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RESEARCH Open Access

Deep learning vs. atlas-based models for
fast auto-segmentation of the masticatory
muscles on head and neck CT images
Wen Chen1,2, Yimin Li3, Brandon A. Dyer2,4, Xue Feng5, Shyam Rao2, Stanley H. Benedict2, Quan Chen5,6* and
Yi Rong2*

Abstract

Background: Impaired function of masticatory muscles will lead to trismus. Routine delineation of these muscles
during planning may improve dose tracking and facilitate dose reduction resulting in decreased radiation-related
trismus. This study aimed to compare a deep learning model with a commercial atlas-based model for fast auto-
segmentation of the masticatory muscles on head and neck computed tomography (CT) images.

Material and methods: Paired masseter (M), temporalis (T), medial and lateral pterygoid (MP, LP) muscles were
manually segmented on 56 CT images. CT images were randomly divided into training (n = 27) and validation (n =
29) cohorts. Two methods were used for automatic delineation of masticatory muscles (MMs): Deep learning auto-
segmentation (DLAS) and atlas-based auto-segmentation (ABAS). The automatic algorithms were evaluated using
Dice similarity coefficient (DSC), recall, precision, Hausdorff distance (HD), HD95, and mean surface distance (MSD). A
consolidated score was calculated by normalizing the metrics against interobserver variability and averaging over all
patients. Differences in dose (ΔDose) to MMs for DLAS and ABAS segmentations were assessed. A paired t-test was
used to compare the geometric and dosimetric difference between DLAS and ABAS methods.

Results: DLAS outperformed ABAS in delineating all MMs (p < 0.05). The DLAS mean DSC for M, T, MP, and LP
ranged from 0.83 ± 0.03 to 0.89 ± 0.02, the ABAS mean DSC ranged from 0.79 ± 0.05 to 0.85 ± 0.04. The mean value
for recall, HD, HD95, MSD also improved with DLAS for auto-segmentation. Interobserver variation revealed the
highest variability in DSC and MSD for both T and MP, and the highest scores were achieved for T by both
automatic algorithms. With few exceptions, the mean ΔD98%, ΔD95%, ΔD50%, and ΔD2% for all structures were
below 10% for DLAS and ABAS and had no detectable statistical difference (P > 0.05). DLAS based contours had
dose endpoints more closely matched with that of the manually segmented when compared with ABAS.

Conclusions: DLAS auto-segmentation of masticatory muscles for the head and neck radiotherapy had improved
segmentation accuracy compared with ABAS with no qualitative difference in dosimetric endpoints compared to
manually segmented contours.

Keywords: Deep learning model, Masticatory muscles, Auto-segmentation
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Introduction
Advances in radiotherapy techniques, such as intensity
modulated radiotherapy, have improved dose conformity
to radiation targets, resulting in decreased dose to adja-
cent organs at risk (OARs) [1, 2]. This has resulted in
improved locoregional tumor control, as well as reduced
incidence of late normal tissue side effects. As a result of
these technological advancements, accurate and consist-
ent delineation of tumor and OAR structures is impera-
tive for optimal radiation planning. However, it is a
labor-intensive process to manually delineate every
structure. Furthermore, given the complexity of head
and neck cancer (HNC) anatomy intra- and inter-
observer variations in manual segmentations are com-
mon and due to the substantial time required, some
OARs may not be routinely contoured [3–6].
The development of computational tools to automatic-

ally generate OAR contours can reduce the time and effort
required for HNC contouring and plan development, as
well as inter-observer contour variations. Specifically,
organ auto-segmentation has been extensively studied [7–
10] using both CT and MR image datasets [11, 12]. One
approach, atlas-based auto-segmentation (ABAS) [13, 14],
is a traditional method for organ contouring and various
factors can affect segmentation performance. These in-
clude the size of the dataset used to create the atlas, ap-
proaches for image registration, and approaches for label
fusion. Because the atlas size is fixed, the main limitation
for ABAS is the ability to overcome variations in patient
anatomy. In recent years, deep learning-based methods
[15, 16] have shown great success for biomedical image
segmentation and have been introduced to the field of
head and neck anatomy segmentation. However, the lit-
erature is limited in assessing masticatory muscles (MMs)
auto-segmentation [17, 18], which may be due to the lack
of delineation guidelines for MMs.
Trismus, pain or difficulty with opening the mouth, is a

