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Abstract: Nowadays, biocatalysts have received much more attention in chemistry regarding their
potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications.
Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary
technologies in bioengineering have provided the fast discovery and evolution of enzymes that
empower chemical synthesis. This article attempts to deliver a comprehensive overview of the
last two decades of investigation into enzymatic reactions and highlights the effective performance
progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions
and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into
oxidoreductases, transferases, hydrolases, and lyases. These applications should provide us with
some insight into enzyme design strategies and molecular mechanisms.

Keywords: regioselectivity; stereoselectivity; biocatalyst; enzymatic reactions; protein engineering

1. Introduction

1.1. A Brief History of Enzymes and Their Application

Currently, enzymes are applied extensively in many fields, including the food, medical, chemical,
and cosmetic industries [1]. Following their discovery in the late 18th century, enzymes were
predominantly employed to produce digested food for humans and animals. The concept of catalysis
was well defined in the middle of the 19th century when scientists started to study the mechanism
of catalysis and the relationship between chemistry and biology. The study of enzymes bloomed
in the 20th century. Models resulting from the further study of enzyme kinetics, including the
Michaelis-Menten equation, provided more insight into how enzymes work in reactions in vitro and
in vivo. Mechanistic studies led to the discovery of the enzyme-substrate intermediate and the first
crystal structure of an enzyme (lysozyme), which marked huge milestones in the history of science and
technology [1]. At the same time, more and more enzymes were applied in clinical trials, which led to
the discovery of many therapeutic enzymes, like collagenases to treat skin ulcers [2] and antibody-drug
conjugates to treat cancer [3]. In addition, enzymes started to play an important role in producing
organics like polymer materials and inorganics used in treating wastewater in the chemical industry [4].
During this time, enzymes were also widely applied in the cosmetic industry, helping to produce body
care products such as skin protective and soothing agents [5].
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Among enzyme applications, utilizing enzymes as a catalyst in an organic reaction to obtain the
specific target product is ubiquitous in the chemical industry. The advantages of using enzymes instead
of the traditional chemical catalyst include higher stereoselectivity, higher yield, higher efficiency,
and less waste [4]. In addition to the advantages of enzyme application, there are several drawbacks
of applying enzymes in this industry. Enzymes are sensitive to the temperature and pH of the
environment, and their activity is changed drastically with the changes in the parameters. The cost of
isolation and preparation of enzymes is high. Furthermore, a lack of long-term operational stability
and the difficulty of their recovery or reuse discourage their wide application [6]. To circumvent
these issues, three methods of enzyme immobilization have been developed, including binding to
a support (carrier), entrapment (encapsulation), and crosslinking [7]. With the increasing number
of techniques to solve these problems, the application of enzymes has become an essential part of
industrial development and will continue to make significant contributions.

1.2. A Brief Introduction to Regioselective and Stereoselective Reactions

A critical advantage related to the three-dimensional structure of enzymes is that they catalyze
the reaction in which a target functional group is inserted into a specific position of the reactant.
Compared to traditional organic synthesis, the product obtained from an enzymatic reaction usually
leans towards a selective structure with a specific configuration [8]. Two main types of selectivity
are often observed in enzymatic reactions: regioselectivity and stereoselectivity. Regioselectivity
refers to the preference of a functional group to bond to one atom over another atom in the reactant,
while stereoselectivity indicates a favoring of one stereoisomer over another stereoisomer. Related
to stereoselectivity, “enantioselectivity” is defined as the preference for producing one enantiomer
over another. Regioselectivity and stereoselectivity exist ubiquitously in the plant, animal, bacterial,
and fungal kingdoms. A known example is melanin, which functions as a pigment and as a
radiation protection agent [9]. Tyrosinase catalyzes the hydroxylation of L-tyrosine to regioselectively
produce L-DOPA in the melanin biosynthesis pathway [10]. Another important compound existing in
humans is norepinephrine (NE), whose main functions are as a hormone and as a neurotransmitter.
In its biosynthesis, a dopamine-β-hydroxylase inserts a hydroxyl group to β-carbon on the side chain
of dopamine, stereoselectively producing an R-enantiomer [11].

To date, more than half of the small molecule drugs in clinical use are chiral, but the chirality of
drug structure was not valued initially [12]. People started to spotlight chiral drugs following the
huge thalidomide tragedy that occurred in the 1960s. Thalidomide entered the market in 1957 to
treat insomnia and morning sickness as an over-the-counter drug and soon expanded to markets in
46 countries. Four years later, the side effect of severe birth defects was associated with thalidomide.
Use of thalidomide by women during pregnancy was linked to the delivery of babies with shortened
or flipper-like limbs [13]. More than 10,000 cases were reported, with 40 percent of families losing
their babies and those who survived having additional problems such as dysmelia, facial anomalies,
and systemic anomalies [14]. Stereochemistry figures into this tragedy because thalidomide sold in the
market was a mixture of two stereoisomers, R- and S- forms. R-enantiomer was therapeutically active,
while S-enantiomer caused severe side effects. The thalidomide disaster prompted changes to US-FDA
regulations that tightened restrictions surrounding the surveillance and approval process, including
requiring manufacturers to provide all data on the safety and effectiveness of a drug, including the
evaluation of the absolute stereochemistry as part of the approval process [15].

The broad application of enzymes in stereochemistry drives the rapid development of chiral
compounds, expanding the drug candidate pool and opportunities to obtain a therapeutically active
drug. Herein, we provide a brief overview of the application of enzymes in regioselective and
stereoselective reactions, which also involve enantioselective reactions.
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2. Examples of Enzyme Application in Regioselective and Stereoselective Reactions

Depending on the types of enzymatic reactions and enzyme commission (E.C.) numbers,
the enzymes are classified into different groups. In this review, four main groups of enzymes,
including oxidoreductases, transferases, hydrolases, and lyases, will be discussed.

