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ABSTRACT
When testing for superiority in a parallel-group setting with a continuous
outcome, adjusting for covariates is usually recommended. For this pur-
pose, the analysis of covariance is frequently used, and recently several
exact and approximate sample size calculation procedures have been pro-
posed. However, in case of multiple covariates, the planning might pose
some practical challenges and pitfalls. Therefore, we propose a method,
which allows for blinded re-estimation of the sample size during the course
of the trial. Simulations confirm that the proposed method provides reliable
results in many practically relevant situations, and applicability is illustrated
by a real-life data example.
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1. Introduction

In clinical trials with a parallel-group design, the main interest is often focused on the question
whether a particular intervention is more efficacious than a competitor or placebo. For continuous
outcomes, the alternative hypothesis of superiority can be examined by using a one-sided two-
sample t-test. However, it is well known that in general, adjusting for one or several covariates may
increase the power of the test and reduce the bias of the effect estimator (Huitema 2011). For
example, it is sensible to include at least one baseline measurement of the outcome as a covariate in
the statistical model (Frison and Pocock 1992). The importance of an adjustment for baseline
measurements has been highlighted and discussed extensively in a recent regulatory guideline
(European Medicines Agency 2015). We would like to emphasize that settings, where more than
one random covariate should be accounted for, are supposed to be frequently encountered in applied
research. For example, in order to assess the efficacy of a treatment in spinal cord injury patients
with respect to bladder function (Sugiyama et al. 2017), it may be sensible to adjust not only for the
baseline measurement of the outcome (e.g., detrusor pressure), but also for another baseline variable,
which is presumably correlated with the outcome (e.g., cystometric volume). In a recently published
clinical trial from stroke research, the NIHSS score at 24 hours after the intervention was considered
as the primary outcome, and group means were adjusted for NIHSS at baseline (Schönenberger et al.
2016). However, incorporating, for example, the age of the patient as a further random covariate into
the model would have been an appealing alternative way of analyzing the data from that trial.
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The analysis of covariance (ANCOVA) is a well-established statistical method, which allows for
covariate adjustment. ANCOVA tests have been used to assess treatment effects in clinical trials
from virtually every medical research area (e.g., neurology (Howard et al. 2017; Sperling et al. 2017),
gynecology (Gholizadeh et al. 2018), geriatrics (Haider et al. 2017)). Applying an appropriate method
for sample size calculation plays a key role in the planning phase of any interventional study. It has
to be ensured that the target power is indeed achieved or, on the other hand, that patients are not
unnecessarily exposed to potentially harmful treatments (International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human Use 1998; Moher et al. 2010). However,
a recent systematic review indicates that even if the ANCOVA was used, sample sizes were often not
calculated appropriately (Dasgupta et al. 2013). This might reflect the lack of awareness that the topic
of sample size calculation in ANCOVA models has recently been addressed in several publications.
Teerenstra et al. considered an ANCOVA model with a single baseline measurement of the outcome
in the context of a cluster-randomized trial design (Teerenstra et al. 2012). Sample size calculation in
the classical parallel two-group setting was discussed in a very concise and readily understandable
way by Borm et al. (2007). They exploited some analogies between the t-test and the ANCOVA test
statistics, in order to get two approximate formulas, which were based on the classical normal
approximation and the Guenther-Schouten adjustment, respectively (Guenther 1981; Schouten
1999). Recently, however, this approach has been criticized by Shieh, who derived an exact method
for calculating power and sample sizes for an ANCOVA model with multiple random covariates
(Shieh 2017). Tang proposed another two methods and compared them to existing approaches in the
context of designs with and without stratification (Tang 2018). Apart from these papers, the seminal
publication of Frison and Pocock (Frison and Pocock 1992) as well as a recent approach, which is
based on sample size calculation methods for multivariate outcomes (Chi et al. 2018), should be
mentioned as references for the special case of an adjustment for several repeated measurements of
the outcome variable.

With an increasing number of covariates, the amount of uncertainty in sample size calculation
increases, too. In the ANCOVA model, additionally to the effect size and the variance of the
outcome, one has to provide “good guesses” of the covariance matrix of the covariates as well as
the correlations between the outcome and the covariates. If these hypothesized values, which can be
either based on previous studies or subject-matter expertise, are not close to the true values, the
resulting actual power and calculated sample sizes might be inaccurate. Therefore, it would be
sensible to recalculate the sample size at some pre-specified time point during the course of the
study. This can be regarded as a special case of an adaptive design, although it should be noted that
only the nuisance parameters, but not the effect sizes, are re-estimated in the interim analysis (Bauer
et al. 2015; Wassmer and Brannath 2016). A crucial issue with sample size recalculation methods is
whether or not blinding of the data is required. If unblinding is needed for the interim analysis, an
independent statistical group, which is not involved in the trial otherwise, would be required in order
to preserve the integrity of the study. Since this is resource-consuming, an appealing alternative
would be to use a sample size reassessment method, which does not require unblinding of the data.
For an overview of existing methods, we refer to the comprehensive reviews of Proschan (Proschan
2005) and Friede and Kieser (Friede and Kieser 2006).

In the present paper, we propose a blinded sample size recalculation procedure for an ANCOVA
model with multiple random covariates, extending the methods that have been examined by Friede
and Kieser for the case of a single random covariate (Friede and Kieser 2011). Our manuscript is
organized as follows. In Section 2, we introduce some notation as well as sample size formulas for the
fixed design and describe the main steps of our proposed recalculation method in detail. Moreover,
we also place emphasis on practical aspects by discussing some potential problems, which might
arise when (re-)calculating sample sizes for a multiple ANCOVA model and suggest appropriate
remedies. Then, in Section 3, we investigate the performance of both fixed sample size calculation
formulas and our proposed recalculation procedure with respect to type I error rates, empirical
power, and sample sizes in an extensive simulation study covering a broad range of parameter
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configurations. We demonstrate the application of our proposed method to real-life data in Section
4. The paper concludes with a discussion of the advantages and limitations as well as some ideas for
future research. In the Online Supplement, we provide the R code that can be used for applying our
proposed method in practice as well as additional simulation results.

