of three dimensional gravity
(initially pure gravity, later adding matter), which leads to an Einstein-Maxwell-
dilaton theory. One may initially wonder whether the KK gauge field has a significant
effect on the physics; we deal with it by working with boundary conditions describing
an ensemble with fixed angular momentum (the charge dual to the KK gauge field),
in which case the gauge field can (in the absence of charged matter) be integrated
out to give a local effective action, adding a term to the dilaton potential. These
are rather unconventional boundary conditions from the three-dimensional point of
view, since they allow a parameter of the boundary metric to fluctuate, but the usual
boundary conditions are recovered simply by changing back to the ensemble with
chemical potential for angular momentum. Charged matter (that is, with nonzero
angular momentum, which includes KK modes) does not significantly affect this if
the angular momentum carried is small compared to that of the black hole.

The resulting theory of dilaton gravity (first written down by [90]) is in the class
of Almheiri-Polchinski models [58], and admits a nAdS2 JT gravity regime, which de-
scribes the near-horizon region of rotating BTZ black holes. At low temperature, this
gravitational physics becomes strongly coupled, and is described by the Schwarzian
theory [60]. The near-horizon region governed by JT gravity has a parametrically
large overlap with a region far from the horizon where gravity is classical, so the
physics is well-described by propagation on a fixed background. Matching these two
regimes allows us to recover correlation functions of the dual CFT from the asymp-
totic boundary of AdS3.

Importantly, interactions (including those with KK modes) are suppressed in the
limit of a large black hole, even for matter which is originally strongly interacting in
AdS3. This is the reason why the reduction to two-dimensional gravitational physics
is useful: the KK modes become decoupled, independent free fields. Note that this is
different from the usual case of small transverse dimensions in KK reductions, where
the higher KK modes can be ignored because they become very massive.

We work in a second order metric formalism due to the presence of matter, in
analogy to the higher dimensional cases studied recently in [66, 91–93]. For pure three
dimensional Einstein gravity, there is a more direct route to the Schwarzian, making
use of the Chern-Simons formulation [94], which describes perturbations around a
given geometry. In this case, it is possible to completely reduce the bulk theory
to a set of left- and right-moving boundary modes [95]. The dynamics of these two
modes is described by left- and right-moving copies of the Alekseev-Shatashvili action
[96]. In the near extremal limit, the Alekseev-Shatashvili theory is known to reduce
to the Schwarzian [84, 95, 97]. This boundary theory was previously proposed as
a Goldstone mode of spontaneously broken conformal invariance for any chaotic 2d
CFT [98]. From this perspective, the Schwarzian emerges from a reparameterization
mode of CFT2, with dynamics governed by the conformal anomaly [99].

While our results bear some resemblance to previous considerations of near-
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extremal BTZ such as [100, 101], there are crucial differences. In particular, the small
but nonzero temperature is necessary; at very low temperatures, the Schwarzian be-
comes increasingly strongly coupled, and at exponentially low temperatures, when
there is no longer a parametrically large number of available states, nonperturbative
corrections from different topologies become uncontrolled [102].

3.1 Invitation: the near-extremal spectrum of BTZ and CFT2

We begin by studying the partition function of near-extremal rotating BTZ black
holes, and compare to the Schwarzian theory. We then obtain the corresponding
spectrum directly from a very general class of CFTs, using an argument which we will
later generalize to Schwarzian correlation functions. This simple example illustrates
the main ideas used for the more technical calculations in section 3.2.

3.1.1 The BTZ partition function

Our starting point is the BTZ black hole in three-dimensional pure Einstein grav-
ity. In Euclidean signature, this is a solution whose asymptotic boundary is a torus
parameterized by angle ϕ and Euclidean time tE, where we periodically identify tE
with inverse temperature β = T−1 and twist angle θ:

ds2 = dt2E + dϕ2, (tE, ϕ) ∼ (tE, ϕ+ 2π) ∼ (tE + β, ϕ+ θ) (3.3)

We have chosen units such that the spatial circle has unit radius, and a corresponding
dimensionless time tE, so β and energy will also be dimensionless. The Euclidean
BTZ black hole is a saddle-point contribution to the dual CFT partition function on
this torus; this is a grand canonical partition function, where θ plays the role of an
imaginary chemical potential for the angular momentum J :

Z(β, θ) = Tr
[
e2πiτ(L0− c

24)−2πiτ̄(L̄0− c
24)
]

= Tr
[
e−βH−iθJ

] (3.4)

τ =
θ + iβ

2π
, τ̄ =

θ − iβ
2π

(3.5)

H = L0 + L̄0 − c
12
, J = L̄0 − L0 (3.6)

The 2π periodicity of θ is equivalent to integer quantization of J .
Now, the Euclidean BTZ black hole is a solid torus, where the Euclidean time

circle is contractible in the bulk. The one-loop partition function of this geometry
[103] (which is in fact exact to all loops, up to possible renormalisation of c, see [104]
and more recently [95]) can be written as

ZBTZ = χ0(−1/τ)χ0(1/τ̄) (3.7)

where χ is the Virasoro character of the vacuum representation,

χ0(τ) =
(1− q)q− c−1

24

η(τ)
, q = e2πiτ . (3.8)
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To explain this result, we first note that the modular transform τ 7→ −1/τ swaps
space and Euclidean time directions, after which we can interpret the BTZ solution
as empty AdS3, periodically identified with a twist. After this reinterpretation, the
partition function counts perturbative excitations of AdS3, which are the boundary
gravitons, with dual CFT interpretation as the Virasoro descendants of the vacuum
state. The central charge c appears as the Casimir energy of the vacuum, which (at
tree level) takes the Brown-Henneaux [105] value c = 3`3

2GN
, where `3 is the AdS length

(the subscript distinguishing it from the two-dimensional AdS length which we will
encounter later).

3.1.2 The near-extremal limit

To recover the Schwarzian theory, we now wish to take an extremal limit, which
requires low temperature (of order c−1), with spin J of order c at least (and, as we will
see later, much larger still for the simplest two-dimensional description). This requires
a real chemical potential for the spin, corresponding to imaginary θ; the corresponding
Euclidean solution is then complex, while the Lorentzian solution (given explicitly in
equation (3.97)) is real. For such a situation, we parameterize the partition function
using separate left- and right-moving temperatures,

τ =
iβL
2π

, τ̄ = −iβR
2π

=⇒ Z = Tr
[
e−βL(L0− c

24)−βR(L̄0− c
24)
]
, (3.9)

so that β = 1
2
(βL + βR), θ = 1

2i
(βR − βL).

To approach extremality, we will take low left-moving temperature, with βL of
order c and c � 1. We will also see that it is simplest to take a very large black
hole, which here means very high right-moving temperature, βR � 1. In particular,
for the black hole to dominate over the vacuum in the grand canonical ensemble, we
require βLβR < (2π)2, which constrains βR to be of order c−1 or smaller.

Near extremal limit (grand canonical): c� 1, βL of order c, βR . c−1 (3.10)

We can now evaluate the BTZ partition function in this limit, simply taking low
temperature for the left-moving character and high temperature for right-moving:

χ0

(
2πi

βL

)
∼ 2π

(
2π

βL

) 3
2

exp

[
βL
24

+
c

24

(2π)2

βL

]
(3.11)

χ0

(
2πi

βR

)
∼ exp

[
c

24

(2π)2

βR

]
(3.12)

For this, we use η(τ) ∼ e
iπ
12
τ as τ → i∞, for the left-movers after the modular

transform η(−1/τ) =
√
−iτη(τ).

We already see the Schwarzian partition function appearing in the left-moving
half, but to compare it is most convenient to first pass to a different ensemble, where
we fix the temperature and spin:

ZJ(β) =

∫ π

−π

dθ

2π
eiθJZ(β, θ) (3.13)
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This is a canonical ensemble in the Hilbert space of spin J states, in which we can
take an equivalent near-extremal limit:

Near extremal limit (canonical): c� 1, β of order c, J � c, (3.14)

where taking the spin to be this large is not strictly necessary for now, but simplifies
things more generally.

Inserting the BTZ partition function, we evaluate the integral taking us to fixed
spin by saddle-point at large J .The BTZ partition function is not periodic in θ,
so does not have a quantised spectrum in J . To fix this, one can sum over the
restricted family of ‘SL(2,Z)’ black holes [106] related by the modular transforms
that take θ 7→ θ + 2nπ. Summing over this family is equivalent to extending the
range of integration in (3.13) to all θ ∈ R. This makes no difference in the saddle-
point approximation.In the near-extremal approximation, this is equivalent to fixing
βL = 2β, and doing an inverse Laplace transform in the right-moving sector, in the
variable βR = β + iθ. We can evaluate this at the saddle point βR = 2π

√
c

24J
, to get

ZJ(β) ∼ π

2
√

2

(
2π

β

) 3
2
(

c

6J3

)1/4

exp

[
2π

√
c

6
J − βJ +

β

12
+

c

12

π2

β

]
. (3.15)

We can match this precisely with the Schwarzian partition function:

ZSchw(β̃) =

(
π

β̃

) 3
2

eπ
2/β̃ (3.16)

Our notation for Schwarzian correlation functions reflects the fact that they depend
on temperature only through the combination β̃ = β

2C
(and later, time t̃ = t

2C
). We

can now write (3.15) as follows:

ZJ(β) = eS0−βE0ZSchw(β̃ = 1
2C
β) (3.17)

C =
c

24
(3.18)

S0 ∼ 2π

√
c

6
J (3.19)

E0 = J − 1

12
(3.20)

Recall that the Schwarzian coupling C has dimensions of time, and the scale here is
set by the radius of the circle on which we put the CFT. For large c, the characteristic
time of the Schwarzian theory is therefore parametrically long compared to the time
it takes to encircle the spatial circle.

The (temperature independent part of the) prefactor contributes a logarithmic
correction to the entropy S0, which for large spin can be written as S0 → S0− 3

2
logS0.

Precisely this logarithmic corrections was previously studied in references [107, 108].
As stressed in [109] this correction is important for a precise comparison between
microscopic and macroscopic black hole entropy calculation.
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So far we matched the partition function of a near extremal BTZ at fixed angular
momentum with the Schwarzian partition function. We could try to do the same
at fixed chemical potential. In this case, as we will see later, a U(1) gauge mode
besides the Schwarzian is relevant (the boundary conditions corresponding to fixed
J will eliminate the dynamics of the gauge field). Including this mode one could do
the match directly in the grand canonical ensemble. In any case, the difference only
arises in one-loop corrections to the partition function, and for correlation functions
the ensembles are equivalent to leading order at large J .

Finally, it is possible to extend this analysis to the case of a gravity theory with
different left and right moving central charges cL 6= cR. The argument above works
out in the same way, and the partition function will be the same as the Schwarzian
theory with coupling C = cL/24, while the extremal entropy goes as S0 ∼

√
cRJ . This

can be reproduced by considering a three dimensional black hole with an additional
gravitational Chern Simons term in the bulk action [110]. A similar setup, and its
relation to the Schwarzian theory, was recently considered in [111].

3.1.3 General irrational CFTs

Having recovered the density of states of the Schwarzian theory from near-extremal
BTZ, we will now see that it is simple to recover this result for a very general class
of CFTs. We give a two step argument, presented in a way that will later generalize
to correlation functions. First, we show that the near-extremal partition function
reduces to a vacuum character in a modular transformed expansion. Secondly, we
will show that this character can be rewritten in the original channel in terms of the
Schwarzian density of states.

Dominance of the dual vacuum character

For our first step, we use modular invariance of the theory, writing the partition
function as a trace over a Hilbert space quantizing on a Euclidean time circle (rather
than spatial circle) of the torus:

Z(βL, βR) = Z

(
(2π)2

βL
,
(2π)2

βR

)

= χ0

(
2πi

βL

)
χ0

(
2πi

βR

)
+

∑
primaries

χh

(
2πi

βL

)
χh̄

(
2πi

βR

) (3.21)

In the second line, we have written the trace as a sum over representations of the
Virasoro symmetry, introducing the characters

χh(q) =
qh−

c−1
24

η(τ)
(3.22)

of nondegenerate representations of lowest weight h. To write this, we have assumed
that there are no currents in the theory (that is, operators with h = 0 or h̄ = 0)
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besides the identity representation: if there are currents, we should classify represen-
tations according to the extended algebra, and would expect to recover a Schwarzian
theory with corresponding additional symmetries. For simplicity, we assume some-
thing slightly stronger, namely that there is a ‘twist gap’ h̄gap, which is a positive
lower bound on h̄ for all non-vacuum primaries.

Given such a theory with large central charge and a (not necessarily large) twist
gap, we can take the near-extremal limit (3.10), and find that the vacuum repre-
sentation (in the modular transformed channel) dominates the partition function:

Z(βL, βR)

ZBTZ(βL, βR)
= 1 +O

(
e
− (2π)2

βR
h̄gap
)

(3.23)

The exponential suppression comes from the ratio of non-vacuum and vacuum right-
moving characters, χh̄

(
2πi
βR

)
/χ0

(
2πi
βR

)
. While this is the parametric suppression in βR

(guaranteed for any given theory by uniform convergence of the partition function),
it should be borne in mind that it can be accompanied by a prefactor which is
parametrically large in c, so we need to take βR correspondingly small. We give two
examples.

For the contribution of a single primary operator, the ratio of left-moving charac-
ters χh

(
2πi
βL

)
/χ0

(
2πi
βL

)
contributes a factor of βL, which is of order c, arising because

the factor of 1 − q in (3.8) subtracting null states from the vacuum. For a single
state to be suppressed relative to the vacuum, we therefore must take βR � h̄

log c
.

A gravitational explanation for this is that the BTZ extremality bound receives a
one-loop correction of order exp

(
− (2π)2

βR
h̄
)

[89][112], which to be ignored must be
much smaller than the typical energies (of order c−1) that we are interested in. One
could perhaps account for such corrections by absorbing them into a shift of E0.

For pure gravity, the twist gap h̄gap is of order c, but there are exponentially many
states close to the twist gap, so corrections in (3.23) are accompanied by an expo-
nentially large prefactor. These states are black holes in the modular dual channel
we are using for our expansion; in the direct channel, they come from thermal AdS.
This is simply the Hawking-Page transition we have already encountered, requiring
us to take βR . c−1 for black holes to dominate the grand canonical ensemble.

We emphasize that, while these two examples may not exhaust all possible cor-
rections from non-vacuum characters, for any given theory there is always some suffi-
ciently small βR to guarantee the dominance of the vacuum character. Our conclusions
will apply to any CFT with large c and a twist gap, even if its bulk dual description
(if any exists) is stringy or nonlocal on the AdS scale; we may just have to take the
spin of the states we study to be very large.

Schwarzian spectrum from modular S matrix

We have already shown how to recover the Schwarzian partition function from the
modular transform of the vacuum character, phrased as the BTZ partition function.
However, our method, which required a simple closed form expression for the vacuum
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character, will not be available to us for the generalization to correlation functions.
We therefore find it instructive to recover the Schwarzian in a different way.

Firstly, we can treat the right-moving sector, which is very simple. We are taking
a very high right-moving temperature, which corresponds to very low temperature in
the modular transformed channel. This simply projects us onto the vacuum, and we
are sensitive only to the Casimir energy:

χ0

(
2πi

βR

)
∼ exp

(
c

24

(2π)2

βR

)
(3.24)

As we saw earlier, when we go to an ensemble of fixed spin this provides the zero
temperature entropy S0 and shifts the ground state energy E0.

The interesting part, where the Schwarzian theory lives, is in the left-moving
sector. Since the left-moving temperature is very low, the characters are simple in
the ‘direct’ expansion rather than the modular transform; they simply become the
Boltzmann weights of the lowest-weight state, since the low temperature suppresses
all descendants:

χh

(
iβL
2π

)
∼ e

−βL
(
h− c

24

)
(3.25)

We therefore directly get the density of states of the Schwarzian theory if we can de-
compose the modular transformed vacuum character χ0

(
2πi
βL

)
into ‘direct’ characters

χh

(
iβL
2π

)
(even though the context is slightly different, this argument is much the

same as the one used in [84] to compute the Schwarzian partition function).
This operation is the definition of the modular S-matrix, which we introduce

presently. For this, we will use alternative parameters for central charge c and oper-
ator dimension h:

c = 1 + 6Q2, Q = b−1 + b (3.26)

h =
c− 1

24
+ P 2 or h = α(Q− α), where α = Q

2
+ iP (3.27)

These parameters are perhaps most familiar from Coulomb gas or Liouville theory,
where Q is a background charge and b the Liouville coupling, and P is a target space
momentum, but their appearance here is explained by something more universal,
namely that they are the natural parameters for Virasoro representation theory. Note
that there is a degeneracy of these new labels, since h is invariant under the reflection
P → −P .

We are interested in theories at large c, and two ranges of operator dimensions
will turn out to be important for us:

Limit b→ 0 =⇒ c→∞ (3.28)

Schwarzian states: k = b−1P fixed =⇒ h− c− 1

24
∼ 6

c
k2 (3.29)

Schwarzian operators: h fixed =⇒ α ∼ bh (3.30)
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As indicated, dimensions corresponding to fixed k will turn out to correspond to
energies k2 in the Schwarzian limit, while fixed h (which means imaginary momentum
P ∼ iQ

2
) will correspond to operators we can insert in that limit.

As a side comment, in the analysis of Ponsot and Teschner [113] the parameter
P labels unitary continuous representations of Uq(sl(2)). As we will see below, in the
Schwarzian limit the parameter k = b−1P will become a label of principal unitary
series representations of sl(2) with spin j = 1

2
+ ik, while the dimension of these

operators is related to the Casimir of these representations. We will see below how
the Schwarzian limit of Virasoro is controlled by classical sl(2) quantities. This limit
is different than finite L ∼ bP with b → 0 which corresponds to the classical limit
of quantized Teichmuller space in the length basis. In CFT language this is called
sometimes the semiclassical limit with large c and h/c finite.

Coming back to our calculation, with the notation introduced above, we can write
the desired decomposition of the modular transformed vacuum block, now labeling
the representations using P instead of h:

χ0

(
−1/τ

)
=

∫ ∞
−∞

dP

2
χP (τ)SP0 (3.31)

SP0 = 4
√

2 sinh(2πbP ) sinh(2πb−1P ) (3.32)

The factor of 1
2
in the measure here cancels the double counting of momenta P and

−P . For completeness, we note the similar decomposition of a nondegenerate block.
This relation is useful to compute the exact path integral of the Schwarzian theory
over different Virasoro coadjoint orbits [114].

χP ′
(
−1/τ

)
=

∫ ∞
−∞

dP

2
χP (τ)SPP ′ (3.33)

SPP ′ = 2
√

2 cos(4πP ′P ) (3.34)

The vacuum result can be recovered from this by subtracting the null states de-
scending from the h = 1 state (χ0 = χP= i

2
(b−1+b) − χP= i

2
(b−1−b), and similarly for

the S-matrix). The characters are simple enough that these relations can be verified
directly, but for the more complicated cases encountered later we will have access to
the analogue of the S-matrix, but not the analogue of the characters (the conformal
blocks). This is not surprising if we take the perspective that the S-matrix and its
analogues are natural representation theoretic objects. Here, the identity S-matrix
SP0 is the Plancherel measure of the quantum group Uq(sl(2)) closely associated with
Virasoro [113].

We now finally take the near-extremal limit c → ∞ with βL of order c. The
characters χP (τ) become Boltzmann weights as discussed earlier, and the integral is
dominated by weights with P of order b, labeled by k:

χ0

(
2πi

βL

)
∼ e

1
24
βL2

3
2 (2πb3)

∫ ∞
0

d(k2) sinh(2πk) e−βLb
2k2

(3.35)

In this integral, we recognize the Schwarzian density of states, going as sinh of the
square root of energy. The prefactors contribute to S0 and E0. Doing the integral
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explicitly we can check that

χ0

(
2πi

βL

)
∼ 4π

√
2b3e

1
24
βLZ(Schw)

(
β̃ = b2βL

)
, (3.36)

which obviously matches with the calculation done in the previous section.
From this method, the modular S-matrix SP0 very directly gives us the spectral

data of the Schwarzian theory. As anticipated, this happens to be the Plancherel
measure of the universal cover of classical sl(2) if k is interpreted as the label of
the principal series. To understand this, we recall the close relation between the
Schwarzian and sl(2) through a BF formulation of JT gravity [115][116] (see also
[117] for another interpretation of the relation with sl(2)). Besides the principal series,
the discrete series representation of sl(2) will make an appearance when computing
correlators.

We could perform a similar analysis for the right-moving sector, noting in par-
ticular that for large P̄ we recover the ‘Cardy’ density of states S0 = 2π

√
c
6
J from

that limit of S0P̄ . However, this is not simple or natural, because the descendant
states are very important at the high right-moving temperatures of interest. In this
example, we cannot read S0 directly from the modular S-kernel, because it counts
only primaries, and is insensitive to the contamination from descendants, leading to
a discrepancy in the logarithmic corrections. Our logic will always be to ‘project onto
the vacuum’ in the right-moving sector, and then perform the modular transform to
find the spectral data of the left-moving sector, where the Schwarzian resides.

3.2 CFT correlation functions

In this section, we discuss the correlation functions of CFTs in the near-extremal
limit of the grand canonical ensemble βR → 0 with βL of order c, under the previously
introduced conditions of a twist gap and large c. Note that we do not require the CFT
to be ‘holographic’, because additional assumptions of a sparse light spectrum or ’t
Hooft factorization are unnecessary (though our results could be strengthened under
such assumptions). We obtain Lorentzian correlation functions at time separations
t of order c, including dependence on angular separations ϕ. For comparison to the
two-dimensional dual gravitational physics in the next section, we extract the S-wave
correlation functions, where the operators are averaged over the circle.

We focus mainly on the simplest correlation function of interest, namely the two-
point function of identical operators in the near-extremal limit (3.10) of the grand
canonical ensemble. This will be sufficient to illustrate the main ideas, and we will
discuss the general case in section 3.2.5. Our method parallels that of section 3.1.3:
we first choose a conformal block decomposition of the correlation function such that
the large spin limit βR → 0 selects only the vacuum block. The right-moving block is
then simple to evaluate, but the left-moving block is more complicated. We follow the
methods of [84] to show that this block contains the Schwarzian correlation function
in the appropriate limit, by reexpressing it in a new channel which makes manifest
the matrix elements of the operators with intermediate states.
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For a given primary operator O with conformal weights (h, h̄), we consider its
two-point Wightman function (we will discuss time ordering and extract the retarded
correlators later):

〈O(z, z̄)O(0, 0)〉βL,βR = Tr
[
O(z, z̄)O(0, 0)e−βL(L0− c

24)−βR(L̄0− c
24)
]

(3.37)

For Lorentzian kinematics, the coordinates z, z̄ are lightcone coordinates on the
Lorentzian cylinder

z = ϕ− t, z̄ = ϕ+ t, (3.38)

so in particular are 2π periodic (z, z̄) ∼ (z+2π, z̄+2π). In imaginary time tE = it they
become complex coordinates on the torus, so additionally have the ‘KMS’ periodicity
(z, z̄) ∼ (z + 2πτ, z̄ + 2πτ̄), where τ = iβL

2π
and τ̄ = −iβR

2π
. Since we are taking βR

very small and βL very large this identification makes z approximately periodic and is
reminiscent of the DLCQ limit [101]. We will not use this perspective in this chapter
though. The operator ordering is determined by ordering in Euclidean time, provided
in Lorentzian kinematics by an appropriate iε prescription giving an imaginary part
to t.

3.2.1 Right-moving sector: dominance of a vacuum block

The high right-moving temperature allows us to simplify the correlation function
in the right-moving sector, by decomposing the amplitude with respect to quanti-
zation by spatial translations, instead of time evolution. Translations then suppress
any intermediate state with h̄ > 0. We can phrase this as doing a modular transform
to make the right-moving temperature very low, before writing the thermal trace as
a sum over states, as well as inserting a complete set of intermediate states between
the two operator insertions.

This means we are decomposing the correlation function into conformal blocks by
inserting a complete set of states along a pair of Euclidean time cycles, separating
the two insertions of O. This is a ‘necklace’ channel decomposition of the correlation
function, which we label by Ñ , with the tilde indicating that the intermediate states
are inserted on Euclidean time circles, not spatial circles. Explicitly, we can write the
conformal block expansion in this ‘ ˜Necklace’ channel as follows:

〈O(z, z̄)O(0, 0)〉βL,βR =
∑

primaries
O1,O2

|COO1O2|2F (Ñ)
h1,h2

(z, βL)F̄ (Ñ)

h̄1,h̄2
(z̄, βR) (3.39)

F̄ (Ñ)

h̄1,h̄2
(z̄, βR) =

(
2π

βR

)2h̄ ∑
N1,N2

〈h̄2, N2|O|h̄1, N1〉〈h̄1, N1|O|h̄2, N2〉

× exp
[
−z̄ 2π

βR
(h̄1 + |N1| − c

24
)− (2π − z̄) 2π

βR
(h̄2 + |N2| − c

24
)
]

We have written the block decomposition in the ‘barred’ right-moving sector, which
is most relevant for our present considerations; there is a similar expression for the
left-moving blocks. The states |h̄, N〉 are an orthonormal basis of descendants (at
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level |N |) of a primary state with weight h̄. In the expression for the conformal
block, we implicitly change the normalization of O to set 〈h̄2|O|h̄1〉 to unity; this
absorbs OPE coefficients, and also gives the prefactor in the block coming from the
rescaling of the Euclidean time circle from length 2π to βR. The exponential factors
implement translation (generated by 2π

βR
(L̄0 − c

24
), where the factor comes from the

same rescaling of lengths), first by z̄ between the operator insertions, and then by
2π − z̄ to complete the spatial circle.