2.1. Oxidoreductases E.C.1

2.1.1. Enzymes Applied for Reduction

Ketoreductases. The enantioselective reduction of ketones to the corresponding alcohols that
have significant bioactivity has attracted more and more attention in organic synthesis. However,
the reduction of tert-butyl and isopropyl ketones still represents a significant challenge in both enzymatic
and chemical reductions. Enzymatic protocols, such as utilizing carbonyl reductase extracted from
Sporobolomyces salmonicolor (SSCR), proved to be more effective in catalyzing the enantioselective
reduction of aryl alkyl ketones than traditional chemical formation (Scheme 1). Notably, the enzyme
demonstrated excellent enantioselectivity (>96% ee, enantiomeric excess), reducing ketones with bulky
alkyl groups (tert-butyl, cyclopropyl, etc.) [16].
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Alpha-hydroxy ketones were experimentally synthesized using three different mechanisms.
The first method involved reacting aldehydes with thiamine diphosphate-dependent lyases to catalyze
the umpolung carboligation of aldehydes; this allows one aldehyde to become an active enamine
carbanion. Another aldehyde attacks the carbanion to form an alpha-hydroxy ketone. The second
method occurred when a substrate containing a ketone with an adjacent alcohol group (either R
or S) was reacted using hydrolases via dynamic kinetic resolutions. The substrate being either (R)
or (S) allows for high conversions and enantiomeric excess of the desired alpha-hydroxy ketone.
The third method elaborated on reacting diketones and vicinal diols with whole-cell redox reactions.
By employing free enzymes or whole-cells, Hoyos et al. were able to reduce the diketones and oxidize
the diols to produce the alpha-hydroxy ketones, which is racemic [17].

A large number of reductases were encoded in Saccharomyces cerevisiae yeast genome, many of
which have the ability to reduce α-chloro-β-keto esters. Kaluzna’s study revealed that in nearly all the
targeted reductases, more than one α-chloro-β-hydroxy ester diastereomer was obtained, with up to
98% ee. The only deficiency in this approach is a lack of D-specific reductases [18]. Zhu et al. determined
the activity and enantioselectivity of a carbonyl reductase from Candida magnoliae. Using NADPH as a
cofactor, the reductase catalyzed the enantioselective reduction of a series of ketones, including aliphatic,
aromatic ketones, α, and β ketoesters, to give anti-Prelog configurated alcohols with high optical purity
(Scheme 2). This reductase with a new application complemented the known ketoreductase pool and
could be employed to synthesize chiral alcohols. This strategy also solves the problems in the chemical
synthesis, such as the complicated process operation, high metal residue, low enantiomeric purity,
and productivity [19]. The backbones of bacterial aromatic polyketides could be synthesized from
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acyl-CoA-derived building blocks by polyketide synthases (PKSs). A recent study revealed that some
polyketides were attained from nonactate precursors. Exemplarily, the engineered PKSs catalyzed the
synthesis of regioselectively modified anthraquinones with predictable functional moiety that have
improved pharmacological properties over the estrogen receptor antagonist R1128 [20].
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Dehydrogenases. Classen et al. investigated the utilization of the enoate reductase YqjM as
well as alcohol dehydrogenases and a glucose dehydrogenase to synthesize chiral γ-butyrolactones.
Their results revealed that the process is scalable, with up to 90% yields and excellent enantioselectivity
(over 98% ee) [21]. Furthermore, the substrate ethyl 4-oxo-pent-2-enoates are readily available
through simple Wittig-type chemical reactions. Notably, the enoate reductase YqjM is strongly
substrate-dependent and hardly predictable, unlike ADHs that follow a simple rule of prediction [15,22].
Studies show that the log P of the organic solvent has a dramatic impact on enzyme activity.
Exemplarily, alcohol dehydrogenase ADH-A from Rhodococcus ruber demonstrated robust enzymatic
efficiency (ee >99%), catalyzing the reduction of a large variety of ketones in micro-aqueous
media, a nonconventional aqueous organic solvent system (99% v/v). This organic media showed
great biocompatibility, with 10-fold improvement, in contrast to previous observations using an
aqueous solvent [23,24]. Two methods were used to synthesize optically pure cis- and trans-isomers
of whisky lactone. The first method employed enzyme-mediated reactions that involved eight
alcohol dehydrogenases as biocatalysts to enantioselectively oxidize the racemic products of
erythron- and threo-3-methyloctane-1,4-diols. The second approach involved biotransformation,
using microorganisms to produce naturally occurring opposite isomers of the whiskey lactone. For this
method, the trans-isomer of 3-methyl-4-oxooctanoic acid was produced. Boratynski and colleagues
were able to synthesize enantiomerically enriched isomers of oak lactones and opposite enantiomerically
enriched isomers of whisky lactones based on the method of reaction used, and they found that
the lactonization of whole-cell microorganisms is a significant alternative to the enzyme-mediated
oxidation strategy [25]. The chemical synthesis of stereoselective 1,2-diols is a significant challenge
due to the lack of a precursor and toxic catalyst. To discover new alcohol dehydrogenases (ADHs)
used to reduce 2-hydroxy ketones, Kulig et al. investigated eight ADHs and found that all of them
had good activities. Among the enzymes tested, alcohol dehydrogenases from Thermoanaerobacter
sp. (ADHT), Lactobacillus brevis (LBADH), and Ralstonia sp. (RADH) showed high activities and
stereoselectivities in the enzymatic reactions of reducing all reactants to anti-diols. In addition, all three
ADHs showed promising activity towards 2-hydroxy ketones, and RADH was the most active ADH
towards bulky-bulky 2-hydroxy ketones [26].

O’Reilly et al. experimentally determined a mechanism to regio- and stereoselectively synthesize
2,5-disubstirutred pyrrolidines from 1,4-diketones (Scheme 3). By using a one-pot ω-transaminase
and monoamine oxidase from Aspergillus niger, the reaction was accomplished in one step, without
intermediation due to the compatibility of the enzymes. The transaminase mediates the reductive
amination of prochiral ketones and favors the production of chiral amines, while the monoamine
oxidase favors the (S)-enantiomer during the conversion of amines to imines. The enzymes do not
hinder each other and therefore can be used in a two-step, one-pot synthesis reaction of 2,5-disubstituted
pyrrolidines, exhibiting exceptional enantioselectivity of greater than 94% ee and diastereoselectivity
greater than 98% de [27].
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Single-electron-transfer steps involve alkali metals, radical anion transition states, etc., that lie in
the center of Birch reductions of aromatic compounds. Conversely, 2-naphthoyl-coenzyme A (2-NCoA)
and 5,6-dihydro-2-NCoA (5,6-DHNCoA) reductases such as NCR and DHNCR reduce two different
naphthoyl-ring systems to tetrahydronaphthoyl-CoA by different mechanisms that are categorized as
two-electron reductions. Both enzymatic reactions have demonstrated high stereoselectivity (30-fold
improvement) in aqueous solution at ambient temperature. Moreover, these bio-catalysts provide
an enantioselective pathway to products that are not readily accessible via Birch reductions [28].
The biosynthesis of polyunsaturated fatty acids (PUFAs) requires ∆12 and ω3 fatty acid desaturases to
form the second and third double bonds in the molecule, respectively, as PUFAs are crucial building
blocks of membrane glycerolipids and predecessors of signaling molecules in cells. Sk-FAD2 and
Sk-FAD3 that are ∆12 and ω3 fatty acid desaturase genes from Saccharomyces kluyveri demonstrated
excellent substrate specificity and regioselectivity. Sk-FAD2 introduced a double bond to C16–20
monounsaturated fatty acids at the ν + 3 position, whereas Sk-FAD3 selected the ω3 position on C18
and C20. Moreover, studies suggested that both enzymes showed little to no specificity toward the
polarity of the head group or the sn positions of acyl groups in phospholipids [29].