2. Sample size formulas, blinded sample size recalculation procedure, and practical
considerations

2.1. Approximate formulas for the fixed sample size setting

Let ðYij;Z0
ijÞ ¼ ðYij;Z

ð1Þ
ij ; . . . ;ZðcÞ

ij Þ0 be independent, following a multivariate ðcþ 1Þ-dimensional
normal distribution with mean vector ðμi; μ0ZÞ0 and covariance matrix Σ, 1 � j � ni, i 2 f1; 2g.
Thereby, n1 and n2 are the sample sizes of group 1 and 2, respectively, and c 2 N denotes the
number of covariates. The adjusted means μ1; μ2 may differ, whereas the covariate means and the
covariance matrix are assumed to be equal across the groups. The covariance matrix Σ of the joint
distribution of the outcome and the covariates can be conveniently expressed as

Σ :¼ σ2Y σ
0
YZ

σYZ ΣZ

� �
;

where σ2Y and ΣZ denote the variance of the outcome and the covariance matrix of the covariates,
respectively, and σYZ represents a c-dimensional vector containing the covariances between the
outcome and each covariate.

Consider that higher values of the outcome are beneficial and that superiority of group 1 over
group 2 is tested in terms of the group means, that is, H0 : μ1 � μ2 vs. H1 : μ1 > μ2. In this setting, it
is well known that under H0,

T :¼ μ̂1 � μ̂2
σ̂

(1)

follows the central t distribution with n1 þ n2 � 2� c degrees of freedom, where μ̂i denotes the
estimated adjusted mean in group i, i 2 f1; 2g and σ̂ denotes the positive square root of

σ̂2 :¼ dVarðμ̂1 � μ̂2Þ ¼
1
n1

þ 1
n2

þ Q̂Z

� �
n1 þ n2 � 2

n1 þ n2 � 2� c
σ̂2Yð1� R̂2Þ: (2)

Thereby, Q̂Z :¼ �Z
0

d ðn1 þ n2 � 2ÞΣ̂Z
� ��1�Zd, where �Zd :¼ �Z1

ð1Þ � �Z2
ð1Þ�
, . . . , �Z1

ðcÞ � �Z2
ðcÞ	0

.

Moreover, R̂2 denotes the square of the estimated pooled multiple correlation coefficient between
the outcome and the covariates, that is, R̂2 :¼ σ̂

0
YZΣ̂

�1
Z σ̂YZ=σ̂2Y , where σ̂

2
Y , σ̂YZ, and Σ̂Z are the pooled

estimators of σ2Y , σYZ, and ΣZ , respectively. Exact unconditional power for the ANCOVA F-test was
derived by Shieh (Shieh 2017). Following this approach, exact sample sizes for a specified power
value can be obtained iteratively. However, in order to facilitate sample size calculations by avoiding
numerical or iterative computations, several approximations have been proposed. In the sequel, N ¼
n1 þ n2 denotes the total sample size, γ ¼ n2=n1 the allocation ratio, α and β are the type I and II
error levels, and zp denotes the p-quantile of the standard normal distribution. Furthermore, R2

denotes the squared multiple correlation coefficient, that is, R2 ¼ σ
0
YZΣ

�1
Z σYZ=σ2Y . Let Δ be the

stipulated difference of the adjusted means (i.e., the clinically relevant difference). Then, by general-
izing the approximate sample size calculation methods discussed by Friede and Kieser (Friede and
Kieser 2011), the following formulas for calculating the approximate total sample size are proposed:
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1. Basic approximate formula:

NA ¼ ðγþ 1Þ2
γ

ðz1�α=2 þ z1�βÞ2σ2Yð1� R2Þ
Δ2 : (3)

2. Guenther-Schouten-like adjustment (GS):

NGS ¼ NA þ
z21�α=2

2
: (4)

3. Degrees-of-freedom adjustment (DF):

NDF ¼ NA
NA � 2

NA � 2� c
: (5)

4. Combined Guenther-Schouten and degrees-of-freedom adjustment (GS + DF):

NGS;DF ¼ NDF þ
z21�α=2

2
: (6)

It should be noted that the sample size formulas correspond to a one-sided level α=2 test, as
recommended by guidelines regarding hypothesis testing in a superiority setting (International
Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 1998).
A formal justification of (3) as well as some heuristic arguments concerning (5) and (6) are provided
in the Appendix.

2.2. A method for blinded interim sample size reassessment by re-estimating nuisance
parameters

We propose the following procedure for blinded sample size recalculation:

1. Calculate the initial sample size Ninit using the degrees-of-freedom adjustment approach (5).

2. As soon as data from Nτ :¼ τNinit patients are available, τ > 0, calculate the residual variance
estimator σ̂2τ of the linear regression model,

Yij ¼ β0 þ
Xc

k¼1

ZðkÞ
ij βk þ �ij; �ij,

iid Nð0; σ2τÞ; i 2 f1; 2g; j 2 f1; 2; . . . ; nig;

that is, the residual variance based on a regression model for the pooled sample. This approach
has been proposed for the case of one random covariate by Friede and Kieser (Friede and
Kieser 2011). The main idea is that unblinding is not required here, because the residual
variance based on the data from the pooled sample can be calculated without knowing the
treatment group indicators. Of course, the estimators will be biased, but evidence from the
simple ANCOVA suggests that the impact of that bias on the expected sample size is small
(Friede and Kieser 2013).