Now, when we take the βR → ∞ limit, choosing 0 < z̄ < 2π as we always may
by the periodicity (z, z̄) ∼ (z + 2π, z̄ + 2π), it is manifest in this decomposition that
intermediate primaries O1,O2 with large h̄1, h̄2 and right-moving descendants are
suppressed. Explicitly, the descendants drop out of the right-moving blocks, so we
have

F̄ (Ñ)

h̄1,h̄2
(z̄, βR) ∼

(
2π

βR

)2h̄

exp

[
−2π

βR

(
z̄h̄1 + (2π − z̄)h̄2 − 2π c

24

)]
. (3.40)

We can guarantee that the infinite sum of terms is suppressed since the sum converges
uniformly for any range of βR bounded away from zero. From this, the dominant
contribution comes from intermediate operators that minimize z̄h̄1 + (2π − z̄)h̄2,
under the condition that the OPE coefficient COO1O2 is nonzero. In particular, this
condition means that we cannot choose both O1 and O2 to be the identity. For
sufficiently small z̄, the dominant choice is O1 = O, O2 = 0; this remains true in a
finite (βR-independent) range 0 < z̄ < z̄∗, where z̄∗ is lower bounded by 2π h̄gap

h̄
(or

z̄∗ = π if that is smaller, from O1 = 0, O2 = O). For now, we will fix z̄ in this range;
this is the most important region (in particular, dominating partial waves for any
fixed angular momentum `), since the correlator is exponentially suppressed when |z̄|
is not small.

This behavior has a simple gravitational interpretation, which is easiest to state
for spacelike Wightman functions. The two-point function gives an amplitude for
a spacelike propagation of some particle between the insertion points, going a long
distance because there is a very large black hole in the way. The particle can choose
to go either way around the black hole, corresponding to the choices O1 = O and
O2 = 0, or O1 = 0 and O2 = O. However, the amplitude may be larger for the
particle to split into two lighter particles (dual to O1,O2), each going a different way
around the black hole, before rejoining on the far side. The corresponding amplitude
with both particles on the same side is not relevant, since it has already been absorbed
as a ‘vacuum polarization’ renormalization of O, by choosing O to be a primary of
definite scaling dimension: since BTZ is locally isometric to AdS3, the only physical
corrections come from configurations that make use of the nontrivial topology of the
spacetime.

For 0 < z̄ < z̄∗, we therefore have dominance of this particular vacuum block,
just as the vacuum character dominated the partition function in equation (3.23).
The right-moving block becomes very simple in the βR → 0 limit, reducing to the
exponential we have seen already if we fix z̄ of order one. In fact, we can do a
little better, giving an answer that works also for small z̄ of order βR or less, when
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the descendants of O in the intermediate states are not negligible. The descendants
are suppressed in the sum over N2, so the only relevant state is the vacuum, which
is equivalent to replacing the torus with an infinite cylinder. The block therefore
becomes the well-known result for the two-point function at finite temperature on an
infinite line.

We can summarize the results of this section as follows:

〈O(z, z̄)O(0, 0)〉βL,βR ∼ F (Ñ)
O,0 (z, βL)F̄ (Ñ)

O,0 (z̄, βR) (3.41)

F̄ (Ñ)
O,0 (z̄, βR) ∼ e

(2π)2

βR

c
24

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

(3.42)

So far, this applies for any theory with a twist gap (with any central charge) in the
βR → 0 limit, either scaling z̄ ∝ βR or with fixed 0 < z̄ < z̄∗. Our remaining task is
to determine the left-moving identity block F (Ñ)

O,0 (z, βL) in the limit of interest, taking
c→∞ while keeping z and βL proportional to c.

3.2.2 Left-moving sector: the Schwarzian

Much like in the previous section, there is a preferred channel in which the left-
moving blocks simplify, now because we are taking low left-moving temperature βL ∝
c � 1. This corresponds to performing the usual quantization by time evolution,
inserting complete sets of states in the thermal trace and between operator insertions.
Just as in (3.39), we can write the blocks in this ‘direct’ necklace channel, which we
label by N , as follows:

F (N)
h1,h2

(z, βL) = e−iπh
∑
N1,N2

〈h2, N2|O|h1, N1〉〈h1, N1|O|h2, N2〉

× exp
[
iz(h1 + |N1| − c

24
)− (βL + iz)(h2 + |N2| − c

24
)
]

The phase arises because the z coordinate is rotated by π
2
relative to the time evo-

lution, giving a factor ei
π
2
h for each operator insertion. Now, for Im z > 0, which

corresponds to the time-ordering where the insertion of O(z, z̄) comes after the in-
sertion of O(0, 0), the descendants are suppressed in the limit of interest. This is a
limit c→∞ with βL ∝ c, but also (as we will see later) where we take

h1,2 =
c− 1

24
+

6

c
k2

1,2, c→∞, k1,2 fixed (3.43)

as in (3.29). The OPE coefficients of descendants are then suppressed by factors of
(h1−h2)2

c
and h2

c
[87, 88], and we have

F (N)
h1,h2

(z, βL) ∼ e−iπhe
iz(h1−h2)−

(
h2−

c
24

)
βL (3.44)

∼ e−iπhe
1
24
βLei

6z
c

(k2
1−k2

2)− 6βL
c
k2

2 . (3.45)

However, unlike for the right-movers, no single operator dominates in this necklace
channel N where the blocks are simple. Instead, the correlation function is given by
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a vacuum block in the Ñ channel, in which the blocks are more complicated. Our
strategy is to evaluate the Ñ identity block by decomposing it in terms of N channel
blocks, which we can write simply. This conversion between different channels is
implemented by fusion and modular S transformations (and, relevant later for higher-
point out of time order correlators, braiding), generalizing the modular S transform
we used in section 3.1.3. Fortunately, these transformations are known in relatively
simple, explicit closed forms.

Warm-up: four-point identity block

As a warm-up, we first tackle a slightly simpler problem, finding a ‘Schwarzian
limit’ of the Virasoro four-point identity block. This is a microcanonical version of the
calculation we are interested in, where instead of taking a low temperature limit to
take us near extremality, we fix a primary state |ψ〉 with dimension in the Schwarzian
range hψ = c−1

24
+ 6

c
k2
ψ, where kψ is fixed in the c→∞ limit. The cylinder kinematics

we are using are then related to the usual four-point cross-ratio x by x = eiz, since
in radial quantization, we insert the operator Oψ creating the state |ψ〉 at the origin
and infinity, and O at 1 and x = eiz. We then wish to compute the identity block
in the ‘T-channel’, where we take the OPE of the two insertions of O. Note that,
unlike for the torus two-point function, we do not have a general argument that
this identity block always dominates the four-point correlation function, which would
require conditions on the OPE coefficients CψOt. Such a result would follow from the
canonical result under the assumption of a version of the eigenstate thermalization
hypothesis [118], applied to near-extremal large spin states.

To compute the T-channel identity, we will reexpress it in terms of the ‘S-channel’
blocks, where we take the OPE between Oψ(0) and O(x), which are simple:

Ft
[
O O
ψ ψ

]
(1− x) =

∑
N

〈O|L−NOht |O〉〈ψ|L−NOht |ψ〉 (1− x)−2h+ht+|N | (3.46)

Fs
[
O ψ
O ψ

]
(x) =

∑
N

〈ψ|O|hs, N〉〈hs, N |O|ψ〉 x−hψ−h+hs+|N |

∼ x−h+ 6
c
(k2
s−k2

ψ) (3.47)

In the S-channel block, we have taken the appropriate ‘Schwarzian’ limit of operator
dimensions and kinematics, in which case the descendants drop out for the same
reason as before.

Now, we can evaluate the T-channel blocks if we can decompose them into S-
channel blocks, since these become simple power laws in the limit of interest. Fortu-
nately, there is an object that does precisely this, namely the fusion kernel F [119],
which has the defining property

Ft
[
O O
ψ ψ

]
(1− x) =

∫ ∞
−∞

dPs
2
Fs
[
O ψ
O ψ

]
(x) FPsPt

[
P Pψ
P Pψ

]
, (3.48)

where we have used the variable P introduced in (3.26) to label operator dimensions
h = c−1

24
+ P 2. The fusion kernel F is a kinematic object associated to Virasoro
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O

ψ

ψ

Ot
=
∫

dPs
2

FPsPt
[
P Pψ
P Pψ

]
Os

ψ

ψ

O

O

Figure 3.1: Diagram of the fusion transformation that was used to compute the left moving
vacuum block in the appropriate limit. The blue lines correspond to the two operator
insertions.

symmetry and it was computed explicitly in [113]. We will not quote the most
general formula since we will only need certain special cases, but it can be found for
example in equations (2.10)-(2.12) of [88].

Here, we need a special case of the fusion kernel, where the T-channel representa-
tion is the identity, denoted by 0. In this case, the fusion kernel simplifies [88, 120],
and can be written as [85]

FPs0
[
P Pψ
P Pψ

]
= ρ0(Ps)C0(Ps, P, Pψ), (3.49)

where ρ0 and C0 are universal functions, appearing as densities of states and averaged
OPE coefficients in a very general class of theories and a variety of limits [85]. We
saw ρ0 already in equation (3.32) as the decomposition of the identity character into
modular transformed characters; C0 can be written in closed form in terms of a special
‘deformed Gamma-function’ Γb:

ρ0(P ) = SP0[0] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ) (3.50)

C0(P1, P2, P3) =
1√
2

Γb(2Q)

Γb(Q)3

∏
±±± Γb

(
Q
2
± iP1 ± iP2 ± iP3

)
∏3

k=1 Γb(Q+ 2iPk)Γb(Q− 2iPk)
(3.51)

In the numerator, we take the product over all eight possible combinations of sign
choices. These objects simplify further when we take a ‘Schwarzian limit’ of large c,
with either P = bk corresponding to near-extremal operators, or h fixed. The two
relevant limits are as follows:

ρ0(bk) ∼ 8
√

2πb2k sinh(2πk) (3.52)

C0(bk1, bk2, i(
Q
2
− bh)) ∼ b4h

√
2(2πb)3

∏
±± Γ(h± ik1 ± ik2)

Γ(2h)
(3.53)

This is straightforward to derive using the identities

Γb(nQ+ by)

Γb(nQ)
∼
(√

2πbn−1/2

Γ(n)

)y

(n > 0),
Γb(by)

Γb(Q)
∼ (2πb3)y/2

2πb
Γ(y) (3.54)
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valid in the b→ 0 limit with fixed y and integer n.
Those who have studied the Schwarzian theory will immediately find these for-

mulas somewhat familiar [84, 117, 121]. In Appendix G we make the connection with
Liouville theory and the calculation of [84]. First, as we have already seen, ρ0 is pro-
portional to the density of states of the Schwarzian theory, so we can write integrals
over P (if they are dominated by integrating over P of order b) as∫ ∞

−∞

dP

2
ρ0(P )f(P ) ∼ 4π

√
2b3

∫ ∞
0

dµ(k)f(bk) (3.55)

dµ(k) = 2kdk sinh(2πk), (3.56)

where we have introduced the measure dµ(k) encoding the Schwarzian density of
states:

Z(Schw)
(
β̃
)

=

∫
dµ(k)e−β̃k

2

=
(
π
β̃

) 3
2 eπ

2/β̃ (3.57)

Secondly, the result for C0 is proportional to matrix elements appearing in Schwarzian
correlation functions.

We can now apply these results to the four-point identity block, using (3.48).
First, we can justify focusing on Ps of order b in the intermediate channel because
the fusion kernel is exponentially suppressed for larger intermediate values. Putting
everything together, we find our result for the T-channel vacuum block:

Ft
[
O O
ψ ψ

]
(1− x) =

∫ ∞
−∞

dPs
2
ρ0(Ps)C0(Ps, P, Pψ)Fs

[
O ψ
O ψ

]
(x) (3.58)

∼ 2b4hx−h

(2π)2

∫ ∞
0

dµ(ks)

∏
±± Γ(h± iks ± ikψ)

Γ(2h)
xb

2(k2
s−k2

ψ)

As a check, we can evaluate this in the limit x → 1, in which case the integral
is dominated by large ks; we find that Ft ∼ (1 − x)−2h, giving the expected short
distance behavior of the block, with the usual normalization.

Before returning to the torus block, we discuss a limit of our result for the identity
block, taking kψ � 1. In that case, the integral is dominated by ks close to kψ, with
ks − kψ = δ of order one:

Ft
[
O O
ψ ψ

]
(1− x) ∼ x−h

2π
(2b2kψ)2h

∫
dδeπδ

Γ(h+ iδ)Γ(h− iδ)
Γ(2h)

x2b2kψδ

= x−h

(
x−ib

2kψ − xib2kψ
2ib2kψ

)−2h (3.59)

This is the same result found for the vacuum block in the ‘heavy-light’ limit [87, 122],
where c was taken to infinity with hψ/c fixed (but different from 1

24
). In fact, in

[88] this result was derived with precisely the method used here. Our result thus
interpolates smoothly to this different regime.

As anticipated, the T-channel vacuum block found in equation (3.58) is equal
to the microcanonical two-point function of the Schwarzian theory between energy
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eigenstates labeled by kψ [123]. Equation (3.59) can be understood as a statement of
equivalence of canonical and microcanonical ensembles in the thermodynamic limit
of the Schwarzian theory, since

Ft
[
O O
ψ ψ

]
(1− x) ∝

(
x−ib

2kψ − xib2kψ
2b2kψ

)−2h

=

βψ
π

sinh

(
π

βψ
z

)−2h

(3.60)

is the thermal correlator with temperature βψ = π
b2kψ

(the proportionality factor
arising from the conformal map between the plane and the cylinder).

Note that (3.60) has a thermal KMS periodicity, which in particular leads to a
singularity at z = iβψ as a thermal image of the short-distance singularity. This was
dubbed a ‘forbidden singularity’ in [124], since it cannot appear in the exact four-
point block or correlation function. As noted in [88], it is associated with a divergence
of the integral in (3.59) as δ → −∞, but this is an artifact of the approximation we
are making in the integrand, which is valid only for e−βψ < |x| < 1 (with kψ log x
fixed in the limit kψ →∞). The exact Schwarzian integral (3.58) does not have such
a divergence, so provides a regularization which resolves the forbidden singularity.

Returning to the torus

We now return to our discussion of the torus two-point function, for which we
would like to compute the identity block in the Ñ channel in (3.41). The blocks
are simple in the N channel (3.45), so we would like to decompose the Ñ identity
block in terms of N blocks, with an expression analogous to (3.48) which expanded
a T-channel block in terms of S-channel blocks for the four-point function. The
idea is much the same, but we must go through some intermediate steps, following
the Moore-Seiberg construction [119], recently reviewed in the current context of
irrational theories in [85], to which we refer the reader for details. The sequence of
moves we use is illustrated in figure 3.2.

First, we note that the Ñ identity block is in fact equal to an identity block in a
different channel, denoted ÕPE. For the block decomposition in this channel, we take
the OPE between the two insertions of O, and insert a single complete set of states
propagating in the spatial circle. In general, this is related to the Ñ decomposition
(3.39) by a fusion move, with external operators O,O,O2,O2 and internal operator
O1 (using the labeling following (3.39)). However, for the vacuum block, we have
O2 = 0, so this move is trivial: in the fusion of 0 with itself, only 0 appears, so
the Ñ vacuum block equals the ÕPE vacuum block. For the next step, we want
to replace the complete set of intermediate states propagating in the spatial circle
(the ÕPE channel) with states propagating in the Euclidean time circle (the OPE
channel). This is a modular S-transform, with kernel S. In general, this would be the
S-transform appropriate for a torus one-point function, where the external operator is
determined by the representation appearing in the OPE. For us, this representation
is the identity, so the modular S kernel is the same one we used for the partition
function, given in (3.32) and (3.50). Our final move takes us from the OPE channel
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Step 1: 0O = 0
0

Step 2: 0
0 S

P2
0

Step 3: F
P2

0
P2P1

Figure 3.2: Diagram of the fusion and modular transformation that was used to compute
the left moving vacuum torus block in the appropriate limit. In the top diagrams, the circle
is a spatial circle, and in the bottom diagrams it is a Euclidean time circle; these are swapped
by the S-transform in step 2.

to the necklace N channel, and is the same fusion move we just used for the four-
point function; the only difference is that the external operator Oψ is now whichever
intermediate operator appears in the thermal sum over states, labeled here by P2.

In equations, the moves we have just described are as follows:

F (Ñ)
h,0 = F (ÕPE)

0,0 (3.61)

=

∫
dP2

2
S0P2F (OPE)

0,P2
(3.62)

=

∫
dP1

2

dP2

2
F0P1

[
P P2

P P2

]
S0P2F (N)

P1,P2
(3.63)

=

∫
dP1

2

dP2

2
ρ0(P1)ρ0(P2)C0(P1, P2, P )F (N)

P1,P2
(3.64)

We have written the final expression in terms of our universal functions (3.50), (3.51).
This expression holds in complete generality, but we can now take a limit to

extract an explicit expression for F (Ñ)
h,0 . For this, we simply substitute (3.45) for

F (N)
P1,P2

, along with (3.52) and (3.53) for the Schwarzian limits of ρ0 and C0 to obtain
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our final result for the left-moving part of the correlation function:

F (Ñ)
h,0 ∼ e−iπhb4hχ0

(
2πi

βL

)
G

(Schw)
h

(
t̃E = −ib2z, β̃ = b2βL

)
(3.65)

G
(Schw)
h

(
t̃E, β̃

)
=

1

2π2Z(Schw)(β̃)

∫
dµ(k1)dµ(k2)

∏
±± Γ(h± ik1 ± ik2)

Γ(2h)
e−t̃E(k2

1−k2
2)−β̃k2

2

(3.66)

We have here extracted a normalizing factor of the vacuum character

χ0

(
2πi

βL

)
∼ 4π

√
2b3e

1
24
βLZ(Schw)

(
β̃ = b2βL

)
, (3.67)

where Z(Schw) is the Schwarzian partition function given in (3.57).
G

(Schw)
h is the result in [84] for the Schwarzian thermal two-point function, ex-

pressed in Euclidean time t̃E, with Re t̃E > 0. The prefactor e−iπhb4h appears natu-
rally in the Schwarzian when we rescale time and analytically continue to Lorentzian
signature, since the operators transform nontrivially under scaling, but we find it
more convenient for the discussion below to separate it. It is normalized to give a
pure power law in the limit of small t̃E, namely G(Schw)

h ∼ t̃−2h
E . Writing this in terms

of z and combining with the factor e−iπhb4h, the block F (Ñ)
h,0 has the usual short-

distance behavior z−2h. This result is valid for 0 < Im z < βL, and the result for real
z (with the current operator ordering) is obtained in the limit Im z → 0+. In fact,
if we take real z, by expanding C0 to higher orders we find that the integral over k1

is rendered convergent by an ‘iε’ appearing automatically with the correct sign: the
relevant correction to logC0 is proportional to (b2 log b) k2

1.
Just as in (3.59), we can evaluate the canonical two-point function G(Schw) in a

semiclassical limit, which here means β̃, t̃E � 1. The calculation is much the same
as led to (3.59), with the integral dominated by the region where both k1 and k2 are
close to the value π/β̃ corresponding to the thermodynamic energy, and k1 − k2 is of
order one

G
(Schw)
h

(
t̃E, β̃

)
∼
(
β̃
π

sin
(
π
β̃
t̃E

))−2h

(3.68)

When taking this limit we assumed that h is order one. One can also consider a
semiclassical limit with large h ∼ c which is more complicated [125] but encodes
some simple bulk backreaction effects. Finally, a nice aspect of the expression (3.65)
(and similarly (3.58)) is that it interpolates between the semiclassical behavior of
equation (3.68) and the late time behavior. At late times the approximation leading
to (3.68) fails signaling that in this regime strong coupling Schwarzian effects are
important. This happens in our context for times t̃E � c. Expression (3.65) gives
the asymptotics

G
(Schw)
h (t̃E, β̃) ∼ t̃−3

E , t̃E � c (3.69)

where we omitted a time independent prefactor that depends on c, β̃ and h. In the
β̃ →∞ limit this power changes to G(Schw)

h ∼ t̃
− 3

2
E . In the context of the Schwarzian
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theory this was observed in [84, 126]. In the context of 2d CFT this behavior of con-
formal blocks was observed numerically in [127] and analytically [88]. The advantage
of (3.65) is then that it interpolates between different regimes.

3.2.3 Time ordering and retarded two-point function

Including both left- and right-moving pieces, we have our result for the normalized
grand-canonical two-point function in the near-extremal limit:

〈O(z, z̄)O(0, 0)〉βL,βR
ZβL,βR

∼ e−iπhb4h

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

G
(Schw)
h

(
−ib2z, b2βL

)
(3.70)

Note that the ordering is important here, with the insertion of O(z, z̄) coming after
that of O(0, 0), and furthermore that this is valid for 0 < z̄ < z̄∗ ≤ π. The time-
ordering appeared in our derivation through the choice of necklace channel N , since
the simplification (3.45) of the blocks occurs only with the given time ordering. Here,
the other ordering differs only by a phase from swapping the operator insertions in
the left-moving block (though we will see that things get slightly trickier for out of
time order correlators with more operator insertions):

〈O(0, 0)O(z, z̄)〉βL,βR
ZβL,βR

∼ e+iπhb4h

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

G
(Schw)
h

(
+ib2z, b2βL

)
(3.71)

Alternatively, we could take the original result and set (z, z̄)→ (−z,−z̄), so the right-
moving block produces a phase e2πih̄. This is equivalent for integer spin, h̄ − h ∈ Z.
It will be useful to consider also the retarded correlator

GR(z, z̄) = −i〈[O(z, z̄),O(0, 0)]〉 Θ
(
t = 1

2
(z̄ − z)

)
, (3.72)

which for 0 < z̄ < z̄∗ and z = −b−2t̃ < 0 is given by

GR(z, z̄) ∼ b4h

[
βR
π

sinh

(
π

βR
z̄

)]−2h̄

2 Im
[
e−iπhG

(Schw)
h

(
−ib2z, b2βL

)]
. (3.73)

Note in particular that with this definition of G(Schw)
h , the retarded correlator is not

simply proportional to the retarded correlator in the Schwarzian theory, due to the
additional phase in our choice of normalization. On the opposite side of the lightcone,
with −z̄∗ < z̄ < 0 and again z = −b−2t̃ < 0, we have

GR(z, z̄) ∼ b4h

[
βR
π

sinh

(
− π

βR
z̄

)]−2h̄

2 Im
[
e+iπhG

(Schw)
h

(
−ib2z, b2βL

)]
. (3.74)

In the semiclassical limit of the Schwarzian (3.68), the phase is precisely e−iπh, so
this piece vanishes to leading order in that limit. Away from the lightcone, when
|z̄| � βR, the correlation functions are exponentially suppressed.
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We should note that the full correlator also contains lightcone singularities when
z is an integer multiple of 2π, and our result is not strictly valid parametrically close
to these lightcones. However, the strength of the singularity decays exponentially in
time, and their contribution becomes negligible in the Schwarzian limit after smearing
the operators by any fixed amount. We can smear either by slightly displacing the
insertions in Euclidean time, or for retarded correlators by integrating against a more
general smooth function, for example by taking partial waves as in the next section.
In the conformal block expansion, the singularities arise from an infinite sum over
double-twist exchanges; our argument for dominance of the vacuum block applies in
any compact region bounded away from lightcone singularities, where the sum over
blocks converges uniformly.

3.2.4 Partial waves

For direct comparison with a gravitational two-dimensional nAdS2 dual, we should
consider the partial waves, which are correlation functions of the Fourier modes of
operators:

O`(t) =

∫ 2π

0

dϕ

2π
ei`ϕO(z = ϕ− t, z̄ = ϕ+ t) (3.75)

For this, we cannot consider time-ordered correlators, because the lightcone sin-
gularity at z̄ = 0 is not integrable (at least, for h > 1

2
). However, the retarded

correlator does not suffer from the same problem, when we interpret the singularity
as a distribution. The expectation value of the commutator can be thought of as a
discontinuity across a branch cut in the Euclidean time plane, and we can define the
partial waves by deforming the integral to a contour passing below the cut, around
the branch point, and back above it, while avoiding the singularity at the branch
point itself. In practice, since this prescription for the integral is analytic, we can
simply perform the integral for h < 1

2
when it converges, and analytically continue to

general h.
Since the typical scale on which the correlator varies in the z direction is of order

c, the integral over ϕ at fixed t can, to good approximation, be replaced by an integral
over z̄ at fixed z = −t:

G`(t) =

∫ π

−π

dϕ

2π
ei`ϕGR(z = ϕ− t, z̄ = ϕ+ t) (3.76)

∼ e−i`t
∫ π

−π

dz̄

2π
ei`z̄GR(z = −2t, z̄) (3.77)

The dominant contribution comes from close to the lightcone, with z̄ of order βR,
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both from z̄ > 0 (3.73) and z̄ < 0 (3.74):

G`(t) ∼ e−i`tN` 2 Im
[
G

(Schw)
h

(
2ib2t, b2βL

)]
(3.78)

N` =

(
2π

βR

)2h̄−1 Γ
(
h̄+ `βR

2πi

)
Γ
(
h̄− `βR

2πi

)
Γ(2h̄)

sin
(
πh̄+ 1

2
i`βR

)
sin
(
πh̄
)

∼
(

2π

βR

)2h̄−1 Γ
(
h̄
)2

Γ(2h̄)

(3.79)

We see that each individual partial wave is proportional to the retarded correlator of
the Schwarzian. The approximation to N` in the second line is valid when `βR � 1;
it is spin independent because such modes cannot resolve the details of the angular
dependence, effectively seeing a delta-function on the lightcone.