2.1.2. Enzymes Applied for Oxidation

Cytochrome P450s. Linear alkanes are difficult to hydroxylate by using chemical synthesis due
to the high carbon–hydrogen bond strength (~97 kcal/mol) and high activation energy. Therefore,
numerous hydroxylations rely on enzymatic catalysis, of which some require the use of cytochrome
P450s to initiate the electron transfer between molecules. A common cytochrome P450 enzyme
exploited for this purpose is cytochrome P450 BM-3, an enzyme that uses heme as a cofactor and
imitates monooxygenases. Studies revealed that the cofactor increases the chemical reaction rates and
allows the enzyme to function efficiently. Thus, monooxygenases are essential to synthetic chemistry
to not only increase efficiency but also enable a reaction within the constraints of a living system,
such as temperature or excessive amounts of substrate. The modification of biocatalysts for natural
synthetic use is a relevant field in biochemistry today. There has been much work done on the
modification of enzymes that perform hydroxylation reactions. The engineering of these enzymes has
been investigated to modify aspects such as regioselectivity, stereoselectivity, and enantioselectivity,
among others. Much focus is placed on different variations of the P450 BM-3 enzyme. Other enzymes
being studied for their hydroxylation reactions include heme-containing biocatalysts such as the
PikC enzyme. Variations of the P450 BM-3 can improve its industrial applications since it is capable
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of hydroxylating alkanes [30]. A light-activated hybrid P450 BM-3, WT/L407C-Ru1, hydroxylates
10-undecenoic acid exclusively at the allylic position. The reaction obtains the highly enantiomerically
enriched (R)-9-hydroxy-10-undecnoic acid in 85% ee [31]. Moreover, cytochrome P450 BM-3 extracted
from Bacillus megaterium was engineered by directed evolution to hydroxylate linear alkanes. Variant
9-10A-A328V has the ability to produce S-2-octanol from octane. This product is obtained in 40% ee,
with excellent total turnovers of 2000. Another variant, 1-12G, was made from the same cytochrome as
P450 BM-3 via mutagenesis. This variant also hydroxylates in the 2-position on alkanes larger than
hexane, including octane, nonane, and decane, to produce R-2-alcohols in 40%–55% ee [30].

In another study, a cytochrome P450 BM-3 variant was produced to aid in the production of
indirubin, an anticancer drug. The enzyme was engineered using site-directed saturation mutagenesis.
The mutant, D168W, altered the enzyme so that the enzyme produced indirubin (~90%) instead of
indigo (~85%), which was synthesized by its parent enzyme. This change was caused by the shift
of hydroxylation C-3 to C-2 [32]. Furthermore, BM-3 variant 9-10A was engineered to hydroxylate
aromatic carboxylic acid. This enzyme has the highest efficiency with propyl and butyl esters. When
variant 9-10A was constructed with the F87A mutation, the total turnover numbers (TTN) increased to
its highest amount of 1640. This enzyme obtained a propyl mandelate in 93% ee. When 9-10A-F87A is
combined with an NADPH regeneration system, utilizing NADPH as the cofactor, the TTN improves
to over 5800 [33]. Regioselectivity is highly affected by the anchoring group of an enzyme. This can
be demonstrated by the biosynthetic enzyme, P450 monooxygenase PikCD50N-RhFRED. The natural
anchoring group desoamine gives a 1:1 mixture of methymycin and neomethymycin, but by using a
synthetic anchor, the ratio can be altered [34].

Although stereoselective epoxidation of terminal alkenes has been reported in a few cases, using
a chemical catalyst in the epoxidation of simple linear terminal alkenes has not yet been reported.
Cytochrome P450 BM-3 enzymes (Scheme 4) paired with saturated mutagenesis and recombination
have been applied to analyze the effective epoxidation catalysts for linear terminal alkenes. In the
presence of cell lysate and alcohol dehydrogenase, various P450 enzymes could reproduce NADPH
cofactor. Mutagenesis and screening helped us to achieve optimal results. Exemplarily, P450 BM-3 from
Bacillus megaterium was utilized for the enantioselective epoxidation of terminal alkenes and forms (R)-
and (S)-epoxides with desirable catalytic turnovers; this catalyst and the NADPH oxidize the terminal
alkene into a terminal epoxide product [35]. Denard et al. experimentally determined a one-pot
tandem reaction to produce aryl epoxides from a mixture of stilbene-derived alkenes in the presence
of ruthenium. This novel development combines alkene metathesis with enzymatic epoxidation. It
favors the utilization of (Z)-stilbene substrates and produced an epoxide product with moderate yields
and good enantioselectivity. Substantial enzyme and reaction engineering with cytochrome P450 BM-3
is currently under investigation to improve catalytic activity and increase enzymatic reaction rates [36].
The enantioselective total synthesis of norditerpenoid alkaloid nigelladine A was accomplished within
an expedient 12 steps and with an overall yield of 5%. The engineered enzyme cytochrome P450 BM-3
was used to catalyze the chemo- and regioselective allylic C–H bond oxidation in the intermediate step
of the reaction. The reaction relied on the asymmetric allylic alkylation that constructed the quaternary
center of the product, with prominent yield and enantioselectivity; the cytochrome P450 BM-3 enzyme
allowed Steven A. Loskot and coworkers to site-select the secondary allylic oxidation without major
intermediate interference. Their results have revealed that bio-transformations have the potential to
circumvent the limitations of traditional chemical syntheses [37].
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Experimentation with intermolecular nitrene transfer accomplished by utilizing the cytochrome
P450 BM-3 enzyme found in Bacillus megaterium was performed by Farwell et al. The catalyst allows for
the intermolecular insertion of nitrogen-containing functional groups into thioethers and subsequently
sulfimides. Two factors that heavily impact the reaction are the electronic properties of the substrates
used, which can influence reactivity, and the amino acid groups attached, which can vary the rate and
stereoselectivity of the sulfimidation reaction. Sulfide substituents may also impact sulfimide formation,
as sulfimide side products were introduced, indicating that the nitrenoid may only permit insertion
into reactive sulfides. The orientation of the redox state heme group, in either the presence or absence
of the nitrene source and the sulfide acceptor, including the redox state of the heme group, helped
to determine the nitrene transfer, but the usage of cytochrome P450 BM-3 allows for intermolecular
nitrene transfer in the form of sulfimidation [38].