3. Recalculate the sample size by using the Guenther–Schouten approach, that is,

N̂rec ¼ ðγþ 1Þ2
γ

ðz1�α=2 þ z1�βÞ2σ̂2τ
Δ2 þ

z21�α=2

2
:

At this point, one may ask why the Guenther-Schouten adjustment is used instead of the
degrees-of-freedom adjustment. The reason is that the residual variance estimator of
a regression model with outcome Y and explanatory variables Z1; . . . ;Zc already accounts
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for the degrees of freedom. Consequently, the degrees-of-freedom adjustment lacks any under-
lying rationale in this context and could even lead to an over-adjustment.

4. The final sample size is obtained according to the formula,

N̂final ¼ minfmaxðNτ; N̂recÞ;Nboundg;
where Nbound ¼ k � Ninit , k � 1, and k is determined by the available resources and the time horizon
for the trial. For example, if the initially planned total sample size was Ninit ¼ 100, setting k ¼ 2
means that the sample size can be increased up to 200 at the interim analysis. As a consequence, the
final sample size is contained in the interval ½Nτ; k � Ninit�, then. Thus, we allow for either in- or
decreasing the initially planned sample size at the interim recalculation, yet making sure that the final
sample size cannot grow “too large” compared to Ninit . The latter restriction is sensible from
a statistical point of view, especially when Nτ is quite small, because substantial uncertainty in
estimating the residual variance might lead to an excessive inflation of the final sample size.
Moreover, from a practical point of view, financial and human resources are limited. Actually,
bounding the final sample size, for example, at the fourfold of Ninit is a quite ambitious choice, and
even a doubled sample size might already present a challenge in implementation. Regarding the
lower bound, we would like to mention that alternatively one could replace the lower bound Nτ by
Ninit , which would mean that the initially planned sample size cannot be decreased. Apart from this
modification, the method follows the same steps as outlined above. However, the expected final
sample size would in general be larger than in the setting that is considered in the presentmanuscript.

Needless to say that the sample sizes obtained in each step are rounded to the smallest integer that
is equal to or greater than the calculated value. In addition, depending on the allocation ratio γ,
another adjustment has to be done. For example, if we consider a balanced design (i.e., γ ¼ 1) and
the total final sample size N̂final is odd, we must add 1 in order to get an even number. In general, the

final sample size N̂final is adjusted by calculating

ð N̂final

 �

=ðγþ 1Þ� 
þ 1fðγþ 1Þ ł N̂final

 �gÞ � ðγþ 1Þ;

in order to eventually obtain the smallest integer which is equal to or greater than N̂final and which is
a multiple of ðγþ 1Þ.

2.3. Some practical considerations

In the fixed sample size setting as well as in the first step of our proposed sample size
reassessment procedure, several quantities have to be provided by subject-matter experts or
have to be extracted from previous studies. When calculating approximate sample sizes for a t-
test without any covariates, only σ2Y and Δ are required. Now, the approximate formula (3) in the
multiple ANCOVA setting differs from the t-test formula by the factor ð1� R2Þ. Especially for
c ¼ 1, this is a well-known rule-of-thumb: At first, one calculates the sample size as if a t-test was
used in the final analysis. In a second step, the sample size is multiplied with one minus the
squared correlation between the outcome and the covariate. Formula (3) shows that this
calculation rule can be extended to the multiple ANCOVA case, with the squared correlation
replaced by the squared multiple correlation coefficient R2. However, in practice, it might be
difficult to obtain this factor directly. Therefore, we would like to briefly discuss the following
approaches:

1. Iterative calculation: Apply the following formula to calculate R2 iteratively, based on an R2

value from a reduced model and a partial correlation coefficient (Ravishanker and Dey 2002):

R2
Y;Z1;...;Zc

¼ R2
Y;Z1;...;Zc�1

þ ð1� R2
Y;Z1;...;Zc�1

Þρ2ðYZcÞjðZ1;...;Zc�1Þ;
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where R2 and ρ2 denote the squared multiple and partial correlation coefficients, respectively.
For example, in case of c ¼ 2, this formula reduces to

R2
Y;Z1;Z2

¼ ρ2YZ1
þ ð1� ρ2YZ1

Þρ2ðYZ2ÞjZ1
:

Some caution is required here: Formally, the partial correlation coefficient ρðYZ2ÞjZ1
is defined as

the Pearson correlation based on the elements of the covariance matrix of the conditional
distribution of ðY;Z2Þ, given Z1 ¼ z1 for some z1 2 R . However, that covariance matrix does
not depend on the particular choice of z1 (Ravishanker and Dey 2002). Hence, one could
basically use any estimated correlation between Y and Z2 from a previous study as a “good
guess” of that partial correlation coefficient.

2. Definition of R2: Take into account that R2 ¼ ðσ 0
YZΣ

�1
Z σYZ=σ2YÞ, R2 is calculated by specifying

the ðcþ 1Þðcþ 2Þ=2 nuisance parameters which uniquely define the covariance matrix of the
covariates, the variance of the outcome and the correlations between the covariates and the
outcome. This approach might well be feasible in practice because it is more or less straightfor-
ward to extract these correlations and variances from previous studies or infer them from
expert opinion. However, apart from the considerable increase in the number of parameters for
growing c, some configurations of individual parameters might yield an R2 value that exceeds 1,
which would in turn lead to negative sample sizes.
In order to solve this problem, one should check whether the joint covariance matrix Σ is
positive semidefinite, because this implies R2 2 ½0; 1�. For the special case of Σ having
a compound symmetry structure, Σ is positive semidefinite if and only if ρ � �1=c, where ρ
denotes the correlation. In more general cases, one has to do an eigenanalysis after having
specified the nuisance parameters. In order to facilitate the use of the proposed sample size
formulas for applied researchers, the R code provided in the Online Supplement contains
a function which checks for positive semidefiniteness and returns a warning message if this
condition is not met.