To quantify the error we introduced in our approximation of the integral, we can
Taylor expand the correlation function:

GR(z = ϕ− t, z̄ = ϕ+ t) = GR(z̄ − 2t, z̄)

= GR(−2t, z̄)− 1
2
z̄∂tGR(−2t, z̄) + · · · (3.80)

The factor of z̄ results in an additional factor of βR after integrating, while the time
derivative results in a factor of c−1. The neglected corrections are therefore suppressed
by a relative factor of βR/c. We will later see that this is characteristic of interactions
with graviton Kaluza-Klein modes.

3.2.5 Higher-point functions and OTOC

We now discuss some salient points for the generalization of the above results
to higher point functions. This is fairly straightforward, but introduces some new
ingredients: specifically, the choice of operator ordering becomes more important,
and there are new kinematic regimes where an identity block need not dominate. To
illustrate these new ideas, we discuss the computation of the four point function of
pairwise identical operators.

In the canonical ensemble we want to compute

〈OA(z1, z̄1)OA(z2, z̄2)OB(z3, z̄3)OB(z4, z̄4)〉βL,βR (3.81)

for operators with dimensions (hA, h̄A) and (hB, h̄B) (considering other time orderings
later). As before, we use lightcone coordinates for the locations of the operators,
zi = ϕi− ti and z̄i = ϕi + ti for i = 1, . . . 4. We will take all times to be large of order
t ∼ c and choose the angles such that 0 < z̄ < 2π for all insertions.

As in section 3.2.1, we must first identify the relevant blocks in the βR → 0 limit
by considering the right moving sector. Once again, we insert complete sets of states
at circles of constant angle between every operator insertion, generalizing the dual
necklace (Ñ) channel in equation (3.39), here with four sets of states. We consider
first a configuration with 0 < z̄1 < z̄2 . . . < z̄4 < 2π where all z̄i and z̄ij ≡ z̄i − z̄j are
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fixed as we take the βR → 0 limit. Descendants then drop out and the right moving
dual necklace block is proportional to

F̄ (Ñ)

h̄1,...,h̄4
∝ exp

[
−2π

βR

(
z̄21h̄1 + z̄32h̄2 + z̄43h̄3 + (2π − z̄41)h̄4

)]
. (3.82)

As in section 3.2.1, we find the dominant block by minimizing the kinematic combi-
nation in the exponent over values of h̄i allowed by the fusion rules.

Since the right-moving block is exponentially suppressed for fixed z̄ij, these config-
urations will not in fact be relevant for correlation functions of partial waves. Instead,
we must consider kinematic regimes where some z̄ij scale proportionally to βR, which
we can split into three cases:

Case 1: Identical operatorsOA andOB are close together in pairs, but the separation
between pairs is of order one. Concretely, we could have z̄12, z̄43 each of order
βR, with z̄32 order one.

Case 2: Each OA is close to one of the OB and the pairs are order one separated.
For example, we take z̄32, 2π − z̄41 small, with z̄21, z̄43 order one.

Case 3: All operators are close to each other with all z̄ij small.

Case 1: There is a unique choice of intermediate operators so the block is not
exponentially suppressed in βR, with the identity propagating when the z̄ separation
is order one. Namely, we must take O1 = OA, O2 = 0, O3 = OB and O4 = 0. As in
section 3.2.1 we can write a formula for the right-moving blocks which is valid when
z̄12, z̄43 ∼ βR, by including descendants of O1 = OA and O3 = OB:

F̄ (Ñ)
OA,0,OB ,0(z̄ij, βR) ∼ e

(2π)2

βR

c
24

[
βR
π

sinh

(
π

βR
z̄12

)]−2h̄A
[
βR
π

sinh

(
π

βR
z̄34

)]−2h̄B

(3.83)
This is just the product of separate vacuum two-point functions on an infinite line,
along with a term encoding the Casimir energy of the vacuum. The four point function
is then given by the Ñ identity blocks

〈OAOAOBOB〉βL,βR ∼ F (Ñ)
OA,0,OB ,0(zij, βL)F̄ (Ñ)

OA,0,OB ,0(z̄ij, βR) (3.84)

up to exponentially small corrections
Case 2: The blocks are exponentially suppressed unless the identity appears in

the intermediate channels with finite z̄ separation, namely O1 = 0 and O3 = 0. But
the fusion rules for the identity would then simultaneously demand that O2 = OA and
O2 = OB (and similarly for O4), which cannot both be satisfied in the same block.
The leading contribution is therefore suppressed by either e−

2π
βR

z̄21h̄gap or e−
2π
βR

z̄43h̄gap ,
and this region does not contribute to partial waves.

Case 3: When all operators are separated by z̄ij of order βR, there is no sup-
pression in the βR → 0 limit as long as O4 = 0. This means we have O1 = OA
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Figure 3.3: Diagram of the fusion transformation that was used to compute the four-point
left moving vacuum block in the appropriate limit. The blue (red) line corresponds to the
external OA (OB) insertion.

and O3 = OB (for the given the ordering of operators in z̄), but we must include all
intermediate operators in the sum over O2. At this point, we could make an addi-
tional assumption that we have a holographic 2d CFT, where ’t Hooft factorization
applies, which suppresses non-vacuum channels by small OPE coefficients of order
c−1. Nonetheless, as we will see in more detail later, in partial waves the contribution
from case 3 is parametrically small regardless of such factorization, since it involves
a small kinematic regime in the integral over angles.

The conclusion is that Case 1 will give the dominant contribution to the correla-
tors of partial waves, through the identity block (3.84), with right-moving piece given
by (3.83). We next need to compute the left moving torus block by transforming
back to the direct necklace channel, as in section 3.2.2. The only difference is that
now the fusion transformation has to be applied twice, one to each pair OAOA and
OBOB. Instead of spelling out the details, we show the relevant fusion transformation
in figure 3.3 for the case of the microcanonical ensemble calculation. The torus block
is obtained similarly, with an additional integral over the state |ψ〉, weighted by a
Boltzmann factor and Schwarzian density of states. Taking the appropriate limits
and using the expression (3.49) we obtain

F (Ñ)
h,0 ∼ e−iπhA−iπhBb4hA+4hBχ0

(
2πi

βL

)
G

(Schw)
hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
(3.85)

where anticipating its interpretation we defined the function appearing in the right
hand side as

G
(Schw)
hA,hB

=
1

2π2Z(Schw)(β̃)

∫
dµ(k1)dµ(k2)dµ(k3)e−t̃21k2

1−t̃43k2
2−(β̃−t̃21−t̃43)k2

3

×
∏
±± Γ(hA ± ik1 ± ik3)

Γ(2h)

∏
±± Γ(hB ± ik2 ± ik3)

Γ(2h)
(3.86)

with t̃21 ≡ −ib2(z2 − z1) and t̃43 ≡ −ib2(z4 − z3). Comparing with the notation in
figure 3.3 we defined Ps = bk1, P ′s = bk2 and Pψ = bk3. This function that appears
in the torus block is exactly the same as the Schwarzian time ordered four point
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function, analogously to the previous result (3.65). Putting all together we obtain
the full four point function in the near extremal CFT limit as

〈OAOAOBOB〉βL,βR
ZβL,βR

∼ e−iπhA−iπhBb4hA+4hBG
(Schw)
hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
×
[
βR
π

sinh

(
π

βR
z̄12

)]−2h̄A
[
βR
π

sinh

(
π

βR
z̄34

)]−2h̄B

(3.87)

for a choice of z̄1,2,3,4 that falls under Case 1 above. Note that the choice of operator
ordering is important, as we will discuss more in a moment.

From the diagrammatic rules defined in [84] to compute Schwarzian correlators,
and the fact that the fusion transformation of the block is always done in pairs, it
is clear that this connection between Virasoro blocks and the Schwarzian theory will
generalize to higher point correlators.

To summarize, the important configurations have identical operators in pairs,
separated in z̄ by order βR (Case 1), but with finite separation between each pair. In
such a case, the correlator is dominated by an appropriate identity block, which gives
the Schwarzian correlator in the left-moving sector, times a product of cylinder two-
point functions in the right-moving sector. The vacuum dominance can fail when we
do not have nearby pairs of identical operators (such as Case 2), when the correlator
is in any case exponentially suppressed. It can also fail when two or more pairs of
identical operators come within a z̄ separation of order βR (Case 3), unless we make
the additional assumption of factorization.

Partial waves

As anticipated above, the situation improves when we integrate over angles (which
is equivalent to leading order in βR to integrating over z̄). When computing partial
waves correlators as in section 3.2.4 we can fix the position of one insertion (z̄1 = 0
for example) and integrate over the remaining coordinates. In Case 1 the dominant
contribution comes from fixing two other coordinates, z̄21 and z̄43 to accuracy βR.
In Case 3 the dominant contribution comes from all coordinates being of order βR.
Therefore the angular integral will produce, schematically, factors of∫

Case 1

4∏
i=1

dz̄i(. . .) ∼ β2
R(. . .), vs.

∫
Case 3

4∏
i=1

dz̄i(. . .) ∼ β3
R(. . .), (3.88)

where the additional factor of βR simply comes from the small region of z̄32 for which
vacuum dominance fails. This implies that any non vacuum block, that due to the
βR → 0 limit can only contribute for configurations of type 3, will come with an extra
factor of βR. Therefore we conclude that the partial wave correlators are dominated
only by the vacuum blocks that produce the Schwarzian answer, namely

〈O`AA (t1)O`AA (t2)O`BB (t3)O`BB (t4)〉βL,βR ∝ N`AN`B G(Schw)
hA,hB

(
2ib2ti, b

2βL
)
, (3.89)
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where we have taken a ‘retarded’ combination of time-orderings for each pair of
operators to make sense of the partial wave integral. The prefactors N` are given by
(3.78) for each pair of operators.

There are several types of corrections to our formula (3.89). The first are correc-
tions to the vacuum block itself, arising from the angular integral as explained around
equation (3.80), and (new for higher-point functions) also from ignoring right-moving
descendants of the vacuum, most relevant for ‘Case 3’ configurations, where four op-
erators have z̄ separation of order βR. Both sources of error result in corrections of
order βR/c, and admit a bulk interpretation as exchanges of graviton KK modes.
In addition, we have corrections from non-vacuum blocks, most importantly from
‘Case 3’ configurations, which are of order βR times the relevant OPE coefficients. In
a gravitational description, these arise from interactions (including, but not limited
to, interactions with matter KK modes), as will be explained in section 3.3.3. In a
truly holographic theory with a weakly interacting bulk dual, the OPE coefficients
multiplying the non-vacuum blocks are small, giving an additional suppression.

Out-of-time-order correlators (OTOC)

For the arguments above, it was important that we were considering a time-
ordered four-point function. The simplification of left-moving ‘direct’ necklace chan-
nel blocks generalizing (3.45) is only valid when the order of operators in the choice
of channel corresponds to the correct time ordering. On the other hand, the dom-
inance and simplification of the vacuum block in the right-moving sector relies on
choosing the ˜Necklace channel corresponding to ‘spatial’ ordering, meaning that we
place operators in order of z̄ (though this is not so important for the nearby pairs of
identical operators, since we have included the relevant intermediate descendants to
give the sinh in (3.83), for example). We already saw a version of this in the difference
between (3.70) and (3.71), though the effect of this was simple to account for since
we needed only exchange the order of nearby identical operators.

For the time-ordered four-point function in the configurations such as those (Case
1) which dominate the partial wave correlators, we can always arrange for the ordering
in time to match the ordering in z̄ (up to exchanging the pairs of nearby identical
operators). However, this is no longer true for out-of time ordered (OTOC) orderings
such as

〈OA(z1, z̄1)OB(z3, z̄3)OA(z2, z̄2)OB(z4, z̄4)〉βL,βR , (3.90)

when pairs of identical operators do not appear consecutively. We need to add an
additional ‘braiding’ move to exchange operator order before inserting the simplified
necklace block.

The argument in the right moving sector is unchanged for the OTOC, so we need
only consider the left-moving vacuum block F (Ñ)

OA,0,OB ,0(z, βL), where the Ñ channel
arranges the operators in z̄ ordering: AABB. First, we apply the same sequence of
moves as before to rewrite the Ñ block as a direct necklace channel block. However,
this block inherits the AABB ordering, but the necklace block only simplifies if
the channel matches the ABAB time ordering. The change of order of two of the
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Figure 3.4: Diagram of the braiding transformation that is need to compute out-of-time-
ordered correlators.

operators is achieved using the ‘R-matrix’ as shown in figure 3.4. After braiding,
the new necklace channel block with ABAB ordering becomes a scaling block, and
we have new z dependence coming from integrating over the internal index in the
R-matrix. This is a building block that we can now use for any higher point OTOC,
constructing any time ordering with repeated applications. The R-matrix is simply
related to the fusion matrix and therefore we can use again the formula derived by
Ponsot and Teschner [113].

The limit of the R-matrix required in the Schwarzian limit was computed in
Appendix B of [84]. In the notation of figure 3.4 we take all intermediate states to
be near extremal Pψ = bk, Pψ′ = bk′, Ps/u = bks/u and the external operators hA and
hB to be light. Then the R-matrix becomes

RPsPu

[
PB Pψ′

PA Pψ

]
=
ρ0(bku)

2πb3

∣∣∣∣Γ(hA + ik ± iku)Γ(hB + ik′ ± iku)
Γ(hA + ik′ ± iks)Γ(hB + ik ± iks)

∣∣∣∣ { hA k′ ks
hB k ku

}
(3.91)

where we defined{
hA k′ ks
hB k ku

}
= W(ks, ku;hA + ik, hA − ik, hB − ik′, hB + ik′)

×
√

Γ(hA ± ik′ ± iks)Γ(hB ± ik ± iks)Γ(hB ± ik′ ± iku)Γ(hA ± ik ± iku).
(3.92)

This object that we obtain as a limit of the Ponsot-Teschner general formula is
the 6j-symbol of the classical sl(2) computed by Groenevelt [128]. W(α, β; a, b, c, d)
is the Wilson function also defined by Groenevelt. The definition we are using is

W(α, β; a, b, c, d) ≡
Γ(d− a) 4F3

[ a+ iβ a− iβ ã+ iα ã− iα
a+ b a+ c 1 + a− d ; 1

]
Γ(a+ b)Γ(a+ c)Γ(d± iβ)Γ(d̃± iα)

+ (a↔ d),

(3.93)
where d̃ = (b + c + d − a)/2 and ã = (a + b + c − d)/2. The prefactor of (2πb3)−1

combines with the factor of b2 in (3.52) and the factor of b in the measure dPu = bdku
to ensure that the braiding does not change the factors of b, so the OTOC is of the
same order as the TOC.

When this transformation is applied to the left moving block, the final answer
is proportional to a function GOTOC

hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
that reproduces again
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the Schwarzian OTOC. We will not write it down here but the final expression can
be found in equation (1.28) of [84].The appearance of the 6j-symbol in Schwarzian
OTOC found in [84] was reproduced using the BF formalism in [115, 116] and using
the boundary particle approach in [129]. Moreover, it was verified in [123] that
the semiclassical limit of this kernel gives the Dray-’t Hooft shockwave S-matrix,
reproducing the semiclassical calculation of the OTOC of [60].

The full OTOC at fixed angles (with a configuration such as Case 1 where the
identity block dominates, and spatial ordering is AABB) including left- and right-
moving blocks is given by

〈OAOBOAOB〉βL,βR
ZβL,βR

∝ GOTOC
hA,hB

(
t̃i = −ib2zi, β̃ = b2βL

)
F̄ (Ñ)
OA,0,OB ,0(z̄i). (3.94)

We can use this formula to obtain correlators of partial waves by integrating over
angles and the result is that the OTOC for the CFT is proportional to the Schwarzian
OTOC, similarly to all previous cases. We can also use this for the OTOC without
integrating over angles, where the two insertions of OA are at the same spacetime
location (up to small shifts to regulate), and likewise the two insertions of OB.

We would like to stress that this is the first derivation of OTOC in 2d CFT where
the vacuum dominance approximation is justified, thanks to the small parameter βR.
This is in contrast to [130], for example, for which there is no clear justification for
vacuum dominance [131]. This shows in particular that the gravitational S-matrix
of three dimensional gravity coupled to matter is exactly given in the near extremal
limit by the 6j-symbol of sl(2). This can be thought of as a controlled derivation, in
a certain limit, of the universal gravitational scattering proposed in [132].

As a final application we can compute the semiclassical limit of the (out-of-time-
ordered) left moving Virasoro block using the braiding matrix (3.91). The block is
proportional to the Schwarzian correlator and the semiclassical limit of the exact
OTOC was derived in [123] giving

FOTOCOA,0,OB ,0(z, βL)

FTOOA,0,OB ,0(z, βL)
∼ η−2hAU(2hA, 1 + 2hA − 2hB, η

−1), (3.95)

η ≡ iβ̃

2π

e
−iπ

β̃
(t̃3+t̃4−t̃1−t̃2)

sin πt̃12

β̃
sin πt̃34

β̃

(3.96)

with t̃ = −ib2t and β̃ = b2β and U(a, b, c) being the confluent hypergeometric func-
tion. The semiclassical limit corresponds to late times with η small (but larger than
other small parameters). The analog for the time ordered four point block gives
simply a product of (3.68) two point functions. This matches with the semiclassical
calculation done in [60] and our derivation of this expression from a conformal block
explains the origin of equation (4.14) and (4.17) of [133]. When this formula is ex-
panded at small η it gives the maximal λL = 2π

β
Lyapunov exponent saturating the

chaos bound of [7]. The fixed angle OTOC grows with time exponentially with rate
λL = 2π/βL ≈ π/β while the s-wave correlator grows with rate λL = 2π/β. This is
consistent with the bounds derived in [134] (see section 5).
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Finally, since we have control over the OTOC calculation (thanks to the βR → 0
limit), we could also attempt to compute the quantum Lyapunov spectrum [135]
which is given by OTOC between four arbitrary operators. This is related to in-
elastic scattering in the bulk and an analogous chaos bound applies [136]. We can
compute OTOC between different operators in the near extremal limit, which picks
the intermediate channel with lower twist. The bound implies their spin s has to
satisfy s ≤ 2 and also puts a bound on their OPE coefficients, but we leave a detailed
analysis for future work.

3.3 Near extremal rotating BTZ black holes

3.3.1 The BTZ black hole and its AdS2 throat

We begin our analysis of the dual gravitational physics with a look at the classical
BTZ black hole and its thermodynamics. This is a solution to Einstein gravity in
three dimensions with negative cosmological constant Λ = −`−2

3 (the subscript on
`3 distinguishing it from the two-dimensional AdS length encountered later), with
metric

ds2 = −f(r)dt2 + `2
3

dr2

f(r)
+ r2

(
dϕ− r−r+

r2
dt
)2

, (3.97)

f(r) =
(r2 − r2

+)(r2 − r2
−)

r2
. (3.98)

We are using a dimensionless time coordinate t such that the asymptotic metric is
proportional to −dt2 + dϕ2, and f has dimensions of length squared. The inner and
outer horizons at r = r±, with 0 < r− < r+ (for J > 0), are related to the energy and
angular momentum of the black hole by

M =
r2

+ + r2
−

8GN`3

, J =
r+r−

4GN`3

. (3.99)

The mass here is the dimensionless energy conjugate to the time t, with zero energy
defined such that empty AdS3 has M = − `3

8GN
, corresponding to the Casimir energy

of the dual.
Using the Brown-Henneaux relation c = 3`3

2GN
for the central charge of the dual

CFT in the classical limit, and including one-loop corrections to the energy from the
Casimir energy of gravitons [89], the horizons can be related very simply to the CFT
parameters introduced in (3.26) and (3.27):

P = Q
r+ − r−

2`3

, P̄ = Q
r+ + r−

2`3

(3.100)

Applying the standard gravitational thermodynamics, we find the classical black
hole temperature (from surface gravity), angular potential (from horizon angular
velocity) and entropy (from the area):

T = β−1 =
r2

+ − r2
−

2π`3r+

, Ω =
r−
r+

, S =
2πr+

4GN

(3.101)
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The angular potential is the chemical potential for angular momentum, related to
the parameter θ used in section 3.1 by θ = iβΩ. Writing this in terms of left- and
right-moving temperatures βL = (1 + Ω)β, βR = (1− Ω)β, we have

βL =
2π`3

r+ − r−
, βR =

2π`3

r+ + r−
. (3.102)

The BTZ solution we have given is smooth outside an event horizon as long as
r± are real, which imposes the extremality bound M ≥ |J |. We are interested in
near-extremal black holes, close to saturating this bound, so the difference between
r+ and r− goes to zero. This is a low temperature limit, in which the thermodynamic
quantities approach the following:

M − J ∼ π2`3

8GN

T 2, S ∼ π

√
J`3

GN

+
`3π

2

4GN

T (3.103)

This can be compared with the thermodynamics of the Schwarzian theory, for which
the energy and entropy are given by

E − E0 = 2π2CT 2, S = S0 + 4π2CT. (3.104)

Defining the central charge using the Brown-Henneaux relation c = 3`3
2GN

, we recover
the values C = c

24
, E0 = J and S0 = 2π

√
c
6
J found in (3.15) of section 3.1.

If we simply take a near-extremal limit of (3.97), fixing r+ and taking r− → r+

with fixed r, we find the extremal BTZ metric:

ds2 ∼ −(r2 − r2
+)2

r2
dt2 + `2

3

r2

(r2 − r2
+)2

dr2 + r2
(
dϕ− r2

+

r2 dt
)2

(3.105)

However, in this limit we obscure the most physically important and interesting region
of the spacetime. We expect a large class of black holes in a near-extremal limit to
develop a near-horizon AdS2 throat region [66, 91–93], and this is no exception. To
zoom in on this throat, we must scale the radius with the temperature, introducing
a new coordinate ρ via

r = 1
2
(r+ + r−) + 1

2
(r+ − r−)ρ, T ∼ r+ − r−

π`3

→ 0, (3.106)

and fix ρ as we go to low temperature. We then find the geometry

ds2 ∼ `2
3

4

[
−(ρ2 − 1)(2πT )2dt2 +

dρ2

(ρ2 − 1)

]
+ r2

+

(
dϕ− dt+ `3

r+
ρ πT dt

)2

, (3.107)

which is a fibration of a circle over AdS2 of radius `2 = 1
2
`3, as found in [90]. This

itself is a solution of pure three dimensional gravity, sometimes called the ‘self-dual
orbifold’ [101, 137], and is the BTZ analog of the near horizon extremal Kerr geometry
[138]. The metric has an enhanced isometry group SL(2,R) × U(1). In this near-
horizon region, the effects of finite temperature are still visible, and for temperatures
of order c−1 quantum effects become of leading importance, as we now briefly review.
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(A) nAdS2 × S1

(B) ext. BTZ

∂3

∂2

Figure 3.5: The near extremal BTZ geometry at fixed time, from the horizon (leftmost cir-
cle) to the asymptotically AdS3 boundary (rightmost circle ∂3). In region (A) the geometry
is approximately nearly AdS2 × S1 (described by JT gravity), and in (B) the geometry is
approximately extremal BTZ and the physics is classical. In the overlap between (A) and
(B), we introduce the boundary ∂2 (the blue line) where the Schwarzian mode lives.

If we ignore corrections to the AdS2 throat geometry, an infinite-dimensional sym-
metry emerges, of diffeomorphisms relating the boundary of AdS2 to the physical
time, which is spontaneously broken to SL(2,R) by the choice of AdS2 vacuum. We
therefore expect the low-energy physics to be described by a Goldstone mode param-
eterizing Diff(S1)/SL(2,R).

The simplest option would be for the theory of the Goldstone mode to preserve
the SL(2,R) and Diff(S1)/SL(2,R) symmetries, but no such theory exists. It was
shown in [139] it is not possible to have a quantum mechanical system with an exact
SL(2,R) symmetry. Accordingly, in [80] it is shown that gravity in AdS2 cannot
support finite energy excitations (see also [58]). We are therefore forced to include the
leading order explicit breaking of this symmetry; the resulting theory of the pseudo-
Goldstone is precisely the Schwarzian theory [60]. For low temperatures T ∼ c−1 (the
‘gap temperature’ of [15] at which the thermodynamic description of near extremal
black holes was thought to break down), this mode becomes strongly coupled, so
quantum effects are of leading importance.

This Schwarzian theory will give a good description of the physics in the region
where corrections to the AdS2 fibration (3.107) are small. This is true as long as
r−r+ � r+, corresponding to ρ� r+

`3T
, which is the region (A) illustrated in figure 3.5.

In another region, labeled by (B) in figure 3.5, quantum fluctuations are suppressed,
and we can accurately describe the physics classically, on a fixed background, which
is approximately extremal BTZ. This is the region ρ� 1, corresponding to r− r+ �
`3T . The two regions (A), where JT gravity is useful, and (B), where the geometry
is classical, have a parametrically large region of overlap. Somewhere in this region,
we can place an artificial boundary ∂2 of the AdS2 region. The physics inside this
boundary will be described by JT gravity, which induces a Schwarzian theory living
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on ∂2. This will be matched to the asymptotic boundary ∂3 of AdS3, where the dual
CFT lives, by the classical physics between ∂2 and ∂3.

3.3.2 A two-dimensional theory

To describe the dynamics in the AdS2 throat described above, we first analyze the
two-dimensional theory arising on dimensional reduction of three-dimensional gravity.

Dimensional reduction

Our ‘parent’ theory is simply three-dimensional Einstein-Hilbert gravity, with
action (here in Euclidean signature)

IEH = − 1

16πGN

[∫
M

d3x
√
g3

(
R3 + 2

`23

)
+ 2

∫
∂M

d2x
√
γ
(
κ3 − 1

`3

)]
, (3.108)

where the metric g3, scalar curvature R3 and boundary extrinsic curvature κ3 carry
subscripts to distinguish them from the two-dimensional quantities introduced presently.
The boundary conditions are those standard in AdS/CFT, and we have included the
Gibbons-Hawking term and counterterm (γ is the induced metric on ∂M) to render
the action finite.