Enzymatic mutation also proved to alter cyclopropanation reactions dealing with a heteroatom.
Cytochrome P450 BM3 variants were engineered to catalyze the cyclopropanation of heteroatom-bearing
alkenes. Cytochrome P411 had the capability of synthesizing heteroatom-bearing cyclopropanes.
Furthermore, evolved P411 provided nitrogen, oxygen, and sulfur-cyclopropanes with high
diasteroselectivities and enantioselectivities. With certain mutations, a single parent enzyme became
a selective catalyst for cis and trans heteroatom substituted cyclopropanes synthesis with preferred
diasteroselectivities and enantioselectivities [39].

Hemeprotein biocatalyst is another type of hydroxylase. As a heme-containing enzyme, SfmD is
used to hydroxylate the aromatic ring of tyrosine in the presence of hydrogen peroxide and an oxidant
(Scheme 5). It is possibly responsible for producing 3-OH-5-Me-Tyr from 3-Me-Tyr. This has significance
for the biosynthesis of tetrahydroisoquinoline family members [40]. Another hemeprotein is wild-type
Rhodothermus marinus (Rma) cytochrome c. The variant, Rma cytochrome c TQL, transforms alkenes
to chiral 1,2-amino alcohols via direct amino-hydroxylation. This enzyme is thermally stable and
demonstrated high enantioselectivity, with total turnovers of up to 2500 and 90% ee under optimized
conditions [41]. G. Sello et al. (Scheme 6) analyzed various reactions that would turn a styrene substrate
into enantiopure 1,2-amino alcohol. The styrene oxidized into enantiopure phenyl epoxide via an E. coli
containing monooxygenase from P. fluorescens. The epoxide then reacted with a nitrogen nucleophile
to open up the ring, leaving an alcohol group and an amine group. Their work indicated that 2-amino,
1-, and 2-phenyl ethanols were produced with high enantiopurities and in good yields [42].
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from Geobacillus thermoglucosidasius, and isoleucine dioxygenase from Bacillus thuringiensis
paired with dynamic kinetic resolution allows racemic N-acetylmethionine to be converted to
L-methionine-(S)-sulfoxide, with a very high experimental yield of 97% and 95% de under optimized
conditions. The three-enzyme cascade reaction results in the separation of the oxyfunctionalization
step from the dynamic kinetic resolution step, which makes it possible for each enzyme to work at the
ideal temperature [43].
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A stereoselective, one-pot biocatalytic total synthesis reaction was employed to synthesize
bisorbicillinoid natural products and unnatural side-chain analogues by utilizing recombinant
oxidoreductase SorbC from the sorbicillin biosynthetic gene cluster. Applying an enzymatic
oxidative dearomatization or dimerization cascade allows for the direct preparation of sorbiquinol,
trichodimeral, and disorbicillinol and the synthesis of bisorbibutenolide. The bio-enzyme SorbC has
high stereoselectivity that allows synthetic access for natural products. Sib et al. also found that
the spontaneous formation of bisorbicillinoids can be accomplished without biocatalysts, indicating
that the natural compounds produced can be assembled in non-enzymatic natural producers. More
investigation is in progress to determine the full synthetic potential of the SorbC enzyme [44].

In 2016, Priyanka Bajaj and her team (Scheme 8) developed a new strategy to engineer myoglobin
variants that increase the synthesis of 1-carboxyl-2-aryl-cyclopropanes with trans- (1R, 2R), a product
used in conjunction with its stereo complement of trans- (1S, 2S). This method improved the essential
asymmetric cyclopropanation utilized in drugs (such as Tranylcypromine, Tasimelteon, Ticagrelor,
and a TRPV1 inhibitor), thereby showing that the additive mutations of myoglobin gave way to the
higher control of stereoselectivity in cyclopropanation reactions [45].
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2.2. Transferases E.C.2

2.2.1. Enzymes Applied for Alkylation

Polymethoxy flavonoids (PMFs) have shown myriad health-supporting applications. However,
one of the greatest challenges that limits their use is small production from plant cells. Plant cells
exploit the methylation of hydroxyl groups on flavonoids catalyzed by O-methyltransferases (FOMT)
to produce PMFs. This category of enzymes has very high substrate specificity and regioselectivity
during the synthetic process. Recombinant CdFOMT5 (one of the genes encoding FOMT from Citrus
depressa) expressed in E. coli cells exhibited a preference for flavonol to other types of flavonoids.
Moreover, it converted 3-, 5-, 6-, and 7-hydroxyl groups on flavone to methyl groups under mild
conditions. Furthermore, taking advantage of this engineering strategy of mutation of CdFOMT5
could provide alternative routes to synthesizing various PMFs [46].

