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Shifting rangeland mineral resource limitations : ecological responses to atmospheric Nitrogen
deposition

Heather L . Throop , Department o f Biology , New Mexico State University ,
MSC3AF , Las Cruces , NM 88005 , USA ; throoP@ nmsu edu

Key points : Deposition ofm fixed nitrogen (N) from the atmosphere into natural and managed systems is increasing worldwide ,
primarily as a result of fossil fuel combustion and agricultural fertilization practices . While historically most rangelands have
been subjected to relatively low N deposition rates , N deposition is projected to increase in rangelands . This unintentional wide-
scale fertilization has the potential to dramatically shift mineral resource limitations in rangeland ecosystems . In contrast to
forested ecosystem response to N deposition , one of the most evident rangeland responses to N deposition is a shift in
community composition , with declines in biodiversity and potentially shifts in the dominant functional groups . Evidence to date
suggests that many other ecological processes , such as interactions with insect herbivores and carbon (C) and N cycling may in
turn be affected by this shift in species composition . Increasing predictive capability of rangeland responses to N deposition is
crucial for developing appropriate management strategies .

Key words : nitrogen deposition , biodiversity , nutrient limitations , global change
Introduction

Deposition of anthropogenically-fixed nitrogen from the atmosphere onto plant and soil surfaces is profoundly changing N
availability and ecological stoichiometry in ecosystems worldwide . Since N is typically a major limiting resource in temperate
terrestrial systems , this change in nutrient availability may have major consequences for plants and soils in both natural and
managed rangelands . Historically N deposition research has focused on forests and , to a lesser extent , mesic grasslands in
Europe and North America due to the high rates and long-term , chronic deposition in these areas . However , rates of deposition
are currently increasing and the areas of impact expanding , with estimates of large increases in deposition over the next 100
years in rangeland areas including Asia , Africa , and South America(Lamarque et al ., 2005) . Understanding , and potentially
mitigating , N deposition influences on rangelands requires development of predictive models of N enrichment on rangeland
plant , community , and ecosystem properties and processes .

Anthropogenic activities have more than doubled the annual inputs of fixed N into the biosphere , and these inputs are expected
to continue to increase in the coming decades ( Vitousek et al ., 1997 ; Lamarque et al ., 2005) . Some of this fixed N becomes
volatilized from agricultural activities (primarily as NHx) or emitted as a result of fossil fuel combustion (primarily as NOy) ,
and is later deposited from the atmosphere onto terrestrial systems (Lovett , 1994) . Deposited N can then become incorporated
into the biota through root or microbial uptake of N deposited into the soil surface and via foliar uptake of gaseous and
particulate N compounds (Lovett ,1994) . This deposited N may affect ecosystem properties , including fundamentally shifting
the absolute and relative availability of nutrients ( Vitousek et al ., 1997) .

Aber et al (1998) developed a conceptual model overviewing the major influences of N deposition temperate forests . In this
model , ecosystems at stage O are N limited , but chronic N deposition shifts systems to become progressively less N limited . By
stage 3 systems are N saturated . Following N saturation , net primary production (NPP) and N mineralization decline , and N
leaching losses are high . Aber et al . (1998) further suggest that land use history determines the initial degree of N limitation at
the site , and that the forest stand type (deciduous or evergreen) dictates the rate at which sites progress through the stages and
become N saturated . Predicting , and potentially mitigating , rangeland responses to N deposition requires a conceptual model
similar to that developed by Aber et al . for forested systems . Considerable uncertainty remains in how rangeland response to N
deposition will differ from the forest ecosystem responses described by the Aber et al . model . Here I present an overview on
some of the potential effects of N deposition on rangeland plants , communities , and ecosystems , with particular emphasis on
key ways in which rangeland responses may differ from forested ecosystems .

