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Shifting rangeland mineral resource limitations : ecological responses to atmospheric Nitrogen
deposition
Heather L . Throop , Department o f Biology , New Mex ico State University ,
MSC 3A F , L as Cruces , NM 88005 , USA ; throop＠ nmsu .edu

Key points :Deposition ofm fixed nitrogen ( N) from the atmosphere into natural and managed systems is increasing worldwide ,
primarily as a result of fossil fuel combustion and agricultural fertilization practices . While historically most rangelands havebeen subjected to relatively low N deposition rates , N deposition is projected to increase in rangelands . This unintentional wide‐scale fertilization has the potential to dramatically shif t mineral resource limitations in rangeland ecosystems . In contrast toforested ecosystem response to N deposition , one of the most evident rangeland responses to N deposition is a shif t incommunity composition , with declines in biodiversity and potentially shif ts in the dominant functional groups . Evidence to datesuggests that many other ecological processes , such as interactions with insect herbivores and carbon (C) and N cycling may inturn be affected by this shif t in species composition . Increasing predictive capability of rangeland responses to N deposition iscrucial for developing appropriate management strategies .
Key words : nitrogen deposition , biodiversity , nutrient limitations , global change
Introduction

Deposition of anthropogenically‐fixed nitrogen from the atmosphere onto plant and soil surfaces is profoundly changing Navailability and ecological stoichiometry in ecosystems worldwide . Since N is typically a major limiting resource in temperateterrestrial systems , this change in nutrient availability may have major consequences for plants and soils in both natural andmanaged rangelands . Historically N deposition research has focused on forests and , to a lesser extent , mesic grasslands inEurope and North America due to the high rates and long‐term , chronic deposition in these areas . However , rates of depositionare currently increasing and the areas of impact expanding , with estimates of large increases in deposition over the next １００years in rangeland areas including Asia , Africa , and South America( Lamarque et al . , ２００５ ) . Understanding , and potentiallymitigating , N deposition influences on rangelands requires development of predictive models of N enrichment on rangeland
plant , community , and ecosystem properties and processes .
Anthropogenic activities have more than doubled the annual inputs of fixed N into the biosphere , and these inputs are expectedto continue to increase in the coming decades ( Vitousek et al . , １９９７ ; Lamarque et al . , ２００５ ) . Some of this fixed N becomesvolatilized from agricultural activities ( primarily as NHx ) or emitted as a result of fossil fuel combustion ( primarily as NOy ) ,and is later deposited from the atmosphere onto terrestrial systems ( Lovett , １９９４) . Deposited N can then become incorporatedinto the biota through root or microbial uptake of N deposited into the soil surface and via foliar uptake of gaseous and
particulate N compounds ( Lovett , １９９４) . This deposited N may affect ecosystem properties , including fundamentally shif tingthe absolute and relative availability of nutrients ( Vitousek et al . , １９９７) .
Aber et al .( １９９８ ) developed a conceptual model overviewing the major influences of N deposition temperate forests . In thismodel , ecosystems at stage ０ are N limited , but chronic N deposition shif ts systems to become progressively less N limited . Bystage ３ systems are N saturated . Following N saturation , net primary production ( NPP) and N mineralization decline , and Nleaching losses are high . Aber et al . (１９９８) further suggest that land use history determines the initial degree of N limitation atthe site , and that the forest stand type ( deciduous or evergreen) dictates the rate at which sites progress through the stages andbecome N saturated . Predicting , and potentially mitigating , rangeland responses to N deposition requires a conceptual modelsimilar to that developed by Aber et al . for forested systems . Considerable uncertainty remains in how rangeland response to Ndeposition will differ from the forest ecosystem responses described by the Aber et al . model . Here I present an overview onsome of the potential effects of N deposition on rangeland plants , communities , and ecosystems , with particular emphasis onkey ways in which rangeland responses may differ from forested ecosystems .
Plant mineral nutrition