We will study configurations of this theory with a U(1) symmetry, with Killing
field ∂ϕ. We use coordinates xa and ϕ, where a runs over two indices (which will be
identified with the time and radial coordinates in the BTZ configuration), and the
coordinate ϕ in the symmetry direction is periodically identified as ϕ ∼ ϕ+2π. With
this restriction, a general metric can be written in Kaluza-Klein form

g3 = g2 + Φ2(dϕ+ A)2, (3.109)

where the two-dimensional metric g2, gauge field one-form A and scalar dilaton Φ are
independent of ϕ, depending only on the two-dimensional coordinates xa.

With this ansatz, the three-dimensional quantities are written in terms of two-
dimensional fields (22 is the Laplacian corresponding to g2) as

R3 = R2 − 1
4
Φ2FabF

ab − 2Φ−122Φ
√
g3 = Φ

√
g2

d2x
√
γ = ΦdtEdϕ

κ3 = κ2 + Φ−1∂nΦ.

(3.110)

For the boundary terms, we also assume that the location of the cutoff ∂M is inde-
pendent of ϕ. The equation for the measure on the boundary d2x

√
γ is then simply

a definition of the proper time coordinate tE parameterizing the boundary of the
two-dimensional manifold. ∂n denotes the unit normal derivative at the boundary.

Inserting this in the three-dimensional action and integrating over ϕ, we find the
two-dimensional Einstein-Maxwell-dilaton action:

IEH = − 2π

16πG3

[∫
d2x
√
g2Φ
(
R2 − 1

4
Φ2FabF

ab + 2
`23

)
+ 2

∫
∂

dsΦ(κ2 − 1
`3

)

]
(3.111)
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Here, F = dA is the field strength of the Kaluza-Klein gauge field, and all indices
are contracted with g2. Note in particular that a total derivative term 22Φ exactly
cancels with the extra term in the Gibbons-Hawking boundary action. The three-
dimensional diffeomorphisms become two-dimensional diffeomorphisms, as well as
gauge transformations arising from xa-dependent translations in the ϕ direction, so
that A is a compact U(1) gauge field.

It remains only to discuss the boundary conditions of the reduced theory. The
three-dimensional boundary conditions are that the induced metric γ is proportional
(with holographic renormalisation parameter ε) to a chosen metric on which the CFT
dual lives; we may always choose a flat metric ds2 = dtEdϕ, so the boundary condition
is γ = ε−2dtEdϕ. Reducing to two dimensions, this implies that the dilaton is just
the holographic renormalization constant, Φ = ε−1. We can think of this condition
as defining the location of the cutoff surface, from which we subsequently determine
tE. The metric boundary condition then gives the period of tE in terms of the inverse
temperature β; the proper length of the boundary is L∂ = ε−1β.

The gauge field is a little more subtle. At first sight, it looks like we should impose
A = 0 on the boundary, but in fact we can only do this locally. The boundary value of
A acts as a background gauge field for the one-dimensional dual quantum mechanics,
which by gauge transformations we can always set to be trivial locally; however, this
is not true globally when the boundary is a circle, since our gauge transformation
must be single-valued around the circle. This leaves a single piece of gauge invariant
data, the holonomy θ =

∫
A. This is an angle, defined up to shifts by 2π, since

we can take gauge transformations that wind an integer number of times around
U(1) as we go round the circle. Tracing the holonomy back to its higher-dimensional
origin, we find that it is precisely the twist angle we encountered in section 3.1, from
the periodicity condition (tE, ϕ) ∼ (tE, ϕ + 2π) ∼ (tE + β, ϕ + θ). In summary,
the reduction of the standard AdS/CFT boundary conditions becomes the ‘Dirichlet
boundary conditions’,

Dirichlet BC: Φ|∂ = ε−1, L∂ = ε−1β,

∫
∂

A = θ , (3.112)

imposed on the asymptotically AdS3 boundary.

Integrating out the gauge field

We can simplify this theory still further, due to the simplicity of gauge fields in two
dimensions, in particular the absence of a propagating photon. Since our gauge field
is abelian, its action is quadratic, so we could simply integrate it out; however, we will
nonetheless find it convenient to first rewrite the Maxwell action in a first-order BF
formalism. This approach becomes extremely useful for near extremal black holes in
higher dimensions with non-abelian gauge fields [140][141], often used for the solution
of nonabelian gauge theories in two dimensions [142, 143].

IMaxwell =
1

32G3

∫
d2x
√
g2Φ3FabF

ab →
∫ [

iJF + 1
2
µJ 2

]
(3.113)

µ = 8G2
3x
√
g2Φ−3 (3.114)
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We have here introduced the auxiliary scalar field J , and the Maxwell theory now
manifestly depends on the metric and dilaton only through the measure two-form µ.
Integrating out the auxiliary field, we find that it is related to the field strength by

F = iJ µ, (3.115)

and using this to substitute for J we return to the original second-order Maxwell
action. Note that for real Euclidean geometries, A is real and J is imaginary, but
this is reversed for solutions with a continuation to real Lorentzian geometries.

Now, we may instead integrate out the gauge field. We find that it imposes the
constraint that J is a constant, which by examining the expansion of the gauge
field near the boundary we can identify as the charge in the dual CFT. The three-
dimensional origin of this charge is the ADM angular momentum J . The first term
in the action then is a total derivative, which becomes the holonomy on the boundary
via

∫
F = θ, so we find

J = J, IMaxwell = iJθ + 1
2
J2

∫
µ. (3.116)

The last step is to sum over spins J , which are forced to be integers by the periodicity
of θ. The result is a partition function of the Maxwell piece:

ZMaxwell =
∞∑

J=−∞

e−iJθ−
1
2
J2
∫
µ (3.117)

As an alternative way to see this result, we can quantize the theory ‘radially’, and fix a
static gauge; we find that the theory becomes the quantum mechanics of a free particle
propagating on a circle parameterized by the holonomy θ, and J labels the momentum
modes, which are eigenstates of the radial Hamiltonian with energy proportional to
J2. We then compute ZMaxwell by preparing the ground state with J = 0 at the origin,
evolving for Euclidean time proportional to

∫
µ, and evaluating the wavefunction at

fixed θ. See [97, 144] for more details, and the nonabelian generalization of a particle
propagating on a group manifold. By Poisson resummation, we can also express
the result (3.117) as a sum over winding numbers for the particle propagating on a
circle, in which different terms are related by θ → θ + 2nπ. Different values of the
index n correspond to different three-dimensional topologies, which are the same set
of SL(2,Z) black holes.

From this result, we see that each term in the sum over J has the very nice
property that it contributes a local effective action for the dilaton and metric. Since
the sum over terms does not retain this property, it is most natural to perform
the path integral not with fixed holonomy ‘Dirichlet’ boundary conditions, but with
fixed angular momentum ‘Neumann’ boundary conditions. This is just the change of
ensemble in the partition function we saw already in section 3.1, where we pick out
a Fourier mode of θ by an integral

∫
dθeiJθZMaxwell. From the bulk point of view, we

can describe this by adding a local boundary counterterm to the action,

I −→ I + iJ

∫
∂

θ (3.118)
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and using fixed J boundary conditions; this counterterm is precisely what is required
to make the variational problem with the new boundary conditions well-defined. In-
tegrating out the Maxwell field then gives a local effective action, giving rise to an
Einstein-dilaton theory:

IJ = − 2π

16πGN

[∫
d2x
√
g2

(
ΦR2 − U(Φ)

)
+ 2

∫
∂

dsΦ(κ2 − 1
`3

)

]
(3.119)

U(Φ) = 1
2
(8GNJ)2Φ−3 − 2

`23
Φ (3.120)

For calculations at fixed holonomy, corresponding to the grand canonical ensemble
with fixed chemical potential, we can now simply compute at fixed spin J with this
local effective action, before summing over J . Here we assumed the absence of matter
charged under the gauge field, which are inevitably present from Kaluza-Klein modes
breaking the U(1) symmetry. In the presence of such fields, the gauge field can play
a more nontrivial role.

The action in equation (3.119) was originally derived by Achucarro and Ortiz [90],
but we hope that our presentation clarifies the role of the U(1) gauge field and its
boundary condition (see also [91] and [67] for a different approach and [145] for a
recent more thorough analysis of JT gravity coupled to 2d Yang Mills theory).

The near-extremal limit and the Schwarzian theory

The description we have given so far did not require a near-extremal limit. Our
next step is to take such a limit, and extract the dynamics of the near-AdS2 region
from the action given in (3.119), which is in the class of models studied by [58].

We first look for solutions where the metric g2 is exactly AdS2. This requires Φ
to be a constant Φ = Φ0 at a zero of the potential U(Φ0) = 0, and the AdS2 radius
`2 is determined by U ′(Φ0):

U(Φ0) = 0 =⇒ Φ0 =
√

4GN`3J (3.121)

U ′(Φ0) = − 2

`2
2

=⇒ `2 = 1
2
`3 (3.122)

Reinstating the gauge field using

F = 8iJGNΦ−3d2x
√
g2 =

i√
`3

3JGN

volAdS2 , (3.123)

where volAdS2 is the volume form (area element) of AdS2, and Wick rotating to
Lorentzian signature, we find that this is precisely the ‘self-dual orbifold’ geometry
(3.107) we found in the near-horizon of near-extremal rotating BTZ.

To incorporate the leading order fluctuations away from AdS2, we expand the
dilaton around its extremal value, writing

Φ = Φ0 + 4GNφ, (3.124)
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and find the terms in the action linear in φ:

IJ = −S0χ+ IJT[g2, φ] + · · · (3.125)

χ =
1

4π

∫
d2x
√
g2R2 +

1

2π

∫
∂2

κ2, S0 = 2π
Φ0

4GN

= 2π

√
`3J

4GN

(3.126)

IJT = −1

2

∫
d2x
√
g2 φ

(
R2 +

2

`2
2

)
−
∫
∂2

φ(κ2 − 1
`2

) (3.127)

The leading order term is the two-dimensional Einstein-Hilbert action, which is topo-
logical, proportional to the Euler characteristic χ of spacetime. The next term is the
action for Jackiw-Teitelboim (JT) gravity. Subsequent terms are suppressed in the
limit φ� S0.

In writing the boundary terms here, we have implicitly introduced a new boundary,
denoted ∂2 (indicated by the blue line in figure 3.5), because the JT approximation
is only valid deep in the near-horizon region where Φ is close to Φ0. We choose to
place this new, artificial boundary ∂2 at a curve of constant dilaton φ = φ∂, where
1 � φ∂ � S0. We have introduced boundary terms in the JT action so that this
boundary condition is a good variational problem, with an intrinsic counterterm so
that the action has a finite limit when we take φ∂ →∞; these boundary terms are not
physical, so we must add equal and opposite terms to the action for the exterior of
the throat. For the metric, we would like a boundary condition that fixes the proper
length L2 of ∂2, but this is not freely chosen; rather, it is determined by solving
the theory classically outside the AdS2 throat region, between ∂2 and ∂3 where the
physical boundary conditions are imposed.

Solving the theory outside the throat

When we are far enough from the black hole so that φ is no longer much smaller
than S0, we must keep the full dilaton potential, but can solve the theory classically;
we can think of φ−1 as a running coupling, so quantum fluctuations are large in the
throat region where φ is of order one, but small outside the artificial boundary ∂2

where φ � 1. To good approximation, we can therefore simply solve the equations
of motion of the theory with appropriate boundary conditions at the boundary of
AdS3 ∂3, find the boundary conditions induced at ∂2, and finally evaluate the on-shell
action between ∂2 and ∂3.

The solution to our two-dimensional Einstein-dilaton theory (3.119) is simply the
dimensional reduction of the extremal BTZ metric (3.105). In the coordinates of
section 3.3.1, the dilaton is given by the radial coordinate Φ = r, with Φ0 = r+, and
the boundary ∂2 is in the region `3T � r − r+ � r+.

First, we can read off the boundary conditions at ∂2 from the metric (3.105), by
evaluating the proper length of the Euclidean time circle L2 =

r2−r2
+

r
β ∼ 2(r−r+)β at

fixed r = r+ + 4GNφ∂. The physical content of this boundary condition, independent
of our choice of φ∂, is the ratio of the length L2 to the boundary dilaton:

L2

φ∂
= 8GNβ =

24

c
`2β (3.128)
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Our second task is to evaluate the on-shell action between ∂2 and ∂3, where we
include boundary terms at ∂2 to cancel the terms we added to the JT action (3.127).
We can compute this from the extremal BTZ solution with ∂2 located at constant
radius, even though the configurations are perturbations of this classical solution.
Outside the throat, we can treat the deviations to linear order, since higher orders do
not contribute finite action. Because we are perturbing around a classical solution,
the linearized deviation of the bulk action is a total derivative. But the boundary
actions at ∂3 and at ∂2 (to cancel the boundary terms in the Euler characteristic
and JT actions) have been chosen to make the variational problem well-posed, which
means that the variation of the boundary action precisely cancels the variation of the
bulk action after integrating by parts.

The terms contributing finite action in the limit of interest are the bulk action
between ∂2 and ∂3, the boundary term at ∂3, and the boundary term at ∂2 from the
Euler characteristic topological action:

− 2π

16πGN

∫ ∞
∂2

d2x
√
g2

(
ΦR2 − U(Φ)

)
∼ 2Jβ − 8

√
`−1

3 GNJβφ∂ + · · ·

− 1

4GN

∫
∂3

dsΦ(κ2 − 1
`3

) ∼ −Jβ (3.129)

−S0

2π

∫
∂2

κ2 ∼ 8

√
`−1

3 GNJβφ∂

Adding these up, we find a total action from the outside of

Ioutside ∼ Jβ, (3.130)

which acts only to shift the zero of energy to the BTZ extremality bound. This is a
concrete example of a general result derived in Appendix A of [92].

The Schwarzian theory

In the previous section we argued that the dynamics of BTZ can be reduced to JT
gravity living in the throat. JT gravity is a very simple theory and can be completely
reduced to a boundary mode [58] with the Schwarzian action [59–61].

To see this, we can first integrate out the dilaton, which acts as a Lagrange
multiplier imposing R2 = − 2

`22
, so the metric is locally AdS2, which we can write in

Poincaré coordinates (u, z) as

ds2 = `2
2

du2 + dz2

z2
. (3.131)

The bulk action vanishes when the constraint R2 = − 2
`22

is imposed, leaving only
the boundary term. This nonetheless leaves nontrivial dynamics, arising from the
location of the boundary, which is determined by the reparameterization f relating the
coordinate u to the physical time tE, as u = tan π

β
f(tE). This is the pseudo-Goldstone

mode referred to earlier, taking values in the coset f ∈ Diff(S1)/SL(2,R), where the
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quotient removes physically equivalent configurations obtained by the isometries of
AdS2. The Euclidean time tE is proportional to the proper length along ∂2, up to a
factor of L2/β relating the coordinate periodicity β with the proper length L2 of the
curve. Since the length of the boundary is large L2 � `2, we can choose it to lie at
small z, and obtain the extrinsic curvature in that approximation [60]:

κ2 − `−1
2 ∼ `2

β2

L2
2

{
tan

π

β
f(tE), tE

}
(3.132)

Integrating this, we recover the Schwarzian action

IJT = −C
∫ β

0

dtE

{
tan

π

β
f(tE), tE

}
, (3.133)

with coefficient C given by

C = `2β
φ∂
L2

=
c

24
, (3.134)

where we finally made use of (3.128), and the result is independent of the arbitrary
choice of L2 determining the location of the cutoff surface ∂2.

When JT gravity is coupled to free matter the boundary correlators are simply
given by Schwarzian expectation values of the Schwarzian bilocal as shown in [60].
This expectation value is the quantity computed in [84]. The origin of the free matter
approximation will be explained below in the next section.

Finally, we note that, while we have obtained JT gravity from a near-extremal
limit of pure three dimensional gravity, this is not quite the end of the story once
we consider nonperturbative corrections (though these will not be relevant for this
work). Additional topologies, beyond those visible in pure JT gravity considered in
[102], become relevant, and are particularly important at very low temperature. This
is the subject of work in progress [146].

3.3.3 Matter, correlation functions and Kaluza-Klein modes

To study correlation functions in the BTZ background for comparison to the
results of section 3.2, we now consider the effect of adding matter.

The classical limit

First, we study the classical limit, where the temperature is high enough (β � c)
that backreaction is unimportant, so we are simply studying correlation functions in
a fixed BTZ background. Since this geometry is a quotient of pure AdS3, we can
use the method of images to construct the two-point function of a free field from
the corresponding result on the plane, which is determined by conformal symmetry.
In the lightcone coordinates (z, z̄), where we may choose 0 < z̄ < 2π, the retarded
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correlator GR (for z < 0, required so that GR is nonzero) is given by

GR(z, z̄) =− 2 sin(2πh)

b−z/2πc∑
n=0

(
βL
π

sinh

(
π

βL
(−z − 2nπ)

))−2h

×
(
βR
π

sinh

(
π

βR
(z̄ + 2nπ)

))−2h̄
(3.135)

The image sum over n runs over the finite number of images lying in the future
lightcone z̄ > 0, z < 0 of the origin. The sin(2πh) appearing in the prefactor does
not break the left-right symmetry because the spin ` = h̄− h is an integer, so it may
also be written as sin(2πh̄) or (−1)` sin(π∆).

For small βR (and h̄ > 0), the n > 0 terms in the image sum are exponentially
suppressed relative to the n = 0 term. This dominant term precisely reproduces the
retarded correlator (3.73), where we evaluate the Schwarzian correlator in the semi-
classical limit (3.68). As already mentioned, the result (3.74), which would usually
dominate for z̄ close to 2π, is zero in the semiclassical limit.

If we were to extract the Fourier modes of this result, we would of course repro-
duce the partial waves (3.78), which are given by a normalization factor times the
Schwarzian correlation function.

Dimensional reduction of matter

To explain the results in a more general context, we perform a dimensional reduc-
tion of matter fields. Suppose our three-dimensional theory contains a massive scalar
field χ, with action

Iχ = −1

2

∫
d3x
√
g3

[
gµν3 ∂µχ∂νχ+ V (χ)

]
(3.136)

for some potential V (χ) = m2χ2 + (interactions) (where we have ignored boundary
terms). This is dual to a CFT operator O with dimensions h = h̄ = ∆

2
, with

m2`2
3 = ∆(∆− 2).
Given our Kaluza-Klein form (3.109) for the three dimensional metric g3, we can

write the inverse metric in terms of two-dimensional fields as follows:

gµν3 =

(
gab2 −gab2 Ab
−gab2 Ab Φ−2 + Aag

ab
2 Ab

)
(3.137)

We write the matter field χ in terms of two-dimensional Kaluza-Klein modes, mir-
roring the mode decomposition (3.75) of the operator O:

χ(t, r, ϕ) =
∑
l

e−ilϕχl(t, r) (3.138)
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The three-dimensional action for χ then becomes an action for the complex scalars
χl (with χ−l = χ∗l ), which have charge l under the Kaluza-Klein gauge field A:

Iχ = −1

2

∫
d2x
√
g2 2πΦ

∑
l

(
gab2 DaχlDbχ−l + (m2 + l2Φ−2)χlχ−l

)
+ interactions


(3.139)

The covariant derivative is Da = ∂a −Aa∂ϕ = ∂a + ilAa, and the interactions involve
products of three or more χl fields with total charge adding to zero.

Deep in the AdS2 throat, we can replace the dilaton Φ by the constant value
Φ0 = r+, so the Kaluza-Klein modes have mass m2

l = m2 + l2Φ−2
0 in the AdS2 region.

For Φ0 of order `3, these shifts of the mass are important for finite values of l, as are
interactions if the field χ was originally strongly interacting in AdS3. However, in
the limit of very large black holes βR � 1 studied in section 3.2, so Φ0 is the largest
parameter, we have many simplifications. For any fixed l, the effective mass m2

l of
χl in the AdS2 region becomes close to the original mass m2. The charge of such
Kaluza-Klein modes is also negligible, because the electric field (3.123) in the AdS2

region is small at very large J , of order (JGN)−1/2 in AdS units. Most importantly,
the action is multiplied by an overall factor Φ0, which suppresses all interactions. For
example, a cubic vertex λχ3 in the potential is suppressed by a factor Φ

−1/2
0 λ in the

AdS2 region. The same result should also hold for interactions with Kaluza-Klein
modes of the graviton, so their corrections are suppressed by a factor of GN

Φ0
, or βR

c
in

the CFT variables of section 3.2.
As a result, to leading order in the large Φ0 limit, we can treat the Kaluza-Klein

modes as independent free fields of equal mass, and neglect their charge. Note that
this is entirely different from the usual situations in Kaluza-Klein compactifications,
where we can ignore the KK modes because they are heavy; here, they are instead
light, but decoupled.

The parametric suppression of interactions found from this gravitational calcula-
tions reproduces the corrections to partial wave correlation functions found in section
3.2. First, the corrections from graviton Kaluza-Klein modes arise from the slight
smearing of the Schwarzian time when we integrate over ϕ, as explained at the end
of section 3.2.4. Our CFT calculations give us a specific prediction of the full depen-
dence on t and ϕ, which should arise from these metric KK modes. For higher-point
functions, we also have corrections from interactions of bulk fields. As explained more
fully in section 3.2.5, these are important only in the limited regime of kinematics
when four operators (identical in pairs) approach within βR in the z̄ coordinate, so
are suppressed by a factor of βR times the coupling when we integrate over angles to
compute partial waves. This is the same parametric suppression deduced from the
gravitational argument.

In conclusion, to describe matter in the AdS2 region, to leading order in the limit
of interest we can use correlation functions of free matter coupled to JT gravity. The
only ingredient left is to compute the effective ‘IR’ conformal dimension ∆S in this
region, determining the dimension of the dual operator appearing in the Schwarzian
correlation function. For this, we only need to know the relationship `3 = 2`2 between
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three- and two-dimensional AdS lengths:

m2`2
3 = ∆(∆− 2), m2`2

2 = ∆S(∆S − 1) =⇒ ∆S =
∆

2
= h (3.140)

We have written ∆S in terms of the left-moving dimension h, which is the result we
expect to generalise if we were to consider matter with spin.

Interpolating boundary conditions from AdS3 to AdS2

The dimensional reduction demonstrates that we can treat matter in the AdS2

throat as free fields coupled to JT gravity. To compare with the 2d CFT results,
we now need to propagate these correlators from the boundary of the throat to the
boundary of the AdS3 spacetime. We can neglect all interactions (including back-
reaction) in this region, so it suffices to study matter wave equations on a fixed
background.

From the usual AdS/CFT dictionary, CFT2 correlators can be read off from the
ratio between normalizable and non-normalizable modes of the field at the asymptotic
boundary ∂3 (at least for the correlators we consider with pairs of identical operators).
The Schwarzian correlators are similarly related to the modes at the boundary of the
AdS2 region ∂2. The wave equation between ∂3 and ∂2 relates these modes, providing
a map from the Schwarzian correlators to the CFT2 correlators. Here, we will solve
this mapping between ∂2 and ∂3 in frequency space, and show that for the relevant
frequencies (ω of order c−1) the map is trivial, giving a rescaling independent of ω.
This means that the Schwarzian correlators are directly imprinted on the asymptotic
boundary of AdS3. Physically, this occurs because the time to propagate from the
edge of the AdS2 throat to the asymptotic boundary is only of order `3, which is very
short compared to the characteristic timescale c of the interactions in the deep AdS2

region.
We consider a scalar field χ of mass m2, and write ∆± for the two roots of

∆(∆−2) = `2
3m

2, so ∆+ is the dimension of the dual CFT operator, and ∆− = d−∆+.
The asymptotic expansion of χ (in frequency space, so χ is a function of the radial
coordinate r times e−iωt−i`ϕ) is

χ|∂AdS3 = A`(ω)

(
r

`3

)−∆−

+B`(ω)

(
r

`3

)−∆+

+ · · · , (3.141)

and we can read off the correlation function from the ratio of B and A coefficients
(in more detail, this could be achieved by deriving an effective action, as done in a
similar context in [66]). For example, for a two-point function we have

G`(ω) =
π

∆− 1

B`(ω)

A`(ω)
, (3.142)

where the prefactor comes from applying the normalization standard in CFT2, rather
than the ‘natural’ normalization in AdS, which comes from taking AdS propagators
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with unit strength delta-function source to the boundary. Similarly, in the asymp-
totically AdS2 region the field will behave as

χ|∂AdS2 = Ã`(ω)

(
4

`3

(r − r+)

)−∆−
2

+ B̃`(ω)

(
4

`3

(r − r+)

)−∆+
2

+ · · · , (3.143)

where we have chosen the radial coordinate to give a canonical AdS2 metric in the
region r+ − r− � r − r+ � r. This means that for two-point functions we have

GAdS2
` (ω) =

√
πΓ
(

∆−1
2

)
Γ
(

∆
2

) B̃`(ω)

Ã`(ω)
. (3.144)

By solving the wave equation in the fixed BTZ background, we can express A,B in
terms of Ã, B̃. The details are given in Appendix H, and we find the trivial rescaling

Ã`(ω) =
( 2

π
βR

)1−∆
2
A`(ω), B̃`(ω) =

( 2

π
βR

)∆
2
B`(ω) (3.145)

This neither mixes normalizable and non-normalizable modes, nor adds any new
frequency dependence. The result is a simple ω- and `-independent rescaling factor
between AdS3 and AdS2 correlators.

Putting this together with the ratio of the normalizing factors in (3.142) and
(3.144), we find

G`(ω) ∼
(

2π

βR

)∆−1 Γ
(

∆
2

)2

Γ(∆)
2−∆GAdS2

` (ω). (3.146)

This reproduces precisely the normalizing factor we found in (3.78), excepting the
2−∆, which arises from the factor of 2 between the ‘lightcone’ time −z used to define
the Schwarzian correlators and the asymptotic time t used here.