common radiation-induced toxicity [19]. It may result in
poor dental hygiene, impaired chewing, malnutrition and
psychological difficulties which will eventually lead to im-
pacts on patients’ health-related quality of life [20, 21].
Risk factors including surgery, tumor location, and high
radiotherapy dosage contribute to trismus. It was observed
in 35–55% of advanced oropharyngeal cancers patients
treated with radiotherapy [22, 23]. Movement of the man-
dibular is controlled by the temporo-mandibular joint and
the synergistic actions of the paired MMs consisting of
the masseter (M), temporalis (T), medial pterygoid (MP)
and lateral pterygoid (LP) muscles. When the MMs are
within the field of radiation, fibrosis may lead to trismus,
reducing the range of movement. Therefore, to reduce
HNC toxicities and improve quality-of-life, it is necessary
to optimize radiation dose to the target and sparing the
MMs. Several dosimetric studies [22, 24, 25] investigated

the relationship between radiotherapy dose to MMs and
trismus. In a study of 421 cases, Rao et al. found that lim-
iting the high dose volume of the ipsilateral MP to
V68Gy < 10 cm3 reduced the incidence of trismus [22].
However, no standardized MM OAR definition exists, nor
dose threshold for the MMs.
Previous studies evaluated the use of auto-segmentation

to improve interobserver variability in contouring MMs
[18]. However, to the best of our knowledge, this is the
first paper to evaluate a deep learning model for auto-
segmentation of MMs. This study aimed to evaluate the
feasibility and performance of deep learning auto-
segmentation (DLAS) compared with ABAS for paired
MM auto-segmentation in terms of geometry and dosim-
etry accuracy. Furthermore, the performance of automatic
algorithms with respect to the interobserver variability in
manual contouring was evaluated.

Materials and methods
Imaging data
In this study, 56 head and neck (HNC) patients between
2016 and 2018 were retrospectively selected under insti-
tutional review board approval. A variety of primary
head and neck disease sites for patients receiving defini-
tive and adjuvant radiotherapy were included. The treat-
ment was delivered via Volumetric Modulated Arc
Therapy (VMAT) with the prescription dose for high-
risk regions ranging from 60Gy to 70Gy in 30 to 35 frac-
tions. Patients characteristics are shown in Table 1. All
patients were staged according to the 8th AJCC staging
system [26].
The four paired masticatory muscles, masseter (M),

temporalis (T) and medial/lateral pterygoids (MP, LP)
muscles were contoured on a simulation CT scan. All
the contours were delineated by the same HNC radi-
ation oncologist. The contours were then reviewed and
modified if necessary by a senior expert oncologist. All
muscles were delineated using the soft tissue window
and following the guidelines by Rao et al [22]. The CT
images and segmented contours were extracted as
DICOM files and imported to the deep learning-based
contouring software and the commercial software avail-
able on the RayStation Treatment Planning (RaySearch
Laboratories AB, Stockholm, Sweden) for further testing.

Deep learning model for image segmentation
The deep learning based contouring software (INTCon-
tour, Carina Medical LLC, Lexington, KY) employs 3D
U-Net structure [27] for organ segmentation. The algo-
rithm has achieved good performance in 2017 AAPM
thoracic challenge [28] and 2019 RT-MAC challenge
[29]. The original CT was resampled to have the same
spatial resolution, matrix size and field of view. Two 3D
U-Nets with and without dilated convolutions were
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trained and the output from both networks was aver-
aged. Training and testing augmentations such as ran-
dom translation, rotation, scaling and left-right flipping
were used to improve the model performance. The sum-
mation of the weighted cross entropy and soft Dice loss
was used as the loss function. A detailed description of
the segmentation method was previously published [30,
31]. From the initial dataset of 56 patients, 27 were ran-
domly selected for training and validation during the
training process. After the model was trained, the
remaining 29 patients were used for testing the perform-
ance. No model re-tuning and re-testing was performed.