3. Simulation study

In order to evaluate the performance of the aforementioned approximate fixed sample size formulas and
our proposed sample size recalculation procedure, we conducted an extensive simulation study. At first,
we investigated the case of c ¼ 2 covariates. The observations and covariates were drawn from

a trivariate normal distribution with mean vectors ðμi; 0; 0Þ
0
, i 2 f1; 2g, where μ2 ¼ 0 and

μ1 ¼ Δ 2 f0:25; 0:5; 0:75g. Further, we assumed a compound symmetry structure for the covariance
matrix of the covariates ΣZ, that is ΣZ ¼ σ2ZI2 þ ρZðJ2 � I2Þ; where I2 and J2 denote the 2-dimensional
identity matrix and the matrix containing all 1’s, respectively. We set σ2Y ¼ σ2Z ¼ 1 and considered all
combinations of σYZ 2 fð0:25; 0:25Þ0; ð0:5; 0:5Þ0; ð0:75; 0:75Þ0; ð0:25; 0:5Þ0; ð0:25; 0:75Þ0; ð0:5; 0:75Þ0g
and ρZ 2 f0:25; 0:5; 0:75g. Observe that we thus cover a broad range of R2 values, since these config-
urations yield R2 2 f0:071, 0:083, 0:100, 0:250, 0:267, 0:286, 0:333, 0:400, 0:567, 0:571, 0:583, 0:643,
0:667, 0:750, 0:786, 0:900g. Regarding the group sizes, we considered a balanced design (i.e.,
γ ¼ n2=n1 ¼ 1). Additionally, we repeated the simulations for all scenarios where ρZ ¼ 0:5 employing
a 1:2 allocation ratio (i.e., γ ¼ 2). To our knowledge, only 1:1 allocation has been considered in the
literature so far, despite the practical relevance of unequal allocation ratios. For example, in a study where
the investigators want to show superiority of a new drug over the standard treatment, but the new drug is
supposed to carry some risk of severe adverse events, unequal allocation may be an attractive option.
Moreover, in order to investigate whether the performance of our proposed method changes substan-
tially with increasing c, we conducted simulations for c ¼ 3 covariates, too.We set σ2Z1

¼ σ2Z2
¼ σ2Z3

¼ 1,
CovðZ1;Z2Þ ¼ CovðZ2;Z3Þ ¼ 0:5 and CovðZ1;Z3Þ ¼ 0:25. All other specifications were the same as
described above, with CovðY;Z3Þ ¼ 0:5 as the third coordinate of σYZ. For each scenario, we conducted
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nsim ¼ 1; 000; 000 simulation runs, which resulted in an estimated standard error of 0:0004 for the
empirical power (1� β ¼ 0:80) and 0:0002 for the type I error rate (α=2 ¼ 0:025), respectively.

At first, we report the results concerning the performance of the four fixed sample size procedures
in terms of sample sizes and power, in comparison with the results for the exact approach proposed by
Shieh (Shieh 2017). The basic approximate formula (3) performed well only in large samples, yet
showing considerable deviations from the respective exact values in small samples (e.g., NA ¼ 20 vs.
NEx ¼ 26, see Table 3 in Section 1 of the Supplementary Material). Proceeding with formulas (4) – (6),
the performance was gradually getting better, with the sample sizes based on the combined Guenther–
Schouten and degrees-of-freedom adjustment (6) being equal to the exact sample sizes in most
scenarios. As an alternative, however, the degrees-of-freedom adjustment (5) also yielded good
approximations, unless the sample sizes were very small. Apart from that, it should be noted that
the sample sizes were larger for unbalanced scenarios (i.e., γ ¼ 2) than in balanced settings, regardless
whether the exact or one of the approximate methods was used. All results can be found in full detail
in Tables 1–5 in Section 1 of the Supplementary Material.

For the simulations regarding our proposed sample size recalculation procedure, the parameter τ,
which specifies the time point of the interim reassessment, was set to 0:5. The final total sample size
was bounded at the fourfold of the initially planned sample size Ninit (i.e., k ¼ 4). Final average
sample sizes and empirical power were compared to the corresponding values that were obtained by
using the exact fixed sample size calculation approach proposed by Shieh (Shieh 2017). Moreover,
the distribution of the final sample size was analyzed in detail in Section 2 of the Supplementary
Material. Firstly, in balanced designs with c ¼ 2 covariates, the pre-specified level of α=2 ¼ 0:025
was well maintained, with a median type I error rate of 0:02509 (range 0:02462� 0:02554). The
median simulated power of the recalculation procedure was 0:80028 (range 0:78731� 0:85603; see
Figure 1 for detailed results for all scenarios). The exact sample sizes corresponding to the minimum
and maximum simulated power values are N ¼ 18 and N ¼ 12, respectively, indicating that the
method might have a somewhat suboptimal performance for very small total sample sizes. This
corresponds to a trend towards increased deviations from the target power for large hypothesized
effects Δ (Figure 1). At this point, however, the question arises whether it is sensible at all to consider
a scenario with such extremely small sample sizes because in the interim reassessment, a regression
model with 3 parameters is fitted to data from N=2 2 f6; 9g subjects.

Anyway, apart from these few instances, the proposed sample size recalculation procedure per-
forms very well, with empirical power close to the target level. For example, if only those scenarios
with a total exact sample size � 30 (i.e., 15 subjects per group) are considered, the empirical power
of the recalculation procedure ranges from 0:79850 to 0:80272. Moreover, observe that the simulated
power for the recalculation procedure is most of the time closer to the target level of 0:8 than the
exact power value, even though all parameters were correctly specified (Figure 1). With respect to the
sample sizes, the recalculation procedure yields expected final sample sizes which exceed the exact
values by 6 to 7 subjects on average (for details, see figures 1 to 3 and Tables 6 to 8 in Section 2 of the
Supplementary Material). Similar results have been found for the ANCOVA model with one
covariate, as reported by Friede and Kieser (Friede and Kieser 2011). So, even in the case of c ¼ 2
covariates, the overall “price” one has to pay for the increased flexibility of the recalculation
procedure is small, thus rendering the proposed method useful for practical applications.
However, one has to keep in mind that, especially in small samples, the maximum final sample
size resulting from the recalculation procedure could exceed the initially planned sample size
considerably. For example, when the total exact sample size in the fixed scenario is 18, the final
sample size of the recalculation procedure exceeds the exact sample size by a factor of at least 2 in
about 15 percent of simulation runs. However, as the total sample size grows, the proportions drop
below 1 percent in most scenarios. In addition to that, the frequencies of more severe excesses (i.e.,
by a factor of 3 or 4) decrease rapidly, too. Hence, taking 4Ninit or 3Ninit as an upper bound for the
final sample size of the recalculation procedure in fact only represents a slight modification
compared to imposing no restriction at all. The simulation results also indicate that the cutoff
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2Ninit could be used as a safeguard against severe excesses of the exact sample size, which might
result from the small-sample variability of the variance estimator. On the other hand, however, this
restriction would also carry some risk of power loss. Detailed results are provided in figures 1–3 and
Tables 6–8 in Section 2 of the Supplementary Material.