The installation of fluoroalkyl groups is an abiological process that could significantly alter
the pharmacological properties of a molecule. Despite the ubiquity of C–H bonds in complex
bioactive molecules, the fluoroalkylation of enantioselective C(sp3)−H remains a challenge due to
inherent problems coupled with cross-coupling pathways of the C- fluoroalkyl bond in the transition
metal-catalyzed reaction. To circumvent this issue, the engineered cytochrome P450s could catalyze the
addition of fluoroalkyl carbene intermediates to C(sp3)−H bonds (Scheme 9). The catalyst demonstrated
excellent selectivity toward α-amino C−H bonds, with up to 99% ee. Additionally, the enzyme is
capable of introducing a variety of fluoroalkyl groups including pentafluoropropyl entity through
the same process, with great activity and enantioselectivity. This versatile enzyme could potentially
synthesize fluorinated bioactive compounds with directed evolution [47].
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Prenyltransferases such as FtmPT1 from Aspergillus fumigatus transfer a prenyl moiety
regiospecifically to the C-2 position of brevianamide F (cyclo-L-Trp-L-Pro). Studies have suggested that
the C-2 prenylation of various tryptophan-containing cyclic dipeptides can be catalyzed by the same
enzyme in the presence of dimethylallyl diphosphate. However, HPLC and NMR analyses detected
C-3 prenylated derivatives as by-products, with yields of up to 19%, while regularly C-2-prenylated
indolines were still perceived as main products. This indicates that prenylation catalyzed by FtmPT1
can be intermittent, which increases the challenge for purification; however, it also increases the
chemoenzymatic synthesis structure diversity [48].

2.2.2. Enzymes Applied for Amination

Optically active amines are very important constituents for various bioactive compounds, with
important pharmaceutical, agrochemical, or industrial applications. In principle, various synthetic
routes catalyzed by different enzymes, including hydrolases, oxidoreductases, or transferases, can be
applied for the production of optically active primary amines. However, amine transaminases offer
a unique way to obtain pure amine enantiomers directly from prochiral ketones. Moreover, these
catalysts elucidate pronounced enantio- and regioselectivity. Until now, compared to many (S)-selective
amines transaminases (S-ATAs), only a few (R)-amine transaminases (R-ATAs) were commercially
available and extensively investigated. R-ATAs such as AspTer from Aspergillus terreus, PenChry from
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Penicillium, etc., showed excellent conversion rates (>99%) and enantiomeric purities of >99% ee when
they were exploited to catalyze the asymmetric synthesis of targeted amines (Scheme 10) [49].
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Scheme 10. Reaction scheme for the asymmetric synthesis of chiral (R)-amines with the (R)-amine
transaminases (R-ATAs) in combination with the lactate dehydrogenase (LDH)/lactate dehydrogenase
(GDH) system to shift the equilibrium towards product formation.

Regioselectivity is a major challenge in amine transformations due to two or more reactive centers in
the molecule. Various (S)- and (R)-stereoselectiveω-transaminases have provided protecting group-free
strategies for the bio-amination of diketone compounds. A number of 1,5-diketones were selected to
synthesize the corresponding optically pure amino ketones catalyzed by ω-transaminases (>92% ee).
Simon’s study also suggested that the intermediate underwent a spontaneous ring-closure reaction
(Scheme 11), in which ∆1-piperideines were produced. Diastereoselectively reducing these products
yields a second chiral center, which will provide the possibility of making chiral 2,6-disubstituted
piperidines. Their method is one of the shortest synthetical protocols to date that expands the toolbox
for more selective amine transformations [50].
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Compared to inserting oxygen atoms into the inactivated carbon–hydrogen bond,
enzyme-catalyzed oxidative amination is more constrained. Where suitable enzymes were absent
in nature, synthetic chemists started exploiting evolutionary optimization to engineer natural
enzymes. Mutants of P450 enzymes such as P411Bm3-CIS are capable of the amination of
2,4,6-triethylben-zene-1-sulfonylazide and its analogues, with excellent enantioselectivity of 430 total
turnover numbers and 86% ee for benzosultam (Scheme 12) [51].
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Chemically, the synthesis of optically pure L-tert-leucine has low yields and enantio-purity.
Nevertheless, many enzyme-catalyzed reactions were obstructed, with merely 50% yields.
Recent studies show that leucine dehydrogenase identified and cloned from Exiguobacterium sibiricum
(EsLeuDH) has high enantioselectivity via the enzymatic reductive amination reaction to produce
L-tert-leucine (Scheme 13). Compared to other reported LeuDH, the enzyme EsLeuDH exhibited higher
activity at low temperatures and better thermostability at high temperatures. In addition, large scale
experimental results indicated that the enzyme has the highest space-time yield (over 80%) among all
LeuDHs, with >99% ee [52].
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2.2.3. Enzymes Applied for Glycosylation

Chemically, to control the regio- and stereoselectivity of glycosidic bonds, the synthesizing of
these oligosaccharides involves various protective group manipulations. Moreover, the challenge
of large-scale production limits their application in the food and medical industries. Enzymatic
glycosylations provide highly expedient transformation approaches in synthetic chemistry and can be
easily exploited broadly to the directed alteration of small molecules and polymers via the covalent
attachment of glycosyl residues. Sucrose phosphorylase was successfully employed in the synthesis
of (R)-2-O-α-D-glucopyranosyl glyceric acid amide from single-step diastereoselective glucosylation,
utilizing sucrose as a glucosyl donor and racemic glyceric acid amide as an acceptor, with d.e. > 83%
and high yield (Scheme 14). This protocol could potentially simplify the access to biomimetic glycoside
via esterification processes [53]. In another study, Milosavic reported that, when using sucrose
and arbutin, α-glucosidase from Saccharomyces cerevisiae was highly stereospecific for the formation
of 4-hydroxyphenyl-β-isomaltoside in a molar yield of 50% with reference to arbutin (Scheme 15).
Their study also suggested that α-glucosidase can be exploited to glycosylation reaction with other
bioactive phenolic compounds comprising a hydroquinone moiety [54].
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N-acetyl-β-D-galactosamine (GalNAc) and N-acetyl-β-D-glucosamine (GlcNAc) residue containing
oligosaccharides are essential for many biological activities. They exist in the sugar unit of blood group
P-related glycan, many tumor-related carbohydrate antigens gangliosides, milk oligosaccharides, and
chitin. Chen’s work showed that a β-N-acetylhexosaminidase, named BbhI, isolated from B. bifidum
JCM 1254 exhibited excellent efficiency and regioselectivity in transglycosylation at 3-OH of galactose
(Gal) moieties in lactose (Scheme 16). BbhI has a strict regioselectivity of β 1-3 linkage when transferring
GalNAc and GlcNAc residues to Gal residue of lactose, with maximal yields of 55.4% and 44.9%,
respectively. The enzyme provided a powerful synthetic approach to obtain physiologically active
GalNAcβ1-3Lac and GlcNAcβ1-3Lac [55].
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Despite great progress in the enzymatic synthesis of sialic acid-containing molecules using
sialyltransferase from mammalian sources, a major challenge exists in the low expression levels in the
processes. A bacterial based enzyme (α2−6-sialyltransferase) extracted from Photobacterium damselae
(Pd2, 6ST) [56] could easily circumvent this issue. Pd2, 6ST could identify the terminal galactose
(Gal) and N-Acetylgalactosamine (GalNAc) to produce Neu5Acα2−6Gal and Neu5Acα2−6GalNAc,
respectively, in the presence of N-acetylneuraminic acid (Neu5Ac). This novel protocol opens a toolbox
for the synthesis of disialyl tetrasaccharide epitopes and their derivatives [57].