Copyright © Animik Ghosh, 2020.
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Chapter 4
A Three Dimensional view of arbitrary q SYK Model

The SYK hamiltonian (4.1) involves a q fermion interaction with a random cou-
pling which has a gaussian probability distribution with width J . Averaging over the
couplings gives rise to a theory with 2q Fermi interactions with coupling J2 and an
emergent O(N) symmetry, where N is the number of fermions, making this similar
to other vector models. Like other vector models, this is most easily solved at large
N by making a change of variables to bilocal fields [147]. For such O(N) models it
was proposed in [18] that these bilocal fields in fact provide a bulk construction of the
dual higher spin theory [16], with the pair of coordinates in the bilocal combining to
provide the coordinates of the emergent AdS spacetime. In d ≥ 2, the proposal of [18]
was implemented, with additional nonlocal transformations on external legs [19–21]
providing a map between the bilocal and conventional Vasiliev higher spin fields in
AdS4. For the d = 1 case (as in the SYK model), the simplest identification of the
center of mass coordinate and the relative coordinate of the two points of the bilocal
indeed provides coordinates of a Poincare patch of Lorentzian AdS2. In Section 2.1.1,
we developed the collective field theory of the bilocals, providing a transparent way
of obtaining both the bilocal propagator and interactions as well as the Schwarzian
theory of the low energy mode.

The precise bulk dual of the SYK model and its q fermion coupling generalization
are still not well understood. It has been conjectured in [59–61, 148] that the gravity
sector of this model is the Jackiw-Teitelboim model [56, 149] of dilaton-gravity with
a negative cosmological constant, studied in [58], while [62] provides strong evidence
that it is actually Liouville theory. (See also [64, 79, 150, 151]).

The spectrum of the SYK model is highly nontrivial. The matter sector of these
theories contains an infinite tower of particles [12, 28, 29]. This is clear from the
quadratic action for the bilocal fluctuations and the resulting bilocal propagator.
The kinetic term in the action contains all powers of the AdS2 laplacian which gives
rise to a rather complicated form of the residues at the poles of the propagator. The
couplings of these particles are likewise very complicated, as is clear from the higher
point functions computed in [32, 33].

In [63], it was shown for the q = 4 model that the exact spectrum and the bilocal
propagator follows from a three dimensional model. In this three dimensional real-
ization (where the additional third dimension is used to parametrize the spectrum as
in the Kaluza Klein scheme and Higher Spin theories), a scalar field with a conven-
tional kinetic energy term is defined on AdS2× I, where I = S1/Z2 is a finite interval
with a suitable size. The mass of the scalar field is at the Breitenlohner-Freedman
bound [152] of AdS2. The scalar field satisfies Dirichlet boundary conditions at the
ends and feels an external delta function potential at the middle of the interval.
However, as we will see below, the odd parity modes do not play any role in our
construction. This means that one can consider half of the interval with Dirichlet
condition at one end, and a nontrivial boundary condition determining the derivative
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of the field at the other end. The background can be thought of as coming from the
near-horizon geometry of an extremal charged black hole which reduces the gravity
sector to Jackiw-Teitelboim model with the metric in the third direction becoming
the dilaton of the latter model [60]. We discussed this in detail for the BTZ black hole
in Chapter 3. The strong coupling limit of the SYK model corresponds to a trivial
metric in the third direction, while at finite coupling this acquires a dependence on
the AdS2 spatial coordinate. At strong coupling a Horava-Witten compactification
then leads to a spectrum of masses in AdS2 which is in exact agreement with the
SYK spectrum. More significantly, a non-standard propagator with the end points at
the location of the delta function exactly reproduces the SYK bilocal propagator, if
the two coordinates in the Poincare patch AdS2 are identified with the center of mass
and the relative coordinate of the two points of the bilocal. The nontrivial factors
which appear in the SYK propagator from residues at the poles now appear as the
values of the wave function at the center of I.

The strong coupling propagator is divergent due to the divergent contribution
of a mode which can be identified with a reparametrization invariant zero mode
in the SYK model. At finite coupling the zero mode is lifted and gives rise to an
“enhanced contribution” proportional to J . In the three dimensional model [63], the
proposal of [60, 61] was adopted and it was shown that to order 1/J , the poles of
the propagator shift in a manner consistent with the explicit results in [12] and the
enhanced propagator was reproduced as well for the q = 4 case.

In this chapter, we show that such a three dimensional picture holds for gener-
alizations of the SYK model with arbitrary q. We show that the three dimensional
metric on which the scalar lives is now conformal to AdS2 × I. The scalar field is
subject to a nontrivial potential in addition to a delta function at the center of the
interval. This reproduces the spectrum exactly. Furthermore, the three dimensional
propagator whose points lie at the center of I reproduce the arbitrary q SYK prop-
agator up to a factor which depends only on q. We also discuss the large q limit in
this picture. In the SYK model the spectrum becomes evenly spaced in this limit.
However, only the zero mode contributes to the propagator since the residues at the
other poles vanish. In the three dimensional picture, the different modes appear as
Kaluza Klein (KK) modes. However, in the large q limit we find that the normalized
wave function at the center of the interval is nonzero for only one of these modes, in
a way consistent with the SYK result.

The chapter is organized as follows: In Section 4.1 we discuss how to derive the
SYK spectrum for arbitrary q within the setup of bilocal theory. In Section 4.2 we
describe our three dimensional model. Section 4.3 contains the comparison of the
propagator of the three dimensional model with the SYK bilocal propagator. In
Section 4.4 we comment on the large q limit. Section 4.5 contains some concluding
remarks.

85



4.1 q Fermion SYK Model

The model is defined by a hamiltonian, with any even q,

H = (i)
q
2

∑
1≤i1<i2<···<iq≤N

Ji1i2···iq χi1 χi2 · · ·χiq , (4.1)

where χi are Majorana fermions, which satisfy {χi, χj} = δij. The random coupling
has a gaussian distribution with

〈J2
i1i2···iq〉 =

J2(q − 1)!

N q−1
(4.2)

One way to perform the averaging is to use the replica trick. One does not expect
a spin glass state in this model [27] so that we can restrict to the replica diagonal
subspace [29]. At large N this model is efficiently solved by rewriting the theory in
terms of replica diagonal bilocal collective fields [29, 30].

Ψ(τ1, τ2) ≡ 1

N

N∑
i=1

χi(τ1)χi(τ2) , (4.3)

where we have suppressed the replica index. The corresponding path-integral is

Z =

∫ ∏
τ1,τ2

DΨ(τ1, τ2) µ(Ψ) e−Scol[Ψ] , (4.4)

where Scol is the collective action:

Scol[Ψ] =
N

2

∫
dτ
[
∂τΨ(τ, τ ′)

]
τ ′=τ

+
N

2
Tr log Ψ − J2N

2q

∫
dτ1dτ2 Ψq(τ1, τ2) . (4.5)

Here the second term comes from a Jacobian factor due to the change of path-integral
variable, and the trace is taken over the bi-local time. One also has an appropriate
order O(N0) measure µ. This action being of order N gives a systematic G = 1/N
expansion, while the measure µ found as in [76] begins to contribute at one-loop level
(in 1/N). As is well known, in the IR, i.e. at strong coupling the kinetic term can
be ignored. There is now an emergent reparametrization invariance. In this limit the
saddle point equation which follow from Scol[Ψ] has the solution

Ψ(0)(τ1, τ2) =
b

|τ12|
2
q

sgn(τ12) bq =
tan(π

q
)

J2π

(
1

2
− 1

q

)
(4.6)

where we defined τij ≡ τi − τj.
In the following it will be useful to use the center of mass and relative coordi-

nates defined by (2.106). The conformal transformations on τ1, τ2 then give rise to
transformations on t, z which are identical to the isometries of AdS2 with a metric

ds2 =
1

z2
(−dt2 + dz2)
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Note that this could very well be dS2 since it has the same isometry group. Fluctu-
ations around this critical IR solution, Ψ0(t, z) defined by

Ψ(τ1, τ2) = Ψ(0)(τ1, τ2) +

√
2

N
η(t, z) (4.7)

can be expanded as

η(t, z) =

∫
dω

2π

∫
dν

Nν

Φ̃ν,ωuν,ω(t, z) (4.8)

where
uν,ω(t, z) = sgn(z) eiωt Zν(|ωz|) (4.9)

Zν are a complete set of modes which diagonalizes the quadratic kernel [28],

Zν(x) = Jν(x) + ξν J−ν(x) , ξν =
tan(πν/2) + 1

tan(πν/2)− 1
. (4.10)

Their normalization and completeness relations are given by∫ ∞
0

dx

x
Z∗ν (x)Zν′(x) = Nν δ(ν − ν ′)∫

dν

Nν

Z∗ν (|x|)Zν(|x′|) = x δ(x− x′) (4.11)

where the normalization factor Nν is

Nν =

{
(2ν)−1 for ν = 3

2
+ 2n

2ν−1 sin πν for ν = ir ,
(4.12)

In all of the above expressions the integral over ν is a shorthand for an integral over
the imaginary axis and a sum over the discrete values ν = 3

2
+ 2n. The necessity of

both the continuous and the discrete spectrum follows from SL(2,R) representation
theory [153]. The quadratic part of the fluctuation action then becomes

S(2) ∝
∫
dν

∫
dω Φ̃?

ν,ω

[
k̃c(ν, q)− 1

]
Φ̃ν,ω (4.13)

where
k̃c(ν, q) =

1

kc(h, q)
, h =

1

2
+ ν (4.14)

and kc(h, q) is the eigenvalue of the bilocal kernel derived in [12],

kc(h, q) = −(q − 1)
Γ
(

3
2
− 1

q

)
Γ
(

1− 1
q

)
Γ
(
h
2

+ 1
q

)
Γ
(

1
2

+ 1
q
− h

2

)
Γ
(

1
2

+ 1
q

)
Γ
(

1
q

)
Γ
(

3
2
− 1

q
− h

2

)
Γ
(

1− 1
q

+ h
2

) (4.15)

The spectrum is then given by solving kc(h, q) = 1. Note that pm = 3
2
is an exact

solution for all q.
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The bilocal propagator in (t, z) space can be now derived following the same steps
as in [29, 63] by substituting the expansion (4.8) and using the (ν, ω) space propagator
which follows from (4.13),

G(t, z; t′, z′) ∼ − 1

J
|zz′| 12

∑
m

∫ ∞
−∞

dω

2π
e−iω(t−t′)

∫
dν

Nν

Z∗ν (|ωz|)Zν(|ωz′|)
ν2 − p2

m

(2pm)R(pm)

(4.16)
where pm denote the solutions of the spectral equation kc(pm + 1

2
, q) = 1. The factor

R(pm) is the residue of the propagator at the poles ν = pm,

R(pm) =
1[

∂k̃c(ν,q)
∂ν

]
ν=pm

(4.17)

and
∂k̃c(ν, q)

∂ν
= Nh

[
H−1+h

2
+ 1
q

+H 1
2
−h

2
− 1
q
−Hh

2
− 1
q
−H− 1

2
−h

2
+ 1
q

]
(4.18)

where Hn denotes the Harmonic number, and

Nh =

(
sin πh+ sin 2π

q

)
Γ
(

2
q

)
Γ
(

2− h− 2
q

)
Γ
(

1 + h− 2
q

)
πqΓ

(
3− 2

q

) (4.19)

The symbol
∫
dν is as usual a shorthand notation for an integral over the imaginary

axis and a sum over discrete values ν = 3
2

+ 2n. As in the q = 4 case, when one
performs the ν integral over the imaginary axis there are two sets of poles, the ones
at ν = ±pm and at ν = 3

2
+2n. The contribution from those latter poles exactly cancel

the contribution from the discrete values , and one is finally left with an expression

G(t, z; t′, z′) ∼ − 1

J
|zz′| 12

∑
m

∫ ∞
−∞

dω

2π
e−iω(t−t′)Z−pm(|ω|z>)Jpm(|ω|z<)

Npm

Rpm (4.20)

where z<(z>) is the smaller (larger) of z, z′.
As expected, the expression (4.20) is divergent since this is a strong coupling

propagator. This comes from the mode at pm = 3
2
which is a solution for all q. At

this value Z− 3
2
diverges because ξ− 3

2
diverges. For finite J this mode is corrected by

a term which is O(1/J) and this leads to a contribution to the propagator which is
O(J) compared to the contribution from the other solutions of kc(pm + 1/2, q) = 1.

4.2 The Three Dimensional Model

We will now write down a model which reproduces the above spectrum exactly
and the above propagator up to a function of q. The model is that of a single scalar
field Φ with an action

1

2

∫
dtdzdx

√−g
[
−gµν∂µΦ∂νΦ− V (x)Φ2

]
(4.21)
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where the background metric is given by

ds2 = |x| 4q−1

[
−dt2 + dz2

z2
+

dx2

4|x|(1− |x|)

]
(4.22)

and the direction x lies in the interval −1 < x < 1. The spacetime is then conformal
to AdS2 × S1/Z2. The potential which appears in (4.21) is given by

V (x) =
1

|x| 4q−1

[
4

(
1

q
− 1

4

)2

+m2
0 +

2V

J(x)

(
1− 2

q

)
δ(x)

]
(4.23)

where V is a constant to be determined below and

J(x) =
|x| 2q−1

2
√

1− |x|
(4.24)

The action can be now rewritten as

S =
1

2

∫
dtdzdx J(x)

[
(∂tΦ)2 − (∂zΦ)2 − m2

0

z2
Φ2

− 4

z2

{
|x|(1− |x|)(∂xΦ)2 +

(
1

q
− 1

4

)2

Φ2 +

(
1− 2

q

)
V

2J(x)
δ(x)Φ2

}] (4.25)

We will impose Dirichlet boundary conditions at x = ±1,

Φ(t, z,±1) = 0 (4.26)

while the delta function discontinuity in the potential determines the discontinuity
at x = 0 to be

lim
ε→0

[
|x|2/q

√
1− |x|∂xΦ

]ε
−ε

=

(
1− 2

q

)
V Φ(t, z, 0) (4.27)

In the following we will be interested in fields which are even under x → −x. For
such fields (4.27) implies[

x2/q∂xΦ
]
x=0

=

(
1− 2

q

)
V

2
Φ(t, z, 0) (4.28)

Once we impose this we can restrict to 0 < x < 1 and forget about the delta function.
This is what we will do in the rest of the chapter.

Performing an integration by parts and ignoring the boundary term the action
becomes

S =
1

2

∫ ∞
−∞

dt

∫ ∞
0

dz

∫ 1

0

dx J(x) ΦD0Φ (4.29)

where

D0 = −∂2
t +∂2

z−
m2

0

z2
+

4

z2

x(1− x)∂2
x +

[
2

q
− x

(
1

2
+

2

q

)]
∂x −

(
1

q
− 1

4

)2
 (4.30)

This operator is self adjoint with the measure J(x).

89



4.2.1 The Spectrum

To diagonalize D0 we first find solve the eigenvalue problem for the operator inside
the square bracket in (4.30) in the domain 0 < x < 1,x(1− x)∂2

x +

[
2

q
− x

(
1

2
+

2

q

)]
∂x −

(
1

q
− 1

4

)2
φk(x) = −k

2

4
φk(x) (4.31)

The general solution of this equation is

φk(x) = A 2F1(a, b; c, x) + x1−cB 2F1(a− c+ 1, b− c+ 1; 2− c;x) (4.32)

where 2F1 denotes the usual hypergeometric function and

a =
1

q
− 1

4
− k

2
b =

1

q
− 1

4
+
k

2
c =

2

q
(4.33)

Imposing the boundary condition (4.28) gives

B =
V

2
A (4.34)

while imposing (4.26) gives

A2F1(a, b; c, 1) +B2F1(a− c+ 1, b− c+ 1; 2− c; 1) = 0 (4.35)

Using

2F1(a, b; c, 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) (4.36)

and combining (4.35) and (4.34) we get

Γ
(

5
4
− 1

q
− k

2

)
Γ
(

2
q

)
Γ
(

5
4
− 1

q
+ k

2

)
Γ
(

2− 2
q

)
Γ
(

1
4

+ 1
q
− k

2

)
Γ
(

1
4

+ 1
q

+ k
2

) = −V
2

(4.37)

where we have used the values of a, b, c in (4.33). Remarkably if we choose

V = 2(q − 1)
Γ
(

3
2
− 1

q

)
Γ
(

1− 1
q

)
Γ
(

2
q

)
Γ
(

1
2

+ 1
q

)
Γ
(

2− 2
q

)
Γ
(

1
q

) (4.38)

and define h = k + 1/2 the condition (4.37) becomes

kc(h, q) = 1 (4.39)

where kc(h, q) is precisely the SYK spectrum for arbitrary q given by (4.15). The
significant point of course is that V given by (4.38) depends only on q.
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4.2.2 The two point function

Using the eigenfunctions in the previous subsection we can now expand the three
dimensional field in terms of a complete basis as follows

Φ(t, z, x) =

∫
dkdνdω

Nν

e−iωt|z|1/2Zν(|ωz|)ϕk(x) χ(ω, ν, k) (4.40)

where the combinations of Bessel functions Zν have been defined in (4.10) and ϕk(x)
are

ϕk(x) =2 F1(a, b; c, x) + x1−cV

2
2F1(a− c+ 1, b− c+ 1; 2− c;x) (4.41)

where a, b, c are given in (4.33) and V is given in (4.38). The functions ϕk(x) are
orthogonal with the measure factor J(x)∫ 1

0

dxJ(x)ϕk(x)ϕk′(x) = C1(k)δk,k′ (4.42)

The action now becomes

S =
1

2

∫
dkdνdω

Nν

C1(k)(ν2 − ν2
0)χ(ω, ν, k)χ(−ω, ν, k) (4.43)

where
ν2

0 = k2 +m2
0 +

1

4
(4.44)

Let us now choose
m2

0 = −1/4 (4.45)

so that one finally has ν0 = k. The two point function of χ(ωνk) is then given by

〈χ(ω, ν, k)χ(−ω, ν, k)〉 =
Nν

C1(k)(ν2 − k2)
(4.46)

The three dimensional propagator in position space is then given by

〈Φ(t, z, x)Φ(t′, z′, x′)〉 = |zz′| 12
∑
m

C(pm, x, x
′)

∫
dω

2π
e−iω(t−t′)

∫
dν

Nν

Z?
ν (|ωz|)Zν(|ωz′|)

ν2 − p2
m

(4.47)
where

C(pm, x, x
′) =

ϕpm(x)ϕpm(x′)

C1(pm)
(4.48)

This can be regarded as a sum of AdS2 propagators. However it is important to note
that these are non-standard propagators.
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4.3 Comparison of the three dimensional and SYK propagators

We now show that the propagator (4.47) evaluated at x = x′ = 0 agrees with the
SYK propagator (4.16) up to an overall factor which depends on q. The values of
pm over which the two expressions need to be summed have been already seen to be
identical, so we need to compare the coefficients which appear. To compare (4.16)
and (4.47) we need to compute the quantity

C(pm, 0, 0)

2pmR(pm)
(4.49)

and show that this is independent of pm. Here

C1(pm) =

∫ 1

0

dxJ(x)ϕpm(x)ϕpm(x) (4.50)

We have not been able to evaluate this integral analytically, but have performed this
numerically to high precision. In Table 4.1 we tabulate the values of the relevant
quantities for various values of q and pm which solve the spectrum equation, and
compare them with the corresponding factors which appear in (4.16) For a given value
of q the value of the ratio (4.49) is independent of pm upto 13 decimal places. This
shows that this ratio is only a function of q which we denote by f(q). These results
show that for any given q, the non-standard propagator of the three dimensional
model with the two points at x = 0 is proportional to the SYK propagator. The data
also shows that f(q) decreases with q.

As for q = 4, the propagator (4.47) is actually divergent from the contribution of
the pm = 3

2
mode, as expected from the SYK propagator at infinite coupling. We

expect that a modification of the three dimensional background would reproduce the
enhanced propagator of this mode similarly to the q = 4 case [63].

4.4 The large q limit

In the q → ∞ limit, pm = 3
2
remains a solution, while the other solutions of the

spectral equation (4.15) become very simple,

pm = 2m+
1

2
+

2

q

2m2 +m+ 1

2m2 +m− 1
+ · · · m = 1, 2, · · · (4.51)

To calculate the contribution to these poles to the SYK propagator consider the
residue R(pm) in (4.17). In a 1/q expansion we find that for pm = 3

2

R

(
3

2

)
=

2

3
− 1

q

(
5

2
+
π2

3

)
+O(1/q2) (4.52)

while for the other solutions we get

R(pm)→ 1

q

4(2m2 +m)

(2m2 +m− 1)2
+O(1/q2) (4.53)
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Table 4.1: Comparison of Factors Appearing in the three dimensional and SYK Prop-
agators

q pm C(pm, 0, 0) 2pmR(pm) C(pm,0,0)
2pmR(pm)

6 1.5 0.415724 1.09987 0.377976
3.07763 0.566693 1.49928 0.377976
4.95427 0.474406 1.25512 0.377976
6.90849 0.409177 1.08255 0.377976
8.88613 0.366967 0.970874 0.377976

8 1.5 0.344227 1.27788 0.269374
2.95416 0.357211 1.32608 0.269374
4.835 0.241026 0.894764 0.269374
6.79849 0.188249 0.698838 0.269374
8.78225 0.159144 0.590793 0.269374

12 1.5 0.256089 1.47882 0.173171
2.81505 0.175464 1.01324 0.173171
4.71763 0.0925242 0.534294 0.173171
6.69343 0.0660067 0.381165 0.173171
8.68356 0.0529405 0.305712 0.173171

20 1.5 0.169337 1.66312 0.101819
2.69405 0.0678495 0.666375 0.101819
4.62734 0.0287883 0.28274 0.101819
6.61348 0.0192516 0.189077 0.101819
8.60817 0.0148617 0.145963 0.101819

50 1.5 0.0745898 1.85438 0.0402235
2.57914 0.0115317 0.286691 0.0402235
4.54971 0.00396415 0.0985529 0.0402235
6.54453 0.00251532 0.0625335 0.0402235

Thus only the pole at pm = 3
2
has a non-vanishing residue in the large q limit.

Of course the strong coupling propagator is infinite from contribution of the pm = 3
2

mode. However a finite J correction would lead to a nonzero contribution proportional
to J [12].

In the three dimensional picture this happens because of the different large q
behavior of the wave function at x = 0 for pm = 3

2
compared to the other values of

pm. For large enough q we can use pm = 2m + 1 as a good approximation to the
solution of the spectral equation. In Table 4.2 we tabulate the values of the square of
the wave function at x = x′ = 0, i.e. C(pm, 0, 0), the value of the quantity 2pmR(pm)
which appears in the SYK propagator and the quantity qf(q) where

f(q) =
C(pm, 0, 0)

2pmR(pm)
(4.54)

for large values of q, for different values of m. We have checked that for the values
of q which we have used, pm = 2m + 1 is indeed a very good approximation to the
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exact solution of kc(h, q) = 1. We then tabulate this quantity for given m for various
values of q. The results show that qf(q) is a constant to very high accuracy. Using
(4.52) and (4.53) we then conclude that the wave function at x = 0 for pm 6= 3

2
modes

vanishes as 1
q2 , while that for the pm = 3

2
this vanishes as 1

q
.

Table 4.2: Large q behavior of the wave function at x = x′ = 0 for different values of
pm

pm = 2m+ 1/2 q C1(pm, 0, 0) 2pmR(pm) qC(pm,0,0)
2pmR(pm)

3
2

500 125.908 1.98465 2.00093
600 150.908 1.9872 2.00077
800 200.908 1.99039 2.00058
1000 250.908 1.9923 2.00046

5/2 500 74442.2 0. 003356 2.00093
600 107330 0. 002794 2.00077
800 191107 0. 002092 2.00058
1000 298883 0. 00167 2.00046

9/2 500 137225 0. 00182 2.00093
600 198038 0. 00151 2.00077
800 352937 0.001133 2.00058
1000 552280 0. 000905 2.00046

21/2 500 321462 0.00077 2.00093
600 464316 0.000645 2.00077
800 828595 0.000484 2.00058
1000 1.279× 106 0.000385 2.00084

41/2 500 625414 0. 000399 2.00093
600 904123 0. 000331 2.00077
800 1.615× 106 0. 000247 2.00082
1000 2.52× 106 0. 000197 2.00065

A plot of f(q) for pm = 3
2
is given in Figure (4.1). This behavior provides an

understanding of the decoupling of the other modes in the tower at large q. Note that
the other modes are still present, though they do not contribute to the propagator. In
fact the large q limit is subtle. If we perform a 1/q expansion of the collective action
for the bilocal field, (4.5), using the parametrization used in [12] one ends up with
a Liouville theory in the (t, z) space for all values of the suitably rescaled coupling
[154].The Dyson-Schwinger equation in the q →∞ limit is already known to be akin
to the Liouville equation [12]. Here we are making a stronger statement about the
bilocal field itself, not just about its saddle point value. This has a conventional kinetic
term - so that one seems to get a single two dimensional field, the corresponding pole
of the propagator being precisely the pm = 3

2
mode. The other modes are simply

absent in this treatment, and seem to be recovered due to nonlocal 1/q interactions.
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Figure 4.1: Plot of log f(q) for pm = 3
2
. For large q the data fits well with the function

f(q) ∼ 2
q

4.5 Conclusions

It is remarkable that the complicated tower of states which appear in the SYK
model can be understood as a KK tower for arbitrary q. We want to emphasize
that while reproducing the spectrum is already quite interesting, the agreement of
the propagator with the bilocal propagator is highly nontrivial. This gives strong
evidence that a three dimensional spacetime is an essential ingredient of the full dual
to the SYK model.

Unlike the q = 4 case we do not yet have a natural understanding of the three
dimensional background at arbitrary q in terms of a near horizon geometry of a black
hole. We hope to be able to achieve this understanding. That will provide a natural
way to understand the finite J correction and in particular the enhanced propagator
of the pm = 3

2
mode.