Basically, compared to the balanced settings, the performance for γ ¼ 2 is similar, if not even
slightly better. The empirical type I error rates are close to the nominal level (median 0:02506, range
0:02456� 0:02558). The maximum deviations from the target power are even smaller than in the
balanced settings, and the empirical power always lies above 0:8 now (median empirical power
0:80287, range 0:80041� 0:82300; see Figure 2 for details). Especially for Δ ¼ 0:75, the exact power
substantially exceeds the target value, whereas the deviation of the power of the recalculation method
is much smaller (Figure 2). However, if human and financial resources are limited, the increased
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Figure 1. Empirical power of the proposed sample size recalculation procedure vs. exact power in the fixed sample size design
with correct specification of nuisance parameters for target power 0:8. Cov 1 to 3 indicate different compound symmetry
structures of the covariance matrix of the c ¼ 2 covariates (ρZ ¼ i � 0:25; i 2 f1; 2; 3g), and the labels on the x axis denote
the correlations between the outcome and covariate j, j 2 f1; 2g: c1 ¼ ð0:25; 0:25Þ, c2 ¼ ð0:5; 0:5Þ, c3 ¼ ð0:75; 0:75Þ,
c4 ¼ ð0:25; 0:5Þ, c5 ¼ ð0:25; 0:75Þ, c6 ¼ ð0:5; 0:75Þ.
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probability of exceeding the exact sample size by a factor of 2 or more could pose some difficulties
(Table 9 in Section 2 of the Supplementary Material). Apart from that, overall, the comparison
between the fixed exact sample sizes and the final recalculated sample sizes yielded similar results as
in the balanced setting (figure 4 and Table 9 in Section 2 of the Supplementary Material).

In case of balanced designs with c ¼ 3 covariates, the proposed sample size reassessment procedure
yields empirical power values which are consistently slightly smaller than 0:8 (Figure 3). While the
method still performs well for Δ 2 f0:25; 0:5g, there is some power loss for Δ ¼ 0:75 in most cases (e.g.,
empirical power of 0:77424 for σYZ ¼ ð0:75; 0:75; 0:5Þ0; Figure 3). However, the type I error rates are still
close to the pre-specified level for all scenarios (median 0:02501, range 0:02472� 0:02527). Compared to
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Figure 2. Empirical power of the proposed sample size recalculation procedure vs. exact power in the fixed sample size design
with correct specification of nuisance parameters for target power 0:8, assuming a compound symmetry structure of the
covariance matrix of the c ¼ 2 covariates, where σZ ¼ 1 and ρZ ¼ 0:5, and unbalanced group sizes, n2 ¼ 2n1. The labels on
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Figure 3. Empirical power of the proposed sample size recalculation procedure vs. exact power in the fixed sample size design
with correct specification of nuisance parameters for target power 0:8, assuming an ANCOVA model with c ¼ 3 covariates,
a compound symmetry structure of the covariance matrix of the covariates, where σZ ¼ 1 and ρZ ¼ 0:5, and balanced group sizes,
n1 ¼ n2. The labels on the x axis denote the correlations between the outcome and covariate j, j 2 f1; 2; 3g: c1 ¼ ð0:25; 0:25; 0:5Þ,
c2 ¼ ð0:5; 0:5; 0:5Þ, c3 ¼ ð0:75; 0:75; 0:5Þ, c4 ¼ ð0:25; 0:5; 0:5Þ, c5 ¼ ð0:25; 0:75; 0:5Þ, c6 ¼ ð0:5; 0:75; 0:5Þ.
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the scenarios with c ¼ 2 covariates, the discrepancies between exact and recalculated sample sizes appear
to be slightly smaller (Figure 5 and Table 10 in Section 2 of the Supplementary Material).

So far, we have only considered somewhat idealistic settings, assuming that the nuisance parameters
were correctly specified in advance. In these scenarios, where a fixed sample size calculation approach is
supposed to yield reliable results, the recalculation procedure performed equally well and was even slightly
superior in some cases. Additionally, we consider two settings now, that more closely mirror the situation
commonly faced in practice, namely that the covariance matrix ΣZ of the covariates is misspecified. Here
the advantages of the increased flexibility due to the interim reassessment become even more obvious. On
the one hand, we assumed that initially, ρZ was set to 0:75, but the true value was 0:5. On the other hand,
instead of ρZ ¼ 0:75, we used ρZ ¼ 0:25 for the initial sample size calculation. It can be seen in Figure 4
that our proposed recalculation procedure outperformed the fixed sample size calculation method in most
scenarios. The latter led to either substantially over- or underpowered results, depending on the config-
uration of the covariances between the covariates and the outcome. The sample size reassessment
procedure was slightly underpowered for covariance scenario c3 (i.e., strong correlations between the
outcomes and the covariates, which in turn translates to small sample sizes) andmisspecification scenario 2
(i.e., assuming that ρZ was equal to 0:25 instead of 0:75). However, it clearly outperformed the fixed sample
size calculation method, which totally failed in that scenario. Moreover, similar to all previously discussed
settings, our proposed method again keeps the α level well (median 0:02498, range 0:02466� 0:02568).