The Pictet–Spengler reaction is a stepwise reaction in which a β-arylethylamine proceeds in
a condensation reaction with a ketone or aldehyde to produce the addition product followed
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by ring closure. To synthesize benzyl-isoquinoline alkaloid, plants utilize the stereoselective
Pictet–Spengler reaction between dopamine and 4-hydroxyphenylacetaldehyde catalyzed by
norcoclaurine synthase (NCS). Recent studies (Scheme 17) revealed that the enzyme could
catalyze the manufacturing of artificial, optically active tetrahydroisoquinolines due to its
versatility toward aldehydes. Especially when exploiting CjNCS (N-terminally truncated)
from Coptis japonica expressed in Escherichia coli, over 85.0% molar yields and excellent e.e.
could be achieved by synthesizing 6,7-dihy-droxy-1-propyl-1,2,3,4-tetrahydroisoquinoline and
6,7-dihydroxy-1-phen-ethyl-1,2,3,4-tetrahydroisoquinoline [58]. Alessandra Bonamore’s work
(Scheme 18) also suggests that recombinant (S)-NCS produced in E. coli is an efficient and stereoselective
environmentally friendly enzyme that catalyzes tyrosine and dopamine substrates in a one-pot, simple,
two-step process to produce (S)-norcoclaurine (higenamine), with ee of 93% and a yield higher than
80% in the optimized condition. The process allowed the recycling of NCS with good recovery.
Their strategy provided a novel, efficient, and green route for producing plant-derived metabolites
such as benzyl-isoquinoline alkaloids [59].
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dopamine. 

2.2.4. Enzymes Applied for Halogenation  

In organic synthesis, the introduction of halogen substituents, especially in mechanistically less-
favored positions, remains a challenge. The antibiotic compound pyrroindomycin B was initially 
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each end of an unbranched deoxytrisaccharide. The indole ring moiety of pyrroindomycin B is 
halogenated at the C5 position. As the indole ring is a derivative of tryptophan, typtophan 5-
halogenase is responsible for the biosynthesis of pyrroindomycin B in Streptomyces rugosporus LL-
42D005. The disruption mutation of the tryptophan 5-halogenase gene resulting in the 
nonhalogenated pyrroindomycin confirmed this theory [61]. 
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Scheme 18. The stereospecific chemoenzymatic synthesis of (S)-norcoclaurine from tyrosine
and dopamine.

2.2.4. Enzymes Applied for Halogenation

In organic synthesis, the introduction of halogen substituents, especially in mechanistically
less-favored positions, remains a challenge. The antibiotic compound pyrroindomycin B was initially
isolated by Ding’s research group in 1994 [60]. The molecule is composed of a pyrroloindole entity and
a polyketide macro-ring system with a tetramic acid functional group, covalently appended to each end
of an unbranched deoxytrisaccharide. The indole ring moiety of pyrroindomycin B is halogenated at the
C5 position. As the indole ring is a derivative of tryptophan, typtophan 5-halogenase is responsible for
the biosynthesis of pyrroindomycin B in Streptomyces rugosporus LL-42D005. The disruption mutation
of the tryptophan 5-halogenase gene resulting in the nonhalogenated pyrroindomycin confirmed this
theory [61].

C-1027 or lidamycin is an antitumor antibiotic comprising a reactive enediyne chromophore and
an apoprotein unit (CagA). The chromophore readily generates benzenoid diradical intermediate,
which is capable of separating hydrogen atoms from the DNA backbone in the presence of free
oxygen. The destruction of DNA is associated well with cytotoxicity. The bioactive chromophore
has three chemical subunits that are covalently bonded to the nine-membered enediynes, including
(S)-3-chloro-4,5-dihydroxy-β-phenylalanine component. This moiety is synthesized from L-α-tyrosine
catalyzed by six proteins, one of which is SgcC3. The intermediate (S)-β-tyrosyl-S-SgcC2 can be
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regioselectively chlorinated by SgcC3 (Scheme 19). The study indicated that the activity of that enzyme
is oxygen and FADH2 dependent [62].
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Another FAD-dependent halogenase, RebH, was translated from Lechevalieria aerocolonigenes
that could halogenate rebeccamycin. This enzyme is competent at overriding the distinct rules of
halogenation, which is regioselective. For instance, in comparison to the halogenation of indole
or tryptophan at the C-3 or C-2 position correspondingly, RebH would chlorinate or brominate
L-tryptophan at the C-7 position, which is electronically unfavored (Scheme 20), even in the presence
of ortho/para-directing groups [63].
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RebH from Lechevalieria aerocolonigenes for the regioselective halogenation of substituted
tryptophan derivatives.

2.3. Hydrolases E.C.3

Many polyhydroxylated steroids with vicinal diols on the A-ring have remarkable biological
activities. Enzyme catalysis has shown a significant impact on the regio- and stereoselective
transformation of functional groups in steroids. Silva and her colleagues conducted a systematic study
on a series of stereoisomeric 2, 3- and 3, 4-vicinal diols with selective transesterification catalyzed
by commercially available lipases (Scheme 21). Their work delineated the high regioselectivity
of enzymatic acylation. The targeted lipases, such as Novozym 435 (immobilized lipase B from
Candida antarctica) and C. viscosum lipase, were capable of discriminating between A-ring vicinal
hydroxyl groups located on the steroids. According to their results, these lipases are sensitive to the
configuration of diols, affording highly regioselective monoesters. Their findings can provide useful
synthetic tools for the preparation of mono-acylated, glycosylated, or sulphated steroidal vicinal diols
and their derivatives [64].
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The chemical acylation of nucleosides has been reported in a few cases, but the reaction is
usually carried out by using protecting groups. Furthermore, the tedious separation processes always
result in low yields of the mono-O-acyl derivative. However, 2-methyltetrahydrofuran (MeTHF) is
a versatile aprotic solvent. Compared to tetrahydrofuran (THF), MeTHF is an excellent substitute
in biotransformation processes and has gained popularity in industrial synthetic applications due
to its low environmental impact. In this sense, Yolanda Simeo et al. investigated the benefits
of using MeTHF as a solvent in enzyme-catalyzed biotransformation. They applied CAL-B
lipase to acylate 1-β-arabinofuranosyl uracil (ara-U), 9-β-arabinofuranosyl adenosine (ara-A, 15),
2′-O-(2-methoxyethyl)-5-methyluridine, adenosine, and uridine with vinyl esters and hexanoic
anhydride, with yields of over 90% and exceptional regioselectivity. Both THF and MeTHF behave in a
similar way, while MeTHF exhibited better conversions for the acylation of uridine and ara-U [65].