At the individual level , Aber et al .(１９９８ ) suggest that N deposition leads to increases in foliar N concentration ; subsequentincreases in processes such as photosynthetic rates and grow th are expected until negative effects of declining Ca :Al and Mg :Nratios dominate . Studies mesic rangeland plant responses to simulated and natural N deposition typically indicate strongresponses to N for the first stages of N deposition , with generally positive responses to N additions in terms of leaf or shoot N ,
photosynthesis , and grow th ( e .g . , Power et al . , １９９５ ; Kirkham , ２００１ ; Throop , ２００５) .However , with the exception of theextremely long‐running Park Grass experiment ( Crawley et al . , ２００５) , the short‐term nature of most rangeland N fertilizationstudies makes results relevant only to the early stages of the Aber et al . model , while systems are still N limited . Long‐term ,chronic N addition experiments are needed to understand shif ts in plant mineral nutritional trajectories following system Nsaturation .
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How might these patterns differ for drier rangelands in which water , rather than N , limits plant grow th ? Studies to datesuggest that dry rangeland plant responses to N are highly species‐specific , with some species showing positive or neutralresponse to N additions , and others showing co‐limitation by water and N ( e .g . , Lajtha and Whitford , １９８９ ; Drenovsky andRichards , ２００４ ; James et al . ,２００５) . Across a precipitation gradient , there was conflicting evidence for shif ts from N to waterlimitation with decreasing precipitation , with responses dependent upon the indices considered ( Hooper and Johnson , １９９９ ) .The authors conclude that co‐limitation affects plants at ecophysiological , community , and ecosystem levels , and that theseinfluences are in turn affected by biogeochemical feedbacks in resource availability . Thus , a mechanistic understanding ofindividual plant‐level responses to N deposition across varying precipitation regimes may require broader scale assessments ofhow N deposition‐induced changes in larger scale ( e .g . community and ecosystem ) processes in turn affect mineral resourceavailability .
Community composition

In contrast to the ecosystem‐focused Aber et al . model , some of the strongest impacts of N deposition in rangelands appear tobe shif ts in the composition of plant communities and interactions among organisms . Nitrogen deposition has been identified asthe third main threat to biodiversity worldwide ( behind changes in land use and climate ) ; and grasslands , savannas , andMediterranean systems may be among the most susceptible to N deposition as these systems are often limited , at least in part ,by N ( Sala et al . , ２０００) . An analysis of functional group responses to N deposition across biomes suggests that rare species ,perennials , N fixers , and native species may be most susceptible to local ex tinction following N enrichment ( Suding et al . ,
２００５) . In rangelands , empirical evidence for decreased plant diversity in response to N deposition is particularly clear forEuropean mesic grasslands and heathlands . A strong negative correlation between deposition load and species richness and coverhas been documented in Great Britain ( Stevens et al . , ２００６) , and it has been estimated that a cumulative load of ７１４ kg N ha － １