4. Application to a real-life setting

In order to illustrate the application of our proposed sample size recalculation procedure, we use data
from the SIESTA (Sedation vs. Intubation for Endovascular Stroke TreAtment) trial. In this monocentric
randomized parallel-group trial, the main aim was to assess if conscious sedation is superior to general
anesthesia for early neurological improvement among patients receiving stroke thrombectomy. The
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Figure 4. Empirical power of the proposed sample size recalculation procedure vs. exact power in the fixed sample size design for
target power 0:8 in case of c ¼ 2 covariates, assuming σZ ¼ 1, and balanced group sizes, n1 ¼ n2. The labels on the x axis denote
the correlations between the outcome and covariate j, j 2 f1; 2g: c1 ¼ ð0:25; 0:25Þ, c2 ¼ ð0:5; 0:5Þ, c3 ¼ ð0:75; 0:75Þ,
c4 ¼ ð0:25; 0:5Þ, c5 ¼ ð0:25; 0:75Þ, c6 ¼ ð0:5; 0:75Þ. Misspecification 1: ρZ ¼ 0:75 was assumed for sample size calculation for
the fixed design and initial sample size calculation of the recalculation procedure, although the true correlation was 0:5.
Misspecification 2: ρZ ¼ 0:25 was assumed, although the true correlation was 0:75.
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change from baseline of the National Institutes of Health Stroke Scale (NIHSS) 24 hours after the
interventionwas considered as the primary outcome, which was compared between the two groups while
adjusting for the NIHSS at baseline. For further details, we refer to the original publication of the results
(Schönenberger et al. 2016). Regarding sample size calculation, the investigators report that the estimated
variances, which were obtained from previous studies, showed considerable variation. Even worse, an
estimate of the correlation between the outcome and the NIHSS at baseline was not available at all.
Therefore, it was decided to conduct a preliminary sample size calculation with the t-test formula, which
yielded a total sample size N ¼ 100, assuming equal group allocation. When data of 75 patients were
available (i.e., τ ¼ 0:75), a pre-planned blinded sample size recalculation was carried out, using the
method proposed by Friede andKieser (Friede andKieser 2011). Further details are provided in the study
protocol (Schönenberger et al. 2015).

Clearly, this is a case where an interim sample size reassessment is more appropriate than calculating
sample sizes at the planning stage and keeping them fixed throughout the conduct of the study. The latter
approach would have to rely on a somewhat arbitrary initial guess of the correlation and on a variance
estimate which is subject to considerable uncertainty. So, the method employed in the SIESTA study was
definitely a good choice. Nevertheless, we shall examine whether the final sample size would have
substantially changed if multiple covariates had been considered. Note that such a recalculation proce-
dure could not be implemented in the SIESTA trial as the methodology was not available at that time, but
is presented in this article. At this point, we would like to mention that the primary outcome as well as
some of the covariates, which will be considered below, are ordinally scaled variables. However, for the
classical ANCOVA as well as for our proposed method to be applied, normally distributed variables are
required. Since there is some evidence that type I error rates and power are not substantially affected by
applying the classical ANCOVA to ordinally scaled outcomes and baseline measurements thereof
(Sullivan and D’Agostino 2003), it is appropriate to use the data for illustrating the application of our
proposed sample size recalculation method. Nevertheless, we would like to emphasize that the resulting
effect sizes (i.e., adjusted mean differences) should be interpreted with caution if the outcome and/or the
covariates are ordinally scaled.

In the sequel, we perform several sample size recalculations based on the original data available at
the time of the interim analysis, assuming a group allocation ratio γ ¼ 1 and a clinically relevant
difference Δ ¼ 4. We set α ¼ 0:05 and 1� β ¼ 0:9. These specifications correspond to the setup
described in the study protocol; however, unlike there, we do not impose an upper bound on the
final sample size because this would complicate the assessment of potential differences between the
respective models. For sample size recalculation, we conducted steps 2 and 3 from Section 2.2. At
first, we reproduced the sample size reassessment that had been actually carried out in the study,
assuming an ANCOVA model with one single covariate, namely NIHSS at baseline. The estimated
residual variance and final sample size were σ̂2τ ¼ 99:35 and N̂rec ¼ 264, respectively. Next, we added
the age of the patients (in years) as a second covariate. Using this model, both values slightly
decreased (σ̂2τ ¼ 96:99, N̂rec ¼ 258). As an alternative, we considered replacing age by the degree of
recanalization, as quantified by the Thrombolysis In Cerebral Infarction (TICI) scale. So, again, we
had a scenario with c ¼ 2 covariates, namely NIHSS at baseline and TICI. Obviously, the inclusion of
TICI led to a substantial decrease in the final sample size down to N̂rec ¼ 214 (σ̂2τ ¼ 80:42). Finally,
we added the door-to-intervention time (in seconds) to the model. Taking NIHSS at baseline, TICI
and door-to-intervention time as covariates, we got σ̂2τ ¼ 77:43 and N̂rec ¼ 206, respectively.

Summing up, we would like to emphasize three important points. Firstly, we have seen that in all
scenarios the recalculated sample sizes substantially exceeded the initially planned sample size N ¼ 100.
Secondly, the differences in final sample sizes for various choices of the covariatesmight indicate that careful
thoughts about the associations between the outcome and potential covariates are required in the planning
phase. In the example, the inclusion of TICI led to a considerable decrease in the final sample size, whereas
there was hardly any use in adding age to the model. Thirdly, it seems as if increasing the number of
covariates beyond c ¼ 2 would not lead to further substantial improvements, which is consistent with
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findings in a similar repeated measures context (Frison and Pocock 1992). However, we would like to
emphasize that our example is supposed to serve of course merely as an illustration of how to apply our
proposed method. Needless to say that compared to evidence from simulations, the generalizability of the
findings is thus limited.