The classical chemical acylation approaches which need a base to catalyze with the acid chloride
have their downside due to side isomerization reactions. Díaz-Rodríguez and coworkers utilized
biocatalytic methodology to synthesize several O-crotonyl 20-deoxynucleoside derivatives (Scheme 22).
All these compounds have crotonyl functional groups present, with biological activities such as
anti-tumor or inhabitation of the replication of HIV-1 and HIV-2. Their research group employed lipase
B from Candida Antarctica (CAL-B) and the immobilized lipase from Pseudomonas cepacia(PSL-C) to
attain 5′-O-acylated nucleoside and 3′-O-crotonylated analogs, respectively, without isomerization [66].
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Kołodziejska’s research group also investigated the influence of the solvent on enzymatic reactions.
Their study revealed that both the choice of solvent and the acyl group donor impact the activity,
stability, and selectivity in enzyme-catalyzed acylation. The hydrophobic organic solvent indicated
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enzymatic enantioselectivity improvement [67,68]. Tert-butyl methyl ether (TBME) provided an
excellent reaction environment for the lipase Amano PS from Burkholderia cepacia (BCL). Acylation
reaction gave (R)-monoesters with 81%–99% ee enantiomeric purity (Scheme 23), due to the selectivity
of enantio-topic hydroxyl groups [69].Catalysts 2020, 10, x FOR PEER REVIEW 16 of 25 
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Xiao et al. (Scheme 26) developed a new method to prepare enantiopure caffeic acid amides with 
an asymmetric aminolysis reaction between the cinnamic acid ester and (R, S)-α-phenylethylamine, 
which is catalyzed by an immobilized lipase (Novozym 435) from Candida antarctica. They optimized 
the reaction conditions, and under those conditions, high enantioselectivity for the enzymatic 
reaction was gained, with an enantiomeric excess of 98.5% [75]. Intermolecular aziridination is a 
highly enantioselective and valuable synthetical organic reaction that has no known natural 
equivalent. An engineered, genetically encoded enzyme, cytochrome P450, demonstrated high 
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Scheme 23. Acylation of the prochiral 1-(([1,3-dihydroxypropan-2-yl]oxy)methyl)-5-methylpyrimidine-
2,4(1H,3H)-dione and the hydrolysis of the corresponding diesters in the presence of a lipase under
various conditions.

Allenes are flexible synthetic precursors of numerous axially chiral compounds, with important
industrial applications. Many stereoselective methods have been developed to synthesize these
chiral allenes, most of which start from a racemic mixture. Thus, the yield of the allene resolution
is always limited. However, exploiting prochiral substrates in enzyme-catalyzed transesterification
reactions is a pronounced approach to overcome the limitation of yields. Sapu’s work suggests
that porcine pancreatic lipase (PPL) is an excellent biocatalyst for the kinetic resolution of allenols
(Scheme 24). The enzyme is also suitable for the transesterification of diols with similar structures.
Exemplarily, treating the prochiral phenyl-substituted diol with vinyl butyrate catalyzed by PPL led to
monoesters with 95% yield and 98% ee under modified conditions. One can conclude that this powerful
chemoenzymatic protocol makes either enantiomer of optical allenyl monoesters accessible [70].
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Traditionally, the selective benzoylation of the 5′-hydroxyl group of thymidine requires highly
toxic hexamethylphosphoric triamide and produces a by-product, triphenylphosphine oxide, that is
difficult to remove [71]. Other alternative routes are either time consuming and/or have moderate
yields [72,73]. Enzyme-catalyzed acylation is a substitute for standard synthetic methods that can
avoid these complications. Enzyme Candida Antarctica lipase B (CAL-B) proved to have high selectivity
over 5′-hydroxyl in the transesterification and to be reclaimed (Scheme 25). The benzoylation protocol
catalyzed by CAL-B is a mild and efficient synthetic method for 5′-O-benzoyl-2′-deoxynucleosides,
with excellent yields (over 89%). Easy scalability, minimal environmental impact, and recycling of both
enzyme and acylating agent make this pathway very attractive for industrial applications [74].
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Xiao et al. (Scheme 26) developed a new method to prepare enantiopure caffeic acid amides with
an asymmetric aminolysis reaction between the cinnamic acid ester and (R, S)-α-phenylethylamine,
which is catalyzed by an immobilized lipase (Novozym 435) from Candida antarctica. They optimized
the reaction conditions, and under those conditions, high enantioselectivity for the enzymatic reaction
was gained, with an enantiomeric excess of 98.5% [75]. Intermolecular aziridination is a highly
enantioselective and valuable synthetical organic reaction that has no known natural equivalent.
An engineered, genetically encoded enzyme, cytochrome P450, demonstrated high enantioselectivity,
with up to 99% ee for intermolecular aziridination, and it can be easily optimized (Scheme 27).
Exemplarily, enzyme P-I263F-A328V-L437V, a variant of P411 (A mutation from wild-type P450),
showed significant improvements in enantioselectivity (25% ee to 99% ee) and yield (1.1% to 55%)
compared to its precursor, P411, when catalyzing aziridination of 4-methyl styrene [76].
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Wombacher et al. (Scheme 28) discovered an RNA enzyme (ribozyme) that catalyzes a Diels–Alder
reaction between an oligo anthracene diene and a maleimide dienophile, stereoselectively synthesizing
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an R, R enantiomer with a high yield of ~90% (ee%) when n equals 6 or 12. The ribozyme was selected
from a library of RNA conjugates generated by 120 randomized nucleotides. They proved that the
size of the diene determined the stereoselectivity of the reaction and explained the mechanism
in the true catalytic reaction through a crystal structure study [8]. The synthesis strategy of
5-hydroxyimino-4,5-dihydrofurans through a lipase-catalyzed reaction between β-nitrostyrenes and
1,3-dicarbonyl compounds was developed by Wu (Scheme 29) and coworkers. The highlight of their
study was that a high stereoselectivity (Z/E up to 99:1) was achieved by screening a series of different
β-nitrostyrenes and lipases from different organisms. Compared with the reaction using traditional
catalyst NEt3 in methanol, the enzymatic reaction produced much less by-product of dihydrofuran,
which led to the high stereoselectivity of the Z product [77].
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As already delineated, the lipase extracted from Pseudomonas aeruginosa (PAL) has been proven to
be effective in catalyzing the stereoselective hydrolytic kinetic resolution of a chiral ester. Manfred
T. Reetz and coworkers applied iterative saturation mutagenesis (ISM) to maximize the quality of
mutant libraries. They were able to subject ISM to systematic and rigorous comparison with directed
evolution methods such as error-prone polymerase chain reaction (epPCR), saturation mutagenesis,
and DNA shuffling (Scheme 30). Their results revealed that the best mutant dramatically improved
enantioselectivity without requiring high screening effort [78].
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Enantio-pure ethyl- and methyl-3-hydroxyglutaric monocarboxylic acids have numerous industrial
applications. The hydrolysis of prochiral diethyl- and dimethyl-3-hydroxy glutarates is one way to
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obtain these chiral molecules. Jacobsen’s work has demonstrated that lipase B from Candida Antarctica
(CALB) is suitable for catalyzing in both hydrolysis and ammonolysis reactions. Moreover, the CALB
enzyme provided high efficiency in the hydrolysis of diethyl-3-hydroxyglutarate, with up to 91% ee
(Scheme 31). The hydrolase is reusable, with the preservation of excellent selectivity and activity [79].
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Scheme 31. Hydrolysis of prochiral diethyl-3-hydroxyglutarate (1) and dimethyl-3-hydroxyglutarate
(2) with CALB.