In this chapter we have not addressed the question of interactions of the bilocals.
These have been considered in [32, 33] and are expected to follow from the cubic
and higher order terms in the collective field theory of [29]. It will be interesting
to see what kind of interactions in the three dimensional model reproduce these
and investigate their locality (or lack thereof) properties. In [33], a different three
dimensional background is shown to reproduce the large q spectrum. An important
aspect of the three dimensional picture is that while the propagator can be written
as a sum of AdS2 propagators, the latter are non-standard propagators. While they
do vanish at the boundary, they have different boundary conditions at the Poincare
horizon. A second unusual aspect is that the space of bilocals always gives rise to
Lorentzian AdS2 even if we start out with an euclidean theory. The issues raised
above require a better understanding of the bulk theory. We will address them in the
next chapter.

Copyright © Animik Ghosh, 2020.
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Chapter 5
Space Time in the SYK model

Detailed investigations of the Sachdev-Ye-Kitaev (SYK) model [11, 11–13, 27–34]
have given an interesting, highly nontrivial example of the AdS/CFT duality and a
potential framework for quantum black holes.

For all these theories, bilocal observables, as proposed in [18] in the context of
O(N) vector model/higher spin duality [16] provide a route to bulk construction of
the dual theory with emergent spacetime [19–21]. For the SYK model the IR and the
near-IR limit are solvable, with evaluations [11, 12, 30] of the invariant Schwarzian
action representing the boundary gravity degrees of freedom possibly related to JT
type [56, 149] dual theory [58–61, 148] (See also [62, 64, 65, 79, 84, 151, 155–158]).

From symmetry considerations, the center of mass and relative coordinates of the
two points in the bilocal fields can be interpreted as the coordinates of the Poincare
patch of AdS2 or dS2 [12, 28, 29] as in the simplest identification proposed in [18].
Indeed, the action of fluctuations of the bilocal is a non-polynomial function of the
AdS2 Laplacian, indicating that the theory contains an infinite tower of fields. The
bilocal propagator can be expressed as a sum over poles, where each term in the
sum is a non-standard AdS2 propagator with nontrivial residues [29]. Remarkably,
this tower can be realized as a Kaluza-Klein tower coming from an additional third
dimension [25, 63]. This reproduces the spectrum as well as the propagator, including
the enhanced propagator of [12]. The kinetic terms are now standard: the nontrivial
residues at the poles in the SYK propagator now appear as nontrivial wave functions.
However, one should not expect that higher point functions [32] can be reproduced
by local interactions in this three dimensional picture [33]. The usefulness of an
additional dimension also appears in the description of Higher Spin theories [21].

Despite all these successes, the actual emergent spacetime of the SYK model (or of
any other similar SYK-type models) is not yet understood. There are several reasons
why the AdS2 or dS2 on which the bilocals live should not be considered to be the bulk
spacetime in the usual sense of AdS/CFT. Consider for concreteness the Euclidean
partition function. Changing variables to bilocal fields one reaches a solution (the
propagator and quadratic fluctuations) which features a Lorentzian signature, coming
from the fact that the two points of the bilocal become coordinates of a Lorentizan
signature. On the other hand, we expect that the dual theory should live in Euclidean
spacetime EAdS2 [12]. One issue which is detrimental to a potential Lorentzian
identification associated with this data comes from the factors of “ i ” which inevitably
appears in a Lorentzian dual theory, but absent in the SYK propagator. Secondly, the
radial part of the AdS2 wave functions which appear in the SYK propagator (whether
or not we write this in the three dimensional language) are not the usual normalizable
AdS wave functions, but satisfy different boundary conditions. These unusual wave
functions are, however, required since these are the ones which diagonalize the SYK
kernel [28, 29]. This suggests that they might be better thought of as dS2 wave
functions [12]
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In this chapter, we provide a key step towards a resolution of both issues. We will
show that a nonlocal transform relates the bilocal field to a field whose underlying
dynamics is in Euclidean AdS2. We will arrive at this transform following the same
principles underlying the derivation of the corresponding transform for the O(N)
model in d = 3 [19, 20]. The idea is to find a canonical transformation in the four
dimensional phase space of the two points in the bilocal such that the symmetries
of EAdS2 are realized correctly. This suggets a simple transformation kernel for the
momentum space fields. It turns out that the corresponding position space kernel is
a H2 Radon transform. Radon transforms have appeared (explicitly or implicitly)
in discussions of AdS/CFT, most notably in [159–161] where this is used to go from
the bulk to the kinematic space of the boundary field theory on a time slice. Indeed
the space on which the bilocals live is a version of kinematic space. However, unlike
these papers we are not working on a time slice in the bulk - rather our transform
takes unequal Euclidean time fields on EAdS2 to bilocals. Though mathematically
identical, our transform is conceptually somewhat different. The necessity of a Radon
transform in this context has been in fact mentioned in [12].

This transformation takes the particular combinations of Bessel functions which
appear in the SYK propagators to the modified Bessel functions which appear in the
standard EAdS2 propagator. In addition we find extra leg factors which resemble the
leg pole factors of the c = 1 matrix model . In that case these were necessary to
relate the collective field [162] to the tachyon field of the dual 2D string theory and
reproduce the S-Matrix [163] (for a recent improved understanding see [164]). The
leg poles represent discrete states of the 2D string and analogously it is tempting to
suggest that the leg pole factors also arise from similar bulk degrees of freedom, which
remain to be identified. An explicit correspondence between the SYK propagator and
the propagator of macroscopic loop operators [163] that we establish supports this
interpretation.

This chapter is organized as follows: In section 5.1, we review relevant aspects
of the bilocal solution of the model and illuminate the dS2 nature of the wave func-
tions. In Section 5.2, we introduce the Leg transformations and their meaning. In
Section 5.3, Leg factors and the Propagator is discussed. Section 5.4 is reserved for
conclusions.

5.1 Question of Dual Spacetime

In this section, we clarify the question regarding the signature of the SYK dual
gravity theory. The Sachdev-Ye-Kitaev model [11] is a quantum mechanical many
body system with all-to-all interactions on fermionic N sites (N � 1), described by
the Hamiltonian

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (5.1)

where χi are Majorana fermions, which satisfy {χi, χj} = δij. The coupling constant
Jijkl are random with a Gaussian distribution with width J . The generalization to
analogous q-point interacting model is straightforward [11, 12]. After the disorder
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averaging for the random coupling Jijkl, there is only one effective coupling J in
the effective action. The model is usually treated by replica method. One does not
expect a spin glass state in this model at least in the leading order of 1/N [27] so that
we can restrict to the replica diagonal subspace [29]. The Large N theory is simply
represented through a (replica diagonal) bi-local collective field:

Ψ(τ1, τ2) ≡ 1

N

N∑
i=1

χi(τ1)χi(τ2) , (5.2)

where we have suppressed the replica index. The corresponding path-integral is

Z =

∫ ∏
τ1,τ2

DΨ(τ1, τ2) µ[Ψ] e−Scol[Ψ] , (5.3)

where Scol is the collective action:

Scol[Ψ] =
N

2

∫
dt
[
∂tΨ(t, t′)

]
τ ′=τ

+
N

2
Tr log Ψ − J2N

2q

∫
dτ1dτ2 Ψq(τ1, τ2) . (5.4)

Here the trace term comes from a Jacobian factor due to the change of path-integral
variable, and the trace is taken over the bi-local time. One also has an appropriate
order O(N0) measure µ[Ψ]. There is another formulation with two bi-local fields: the
fundamental fermion propagator G(τ12) and the self energy Σ(τ12). This is equivalent
to the above formulation after elimination of Σ(τ12). In this chapter, we focus on this
Euclidean time SYK model.

Fluctuations around the critical IR saddle point background Ψ(0)(τ1, τ2) can be
studied by expanding the bilocal field as [29]

Ψ(τ1, τ2) = Ψ(0)(τ1, τ2) +
1√
N

Ψ(τ1, τ2) , (5.5)

where Ψ(0) is the IR large N saddle-point solution and Ψ is the fluctuation. At the
quadratic level, we have a quadratic kernel K. The diagonalization of this quadratic
kernel is done by the eigenfunctions uν,ω and the eigenvalue g̃(ν) as∫

dτ ′1dτ
′
2K(τ1, τ2; τ ′1, τ

′
2)uν,ω(τ ′1, τ

′
2) = g̃(ν)uν,ω(τ1, τ2) . (5.6)

The quadratic kernel K is in fact a function of the bilocal SL(2,R) Casimir

C1+2 =
(
D̂1 + D̂2

)2 − 1

2

(
P̂1 + P̂2

)(
K̂1 + K̂2

)
− 1

2

(
K̂1 + K̂2

)(
P̂1 + P̂2

)
= − (τ1 − τ2)2 ∂1∂2 , (5.7)

with the SL(2,R) generators D̂ = −τ∂τ , P̂ = ∂τ , and K̂ = τ 2∂τ . The common
eigenfunctions of the bilocal SL(2,R) Casimir (5.7) are, due to the properties of the
conformal block, given by the three-point function of the form

|τ12|2∆
〈
Oh(τ0)O∆(τ1)O∆(τ2)

〉
=

sgn(τ12)

|τ10|h|τ20|h|τ12|−h
, (5.8)
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where we defined τij ≡ τi− τj. Since the SYK quadratic kernel K is a function of this
bilocal SL(2,R) Casimir, this three-point function is also the eigenfunction of the
SYK quadratic kernel. For the investigation of dual gravity theory, it is more useful
to Fourier transform from τ0 to ω by〈
Õh(ω)O∆(τ1)O∆(τ2)

〉
≡
∫
dτ0 e

iωτ0
〈
Oh(τ0)O∆(τ1)O∆(τ2)

〉
= −√π cot(πν) Γ(1

2
− ν) |ω|ν sgn(τ12)

|τ12|2∆− 1
2

eiω(
τ1+τ2

2
)Zν(|ωτ12

2
|) ,

(5.9)

where we used h = ν + 1/2 and defined

Zν(x) = Jν(x) + ξν J−ν(x) , ξν =
tan(πν/2) + 1

tan(πν/2)− 1
. (5.10)

The τ0 integral in the Fourier transform can be performed by decomposing the inte-
gration region into three pieces. The complete set of ν can be understood from the
representation theory of the conformal group, as discussed recently in [153]. We have
the discrete modes ν = 2n+ 3

2
with (n = 0, 1, 2, · · · ) and the continuous modes ν = ir

with (0 < r <∞). Adjusting the normalization, we define our eigenfunctions by

uν,ω(t, ẑ) ≡ sgn(ẑ) ẑ
1
2 eiωt Zν(|ωẑ|) , (5.11)

which have normalization condition∫ ∞
−∞

dt

2π

∫ ∞
0

dẑ

ẑ2
u∗ν,ω(t, ẑ)uν′,ω′(t, ẑ) = Nν δ(ν − ν ′)δ(ω − ω′) , (5.12)

with

Nν =

{
(2ν)−1 for ν = 3

2
+ 2n

2ν−1 sin πν for ν = ir .
(5.13)

Here we used the change of the coordinates by

t ≡ τ1 + τ2

2
, ẑ ≡ τ1 − τ2

2
. (5.14)

The bilocal SL(2,R) Casimir can be seen to take the form of a Laplacian of Lorentzian
two dimensional Anti de-Sitter or de-Sitter space (in this two dimensional case they
are characterized by the same isometry group SO(2,1) or SO(1,2)). Under the canon-
ical identification with AdS

ds2 =
−dt2 + dẑ2

ẑ2
, (5.15)

it equals
C1+2 = z2(−∂2

t + ∂2
ẑ ) . (5.16)
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Consequently the SYK eigenfunctions should be compared with known AdS2 or dS2

basis wave functions.
Note that the Bessel function Zν (5.10) are not the standard normalizable modes

used in quantization of scalar fields in AdS2: in particular they have rather different
boundary conditions at the Poincare horizon. Another important property of this
basis is that when viewed as a Schrodinger problem as in [28] it has a set of bound
states, in addition to the scattering states. This will be discussed in detail in Section
5.2 (see the left picture of Figure 5.1).

This leads one to try an identification with de-Sitter basis functions As we will
see, the bilocal SYK wave functions can be realized as a particular α-vacuum of
Lorentzian dS2 with a choice of α = iπh = iπ(ν + 1/2). This is seen as follows. We
consider the dS2 background with a metric given by

ds2 =
−dη2 + dt2

η2
. (5.17)

This can be obtained by the coordinate change (5.14) by replacing z → η. The
Euclidean (Bunch-Davies [165]) wave function of a massive scalar field is given by

φEω (η) eiωt , (5.18)

with

φEω (η) = η
1
2 H(2)

ν (|ω|η) , ν =

√
1

4
−m2 , (5.19)

whereH(2)
ν is the Hankel function of the second kind. Since the t-dependence is always

like eiωt, in the following we will focus only on the η dependence. The α-vacuum wave
function is defined by Bogoliubov transformation from this Euclidean wave function
[166, 167] as

φαω(η) ≡ Nα

[
φEω (η) + eαφE∗ω (η)

]
= Nα η

1
2

[
H(2)
ν (|ω|η) + eαH(1)

ν (|ω|η)
]
, (5.20)

where
Nα =

1√
1− eα+α∗

, (5.21)

and α is a complex parameter. Now let us consider a possibility of α-vacuum with

α = iπ

(
ν +

1

2

)
= iπh . (5.22)

With this choice of α, using the definition of the Hankel functions

H(1)
ν (x) =

J−ν(x)− e−iπνJν(x)

i sin(πν)
, H(2)

ν (x) =
J−ν(x)− eiπνJν(x)

−i sin(πν)
, (5.23)
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one can rewrite the α-vacuum wave function as

φαω(η) =

(
2 η

1
2

1 + ξν e−iπν

)
Zν(|ω|η) , (5.24)

where Zν is defined in Eq.(5.10). After excluding the η-independent part of the wave
function, we can write the η-dependent part as

φαω(η) = η
1
2 Zν(|ω|η) . (5.25)

This wave function agrees with the eigenfunction of the SYK quadratic kernel (5.11)
after the identifications of η = (τ1 − τ2)/2 and t = (τ1 + τ2)/2.

Due to this observation, one might attempt to claim that the dual gravity theory
of the SYK model is given by Lorentzian dS2 space. However, there is a critical issue
in this claim. Apart from the Lorentzian signature in this metric (5.17), we still have
a discrepancy in the exponent of the partition function (5.3) with a factor of “i”.
Namely, if the dual gravity theory (higher spin gravity or string theory) is Lorentzian
dS2, it must have

Z =

∫
DhnDΦm exp

[
i
(
Sgrav[h,Φ] + Smatter[h,Φ]

)]
, (5.26)

where we collectively denote the graviton and other “higher spin” gauge fields by hn
and the dilaton and other matter fields by Φm. Hence the agreement of the SYK
bilocal propagator

DSYK(τ1, τ2; τ ′1, τ
′
2) =

〈
Ψ(τ1, τ2)Ψ(τ ′1, τ

′
2)
〉

=
∞∑
m=0

Gpm(τ1, τ2; τ ′1, τ
′
2) , (5.27)

with a dS2 propagator

DdS(η, t; η′, t′) =
1

i

∞∑
m=0

〈
Φm(η, t)Φm(η′, t)

〉
=

1

i

∞∑
m=0

Gm(η, t; η′, t′) , (5.28)

is only up to the factor i. Namely, even if we have a complete agreement of Gpm with
Gm by identifying the coordinates by (5.14) (with a replacement of z → η), there
is a problem with the signature (i.e. the discrepancy of the factor i). For higher
point functions, the same i-problem proceeds due to the i factors coming from the
propagator and each vertex.

To conclude, for the Euclidean SYK model under consideration, one needs a dual
gravity theory to be in the hyperbolic plane H2 (i.e. Euclidean AdS2) for the matching
of n-point functions. We will set the basis for the EAdS2 realization in the next
section.
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5.2 Transformations and Leg Factors

As we have commented in the beginning of this chapter, in order to identify an
Euclidean bulk dual description (rather than a Lorentzian), we will need a transfor-
mation which brings the SYK eigenfunctions (as given on bilocal spacetime) to the
standard eigenfunctions of the EAdS2 Laplacian. We will arrive at this transforma-
tion by considering the bilocal map described in [19, 21] for higher dimensional case.
In our current d = 1 case, the map is even simpler. It will be seen to take the form
of a H2 Radon transform (a related suggestion was made in [12]). The need for a
nonlocal transform on external legs appears to be characteristic of collective theory
(which as a rule contains a minimal set of physical degrees of freedom). The first
appearance of Radon type transforms in identifying holographic spacetime was seen
in the c = 1 / D = 2 string correspondence. The transformation introduced in [168]
from the collective to a two dimensional (black hole) spacetime took the form

T (u, v) =

∫ ∞
−∞

dt

∫ ∞
0

dx δ

(
ue−t + vet

2
− x2

)
γ(i∂t)φ(t, x) , (5.29)

where T (u, v) is the tachyon field in the Kruskal coordinates representing the target
spacetime and φ(t, x) is related to the eigenvalue density field. Related maps from the
collective field or fermions to fields in a black hole background have been proposed
in [169] which are also possibly related to Radon transforms. This is seen precisely
in the form of what is known as the regular Radon transform.

Let us describe procedure formulated in [19, 21] for constructing the bilocal to
spacetime map. The method is based on construction of canonical transformations
in phase space : bilocal (τ1, p1), (τ2, p2) and EAdS2 (τ, pτ ), (z, pz). We consider the
Poincare coordinates for the Euclidean AdS2 spacetime

ds2 =
dτ 2 + dz2

z2
. (5.30)

One way to obtain the bilocal map is to equate the SL(2,R) generators.

Ĵ1+2 = ĴEAdS . (5.31)

The one-dimensional bilocal conformal generators are

D̂1+2 = τ1 p1 + τ2 p2 , P̂1+2 = −p1 − p2 , K̂1+2 = − τ 2
1 p1 − τ 2

2 p2 , (5.32)

and the EAdS2 generators are given by

D̂EAdS = τ pτ +z pz , P̂EAdS = −pτ , K̂EAdS = (z2−τ 2) pτ − 2τz pz , (5.33)

where we defined p1 ≡ −∂τ1 , p2 ≡ −∂τ2 , pτ ≡ −∂τ , pz ≡ −∂z. Equating the genera-
tors, we can determine the map. From the P̂ generators, we have pτ = p1 +p2. Using
this result for the other generators, we get two equations to solve:

z pz = (τ1 − τ)p1 + (τ2 − τ)p2

− z2 pτ = (τ1 − τ)2p1 + (τ2 − τ)2p2 . (5.34)

102



These are solved by

τ =
τ1 p1 − τ2 p2

p1 − p2

, pτ = p1 + p2 , z2 = −
(
τ1 − τ2

p1 − p2

)2

p1p2 , p2
z = −4p1p2 .

(5.35)
One can see that the canonical commutators are preserved under the transform (at
least classically, i.e. in terms of the Poisson bracket). Namely, [τ, pτ ] = [z, pz] = 1 and
others vanish provided that [ti, pj] = δij, with (i, j = 1, 2). Hence, we conclude the
map is canonical transformation, which is also a point transformation in momentum
space. For the kernel which implements this momentum space correspondence we can
take

R(p1, p2; pτ , pz) =
δ(pτ − (p1 + p2))√

p2
z + 4p1p2

. (5.36)

Through Fourier transforming all momenta to corresponding coordinates, the associ-
ated coordinate space kernel becomes

R(τ1, τ2; τ, z) = δ(η2 − (τ − t)2 − z2) . (5.37)

Here, we have ignored possible issues related to the range of variables. With an
additional multiplicative factor of of η this is known as the Circular Radon transform
(5.40) which has a simple relationship to Radon transform on H2.

There is another construction of the Radon transform which is used in [159–161]
and is based on integration over geodesics. For the Euclidean AdS2 spacetime (5.30),
a geodesic is given by a semicircle

(τ − τ0)2 + z2 =
1

E2
, (5.38)

where τ = τ0 is the center of the semicircle and 1/E is the radius. The Radon
transform of a function of the bulk coordinates f(τ, z) is a function of the parameters
of a geodesic (E, τ0) defined by[

Rf
]
(E, τ0) ≡

∫
γ

ds f(τ, z(τ)) , (5.39)

where the integral is over the geodesic. From the geodesic equation (5.38), this
transform is explicitly written as

[
Rf
]
(η, t) = 2η

∫ t+η

t−η
dτ

∫ ∞
0

dz

z
δ
(
η2 − (τ − t)2 − z2

)
f (τ, z) , (5.40)

where we have used the identifications 1/E = η and τ0 = t; the resulting function
[Rf ](η, t) is understood as a function on the Lorentzian dS2 (5.17).

We will now explicitly evaluate the Radon transformation of (unit-normalized)
EAdS2 wave functions (see Appendix I)

φEAdS2
(τ, z) = αν z

1
2 e−iωτ Kν(|ω|z) (5.41)
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From the above formula of the Radon transform (5.40), we get[
RφEAdS2

]
(η, t) = αν η

∫ t+η

t−η

dτ

η2 − (τ − t)2
(η2−(τ−t)2)

1
4 e−iωτ Kν(|ω|

√
η2 − (τ − t)2) .

(5.42)
Now shifting the integral variable τ → τ+t and using the symmetry of the integrand,
one can rewrite this integral as

[
RφEAdS2

]
(η, t) = 2αν η e

−iωt
∫ η

0

dτ

(
1

η2 − τ 2

) 3
4

cos(ωτ)Kν(|ω|
√
η2 − τ 2) .

(5.43)
Further rewriting the cos(ωτ) in terms of J−1/2(ωτ) and changing the integration
variable to τ = η sin θ, we find[
RφEAdS2

]
(η, t) =

√
π3

2

αν |ω|
1
2η

sin(πν)
e−iωt

×
∫ π

2

0

dθ (tan θ)
1
2 J− 1

2
(|ω|η sin θ)

[
I−ν(|ω|η cos θ) − Iν(|ω|η cos θ)

]
,

(5.44)

where we decomposed the modified Bessel function of the second kind into two first
kinds. This θ integral is indeed given in Eq.(4) of 12 · 11 of [170], which leads to

[
RφEAdS2

]
(η, t) = −2i

√
π

Γ(1
4

+ ν
2
)

Γ(3
4

+ ν
2
)
βν η

1
2 e−iωt

[
Jν(|ω|η) +

tan πν
2

+ 1

tan πν
2
− 1

J−ν(|ω|η)

]
,

(5.45)
where we also used Eq.(I.9). The inside of the square bracket precisely agrees with
the particular combination of Bessel functions, Zν(|ω|η) function defined in Eq.(5.10).

When νn = 3
2

+ 2n the second term in this square bracket vanishes. As will be
clear soon, we need the radon transform of the modified Bessel function Iνn with.
This can be likewise evaluated to yield

R[α′νnz
1/2e−ikτIνn(|k|z)] = (2νnη)1/2e−ikxJνn(|k|η) (5.46)

where

α′νn =

(
2νn
π

) 1
2 Γ(3

4
+ νn

2
)

Γ(1
4

+ νn
2

)
(5.47)

The extra ν-dependent factor in (5.45) which appears in front of the unit-normalized
dS2 wave function described in Appendix I should be understood as a leg factor (5.49).
As we will see later, this is analogous to what happens in the c = 1 matrix model
[163, 171].

In summary, we have the Radon transform

Rφ(EAdS2)

ω,ν (τ, z) = L(ν)ψ
(dS2)

ω,ν (η, t) , (5.48)
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y

VdS2

y

VEAdS2

Figure 5.1: The de Sitter potential VdS2 has bound states and scattering states. On
the other hand, the Euclidean AdS potential VAdS2 has only scattering modes.

where φEAdS2
and ψdS2

are the unit-normlized wave functions defined in Eq.(I.1) and
Eq.(I.6), respectively, while the leg factor is defined by

L(ν) ≡ (Leg Factor) = −2i
√
π

Γ(1
4

+ ν
2
)

Γ(3
4

+ ν
2
)
. (5.49)

The inverse transformations are

R−1 ψ
(dS2)

ω,ν (η, t) = L−1(ν)φ
(EAdS2)

ω,ν (τ, z) . (5.50)

for ν 6= 3
2

+ 2n, while for ν = 3
2

+ 2n we have instead

R−1 ψ
(dS2)

ω,νn (η, t) = α′νnz
1/2e−ikτIνn(|k|z) (5.51)

Under the Radon transform R, the Laplacian of Lorentzian dS2 is transformed
into that of Euclidean AdS2:

2dS2 ψdS2(η, t) = −R2EAdS2 φEAdS2(τ, z) , (5.52)

with
2ds2 = η2(−∂2

η + ∂2
t ) , 2EAdS2 = z2(∂2

τ + ∂2
z ) . (5.53)

Here, ψdS2 = RφEAdS2 . This role of the Radon transform was first suggested in
citeBalasubramanian:2002zh.

In the rest of this section, we will show that the Radon transformation flips the
sign of the potential appearing in the equivalent Schrodinger problem as formulated in
[28]. We start from the Radon transformation (5.52). Expanding the wave functions
by

ψdS2(η, t) = η
1
2

∑
ω

e−iωt ψ̃dS2(η; k) ,

φEAdS2(τ, z) = z
1
2

∑
ω

e−iωτ φ̃EAdS2(ω; z) , (5.54)
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we have corresponding Bessel equations for ψ̃dS2 and φ̃EAdS2 . By changing the coor-
dinates by y ≡ log(ωη) or y ≡ log(ωz), these Bessel equations are reduced to the
Schrodinger equations as (

− ∂2
y − ey

)
ψ̃dS2 = −ν2 ψ̃dS2 ,(

− ∂2
y + ey

)
φ̃EAdS2 = −ν2 φ̃EAdS2 . (5.55)

Therefore, the Radon transform flips the sign of the corresponding Schrodinger po-
tential (see FIG. 5.1). The de Sitter potential VdS2 = −ey has bound states as well
as scattering states. On the other hand, the Euclidean AdS potential VAdS2 = ey has
only scattering modes. The difference is accounted by the leg pole factors.