5. Discussion and conclusions

Although some work concerning exact and approximate sample size calculation in the context of an
ANCOVA model with multiple covariates has been published recently, there is currently no method
available, which allows for blinded sample size recalculation in that setting. We have proposed such
a method here, which is based on the approach suggested by Friede and Kieser (Friede and Kieser
2011) for the situation of one single covariate. At the time point of the blinded interim reassessment,
the residual variance is estimated based on the pooled interim data, and the final sample size is
recalculated accordingly. The results of our extensive simulation study indicate that even if all
parameters are correctly specified, the performance of the blinded recalculation method is close to
the exact results for models with 2 random covariates and for most scenarios with 3 covariates,
except in cases where the required sample size is very small (i.e., for standardized effects Δ ¼ 0:75).
In more realistic scenarios, where initial misspecifications of a nuisance parameter are present, our
proposed method is clearly superior to the fixed approach. Apart from that, regardless whether
a fixed sample size calculation formula or a recalculation method is employed, caution is needed
when initially specifying the values of the nuisance parameters in order to prevent the sample sizes
provided by the formula from being negative. This note of caution is important and has to be taken
into consideration when applying the aforementioned methods in real-life settings (e.g., by checking
for positive semidefiniteness of the joint covariance matrix).

The sample size calculation formulas, which are used in our proposed procedure, have been
derived assuming a multivariate normal distribution of the covariates and the outcome. However, in
applied research, this assumption is frequently violated. The outcome and/or the covariates may not
even be continuous (e.g., ordinal scores like the modified Rankin Scale (Van de Graaf et al. 2018), the
Hamilton Rating Scale for Depression (Kasper et al. 2006), etc.). We have already touched this issue
briefly in Section 4 providing some explanation on how the ANCOVA results can be used and
interpreted, though. In such instances, however, using nonparametric ANCOVA methods (Bathke
and Brunner 2003) would be an attractive alternative with respect to the interpretation and the
robustness of the results. Nevertheless, for parallel-group comparisons, sample size calculation
methods are only available for the unadjusted Wilcoxon-Mann-Whitney test (Govindarajulu 2007;
Noether 1987). Therefore, investigating sample size (re-)calculation procedures for nonparametric
ANCOVA is a promising goal of future research.

Basically, our proposed recalculation method can be applied to ANCOVA models with an
abitrary number of covariates. However, we restricted to a thorough examination of various
settings with c ¼ 2 and c ¼ 3 as well as balanced and unbalanced scenarios. Evidence from
repeated measures models indicates that if the number of baseline visits is increased, there is
always a reduction of the required sample size (i.e., a gain in power). However, the magnitude of
that reduction decreases considerably with a growing number of baseline visits (Frison and
Pocock 1992). In our simulation study, we also noticed that already for c ¼ 3 the reduction in
sample sizes compared to a similar scenario for c ¼ 2 was not larger than 10 in most cases.
Moreover, especially in small to moderate samples, multicollinearity issues are more likely to
occur with an increasing number of covariates. Therefore, all in all, we recommend including at
most 3 covariates into the model, thus maintaining a balance between gains in power and
feasibility in practical applications.

It should generally be noted that any blinded reassessment procedure cannot correct for mis-
specified effect sizes. For this purpose, an adaptive design with unblinded interim analysis would be
an appealing alternative. However, such a method has the disadvantage that unblinding and, thus,
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establishing an independent data analysis group, whose members must not be involved in the trial
otherwise, is required. Furthermore, regulatory guidelines prefer blinded sample size reassessment
due to avoiding bias (European Medicines Agency 2007; Food and Drug Administration 2016, 2018).
Apart from that, we have to acknowledge that type I error control was only examined empirically in
the present work. While from a formal point of view this might be somewhat suboptimal, it should
be mentioned that analytical solutions can only be obtained in rather simple settings (e.g., for the
two-sample t-test, see Kieser and Friede (2003)). Moreover, in a recent draft guidance of the FDA, it
is stated that assessing type I error control by means of simulations might be appropriate (Food and
Drug Administration 2018). Anyway, due to the fact that it is of course not possible to cover all
potentially relevant scenarios in the present manuscript, we recommend performing some simula-
tions for the particular setting one is interested in before actually using the results of our proposed
recalculation procedure for study planning purposes.

To conclude, firstly, we have assessed the performance of several approximate fixed sample size
calculation approaches in terms of sample size and power. According to the results of the simulation
studies, the proposed adjustments, which take the number of covariates into account, are easy to
apply and can be safely used in practice. Moreover, most importantly, we have proposed a blinded
sample size recalculation method for an ANCOVA model with multiple random covariates and
showed by extensive simulations that it maintains the pre-specified type I error level and achieves the
desired power very well in models with 2 or 3 covariates, except for very small sample sizes. In case
of initial misspecifications, our proposed method clearly outperforms the fixed sample size calcula-
tion approach. Thus, applied researchers now have a procedure at hand, which is easy to use and
increases the robustness of sample size calculation while at the same time keeping the treatment
allocation blinded.
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Appendix

Derivation of the basic approximate sample size formula (3) in Section 2

At first, we rewrite the test statistic T defined in (1) as

T ¼ Δ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
1 þ n�1

2 þ Q̂Z

� �
κQ̂YZ

q ;

where Q̂Z :¼ �Z
0

d ðn1 þ n2 � 2ÞΣ̂Z
� ��1�Zd, Δ̂ :¼ μ̂1 � μ̂2, κ :¼ ðn1 þ n2 � 2Þ=ðn1 þ n2 � 2� cÞ, Q̂YZ :¼ σ̂2Y

ð1� σ̂�2
Y σ̂

0
YZΣ̂

�1
Z σ̂YZÞ.