Plant mineral nutrition

At the individual level , Aber et al .(1998) suggest that N deposition leads to increases in foliar N concentration ; subsequent
increases in processes such as photosynthetic rates and grow th are expected until negative effects of declining Ca :Al and Mg :N
ratios dominate . Studies mesic rangeland plant responses to simulated and natural N deposition typically indicate strong
responses o N for the first stages of N deposition , with generally positive responses to N additions in terms of leaf or shoot N ,
photosynthesis , and growth (e g ., Power et al ., 1995 ; Kirkham , 2001 ; Throop ,2005) .However , with the exception of the
extremely long-running Park Grass experiment (Crawley et al .,2005) , the short-term nature of most rangeland N fertilization
studies makes results relevant only to the early stages of the Aber et al . model , while systems are still N limited . Long-term ,
chronic N addition experiments are needed to understand shifts in plant mineral nutritional trajectories following system N
saturation .
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How might these patterns differ for drier rangelands in which water , rather than N, limits plant growth ? Studies to date
suggest that dry rangeland plant responses to N are highly species-specific , with some species showing positive or neutral
response to N additions , and others showing co-limitation by water and N (e g ., Lajtha and Whitford , 1989 ; Drenovsky and
Richards , 2004 ; James et al .,2005) . Across a precipitation gradient , there was conflicting evidence for shifts from N to water
limitation with decreasing precipitation , with responses dependent upon the indices considered ( Hooper and Johnson , 1999) .
The authors conclude that co-limitation affects plants at ecophysiological , community , and ecosystem levels , and that these
influences are in turn affected by biogeochemical feedbacks in resource availability . Thus , a mechanistic understanding of
individual plant-level responses to N deposition across varying precipitation regimes may require broader scale assessments of
how N deposition-induced changes in larger scale (e .g . community and ecosystem) processes in turn affect mineral resource
availability .

Community composition

In contrast to the ecosystem-focused Aber et al . model , some of the strongest impacts of N deposition in rangelands appear to
be shifts in the composition of plant communities and interactions among organisms . Nitrogen deposition has been identified as
the third main threat to biodiversity worldwide (behind changes in land use and climate) ; and grasslands , savannas , and
Mediterranean systems may be among the most susceptible to N deposition as these systems are often limited , at least in part ,
by N (Sala et al ., 2000) . An analysis of functional group responses to N deposition across biomes suggests that rare species ,
perennials , N fixers , and native species may be most susceptible to local extinction following N enrichment (Suding et al .,
2005) . In rangelands , empirical evidence for decreased plant diversity in response to N deposition is particularly clear for
European mesic grasslands and heathlands . A strong negative correlation between deposition load and species richness and cover
has been documented in Great Britain (Stevens et al .,2006) ,and it has been estimated that a cumulative load of 714 kg N ha '
would cause species richness to decline by 25 (Stevens et al ., 2004) . Substantial declines in diversity may occur quite rapidly
(within three years) with high rates of N additions , but would likely occur only after 10 or more years of chronic , low-level
additions characteristic of N deposition (Dise and Stevens ,2005) . Proposed driving mechanisms for species losses include shifts
in plant competitive abilities with altered resource availability , with N deposition in California grasslands causing competitive
exclusion of native forbs by invasive non-native grasses (Weiss , 1999) and losses of forb diversity (Zavaleta et al .,2003) . In
contrast , coastal sage scrub subject to N deposition transitions from dominance of shrubs to dominance of grasses (Egerton-
Warburton et al ., 2001 ; Wood et al .,2006) .In Minnesota , species richness declined rapidly with N fertilization , and led to a
shift from C: warm-season grasses (with typically high N use efficiencies) to Cs cool-season grasses (with typically low N use
efficiencies) (Wedin and Tilman ,1996) . Though there are many system-specific differences in particular groups that are lost ,
there is a clear common pattern of declining rangeland diversity with N inputs . This is in strong contrast to forested ecosystem
responses w here shifts in dominant canopy species are not commonly reported . However , given the lifespan of trees , changes in
community composition of forested ecosystems would be expected to occur over much longer temporal periods . Given strong
controls of community composition on many ecological processes , deposition-induced changes in plant community diversity will
likely be a key variable for understanding and predicting rangeland responses to N deposition .