Multi-atlas-based auto segmentation
Datasets were imported in RayStation treatment planning
system version 9A. Multi-atlas-based auto-segmentation al-
gorithm (ABAS) [32] was used to generate contours. The
same CT images and contour sets in the training cohort
(n = 27) for deep learning model creation were used to
build the atlas. For the new imaging dataset, multiple atlas
contours were first rigidly registered to the new image to
identify the best matching, which was then deformed and
registered to the new CT image as the new automatic gen-
erated segmentation set. An ANAtomically Constrained
Deformation Algorithm (ANACONDA) was used for
image deformation in the process of ABAS in Raystation
[33]. This algorithm uses both intensity-based and ana-
tomic information-based approaches to calculate deform-
ation vectors to achieve the best match between images,
the rest of 29 datasets was used for ABAS validation.

Interobserver variability
To assess the automatic algorithms with respect to the
interobserver variability in manual contouring, five head

and neck CT image sets were randomly selected for MM
OAR segmentation by three physicians according to the
afore-mentioned MM contouring guidelines. Paired
MMs were segmented and interobserver variability was
assessed by pairwise comparison of MM manual
contours.

Evaluation of geometric accuracy
Dice similarity coefficient (DSC), recall, precision, Haus-
dorff distance (HD), HD95, and Mean surface distance
(MSD) were calculated to evaluate DLAS and ABAS
auto-segmentation of MM contours compared with the
manually segmented gold standard. Interobserver vari-
ability was also evaluated using the same metrics. The
DSC, recall, and precision are measures of overlap of
two volumes (Vx and Vy) and is defined as:

DSC ¼ 2 Vx∩Vyj j
Vxj j þ Vyj j ; Precision ¼ Vx∩Vyj j

Vyj j ;Recall

¼ Vx∩Vyj j
Vxj j

Vx is the reference contour, Vy is the contour to be
evaluated. The range of the above three metrics are [0,
1], with 1 being the best value, and 0 being the worst.
The HD is the maximum distance of a point in one

contour to the closest point of the other contour, while
HD95 is to measure the 95% distance of all point in one
contour to the other, “x” and “y” denotes the points on
contour X and contour Y. It defines as:

dHD ¼ max min
x∈X

d xð Þ; min
y∈Y

d yð Þ
� �

Table 1 Patients characteristics

Characteristics Training group (n = 27) Validation group(n = 29)

Primary site

Oropharynx 16 (59.3%) 20 (69.0%)

Larynx 2 (7.4%) 4 (13.8%)

Nasopharynx and Sinonasal 4 (14.8%) 2 (6.9%)

Other sites 5 (18.5%) 3 (10.3%)

Stage

I 3 (11.1%) 2 (6.9%)

II 3 (11.1%) 3 (10.3%)

III 5 (18.5%) 6 (20.7%)

IV 16 (59.3%) 17 (58.6%)

N/X 0 (0%) 1 (3.5%)

Primary Tumor Surgery

Yes 15 17

No 12 12
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d
!

HD95 X;Yð Þ ¼ k95
min d x;yð Þ
y∈Y

� �
; dHD95 X;Yð Þ

¼ d
!

HD95 X;Yð Þ þ d
!

HD95 Y ;Xð Þ
2

The directed mean surface distance is the average dis-
tance of a point in contour X to its nearest point in con-
tour Y. which defines as:

d
!

avg X;Yð Þ ¼ 1
xj j
X
xεX

min
y∈Y

ⅆ x; yð Þ

The mean surface distance (MSD) is the average of the
two directed mean surface distances:

davg X;Yð Þ ¼ d
!

avg X;Yð Þ þ d
!

avg Y ;Xð Þ
2

The above distance measures have a unit of cm in this
study, with 0 as the most ideal value.
In this study, considering the range variation in differ-

ent metrics mentioned above, a score measure was used
normalizing to the interobserver variability values gener-
ated from the above five cases contoured by three physi-
cians. It defines as:

Score ¼ Max 50þ T − Rð Þ
P − Rð Þ � 50

� �
; 0

� �

where T presents measures of the test contours, P pre-
sents the perfect measure (i.e. DSC = 1, MSD/HD95 = 0),
and R presents the reference measure for the structure.
The mean score from the inter-observer study was used
as the reference measure. A score of 100 indicates the
highest value for all metrics, 50 is equivalent to the
mean interobserver reference, and 0 indicates below the
reference by the amount higher than the difference be-
tween the highest value and the reference. The general-
ized scores for each structure were calculated by
averaging the normalized scores over three metrics
(DSC, HD95, MSD) among all patients.
In addition, we counted the cases where auto-

segmentation perform worse than manual segmentation
by compared with the mean DSC of inter-observer vari-
ation for each muscle and calculated the rates for both
DLAS and ABAS methods.