would cause species richness to decline by ２５％ ( Stevens et al . , ２００４) . Substantial declines in diversity may occur quite rapidly( within three years) with high rates of N additions , but would likely occur only af ter １０ or more years of chronic , low‐leveladditions characteristic of N deposition (Dise and Stevens , ２００５) . Proposed driving mechanisms for species losses include shif tsin plant competitive abilities with altered resource availability , with N deposition in California grasslands causing competitiveexclusion of native forbs by invasive non‐native grasses (Weiss , １９９９) and losses of forb diversity ( Zavaleta et al . , ２００３) . Incontrast , coastal sage scrub subject to N deposition transitions from dominance of shrubs to dominance of grasses ( Egerton‐Warburton et al . , ２００１ ; Wood et al . , ２００６) . In Minnesota , species richness declined rapidly with N fertilization , and led to ashif t from C４ warm‐season grasses ( with typically high N use efficiencies) to C３ cool‐season grasses ( with typically low N useefficiencies) (Wedin and Tilman , １９９６) . Though there are many system‐specific differences in particular groups that are lost ,there is a clear common pattern of declining rangeland diversity with N inputs . This is in strong contrast to forested ecosystemresponses where shif ts in dominant canopy species are not commonly reported . However , given the lifespan of trees , changes incommunity composition of forested ecosystems would be expected to occur over much longer temporal periods . Given strongcontrols of community composition on many ecological processes , deposition‐induced changes in plant community diversity willlikely be a key variable for understanding and predicting rangeland responses to N deposition .
In contrast to mesic systems , N deposition into dry rangelands may have fewer consequences for community composition if
plants are limited by soil moisture rather than N . However , relatively little is known about mineral nutrient‐induced shif ts inspecies composition in arid and semi‐arid rangelands . In the northern Chihuahuan Desert , fertilization studies suggest that Ndeposition may cause increased grass cover and decreased legume abundance , as well as lead to a shif t in the dominant grassspecies(Baez et al . , ２００７ ) . In the same desert , N treatments shif ted species composition , leading to a loss of C４ summerannuals ( Gutierrez and Whitford , １９８７ ) . Species diversity in dry rangelands may be maintained in part by resource pulses( Chesson et al . , ２００４) , suggesting that temporal relationships between precipitation and N deposition patterns could also affectcommunity patterns . Additional N fertilization studies in dry rangeland systems are needed to develop an understanding and
generalize about how , if at all , N deposition and precipitation patterns interact to affect plant communities .
In addition to driving changes in plant community composition due to alteration of mineral resource availability , evidence to datesuggests that N deposition may affect relationships between plants and secondary stresses such as insect herbivory . These shif tsmay in turn influence community and ecosystem processes ( Throop and Lerdau , ２００４ ) . In mesic grasslands , simulated Ndeposition affects the survival or performance of insect herbivores ( e .g . , Power et al . , １９９８ ; Throop , ２００５) ; these changesmay affect herbivore populations ( e .g . , Haddad et al . , ２０００) and may ultimately affect plant community composition ( Poweret al . , １９９８ ; Carroll et al . , ２００３ ) . In the case of the dominant heathland shrub Calluna vulgaris in Britain , N deposition‐induced increases in susceptibility to secondary stresses such as insect herbivory and winter frost injury appears to be a factor incommunity change from shrubland to grassland( Power et al . , １９９８ ; Carroll et al . , ２００３ ) . Similarly , simulated N depositionincreased the fungal pathogen load for C４ grasses in a Minnesota grassland , apparently as a result of increased foliar Nconcentration ( Mitchell et al . , ２００３) . Conversely , N deposition‐induced shif ts in plant communities may also affect herbivoreand pathogen diversity . In Sweden , declines in butterfly species richness appear to be due , at least in part , to changes in plantcommunity composition driven by N deposition . Butterfly species most likely to be lost are those reliant on nutrient‐poorconditions , with greatest local extinctions occurring for those species in areas with greatest encroachment of woody plants into
grasslands ( Ockinger et al . , ２００６) . Similarly , checkerspot butterfly populations in California have declined in areas where N
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deposition facilitates invasion by non‐native grasses and competitive exclusion of butterfly host plants . This cascade of events is
prevented with moderate grazing as cattle graze preferentially on grasses (Weiss , １９９９) .
Ecosystem processes