5.3 Green’s Functions and Leg Factors

In this section, we start from the SYK bilocal propagator [29, 63]. Applying the
inverse Radon transformation (5.50), we will show that the resulting propagator can
be written in terms of EAdS2 wave-functions additional momentum space leg-factors.

The SYK bilocal propagator is given by

G(τ1, τ2; τ ′1, τ
′
2) ∝ J−1

∫ ∞
−∞

dω
∑
ν

u∗ν,ω(τ1, τ2)uν,ω(τ ′1, τ
′
2)

Nν [g̃(ν)− 1]
, (5.56)

where uν,ω are the eigenfunctions defined in Eq.(5.11). Here the summation over ν is
a short-hand notation denotes the discrete mode sum and the continuous mode sum.
with the identification η = (τ1 − τ2)/2 and t = (τ1 + τ2)/2 the propagator is written
in terms of the dS2 wave functions as

G(η, t; η′, t′) = 2πJ−1

∫ ∞
−∞

dω

{
∞∑
n=0

4 sinπνn
g̃(νn)− 1

ψ
∗
ω,νn(η, t)ψω,νn(η′, t′)

+

∫ ∞
0

dr
ψ
∗
ω,ν(η, t)ψω,ν(η

′, t′)

g̃(ν)− 1

∣∣∣∣
ν=ir

}
, (5.57)

where νn = 2n+ 3
2
. Next, we use the inverse Radon transform (5.50) to bring the dS

wave functions into the EAdS wave functions.

G(τ, z; τ ′, z′) = 2πJ−1

∫ ∞
−∞

dω

{
∞∑
n=0

4 sinπνn
g̃(νn)− 1

|L−1(νn)|2 φ ∗ω,νn(τ, z)φω,νn(τ ′, z′)

+

∫ ∞
0

dr |L−1(ν)|2 φ
∗
ω,ν(τ, z)φω,ν(τ

′, z′)

g̃(ν)− 1

∣∣∣∣
ν=ir

}
.

(5.58)

Here we have denoted φω,νn(τ, z) as

φω,νn(τ, z) = α′νnz
1/2e−ikτIνn(|k|z) (5.59)
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We will directly evaluate the continuous mode summation for the full Green’s
function with the leg factor contribution in the integrand. For clarity let us first
formally feature the leg factors as Bessel differential operators,as

G(τ, z; τ ′, z′) = 2πJ−1
∣∣L−1(p̂EAdS2)

∣∣2 ∫ ∞
−∞

dω

{
∞∑
n=0

4 sinπνn
g̃(νn)− 1

φ
∗
ω,νn(τ, z)φω,νn(τ ′, z′)

+

∫ ∞
0

dr
φ
∗
ω,ν(τ, z)φω,ν(τ

′, z′)

g̃(ν)− 1

∣∣∣∣
ν=ir

}
.

(5.60)

with

p̂AdS2 ≡
√

2EAdS2 +
1

4
, (5.61)

where the Laplacian of EAdS2 is defined in Eq.(5.53) and the factors are now acting
on standard propagators EAdS2 . The above expression for the leg factor differential
operators is slightly ambiguous. What we mean is that one of the leg factor differential
operator is acting on (τ, z) and the other leg factor operator is acting on (τ ′, z′).

We now proceed with our off-shell expression of the propagator (5.58) and evalu-
ation of the continuous mode summation for the Green’s function with leg factors in
the integrand:

Icont ≡
∫ ∞

0

dr |L−1(ν)|2 φ
∗
ω,ν(τ, z)φω,ν(τ

′, z′)

g̃(ν)− 1

∣∣∣∣
ν=ir

. (5.62)

We evaluate this integral as a contour integral as before. We note that since the
modified Bessel function Kν is regular on the entire ν-complex plane, we have two
sets of poles: (i). ν = pm, with (m = 0, 1, 2, · · · ). (ii). ν = νn = 2n + 3

2
, with

(n = 0, 1, 2, · · · ) where Γ(3
4
− ν

2
) = ∞. After evaluating the residues at these poles,

we find the integral as

Icont =
|zz′| 12
4π2

e−iω(τ−τ ′)

{
∞∑
m=0

Γ(3
4

+ pm
2

)Γ(3
4
− pm

2
)

Γ(1
4

+ pm
2

)Γ(1
4
− pm

2
)

pm
g̃′(pm)

Kpm(|ω|z>)Ipm(|ω|z<)

+
2

π

∞∑
n=0

Γ2(3
4

+ νn
2

)

Γ2(1
4

+ νn
2

)

(
νn

g̃(νn)− 1

)
Kνn(|ω|z>)Iνn(|ω|z<)

}
.

(5.63)

The second line in the RHS looks similar to the discrete mode contribution to the
propagator (5.58). However, these two contributions do not cancel each other. Hence
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there are two types of the contributions to the final result as

G(τ, z; τ ′, z′)

=
|zz′| 12
2πJ

∫ ∞
−∞

dω e−iω(τ−τ ′)

{
∞∑
m=0

Γ(3
4

+ pm
2

)Γ(3
4
− pm

2
)

Γ(1
4

+ pm
2

)Γ(1
4
− pm

2
)

pm
g̃′(pm)

Kpm(|ω|z>)Ipm(|ω|z<)

+
∞∑
n=0

Γ2(3
4

+ νn
2

)

Γ2(1
4

+ νn
2

)

(
νn

g̃(νn)− 1

)
Iνn(|ω|z<)

[
2Iνn(|ω|z>)− I−νn(|ω|z>)

]}
.

(5.64)

Of course, here we still have the zero mode (p0 = 3
2
) problem coming from Γ(3

4
− p0

2
) =

∞. In this expression, the Bessel function part of the first contribution in the RHS
is the standard form for EAdS propagator, while the extra factor coming from the
leg-factors can be possibly understood as a contribution from the naively pure gauge
degrees of freedom as in the c = 1 model (c.f. [171]), in which case the second
contribution in RHS represents the contribution from these modes as in [163].

In [25, 63], we presented at three dimensional picture of the SYK theory, based on
the fact that the nontrivial spectrum predicted by the model, which are solutions of
g̃(pm) = 1 with (m = 0, 1, 2, · · · ) can be reproduced through Kaluza-Klein mechanism
in one higher dimension. This picture is more natural in the AdS2 interpretation of
the bilocal space Now, we will point out a similarity between the three dimensional
picture of the SYK model [25, 63] and the c = 1 Liouville theory (2D string theory)
[162, 163, 171]. In the three dimensional description we have a scalar field Φ

S3D =
1

2

∫
dx3
√−g

[
− gµν∂µΦ∂νΦ−m2

0Φ2 − V (y)Φ2
]
, (5.65)

with a background metric

ds2 =
−dt2 + dẑ2

ẑ2
+

(
1 +

a

ẑ

)2

dy2 , (5.66)

where a ∼ J−1, but here we only consider the leading in 1/J contribution and suppress
the subleading contributions coming from the yy-component of the metric. The detail
of the potential V (y) depends on q and for that readers should refer to [25, 63]. The
propagator for the scalar field in this background in the leading order of 1/J is given
by

G(0)(ẑ, t, y; ẑ′, t′, y′) = |ẑẑ′| 12
∑
k

fk(y)fk(y
′)

∫
dω

2π
e−iω(t−t′)

∫
dν

Nν

Z∗ν (|ωẑ|)Zν(|ωẑ′|)
ν2 − k2

,

(5.67)
where fk(y) is the wave function along the third direction y with momentum k. This is
simply a rewriting the propagator (5.57) by treating the nonlocal kernel (eigenvalue)
by an extra dimension. The identical procedure leads to the leg-factors. After the
(inverse) Radon transform and the contour integral for the continuous mode sum, the
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propagator is reduced to

G
(0)
ω;−ω(z, y; z′, y′)

=
|zz′| 12

4π

∑
k

fk(y)fk(y
′)

{
Γ(3

4
+ k

2
)Γ(3

4
− k

2
)

Γ(1
4

+ k
2
)Γ(1

4
− k

2
)
Kk(|ω|z>)Ik(|ω|z<)

+ 2
∞∑
n=0

Γ2(3
4

+ νn
2

)

Γ2(1
4

+ νn
2

)

(
νn

ν2
n − k2

)
Iνn(|ω|z<)

[
2Iνn(|ω|z>)− I−νn(|ω|z>)

]}
.

(5.68)

On the other hand, for the c = 1 matrix model / 2D string duality, the Wilson
loop operator is related to the matrix eigenvalue density field φ by

W (t, `) ≡ Tr
(
e−`M(t)

)
=

∫ ∞
0

dx e−`x φ(t, x) . (5.69)

The corresponding propagator was found by Moore and Seiberg [163] as〈
w(t, ϕ)w(t′, ϕ′)

〉
=

∫ ∞
−∞

dE

∫ ∞
0

dp
p

sinhπp

φ∗E,p(t, ϕ)φE,p(t
′, ϕ′)

E2 − p2
, (5.70)

with ` = e−ϕ and the normalized wave function

φE,p(t, ϕ) =
√
p sinhπp e−iEtKip(

√
µe−ϕ) . (5.71)

After evaluating the p-integral as a contour integral, we obtain the propagator as〈
w(t, ϕ)w(t′, ϕ′)

〉
= −π

∫ ∞
−∞

dE e−iE(t−t′)

{
πE

2 sinhπE
KiE(

√
µe−ϕ

<

) IiE(
√
µe−ϕ

>

)

+
∞∑
n=1

(−1)nn2

E2 + n2
Kn(
√
µe−ϕ

<

) In(
√
µe−ϕ

>

)

}
.

(5.72)

The point we want to make here is that this three dimensional picture is completely
parallel to the c = 1 Liouville theory (2D string theory) [162, 163, 171]. Namely,
if we make a change of coordinate by z = e−ϕ, then the ϕ-direction becomes the
Liouville direction, while the y-direction (at least in the leading order of 1/J) can be
understood as the c = 1 matter direction. In this comparison, the τ -direction serves
as an extra direction. Finally, the ν appearing in the SYK model is realized as a
momentum k along the y-direction in the three dimensional picture (5.66). Therefore,
we have the following correspondence between the c = 1 Liouville theory and the three
dimensional picture of the SYK model.

c = 1 three dimensional SYK
ie−ϕ z
−it y
ip ν
iE k√
µ |ω|
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5.4 Conclusion

We have in this chapter addressed the question of what represents the bulk dual
spacetime in the SYK model. At the outset the question seems simple since the
small fluctuations of the (Euclidean) SYK model are completely given by a set of
Lorentzian wave functions associated with the SL(2,R) isometry group. With a
simple identification of spacetime these are seen to associated with eigenfunctions in
de-Sitter (or Anti de-Sitter) spacetime (as was discussed in [11, 12, 28, 29]). And
as we have noted these wave functions are in correspondence with a particular α-
vacuum wavefunctions of dS2 spacetime. Likewise the propagator and higher point
n-functions continue to feature this Lorentzian spacetime structure.

Even though the Lorentzian bulk dual interpretation seems to be straightforwardly
associated with the SYK bilocal data, we have stressed that there is a problem with
this interpretation. In the most naive sense one would essentially expect that an
Euclidean CFT should lead to an Euclidean bulk dual. In the case of the SYK model
there is a caveat since a role is played by random tensor couplings, whose bulk inter-
pretation is even more unclear. However, concentrating on the effective bilocal large
N version of the theory we have in this chapter provided a resolution, which follows
from a further nonlocal redefinition of spacetime. This comes in terms of Leg trans-
formations of Green’s functions which place the theory in Euclidean AdS dual setting.
Such transformations are actually characteristic of collective field representations of
Large N theories. The leg transformations that we explicitly implement (apart from
providing the EAdS2 spacetime setting) also bring out the couplings of additional
“discrete” states. Since this is implemented on all n point functions it represents a
highly nonlinear effect (as was first understood by Natsuume and Polchinski). We
expect that these additional features will play a central role in full identification of
the bulk dual for the present theory.

Copyright © Animik Ghosh, 2020.
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Appendix A
Perturbative Expansions

In this appendix, we summarize several relations for the expansions (A.6) - (A.10)
and introduce some short-hand notations. Formally we suppose to have the exact
action S and the exact classical solution Ψcl. Expanding the action around the exact
solution, we have

S
[
Ψcl +N−1/2η

]
= S[Ψcl] +

1

2

∫
η · K(ex) · η + · · · , (A.1)

where
K(ex)(τ1, τ2; τ3, τ4) =

δ2S[Ψcl]

δΨcl(τ1, τ2)δΨcl(τ3, τ4)
. (A.2)

Then, introducing K̃(ex) from K(ex) using the analogous definition as in (2.39) where
we replace all Ψ(0) by Ψcl, formally we can consider the exact Green’s function G̃(ex)

which is determined by the Green’s equation∫
dτ3dτ4 K̃(ex)(τ1, τ2; τ3, τ4)G̃(ex)(τ3, τ4; τ5, τ6) = δ(τ15)δ(τ26) . (A.3)

In order to invert the kernel K̃(ex) in this Green’s equation, we consider the eigenvalue
problem of the kernel K̃(ex):∫

dτ3dτ4 K̃(ex)(τ1, τ2; τ3, τ4) χ̃(ex)
n,ω (τ3, τ4) = λ(ex)

n,ω χ̃
(ex)
n,ω (τ1, τ2) , (A.4)

with the eigenfunctions χ̃(ex)
n,ω and the eigenvalues λ(ex)

n,ω , where n, ω are some quantum
numbers. We normalize the eigenfunctions by requiring∫

dτ1dτ2 χ̃
(ex)
n,ω (τ1, τ2)χ̃

(ex)
n′,ω′(τ1, τ2) = δn,n′δ(ω − ω′) . (A.5)

Now we consider a perturbative expansion in 1/J of the above eigenvalue problem.
We expand each of the quantities of interest as

Ψcl = Ψ(0) +
1

J
Ψ(1) +

1

J2
Ψ(2) + · · · , (A.6)

K(ex) = K(0) +
1

J
K(1) +

1

J2
K(2) + · · · , (A.7)

G(ex) = J G(−1) + G(0) + · · · , (A.8)

χ(ex) = χ(0) +
1

J
χ(1) + · · · , (A.9)

λ(ex) = λ(0) +
1

J
λ(1) +

1

J2
λ(2) + · · · , (A.10)
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and similarly for the redefined kernel (2.39), and the bilocal propagator and eigen-
functions corresponding to it. In this chapter, the superscript in a round bracket
denotes the order of 1/J expansion, while the subscript denotes quantum numbers.

The exact Green’s function can be then written as

G̃(ex) =
∑
n

χ̃
(ex)
n χ̃

(ex)
n

λ
(ex)
n

≡ Ψ
q
2
−1

cl G(ex) Ψ
q
2
−1

cl . (A.11)

In the following, we will be interested in the contribution coming from the zero mode
of the lowest order kernel, n = 0. Since λ(0)

0 = 0, we have

G(−1) =
χ

(0)
0 χ

(0)
0

λ
(1)
0

(A.12)

G(0) =
χ

(0)
0 χ

(1)
0

λ
(1)
0

+
χ

(1)
0 χ

(0)
0

λ
(1)
0

− λ
(2)
0 χ

(0)
0 χ

(0)
0

(λ
(1)
0 )2

+Dc, Dc =
∑
n 6=0

χ
(0)
n χ

(0)
n

λ
(0)
n

. (A.13)

Here we suppressed all τ (and ω) dependence since they don’t play any crucial role
here.

The expression of the perturbative kernels are also found by expanding Kex (A.2)

K(0)(τ1, τ2; τ3, τ4) = S(2)
c (τ1,2; τ3,4) , (A.14)

K(1)(τ1, τ2; τ3, τ4) =

∫
dτ5dτ6 S

(3)
c (τ1,2; τ3,4; τ5,6) Ψ(1)(τ56) , (A.15)

K(2)(τ1, τ2; τ3, τ4) =
1

2

∫
dτ5dτ6dτ7dτ8 S

(4)
c (τ1,2; τ3,4; τ5,6; τ7,8) Ψ(1)(τ56)Ψ(1)(τ78)

+

∫
dτ5dτ6 S

(3)
c (τ1,2; τ3,4; τ5,6) Ψ(2)(τ56) . (A.16)

where we used a short-hand notation

S(n)
c (τ1,2; · · · ; τ2n−1,2n) ≡ δnSc[Ψ

(0)]

δΨ(0)(τ1, τ2) · · · δΨ(0)(τ2n−1, τ2n)
. (A.17)

We will also use the following simplified notation for the contractions:

S(n)
c

[
A1;A2; · · · ;An

]
≡
∫
dτ1dτ2 · · · dτ2n−1dτ2n S

(n)
c (τ1,2; · · · ; τ2n−1,2n)

× A1(τ1, τ2) · · ·An(τ2n−1, τ2n) . (A.18)

Finally expanding the eigenvalue equation (A.4), we can fix the perturbative eigen-
functions and eigenvalues

λ(0)
n =

∫
χ̃(0)
n · K̃(0) · χ̃(0)

n , λ(1)
n =

∫
χ̃(0)
n · K̃(1) · χ̃(0)

n , (A.19)

χ̃(1)
n =

∑
k 6=n

χ̃
(0)
k

λ
(0)
n − λ(0)

k

∫
χ̃

(0)
k · K̃(1) · χ̃(0)

n , (A.20)

λ(2)
n =

∑
k 6=n

1

λ
(0)
n − λ(0)

k

∣∣∣∣∫ χ̃
(0)
k · K̃(1) · χ̃(0)

n

∣∣∣∣2 +

∫
χ̃(0)
n · K̃(2) · χ̃(0)

n . (A.21)
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where we used the normalization condition
∫
χ̃(0) · χ̃(1) = 0. We note that the zero-

mode (n = 0) first order eigenfunctions without tilde are obtained as

χ
(1)
0 = −

∑
k 6=0

χ
(0)
k

λ
(0)
k

∫
χ̃

(0)
k · K̃(1) · χ̃(0)

0 +

(
1− q

2

)
Ψ−1

(0)Ψ(1)χ
(0)
0

= −
∑
k 6=0

χ
(0)
k

λ
(0)
k

∫
χ

(0)
k · K(1) · χ(0)

0 , (A.22)

where the second term in the first line comes by expanding χ(ex) = Ψ
1−q/2
cl χ̃(ex) and

for the second line we used

K̃(1)(τ1, τ2; τ3, τ4)

=

∫
dτ5dτ6 S

(3)
c (τ1,2; τ3,4; τ5,6) Ψ

1− q
2

(0) (τ12)Ψ
1− q

2

(0) (τ34)Ψ(1)(τ56)

−
(
q

2
− 1

)
S(2)
c (τ1,2; τ3,4)

[
Ψ
− q

2

(0) (τ12)Ψ(1)(τ12)Ψ
1− q

2

(0) (τ34) + (τ12 ↔ τ34)
]
. (A.23)
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Appendix B
Details of Derivation of Liouville from Bilocal

In this Appendix, we give a detail derivation of the action (2.96) from (2.93).
For the logarithm term, we use the following fact that

sgn(τ12)

2
= θ(τ12)− 1

2
,

[
sgn
2

]−1

?

(τ12) = ∂1δ(τ12) , (B.1)

where the inverse [•]−1
? is defined in the sense of the star product (i.e. matrix product)∫

dτ ′A(τ1, τ
′)[A]−1

? (τ ′, τ2) = δ(τ12). By using this, one can rewrite the term as

Tr log Ψ = Tr

[
log

(
sgn
2

)
+ log

(
1 +

∂(sgn× Φ)

2q

)]

= Tr log

(
sgn
2

)
−

∞∑
n=1

1

n

(−1

2q

)n
Tr
[
∂(sgn× Φ)

]n
?
, (B.2)

where the last term is defined for example for n = 2 as

Tr
[
∂(sgn× Φ)

]2

?
≡
∫
dτ1dτ2 ∂1

(
sgn(τ12)Φ(τ1, τ2)

)
∂2

(
sgn(τ21)Φ(τ2, τ1)

)
. (B.3)

For the interaction term we have[
Ψ(τ1, τ2)

]q
=

1

2q

[
1 +

Φ(τ1, τ2)

q

]q
. (B.4)

We consider only q = even integer case and the sign function disappeared here. We
want to rewrite the RHS as the following form[

1 +
Φ(τ1, τ2)

q

]q
= eΦ(τ1,τ2)

[
1 +

c1(τ1, τ2)

q
+
c2(τ1, τ2)

q2
+ O(q−3)

]
, (B.5)

where function c1 and c2 are to be determined. Taking logarithm of both-hand sides
and expanding the logarithm, one finds

log(LHS) = Φ(τ1, τ2) − Φ2(τ1, τ2)

2q
+

Φ3(τ1, τ2)

3q2
+ O(q−3) ,

log(RHS) = Φ(τ1, τ2) +
c1(τ1, τ2)

q
+
c2(τ1, τ2)

q2
− c2

1(τ1, τ2)

2q2
+ O(q−3) . (B.6)

Comparing the both sides, the unfixed functions are determined as

c1(τ1, τ2) = − 1

2
Φ2(τ1, τ2) ,

c2(τ1, τ2) =
1

3
Φ3(τ1, τ2) +

1

8
Φ4(τ1, τ2) . (B.7)
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Combining everything, the collective action is now written as

Scol[Φ] = − N
2

∞∑
n=2

1

n

(−1

2q

)n
Tr
[
∂
(
sgn× Φ

)]n
?

− J
2N

4q2

∫
dτ1dτ2 e

Φ(τ1,τ2)

[
1 +

c1(τ1, τ2)

q
+
c2(τ1, τ2)

q2
+ · · ·

]
. (B.8)

The O(q0) and O(q−1) order terms are identically vanish due to the free field equation
of motion. Therefore, the first nontrivial order is O(q−2). Lower order terms can be
explicitly written down as

Scol[Φ] = − N

16q2

∫
dτ1dτ2 ∂1

(
sgn(τ12)Φ(τ1, τ2)

)
∂2

(
sgn(τ21)Φ(τ2, τ1)

)
− J

2N

4q2

∫
dτ1dτ2 e

Φ(τ1,τ2)

+
N

48q3

∫
dτ1dτ2dτ3 ∂1

(
sgn(τ12)Φ(τ12)

)
∂2

(
sgn(τ23)Φ(τ23)

)
∂3

(
sgn(τ31)Φ(τ31)

)
+
J 2N

8q3

∫
dτ1dτ2 Φ2(τ1, τ2) eΦ(τ1,τ2) + O(q−4) . (B.9)
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Appendix C
Details of Exact Eigenfunctions

In this Appendix, we elaborate on various properties of the exact eigenfunctions
(2.113).

C.0.1 Zero temperature limit

Consider the exact eigenfunctions at finite temperature at large q [12] which can
be written as

χ(ex)
n,ν (x) ∼

(
sin

x̃

2

)1/2
[
P−ν
ñ− 1

2

(
cos

x̃

2

)
+ κ

even/odd
ñ,ν P ν

ñ− 1
2

(
cos

x̃

2

)]
(C.1)

where

κeven
ñ,ν = −2−2ν Γ

(
1
4
− ñ

2
− ν

2

)
Γ
(

1
4

+ ñ
2
− ν

2

)
Γ
(

1
4
− ñ

2
+ ν

2

)
Γ
(

1
4

+ ñ
2

+ ν
2

) κodd
ñ,ν = −2−2ν Γ

(
3
4
− ñ

2
− ν

2

)
Γ
(

3
4

+ ñ
2
− ν

2

)
Γ
(

3
4
− ñ

2
+ ν

2

)
Γ
(

3
4

+ ñ
2

+ ν
2

)
(C.2)

and

x̃ = vx+ (1− v)π

ñ =
n

v

v = 1− 2

βJ +O
(

1

β2J 2

)
ω =

2πn

β

(C.3)

Let us define
x =

4πz

β
(C.4)

This allows us to write

x̃ =
ω

nJ (2J z + 1) +O
[

1

(nJ )2

]
(C.5)

Taking the zero temperature limit is equivalent to taking n→∞. In this limit,

sin
x̃

2
' x̃

2
(C.6)

and
lim
n→∞

P±ν
ñ− 1

2

(
cos

x̃

2

)
∼ n±νJ∓ν

[
ω (2J z + 1)

2J

]
(C.7)
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On doing so, we can write the exact eigenfunction in the zero temperature but finite
coupling limit as

χ(ex)
ω,ν (z) ∼

[
ωz +

ω

2J

]1/2
[
Jν

(
ωz +

ω

2J

)
+ ξω(ν) J−ν

(
ωz +

ω

2J

)]
(C.8)

where

ξω(ν) ≡ lim
n→∞

n2νκñ,ν

= − lim
n→∞

(
n

2

)2ν Γ
(

1
4
− n

2
− ν

2
− ω

2πJ

)
Γ
(

1
4

+ n
2
− ν

2
+ ω

2πJ

)
Γ
(

1
4
− n

2
+ ν

2
− ω

2πJ

)
Γ
(

1
4

+ n
2

+ ν
2

+ ω
2πJ

)
= −

Γ
(

1
4
− ν

2
− ω

2πJ

)
Γ
(

3
4

+ ν
2

+ ω
2πJ

)
Γ
(

1
4

+ ν
2
− ω

2πJ

)
Γ
(

3
4
− ν

2
+ ω

2πJ

)
(C.9)

Equation (C.9) can be proved as follows.