Evaluation of dosimetric impact of variation in contouring
Dose-volume histograms (DVH) and dose statistics were
computed for auto-segmented contours and manual
contours (reference) using the original planned dose dis-
tribution. Pairwise comparison was performed for these
three sets of statistics. Dosimetric metrics of manual
contours and auto-segmented contours for each MM
were assessed. The dose-related effects strictly due to
the contouring variation were quantified by dose metric

variation. The dose differences (Δdose) of D98% (the
minimum absorbed dose, Gy), D95% (the prescribed
dose, Gy), D50% (the median absorbed dose, Gy), and
D2% (the maximum absorbed dose, Gy) for each muscle
were calculated. The dose difference between manual
and auto-segmented contours was calculated as:

Δdose ¼j doseMS − doseDLAS=ABAS
� �

doseMS
j

with doseMS equals to the dose of manual segmentation
contours, and doseDLAS/ABAS equals to the dose of auto-
segmentation contours using either DLAS or ABAS.

Statistical analysis
Analysis was performed using GraphPad Prism version 6
(Graph pad software) and SPSS software version 24.0
(SPSS Inc., Chicago, IL, USA). A paired t-test was used
to compare the difference value of DSC, recall, precision,
HD, HD95, MSD, overall scores and Δdose between
DLAS and ABAS. Chi-Square test was used to compare
the rates of worse cases between DLAS and ABAS. Stat-
istical significance was defined as p < 0.05.

Results
Variation in contouring
In all cases, both DLAS and ABAS can segment the
muscles with an overall good representation. Figure 1
shows an example of the DLAS, ABAS, and manual con-
tours. Contour variability was greatest for MP
structures.
Figure 2 shows metrics of geometric and spatial simi-

larity for all the structures manually delineated by the
three clinicians. Overall, both T and MP were associated
with lower values for DSC, recall, and precision com-
pared with M and LP. Higher values for MSD and
HD95/HD were observed for T and MP. Among all
structures, T had the highest HD95/HD. More specific-
ally, the mean value of DSC for M, T, LP, MP ranged
from 0.82 ± 0.06 to 0.90 ± 0.02, with an overall mean of
0.86 ± 0.05. The mean value ranges of HD and HD95
were from 0.42 ± 0.08 to 1.46 ± 0.85 and from 0.20 ± 0.03
to 0.40 ± 0.17, respectively, with overall means of 0.82 ±
0.53 and 0.31 ± 0.13 (unit: cm). The mean values of
MSD ranged from 0.05 ± 0.01 to 0.11 ± 0.05, with an
overall mean of 0.08 ± 0.04 (unit: cm). The overall means
of six metrics are shown in each sub-figure, which were
used as the reference values for calculating scores.
Table 2 summarizes DLAS and ABAS geometrics indi-

ces for MM segmentations. DLAS was superior to ABAS
for all quantitative metrics. More specifically, DSC was
0.86 ± 0.03 and 0.83 ± 0.04 for DLAS and ABAS, respect-
ively, as compared to the inter-observer variation base-
line of 0.86 ± 0.05. HD95 was 0.30 ± 0.09 for DLAS and
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0.37 ± 0.13 for ABAS, as compared to the baseline
0.31 ± 0.13. MSD was 0.08 ± 0.02, 0.11 ± 0.03, 0.08 ± 0.04
for DLAS, ABAS, and baseline, respectively. Overall,
DLAS achieved equivalent performance compared to the
mean interobserver variation for quantitative metrics,
with smaller standard deviation (SD), except for preci-
sion. These results demonstrate that DLAS is more geo-
metrically accurate and reproducible compared to
ABAS, and the comparison showed statistical signifi-
cance (p < 0.05) for all metrics except for precision.
Figure 3 shows overall improvements in geometrics

metrics for each pair MM when using DLAS, as com-
pared to ABAS. Mean DSC for MM structures ranged
from 0.79 ± 0.05 to 0.85 ± 0.04 for ABAS, and 0.83 ± 0.03
to 0.89 ± 0.02 for DLAS. When using DLAS, mean recall