Aber et al . (１９９８) focus their model on the ecosystem level , positing that net primary production ( NPP) increases with initialN deposition , but begins to decline as the system becomes N saturated ( stage ２ ) . Simulated N deposition typically increasesNPP in mesic rangelands(Dukes et al . , ２００５ ; Bassin et al . , ２００７ ; Chung et al . , ２００７) , but it is unclear whether sustained Ndeposition will eventually cause declines in NPP similar to those exhibited by forests . These declines occur as a result ofdeposition‐induced losses of base cations , mobilization of aluminum , and subsequent nutrient imbalances and aluminum toxicity
( Aber et al . , １９９８ ) . Initial increases in NPP in response to N deposition may not occur in drier rangelands where water and Nco‐limit production , although eventual declines in NPP could still occur if nutrient imbalances or aluminum toxicity occur .However , the response of NPP to N deposition in rangelands may be much more complex than in forested systems if deposition‐induced shif ts in community composition substantially affect NPP . Studies with manipulated plant community diversity patternshave found that simulated N deposition leads to greater stimulation of NPP in high diversity communities than low diversitycommunities ( Reich et al . , ２００１ ; Chung et al . , ２００７) . Thus , there may be complex interactions between diversity and NPPwhereby N deposition initially causes increases in NPP , but that these increases are offset by declines in plant diversity and bya subsequent dampening of the positive influence of N on NPP .
Mounting concerns over rising concentrations of atmospheric carbon dioxide , along with the possibility of economic incentivesfor carbon ( C) sequestration , underscore the importance of understanding the extent to which N deposition influences system Csequestration capacity . If N deposition affects NPP , these changes could translate into altered C storage , although N depositionhas less potential to strongly affect C sequestration in rangelands than forested systems because of minimal capacity inrangelands for C storage in woody tissue ( Townsend et al . , １９９６) . Once again , empirical evidence suggests that N deposition‐induced changes in community composition may be an important driver of rangeland C sequestration response to N deposition .Soil organic C storage increased in a Minnesota grassland under simulated N deposition , but only under diversity treatmentswhere the plant species present exhibited elevated foliar lignin concentration in response to N deposition(Dijkstra et al . , ２００４) .Nitrogen deposition could potentially lead to large changes in rangeland C sequestration if deposition leads to increased woody
plant biomass . However , although positive correlations between N deposition rates and woody plant expansion have beenreported ( Kochy and Wilson , ２００１ , ２００５) , conclusive drivers of woody plant expansion in rangelands remain elusive ( Archeret al . , １９９５) .
Ecosystem processes mediated by microbial activity may be strongly affected by N deposition , with Aber et al . ( １９９８ )proposing that N mineralization mirrors NPP with declines following N saturation , while nitrification and N leaching increasefollowing N saturation . Indeed , simulated N deposition can increase N mineralization rates in rangelands ( Morecroft et al . ,
１９９４ ; West et al . , ２００６) . However , as with foliar N and NPP , it is not clear whether chronic N deposition‐induced shif ts inmineral resource availability will cause eventual declines in N mineralization in rangelands . Also in congruence with the Aber etal . model , simulated N deposition caused increased nitrification and leaching in a dry coastal dune grassland ( ten Harkel et al . ,
１９９８) and increased nitrification in a Mediterranean grassland ( Barnard et al . , ２００６ ) . These patterns may be the result ofaltered resource availability to microbes driving changes in metabolic activities and biomass , although evidence to date suggeststhat simulated N deposition in rangelands can also strongly affect microbial community composition and function(Bradley et al . ,
２００６ ; Chung et al . , ２００７ ) . However , changes in these microbially‐mediated processes may also be indirectly affected bychanges in plant species richness , with the positive response of microbial biomass to N additions positively related to speciesrichness in a Minnesota grassland ( Chung et al . , ２００７) . Leaching of N from a Minnesota grassland was also enhanced with Nadditions , but once again these were affected by plant species richness , with greater losses from monoculture plots as comparedto high diversity plots ( Dijkstra et al . , ２００７ ) . Predicting rangeland ecosystem responses to N deposition will thus requireunderstanding not only how N enrichment directly affects microbially‐mediated processes , but also the nature of N depositionimpacts on plant community composition , and how these changes in turn indirectly mediated ecosystem‐level processes .
Conclusions

Projected increases in the deposition of anthropogenically‐fixed N into rangelands will drastically shif t mineral resourceavailability in these systems . The majority of N deposition research to date on the impacts of atmospheric N deposition hastaken place in forested ecosystems . As such , much uncertainty remains regarding rangeland response to chronic , low‐level Nadditions . This is particularly true in drier rangelands where water is typically a major limiting or co‐limiting resource .Developing predictive models for rangeland response to N deposition will require long‐term experimental work spanning fromthe physiological to the ecosystem level . One clearly apparent contrast from the conceptual model developed by Aber et al .
(１９９８ ) for N deposition influences in forested ecosystems is that decreases in plant community diversity are a major consequenceof N deposition in rangelands . Thus , N deposition in rangelands may have both direct consequences from altered mineralresource availability , as well as indirect consequences mediated by shif ts in plant community composition . The sustainability ,forage quality and quantity , and aesthetic value of rangelands may all be affected by N deposition . Indeed , a recent economic
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analysis suggested that the net financial benefits for decreasing N deposition loads may be particularly high in grasslandecosystems ( Wamelink et al . , ２００７ ) . These benefits can only be clearly calculated , however , with a comprehensiveunderstanding of rangeland responses to N deposition . Rangeland researchers must face the challenge of developing predictivemodels of N deposition impacts on rangeland plant , community , and ecosystem properties and processes . Characterizing theseresponses and making generalizations across sites that differ in dominant vegetation and precipitation regime is crucial forunderstanding , and potentially mitigating , the negative consequences of N deposition on rangelands .
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