Recall that under H0, T has a central t-distribution with n1 þ n2 � 2� c degrees of freedom. In order to obtain the
distribution of T under the fixed alternative H1 : μ1 � μ2 ¼ Δ > 0, let QYZ :¼ σ2Yð1� σ

0
YZΣ

�1
Z σYZ=σ2YÞ, and σ2Y , σYZ, and

ΣZ denote the variance of the outcome, the c-dimensional vector containing the covariances between the outcome and
the covariates, and the covariance matrix of the covariates, respectively. We rewrite the test statistic T as follows:

T ¼ Δ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
1 þ n�1

2 þ Q̂Z

� �
κQ̂YZ

q

¼
Δ̂� Δ
� �þ Δ
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1
1 þ n�1

2 þ Q̂Z

q
ffiffiffiffiffiffiffiffiffiffiffi
κQ̂YZ

q

¼
Δ̂� Δ
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1
1 þ n�1

2 þ Q̂Z

� �
QYZ

q
þ Δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
1 þ n�1

2 þ Q̂Z

� �
QYZ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κQ̂YZ

�
QYZ

q :

Observe that QYZ is just the residual variance of the ANCOVA model (Ravishanker and Dey 2002, p.156), and κQ̂YZ is
the corresponding residual variance estimator. Moreover, straightforward calculations show that
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VarðΔ̂Þ ¼ Varðμ̂1 � μ̂2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
1 þ n�1

2 þ Q̂Z

� �
QYZ

q
. Hence, under H1 : μ1 � μ2 ¼ Δ> 0, the test statistic T has a non-

central t-distribution with n1 þ n2 � 2� c degrees of freedom and non-centrality parameter

δ ¼ Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂Z þ n�1

1 þ n�1
2

� �
QYZ

q : (7)

Now, in order to achieve the target power 1� β at the nominal type I error level α=2, the equation

t1�α=2;n1þn2�2�c;0 ¼ tβ;n1þn2�2�c;δ

has to hold, where tp;df ;nc denotes the p–quantile of the t-distribution with df degrees of freedom and non-centrality
parameter nc. Hence, since tβ;n1þn2�2�c;δ � tβ;n1þn2�2�c;0 þ δ, we get

t1�α=2;n1þn2�2�c;0 � tβ;n1þn2�2�c;0 þ δ

For “large” sample sizes, we can approximate the t-quantiles by their standard normal counterparts. Hence, some
straightforward algebra yields

δ2 � z1�α=2 þ z1�β

� �2
: (8)

By using n2 ¼ γn1 and plugging in the expression from (7) for δ, we obtain

Δ2

n�1
1 þ n�1

2 þ Q̂Z

� �
QYZ

� z1�α=2 þ z1�β

� �2
, Δ2

γn1ð Þ�1 γþ 1þ γn1Q̂Z

� � � z1�α=2 þ z1�β

� �2 ~QYZ

, γn1Δ
2 � z1�α=2 þ z1�β

� �2
QYZ γþ 1þ γn1Q̂Z

� �
, n1 1� z1�α=2 þ z1�β

� �2
QYZQ̂Z=Δ

2
� 	

� z1�α=2 þ z1�β

� �2
QYZ γþ 1ð Þ= γΔ2

� �
: ð9Þ

Now, observe that Q̂Z is most likely close to 0: �Zd is supposed to be small for reasonable sample sizes, since the
covariate means of the populations are equal to μZ for both groups. Moreover, the elements of the inverse of Σ̂Z will be
small, too, unless the variances are close to 0, or the covariates exhibit strong linear dependencies. As either scenario
would lead to potentially serious problems regarding inference, these cases can be excluded. Moreover, observe that
the factor n1 þ n2 � 2ð Þ�1 leads to a further deflation of the quantity Q̂Z . Hence, it might be appropriate to drop the

term z1�α=2 þ z1�β

� �2
QYZQ̂Z

.
Δ2. Thus, we can further simplify (9) to

n1 �
z1�α=2 þ z1�β

� �2
QYZ γþ 1ð Þ

γΔ2 :

Finally, observe that QYZ ¼ σ2Yð1� σ�2
Y σ

0
YZΣ

�1
Z σYZÞ ¼ σ2Yð1� R2Þ, according to the definition of QYZ. Hence,

N ¼ n1 þ n2 ¼ n1 γþ 1ð Þ � z1�α=2 þ z1�β

� �2
σ2Y 1� R2ð Þ γþ 1ð Þ
γΔ2 γþ 1ð Þ:

This completes the derivation of (3).

Some remarks regarding formulas (5) and (6)

The approximate formulas (5) and (6) can be motivated by some heuristic arguments: Structurally, the non-
centrality parameter δ in equation (7) looks very similar to the test statistic T. In fact, the latter can be obtained from
the former by plugging in the respective estimators for the population quantities. However, observe that QYZ is
replaced by κQ̂YZ then, where κ ¼ ðN � 2Þ=ðN � 2� cÞ with N ¼ n1 þ n2. Therefore, it may be sensible to apply
a corresponding post-hoc “finite sample”-adjustment of the approximate sample size NA. It should be noted, however,
that the DF adjustment is “stronger” than the GS adjustment for c � 2 and typical choices of α, because

NDF ¼ NA þ cþ c2 þ 2c
NA � 2� c

:

158 G. ZIMMERMANN ET AL.



For example, for α ¼ 0:05 we have

z21�α=2=2 � 1:921< 2 � c

for c � 2. It can also be seen from the previous calculations that the difference might actually be small in most
practically relevant settings, especially as upward rounding has to be taken into account, too. Therefore, it could be
sensible to apply an even stronger adjustment of NA by combining GS and DF, as proposed in (6). Anyway, a common
feature of (5) and (6) is that, in contrast to the GS adjustment, the number of covariates is taken into account. It has
been argued that one of the major drawbacks of using (3) or (4) was that the number of covariates did not play a role
(Shieh 2017). Therefore, it seems plausible that the performance can be improved by applying adjustments, which take
the number of covariates c into account.
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