In contrast to mesic systems , N deposition into dry rangelands may have fewer consequences for community composition if
plants are limited by soil moisture rather than N . However , relatively little is known about mineral nutrient-induced shifts in
species composition in arid and semi-arid rangelands . In the northern Chihuahuan Desert , fertilization studies suggest that N
deposition may cause increased grass cover and decreased legume abundance , as well as lead to a shift in the dominant grass
species(Baez et al ., 2007) . In the same desert , N treatments shifted species composition , leading to a loss of Ci summer
annuals (Gutierrez and Whitford , 1987) . Species diversity in dry rangelands may be maintained in part by resource pulses
(Chesson et al .,2004) , suggesting that temporal relationships between precipitation and N deposition patterns could also affect
community patterns . Additional N fertilization studies in dry rangeland systems are needed to develop an understanding and
generalize about how ,if at all , N deposition and precipitation patterns interact to affect plant communities .

In addition to driving changes in plant community composition due to alteration of mineral resource availability , evidence to date
suggests that N deposition may affect relationships between plants and secondary stresses such as insect herbivory . These shifts
may in turn influence community and ecosystem processes ( Throop and Lerdau , 2004) . In mesic grasslands , simulated N
deposition affects the survival or performance of insect herbivores (e .g ., Power et al ., 1998 ; Throop , 2005) ; these changes
may affect herbivore populations (e .g ., Haddad et al ., 2000) and may ultimately affect plant community composition (Power
et al ., 1998 ; Carroll et al ., 2003) . In the case of the dominant heathland shrub Calluna vulgaris in Britain , N deposition-
induced increases in susceptibility to secondary stresses such as insect herbivory and winter frost injury appears to be a factor in
community change from shrubland to grassland(Power et al ., 1998 ; Carroll et al ., 2003) . Similarly , simulated N deposition
increased the fungal pathogen load for C: grasses in a Minnesota grassland , apparently as a result of increased foliar N
concentration (Mitchell et al ., 2003) . Conversely , N deposition-induced shifts in plant communities may also affect herbivore
and pathogen diversity . In Sweden , declines in butterfly species richness appear to be due , at least in part , to changes in plant
community composition driven by N deposition . Butterfly species most likely to be lost are those reliant on nutrient-poor
conditions , with greatest local extinctions occurring for those species in areas with greatest encroachment of woody plants into
grasslands (Ockinger et al ., 2006) . Similarly , checkerspot butterfly populations in California have declined in areas where N
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deposition facilitates invasion by non-native grasses and competitive exclusion of butterfly host plants . This cascade of events is
prevented with moderate grazing as cattle graze preferentially on grasses (Weiss , 1999) .

Ecosystem processes

Aber et al . (1998) focus their model on the ecosystem level , positing that net primary production (NPP) increases with initial
N deposition , but begins to decline as the system becomes N saturated (stage 2) . Simulated N deposition typically increases
NPP in mesic rangelands(Dukes et al ., 2005 ; Bassin et al ., 2007 ; Chung et al ., 2007) , but it is unclear whether sustained N
deposition will eventually cause declines in NPP similar to those exhibited by forests . These declines occur as a result of
deposition-induced losses of base cations , mobilization of aluminum , and subsequent nutrient imbalances and aluminum toxicity
(Aber et al .,1998) .Initial increases in NPP in response to N deposition may not occur in drier rangelands where water and N
co-limit production , although eventual declines in NPP could still occur if nutrient imbalances or aluminum toxicity occur .
However , the response of NPP to N deposition in rangelands may be much more complex than in forested systems if deposition-
induced shifts in community composition substantially affect NPP . Studies with manipulated plant community diversity patterns
have found that simulated N deposition leads to greater stimulation of NPP in high diversity communities than low diversity
communities (Reich et al ., 2001 ; Chung et al ., 2007) . Thus , there may be complex interactions between diversity and NPP
whereby N deposition initially causes increases in NPP , but that these increases are offset by declines in plant diversity and by
a subsequent dampening of the positive influence of N on NPP .