Chiral bicyclic diols are potentially important synthetic intermediates. In the past, dynamic kinetic
resolution (DKR) has been one of the most extensively used methods of asymmetric synthesizing
enantioselective pure primary amines or secondary alcohols. Thus, a modified method called enzyme-
and ruthenium-catalyzed dynamic kinetic asymmetric transformation (DYKAT), developed by Patrik
Krumlinde and coworkers, was employed to synthesize the diacetates of bicyclic diols, with high
enantioselectivity (99.9% ee). The DYKAT protocol gives high enantio- and diastereoselectivities
(Scheme 32). Compared to synthetic chemistry, their work has illustrated that the synthesis of
enantioselective sertraline from racemic cis/trans diol (n = 2) can be achieved with a higher yield [80].Catalysts 2020, 10, x FOR PEER REVIEW 19 of 25 
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The carboxylation of phenol and styrene derivatives by carboxylases (Scheme 33) in carbonate
buffer is highly regioselective. While benzoic acid carboxylases form the ortho-hydroxybenzoic
acid derivative, the phenolic acid carboxylases act on the beta-carbon and form (E)- cinnamic acids,
with the aromatic segment remaining completely intact [81].
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2.4. Lyases E.C.4

Williams et al. (Scheme 34) applied the evolved tagatose-1,6-bisphosphate (TBP) aldolase to
catalyze the production of tagatose 1,6-bisphosphate by using dihydroxyacetone phosphate (DHAP)
and glyceraldehyde 3-phosphate (G3P) as reactants. In their study, they performed three rounds of
gene mutation, including random mutation and direct mutation on the framework of TBP aldolase
(agaY), followed by screening ~3000 first-generation variants created from the mutation. The evolved
third-generation TBP aldolase not only increased the reaction rate 80-fold but also increased the
stereoselectivity 100-fold [82].
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A new approach to stereoselectively synthesizing syn- or anti-2-hydroxy diols was studied
by Husain and coworkers. In this study, the stereoselective synthesis of (R)-2-hydroxy carbonyl
compounds catalyzed by benzaldehyde lyase from Pichia. Glucozyma (BAL) was carried out as the
critical step, in which an aliphatic and an aromatic ketone were used as reactants. Corresponding
compounds with high optical purity (ee%, >97%) were obtained from the enzymatic reaction. This new
approach provides a new solution to selectively synthesize pure syn- or anti-2-hydroxy diols with
unprotected substrate [83].

Wu et al. (Scheme 35) established a practical biocatalytic method to prepare L-norephedrine,
in which an R-selective pyruvate decarboxylase from Saccharomyces cerevisiae and an S-selective
ω-transaminase from Vibrio fluvialis JS17 were tandemly applied. With a molar yield of over
60%, de (diastereomeric excess) and ee (enantiomeric excess) values of greater than 99.5% were
achieved through the enzyme-catalyzed reaction [84]. In the presence of carbon dioxide as a C-1 unit,
the enzymatic carboxylation of para-hydroxystyrenes by phenolic acid decarboxylases synthesizes
into (E)-cinnamic acids at a conversion rate of up to 40%. Wuensch’s study revealed that this novel
enzyme-catalyzed β-carboxylation has no traditional chemical synthesis counterpart [85].Catalysts 2020, 10, x FOR PEER REVIEW 20 of 25 
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3. Conclusions

Nature’s vast repertoire has inspired the chemist to exploit biocatalysts for chemical synthesis.
They also utilize the evolution engineering strategy of mutation and selection to improve the efficiency,
stability, and regio- and enantioselectivity of enzyme function for various applications. However,
challenges to enzymatic reactions remain. Research should focus on investigating nature’s mechanisms
for enzyme innovation, especially catalysts for non-natural reactions, as well as delineating the structure
and molecular interactions of enzymes. All these challenges will have a huge impact on modern
organic synthetical processes.

Undoubtedly, the extensive literature on enzymatic reactions highlights the extraordinary ability
of the biocatalyst to adapt and acquire new functions. Protein engineering and new analytical methods
have opened a toolbox for more sustainable, selective, and cost-efficient chemical reactions.
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