ξω(ν) = − lim
n→∞

(
n

2

)2ν Γ
(

1
4
− n

2
− ν

2
− ω

2πJ

)
Γ
(

1
4

+ n
2
− ν

2
+ ω

2πJ

)
Γ
(

1
4
− n

2
+ ν

2
− ω

2πJ

)
Γ
(

1
4

+ n
2

+ ν
2

+ ω
2πJ

) (C.10)

Now, we can use the identity

lim
n→∞

(
n

2

)ν Γ
(

1
4

+ n
2
− ν

2
+ ω

2πJ

)
Γ
(

1
4

+ n
2

+ ν
2

+ ω
2πJ

) = 1 (C.11)

Using (C.11) in (C.10), we have

ξω(ν) = − lim
n→∞

(
n

2

)ν Γ
(

1
4
− n

2
− ν

2
− ω

2πJ

)
Γ
(

1
4
− n

2
+ ν

2
− ω

2πJ

)
= −

Γ
(

1
4
− ν

2
− ω

2πJ

)
Γ
(

1
4

+ ν
2
− ω

2πJ

) lim
n→∞

(
n

2

)ν n/2∏
p=1

Γ
(

1
4

+ ν
2
− ω

2πJ − p
)

Γ
(

1
4
− ν

2
− ω

2πJ − p
)

= −
Γ
(

1
4
− ν

2
− ω

2πJ

)
Γ
(

3
4

+ ν
2

+ ω
2πJ

)
Γ
(

1
4

+ ν
2
− ω

2πJ

)
Γ
(

3
4
− ν

2
+ ω

2πJ

)
(C.12)

as required. We can expand ξω(ν) in a power series in ω
2J to get

ξω(ν) =
tan πν

2
+ 1

tan πν
2
− 1

+
ω

2J
2 sinπν

sin πν − 1
+O

(
ω2

J 2

)
(C.13)
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The leading order piece agrees with ξν found in [28]. From (C.9), it is easy to see

ξω(ν) =
1

ξω(−ν)
(C.14)

An alternative way to see that the exact eigenfunction should be a linear combination
of Bessel functions is to notice that they are solutions to the following differential
equation ω2 + ∂2

z −
ν2 − 1/4(
z + 1

2J

)2

χ(ex)
ω,ν (z) = 0 (C.15)

If we make a shift z → z − 1
2J , we can see that (C.15) turns into a Bessel equation.

C.0.2 Quantization Condition

Let us impose the following boundary condition on the exact eigenfunctions

χ(ex)
ω,ν (z)

∣∣∣
z=0

= 0 (C.16)

Using equation (C.8), imposing the above boundary condition requires us to solve
the following equation in order to get the quantized values of ν

Jν

(
ω

2J

)
+ ξω(ν) J−ν

(
ω

2J

)
= 0 (C.17)

We can solve this equation numerically and do a polynomial fit of order two for the
curve given by Figure C.1 to get

ν =
3

2
+ a1

ω

J + a2

(
ω

J

)2

(C.18)

where a1 = 0.318048 and a2 = 0.0046914. This is in good agreement with the results
obtained in [12]. This can be seen as follows

νMS =
3

2
+ n

(
1− v
v

)
=

3

2
+

ω

πJ +O
(
ω

J

)3 (C.19)

We have used equation (2.31) of [12], to get from the first to second line of (C.19).
Another important observation is the following. The quantized values for ν one

gets by solving the exact quantization equation (C.17) is in very good agreement with
those obtained by solving the following equation

ξω(ν) = 0 =⇒ νn = 2n+
3

2
+

ω

πJ (C.20)

118



0.02 0.04 0.06 0.08 0.10

ω

2 J

0.00005

0.00010

0.00015

δν

Figure C.1: Plot of the absolute difference between the allowed values of ν, where we
have defined δν = νMS − νexact. We see that the difference is almost zero for small
values of ω

2J , which corresponds to the conformal limit.
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Figure C.2: Plot of the absolute difference between the allowed values of ν from two
different methods, where we have defined δν = νapprox − νexact where νapprox refers to
the values of ν obtained by solving (C.20). We see that the difference grows with ω

2J .

for small values of ω
2J . It should be noted that the quantized values obtained by

solving (C.20) hold true for any coupling. The discrepancy between the two methods

arises only at order
(

ω
2J

)2ν

. This can be understood by recalling the asymptotic form
of the Bessel function for small argument

Jν(z) ∼
(
z

2

)ν
1

Γ(1 + ν)
(C.21)

Using (C.21) in (C.17), requires one to solve the following equation

ξω(ν) ∼
(
ω

2J

)2ν

(C.22)

The following table gives the difference in quantized values for ν from the exact
and approximate methods as a function of ω

2J . It provides numerical data in support
of the above claim (see also Figure C.1)

119



Table C.1: Difference in quantized values for ν from the exact and approximate
methods as a function of ω

2J .

ω
2J δν

0.001 2.10064×10−10

0.051 2.16037×10−5

0.101 1.40694×10−4

0.501 7.42506×10−3

C.0.3 Perturbative determination of exact normalization

We derive (2.118) here. Let us consider ν = 2n + 3
2

+ |ω|
πJ where ξω(ν) vanishes.

So, the integral we need to perform is∫ ∞
0

dz

z + 1
2J
Jν1(|ω|z̃)Jν2(|ω|z̃) = N̂ν1 δ(ν1 − ν2) (C.23)

We want to determine the normalization in (C.23). In order to do so, we perform a
1/J expansion of the integrand. This gives∫ ∞

0

dz

z + 1
2J
Jν1(|ω|z̃)Jν2(|ω|z̃) = I1 + I2 + I3 (C.24)

where

I1 =

∫ ∞
0

dz

z
Jν1(|ω|z)Jν2(|ω|z) =

1

2ν1

δ(ν1 − ν2) (C.25)

I2 =
ω

2J

∫ ∞
0

dz

z

[
Jν1(|ω|z)J ′ν2

(|ω|z) + J ′ν1
(|ω|z)Jν2(|ω|z)− Jν1(|ω|z)Jν2(|ω|z)

z

]
= 0 (for ν1 + ν2 > 1)

(C.26)

I3 =

(
ω

2J

)2 ∫ ∞
0

dz

z

[
1

2

(
J ′′ν2

(|ω|z) + 2J ′ν1
(|ω|z)J ′ν2

(|ω|z) + Jν1(|ω|z)J ′′ν2
(|ω|z)

)
− Jν1(|ω|z)J ′ν2

(|ω|z) + J ′ν1
(|ω|z)Jν2(|ω|z)

z
+
Jν1(|ω|z)Jν2(|ω|z)

z2

]
= 0 (for ν1 + ν2 > 2)

(C.27)

Based on the results of the integrals (C.25)− (C.27), we conclude that

N̂ν1 =
1

2ν1

+O
( |ω|

2J

)3

(C.28)
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Appendix D
Detail Evaluation of Non-zero Mode bilocal Propagator Dc

In this Appendix, we give details of the evaluation of Dc given by (2.140). Since
there is no enhancement for this part, we do not need to keep track of the

(
|ω|J −1

)
corrections and we can evaluate it in the conformal limit as usual. Let us consider
the continuous integral first in (2.139) which we denote by Ic

Ic = 4q2(zz′)
1
2

∫ ∞
−∞

dω

2π
eiω(t−t′)

∫
dν

Nν

Z∗ν (|ω|z̃)Zν(|ω|z̃′)
g̃(ν)− 1

, ν = ir (D.1)

It can be written as

Ic = 4q2

∫ ∞
0

dr
ir

2 sinπir

Z−ir(|ω|z)Zir(|ω|z′)
g̃(ir)− 1

=
4q2

i

∫ i∞

−i∞
dν

ν

2 sinπν

Z−ν(|ω|z)Jν(|ω|z′)
g̃(ν)− 1

= 4q2(T1 + T2)

(D.2)

We have extended the limits over the entire imaginary axis and defined ν = ir in
going from the first to second line of (D.2). For z > z′ we close the contour clockwise
in the right half plane, which gives

T1 =
1

i

∫ i∞

−i∞
dν

ν

2 sinπν

J−ν(|ω|z)Jν(|ω|z′)
g̃(ν)− 1

(D.3)

and

T2 =
1

i

∫ i∞

−i∞
dν

ν

2 sinπν

Jν(|ω|z)Jν(|ω|z′)
g̃(ν)− 1

ξ(−ν) (D.4)

T1 only has a simple pole at ν = 3
2
. We can evaluate the residue to get

T1 =
3π

2

J− 3
2
(|ω|z)J 3

2
(|ω|z′)

g̃′
(

3
2

) (D.5)

The T2 term is a little more complicated. It has simple poles at ν = 2n + 3
2
where

ξν = 0. We can evaluate the residue there to get

T2 =−
∞∑
n=1

(4n+ 3)
J2n+ 3

2
(|ω|z)J2n+ 3

2
(|ω|z′)

g̃(2n+ 3
2
)− 1

+

[
1

i

∫ i∞

−i∞
dν

ν

2 sinπν

Jν(|ω|z)Jν(|ω|z′)
g̃(ν)− 1

ξ(−ν)

]
ν= 3

2

(D.6)
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Let us consider the integrand in the second term of (D.6). It has singularities coming
from ξ(−ν) as well as g̃(ν)− 1. Let us expand the following quantity around ν = 3

2

ξν
g̃(ν)− 1

=
1(

ν − 3
2

)2
g̃′
(

3
2

)
ξ′
(

3
2

)
1−

(
ν − 3

2

)
2

(
ξ′′(3

2
)

ξ′(3
2
)

+
g̃′′
(

3
2

)
g̃′
(

3
2

) )
 (D.7)

We have a double pole coming from the first term of (D.7) and a simple pole from
the second term. Using (D.7) in (D.6), and evaluating the residues, we get

Ic = 8q2(zz′)
1
2

∫ ∞
−∞

dω

2π
eiω(t−t′)

[
3π

2

J− 3
2
(|ω|z>)J 3

2
(|ω|z<)

g̃′
(

3
2

) − Id (D.8)

+
π

g̃′
(

3
2

)
ξ′
(

3
2

) (3

2
∂ν + 1− 3ξ′′(3

2
)

4ξ′(3
2
)
− 3g̃′′(3

2
)

4g̃′(3
2
)

)
Jν(|ω|z)Jν(|ω|z′)

∣∣∣∣
ν= 3

2

]
,

where

Id =
∞∑
n=1

(4n+ 3)
J2n+ 3

2
(|ω|z)J2n+ 3

2
(|ω|z′)

g̃(2n+ 3
2
)− 1

. (D.9)

The first term in (2.139) exactly cancels with Id in (D.8). Using g̃′(3
2
) = 3

2
, g̃′′(3

2
) =

1, ξ′
(

3
2

)
= −π

2
and ξ′′

(
3
2

)
= 0 in (D.8), we get (2.140) We have dropped the ω

subscript while writing ξ here because we are working in the conformal limit.
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Appendix E
Integrals of Products of Bessel Functions

In this appendix, we consider the following integrals involving a product of two
Bessel functions: ∫ ∞

−∞
dω e−iω(t−t′) J±ν(|ω|z>) Jν(|ω|z<)

= 2

∫ ∞
0

dω cos(ω(t− t′)) J±ν(ωz>) Jν(ωz
<) . (E.1)

The plus sign case was already evaluated in Appendix D of [28]. The result is

2

∫ ∞
0

dω cos(ω(t− t′)) Jν(|ω|z>) Jν(|ω|z<) =
1

π
√
zz′
I(1)
ν (ξ) , (E.2)

with

I(1)
ν (ξ) ≡


2Qν−1/2(ξ) (ξ > 1)
Qν−1/2(ξ + iε) +Qν−1/2(ξ − iε) (−1 < ξ < 1)
−2 sin(πν)Qν−1/2(−ξ), (ξ < −1)

(E.3)

where
ξ ≡ z2 + z′2 − (t− t′)2

2zz′
. (E.4)

This is related to the geodesic distance of AdS2, which is given by d(t, z; t′, z′) =
ln(ξ +

√
ξ2 − 1).

The minus sign integral is more involved. Let us start from Eq.(D.11) of [28],
which reads∫ ∞

0

dx e−αx Jν(βx) J−ν(γx)

=

(
−βγ
α2

)ν
√
π αΓ(ν + 1

2
)Γ(1− ν)

∫ π

0

dφ (sinφ)2ν

(
−ω

2

α2

)−ν
2F1

(
1

2
, 1; 1− ν;−ω

2

α2

)
,

(E.5)

with ω =
√
β2 + γ2 − 2βγ cosφ. In order to obtain the cosine integral (E.1), we need

to evaluate the analytical continuation by α = aeiθ with θ = 0→ ±π/2 as explained
in Appendix D of [28]. One has to be careful about this analytical continuation
since the hypergeometric function 2F1(a, b; c; z) has a branch cut along the real z axis
through 1 < z <∞. Anyway, one should evaluate the φ integral before this analytical
continuation. For this integral it is convenient to rewrite the hypergeometric function
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in the integrand using the hypergeometric function identity (for example see 9.131.2
of [172]) as(

−ω
2

α2

)−ν
2F1

(
1

2
, 1; 1− ν;−ω

2

α2

)

=

(
2ν

2ν + 1

)
2F1

(
ν + 1, ν +

1

2
; ν +

3

2
;
2βγ

α2
(ξ − cosφ)

)
− 1√

π

(
2ν

2ν + 1

)
Γ(ν + 3

2
)Γ(−ν) 2F1

(
ν + 1, ν +

1

2
; ν + 1;−ω

2

α2

)

=

(
2ν

2ν + 1

) ∞∑
n=0

(ν + 1)n(ν + 1
2
)n

n!(ν + 3
2
)n

(
2βγ

α2

)n
(ξ − cosφ)n

− 1√
π

(
2ν

2ν + 1

)
Γ(ν + 3

2
)Γ(−ν)

[
2βγ

α2
(ξ − cosφ)

]−ν− 1
2

, (E.6)

where we assumed |2βγζ/α2| < 1 and for the second equality, we expanded the
hypergeometric function in the power series with the rising Pochhammer symbol
(x)n. We also defined

ξ ≡ α2 + β2 + γ2

2βγ
, (E.7)

which after the analytical continuation agrees with Eq.(E.4). Therefore, now the φ
integral can be performed as∫ π

0

dφ (sinφ)2ν(ξ − cosφ)s (E.8)

=



4ν π
(1+ξ)sΓ(ν+ 1

2
)

cos(πν)Γ( 1
2
−ν)Γ(2ν+1) 2F1

(
ν + 1

2
,−s; 2ν + 1; 2

1+ξ

)
, (ξ > 1)

2ν Γ(ν + 1
2
)
[

(−1)sπ 2ν+s

Γ(2ν+s+1)Γ( 1
2
−ν−s) cos(π(ν+s)) 2F1

(
−2ν − s,−s; 1

2
− ν − s; 1+ξ

2

)
+ (1+ξ)

1
2 +ν+sΓ(1+s)[1−eiπs cos(πν)/ cos(π(ν+s))]√

2Γ( 3
2

+ν+s) 2F1

(
1
2
− ν, 1

2
+ ν; 3

2
+ ν + s; 1+ξ

2

) ]
,

(−1 < ξ < 1)

4ν(1− ξ)s Γ2(ν+ 1
2

)

Γ(2ν+1) 2F1

(
ν + 1

2
,−s; 2ν + 1; 2

1−ξ

)
, (ξ < −1)

where s is a general real number. One can see that for any value of ξ (and for any
value of s), the analytical continuation α = aeiθ with θ = 0 → ±π/2 does not hit
the branch cut of the hypergeometric function. Therefore, we can perform a naive
analytical continuation for this φ-integral part.

We note that for the cosine integral (E.1), the contribution from the first term in
Eq.(E.6) vanishes due to the α−1 factor in Eq.(E.5) after the analytical continuation.
Therefore, for the cosine integral (E.1), the contribution solely comes from the second
term in Eq.(E.6), which is written as

2

∫ ∞
0

dx cos(ax) Jν(βx) J−ν(γx) =
1

π
√
βγ
I(2)
ν (ξ) , (E.9)
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with

I(2)
ν (ξ) ≡


2 cos(πν)Qν− 1

2
(ξ) , (ξ > 1)

π Pν− 1
2
(−ξ) , (−1 < ξ < 1)

2 cos(πν)Qν− 1
2
(−ξ) , (ξ < −1)

(E.10)
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Appendix F
Details of Evaluation of the Second Order Eigenvalue Shift

In this Appendix, we explain how to get (2.136) from (2.66), which we can rewrite
as

λ
(2)
0 =

∫
χ̃

(0)
k · K̃(1) · χ̃(1)

0 +

∫
χ̃

(0)
0 · K̃(2) · χ̃(0)

0 (F.1)

The second term in (F.1) is given by∫
χ̃

(0)
0 · K̃(2) · χ̃(0)

0 =
1

10
(F.2)

Using (2.135), the first term in (F.1) can be written as∫
χ̃

(0)
k · K̃(1) · χ̃(1)

0 = I1 + I2 (F.3)

where

I1 =

∫ ∞
−∞

dt

∫ ∞
0

dz

(√
3e−iωt√
z

J 3
2
(|ω|z)

)
K̃(1)

(√
3eiωt

2
√
z

[
J ′3

2
(|ω|z)− 1

2z
J 3

2
(|ω|z)

])
= − 1

10
(F.4)

and

I2 =

∫ ∞
−∞

dt

∫ ∞
0

dz

[
2
√

3e−iωt

π
√
z

[
d

dν
Jν(|ω|z)

]
ν= 3

2

+
e−iωt

π
√

3z
J 3

2
(|ω|z)

]
K̃(1)u(0)

ω,ν(t, z)

=
1

π2

(F.5)

K̃(1) to be used above is given by (2.129). Using (F.2) − (F.5) in (F.1), we get
(2.136),up to a factor of two, which arises because of (2.115).
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Appendix G
Connection with Liouville

In sections 3.1 and 3.2 we show that when a state of large charge (in our case
angular momentum) and low temperature is considered, correlators (and the partition
function itself) are dominated by vacuum blocks. Using explicit formulas for fusion
matrix elements we computed the low temperature moving component of these blocks
and got the Schwarzian correlators on the nose. A natural question to ask then is
why did this work?

To simplify the problem we can focus on the two point function. We can rewrite
the relation (3.49) in a suggestive way in terms of Liouville theory quantities. It is
straightforward after some algebra to show that the fusion matrix element is equal
to

FPs0
[
P1 P2

P1 P2

]
=

1

2π
C(α1, α2, αs)

ΨZZ(0)ΨZZ(α∗s)

ΨZZ(α1)ΨZZ(α2)
(G.1)

where the right hand side is written in terms of αi = Q
2

+ iPi. The first factor is the
DOZZ formula [173, 174] with the usual normalization

C(α1, α2, αs) =
(πµγ(b2)b2−2b2)

Q−α1+2+s
b Υ(2α1)Υ(2α2)Υ(2αs)

Υ(α1+2+s −Q)Υ(α1+2−s)Υ(α1−2+s)Υ(−α1−2−s)
. (G.2)

where to shorten the notation we used αi±j±k = αi ± αj ± αk, and the second is the
ZZ-brane boundary state wavefunction

ΨZZ

(
α =

Q

2
+ iP

)
=

2−1/42π 2iP (πµγ(b2))−iP/b

Γ(1− 2ibP )Γ(1− 2iP/b)
(G.3)

derived in [175] from a modular bootstrap analysis. The left hand side of (G.1) is
a Virasoro kinematical quantity (independent of the theory) while the right hand
side is written in terms of objects appearing in a specific theory, Liouville. As a
check that this relation makes sense, one can see that the only theory dependent
quantity, the Liouville cosmological constant µ, cancels completely in the right hand
side. This formula was proposed by analyzing the conformal bootstrap of Liouville
theory with boundaries in [175] (see their equations 6.4 and 6.5). Starting from the
exact expression of the fusion matrix, the identity (G.1) was derived by Teschner and
Vartanov in Appendix D.2 of [120]. This has also an interesting interpretation in the
context of AGT [176].

Using (G.1) it is easy to see that the torus vacuum block for the two point function
used in (3.61) is equal to the one-point function of a primary operator of Liouville
theory, living in an annulus between ZZ-brane boundary states. This is required by
the consistency of the boundary CFT bootstrap of [175]. In the limit considered
in this chapter, Liouville theory between ZZ-branes is equivalent to the Schwarzian
theory and Liouville primary operators are equivalent to inserting a Schwarzian bilocal
field. This fact was used in [84] to compute Schwarzian correlators using 2d Liouville
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CFT techniques. We will leave the details of this relation for a future work, but this
gives the underlying reason for the match between the results of section 3.2 and the
Schwarzian theory.

This is also consistent with the fact that Liouville between ZZ-branes in equivalent
to the Alekseev-Shatashvili coadjoint orbit action studied in [95, 98] which in the
semiclassical limit reduces to the Schwarzian action.

Schwarzian Limit

The Schwarzian limit of the fusion matrix given in the form (G.1) was done in
[84]. The relevant limit of the operator momentum is P1 = bk1, α2 = bh and Ps = bks.
The important relation here is Υ(bx) = b

1
2−x

Γ(x)
f(b), and Υ′(0) = b−1/2f(b), with f(b)

some known function that will cancel in the end. Then it is easy to see that

C(α1, α2, αs) ∼
1

b

∏
±± Γ(h± ik1 ± iks)

Γ(−2ik1)Γ(2h)Γ(−2iks)
,

ΨZZ(0)ΨZZ(α∗s)

ΨZZ(α1)ΨZZ(α2)
∼ b4hΓ(−2ik1)

Γ(2iks)

which gives the same expression for the fusion matrix element (3.53). This approx-
imation for the DOZZ formula can also be obtained by using the minisuperspace
approximation of Liouville theory without having to know the full expression involv-
ing special functions.
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Appendix H
Details on matching boundary conditions

In this appendix, we solve the wave equation for a free massive scalar field in the
fixed BTZ background and work out the proportionality factors between the sources
on the AdS3 boundary and the asymptotic AdS2 boundary, as stated in 3.145.

We can carry out a mode decomposition of the scalar field as

χ(t, r, ϕ) =
∑
`

∫ ∞
−∞

dω e−iωt−i`ϕχ`,ω(r), (H.1)

The frequency space wave equation, written in terms of a new variable z =
r2−r2

+

r2−r2
−
, for

near-extremal BTZ written in coordinates (3.97) is the following:[
z(1− z)

d2

dz2
+ (1− z)

d

dz

+
1

4

(
(ωr+ − `r−)2`2

3

z(r2
+ − r2

−)2
− (ωr− − `r+)2`2

3

(r2
+ − r2

−)2
− `2

3m
2

1− z

)]
χ`,ω(z) = 0,

(H.2)

See [177] for more details. In the following we will take the limit of small T ∼ r+−r−
together with the low frequency limit ω ∼ T , which simplifies the equation consid-
erably. Moreover if we focus on the region between the nAdS2 and AdS3 boundaries
we are in the regime r − r+ � r+ − r−, for which

1− z ∼ 2r+(r+ − r−)

r2 − r2
+

. (H.3)

and from this we see that 1 − z is small in the entire region outside the throat.
This limit (low temperature, low frequency and (H.3)) makes both the frequency and
angular momentum dependent terms in (H.2) negligible, and simplifies the solution
to a simple power law proportional to (1− z)

∆±
2 . We can write these as

χ ∼ A

(
r2 − r2

+

`2
3

)−∆−
2

+B

(
r2 − r2

+

`2
3

)−∆+
2

, (H.4)

with coefficients A,B depending on ω and `; because we reduce to the simple power
law solutions, this is the only dependence on those variables. For r → ∞, these
coefficients match those of the asymptotic expansion (3.141) near the AdS3 boundary.

To match to the AdS2 boundary, we now need only expand this solution for small
r − r+, and match coefficients of powers of the variable 4

`3
(r − r+) in the expansion

(3.143):

Ã =

(
r+

2`3

)−∆−
2

A, B̃ =

(
r+

2`3

)−∆+
2

B (H.5)
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Writing this in terms of the right-moving temperature βR ∼ π`3
r+

, and using ∆+ = ∆,
∆− = 2−∆, we finally have

Ã =

(
2

π
βR

)1−∆
2

A, B̃ =

(
2

π
βR

)∆
2

B (H.6)

as stated in (3.145). This relation is independent of where we put the cut-off between
the 2d and three dimensional boundaries as expected.
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Appendix I
Unit Normalized EAdS/dS Wave Functions

The unit-normalized Euclidean AdS2 wave function is given by

φEAdS2
(τ, z) = αν z

1
2 e−iωτ Kν(|ω|z) , (I.1)

where the normalization factor can be chosen as

αν = i

√
ν sin(πν)

π3
. (I.2)

Then from the Bessel Kν orthogonality condition∫ ∞
0

dx

x
Kiν(x)Kiν′(x) =

π2

2

δ(ν − ν ′)
ν sinh(πν)

, (I.3)

where x, y > 0, the wave function is unit normalized:∫ ∞
−∞

dτ

∫ ∞
0

dz

z2
φ
∗
ω,ν(τ, z)φω′,ν′(τ, z) = δ(ω − ω′)δ(ν − ν ′) . (I.4)

The completeness of modified Bessel function of the second kind:∫ ∞
0

dν ν sinh(πν)Kiν(x)Kiν(y) =
π2

2
x δ(x− y) , (I.5)

is also used in section 5.3.
The Lorentzian dS2 wave function is given by

ψdS2
(η, t) = βν η

1
2 e−iωt Zν(|ω|η) . (I.6)

Here, let us only consider the continuous modes (ν = ir). Now choosing the normal-
ization factor as

βν =

√
ν

4π sin(πν)
, (I.7)

then the wave function is unit normalized for the continuous modes as∫ ∞
−∞

dt

∫ ∞
0

dη

η2
ψ
∗
ω,ν(η, t)ψω′,ν′(η, t) = δ(ω − ω′)δ(ν − ν ′) , for (ν = ir) (I.8)

We note that
αν = 2i

sin πν

π
βν . (I.9)
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