Mounting concerns over rising concentrations of atmospheric carbon dioxide , along with the possibility of economic incentives
for carbon (C) sequestration , underscore the importance of understanding the extent to which N deposition influences system C
sequestration capacity . If N deposition affects NPP , these changes could translate into altered C storage , although N deposition
has less potential to strongly affect C sequestration in rangelands than forested systems because of minimal capacity in
rangelands for C storage in woody tissue (Townsend et al ., 1996) . Once again , empirical evidence suggests that N deposition-
induced changes in community composition may be an important driver of rangeland C sequestration response to N deposition .
Soil organic C storage increased in a Minnesota grassland under simulated N deposition , but only under diversity treatments
where the plant species present exhibited elevated foliar lignin concentration in response to N deposition(Dijkstra et al ., 2004) .
Nitrogen deposition could potentially lead to large changes in rangeland C sequestration if deposition leads to increased woody
plant biomass . However , although positive correlations between N deposition rates and woody plant expansion have been
reported (Kochy and Wilson , 2001 , 2005) , conclusive drivers of woody plant expansion in rangelands remain elusive (Archer

et al .,1995) .

Ecosystem processes mediated by microbial activity may be strongly affected by N deposition , with Aber et al . (1998)
proposing that N mineralization mirrors NPP with declines following N saturation , while nitrification and N leaching increase
following N saturation . Indeed , simulated N deposition can increase N mineralization rates in rangelands (Morecroft et al .,
1994 ; West et al .,2006) . However , as with foliar N and NPP , it is not clear whether chronic N deposition-induced shifts in
mineral resource availability will cause eventual declines in N mineralization in rangelands . Also in congruence with the Aber et
al . model , simulated N deposition caused increased nitrification and leaching in a dry coastal dune grassland (ten Harkel et al .,
1998) and increased nitrification in a Mediterranean grassland (Barnard et al ., 2006) . These patterns may be the result of
altered resource availability to microbes driving changes in metabolic activities and biomass , although evidence to date suggests
that simulated N deposition in rangelands can also strongly affect microbial community composition and function(Bradley et al .,
2006 ; Chung et al ., 2007) . However , changes in these microbially-mediated processes may also be indirectly affected by
changes in plant species richness , with the positive response of microbial biomass to N additions positively related to species
richness in a Minnesota grassland (Chung et al ., 2007) . Leaching of N from a Minnesota grassland was also enhanced with N
additions , but once again these were affected by plant species richness , with greater losses from monoculture plots as compared
to high diversity plots (Dijkstra et al ., 2007) . Predicting rangeland ecosystem responses to N deposition will thus require
understanding not only how N enrichment directly affects microbially-mediated processes , but also the nature of N deposition
impacts on plant community composition , and how these changes in turn indirectly mediated ecosystem-level processes .

Conclusions

Projected increases in the deposition of anthropogenically-fixed N into rangelands will drastically shift mineral resource
availability in these systems . The majority of N deposition research to date on the impacts of atmospheric N deposition has
taken place in forested ecosystems . As such , much uncertainty remains regarding rangeland response to chronic , low -level N
additions . This is particularly true in drier rangelands where water is typically a major limiting or co-limiting resource .
Developing predictive models for rangeland response to N deposition will require long-term experimental work spanning from
the physiological to the ecosystem level . One clearly apparent contrast from the conceptual model developed by Aber et al .
(1998) for N deposition influences in forested ecosystems is that decreases in plant community diversity are a major consequence
of N deposition in rangelands . Thus , N deposition in rangelands may have both direct consequences from altered mineral
resource availability , as well as indirect consequences mediated by shifts in plant community composition . The sustainability ,
forage quality and quantity , and aesthetic value of rangelands may all be affected by N deposition . Indeed , a recent economic
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analysis suggested that the net financial benefits for decreasing N deposition loads may be particularly high in grassland
ecosystems ( Wamelink et al ., 2007) . These benefits can only be clearly calculated , however , with a comprehensive
understanding of rangeland responses to N deposition . Rangeland researchers must face the challenge of developing predictive
models of N deposition impacts on rangeland plant , community , and ecosystem properties and processes . Characterizing these
responses and making generalizations across sites that differ in dominant vegetation and precipitation regime is crucial for
understanding , and potentially mitigating , the negative consequences of N deposition on rangelands .
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