for all structures was also higher, while mean precision
was similar with ABAS or slightly worse for some struc-
tures. For MM auto-segmentation structures, MP had the
lowest DSC and recall value compared with other struc-
tures, and LP had the lowest MSD value. However, T had
a larger HD/HD95 value compared with other structures.
This can be explained by the larger volume of T muscles.
Except for precision, paired t-test indicated that DLAS
performed better than ABAS for all the metrics of each
MM structure with statistically significance (p < 0.05).
The overall scores achieved by the two methods for every

muscle is summarized in Fig. 4. The highest scores were
achieved for T by both methods. For most muscle pairs,
DLAS-generated structures had mean scores above 50
while ABAS was less than 50, all with statistical significance

Fig. 1 Transverse view of different contours for one presentative patient. a manual contours (green lines, reference standard) vs. DLAS (red lines),
(b) manual contours (green lines) vs. ABAS (blue lines)

Fig. 2 The metrics of geometric and spatial similarity for all muscles manually delineated by three clinicians (interobserver variation). In each box,
the central mark is the median and edges are the 25 and 75th percentiles. and the upper and lower whiskers represents the highest and lowest
values. The overall values (mean ± SD) for every metric were presented on the right upper corner for each subfigure. “+” in the box represents
the mean values
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(p < 0.05), which indicates ABAS is inferior to the reference
established based on the inter-observer variation.
Table 3 shows the percentages (%) of cases where auto-

segmentation performed worse than manual segmentation
by compared with the mean DSC of inter-observer variation
for each muscle. The percentages of cases that performed
worse than manual segmentation ranged from 20.7 to 65.5%
for DLAS, and from 41.4 to 96.6% for ABAS. Chi-Square test
showed that the difference was statistically significant for
most of the structures(p < 0.05). These results indicate that
DLAS performance is superior compared to ABAS and that
ABAS segmentations require more contour revision to
achieve equivalence. Among all MMs, T segmentations with
either DLAS or ABAS had the fewest number of cases per-
forming worse than that of manual segmentations.

Dosimetric impact of variation in contouring
Figure 5 shows dosimetric endpoints for DLAS and
ABAS segmentations for paired MMs. Box plots show
Δdose of each muscle for DLAS and ABAS. The mean

ΔD98%, ΔD95%, ΔD50%, and ΔD2% for most of the
structures was less than 10%. However, ΔD98% and
ΔD95% were large in some cases, such as ΔD98% of T-
L, LP-L, MP-L for three cases was up to 100%. In
addition, one case showed ΔD50% of MP-L was more
than 50% (absolute dose greater than 10Gy). Among
these cases, ipsilateral MMs showed larger degrees of
dose variation compared with the contralateral muscles.
These findings indicate that, for the organs in a steep
dose gradient, segmentation variability of several milli-
meters may drastically change MM dosimetric end-
points. Comparison of Δdose for DLAS and ABAS
revealed generally similar results, the difference was not
statistically significant for most of the cases (P > 0.05).
However, dose to MMs with DLAS more closely
matched manual segmentations than did ABAS.

Discussion
This is the first study to assess the feasibility of a deep
learning method for contouring masticatory muscles in

Table 2 Mean values and standard deviation (Mean ± SD) for the 6 metrics across all organs contoured using three methods: A.
DLAS; B. ABAS; C. interobserver variation (baseline)

Metrics DLAS ABAS interobserver
variation

P value*

A vs B A vs C B vs C

DSC 0.86 ± 0.03 0.83 ± 0.04 0.86 ± 0.05 0.00 0.26 0.00

Recall 0.86 ± 0.05 0.81 ± 0.07 0.81 ± 0.07 0.00 0.00 0.91

Precision 0.85 ± 0.05 0.85 ± 0.07 0.92 ± 0.04 0.97 0.00 0.00

HD95 0.30 ± 0.09 0.37 ± 0.13 0.31 ± 0.13 0.00 0.20 0.00

HD 0.73 ± 0.31 0.83 ± 0.37 0.82 ± 0.53 0.00 0.84 0.03

MSD 0.08 ± 0.02 0.11 ± 0.03 0.08 ± 0.04 0.00 0.20 0.00

* represents T test was performed among these three methods

Fig. 3 Comparison DLAS and ABAS performance. The performance was evaluated with (a) DSC, (b) recall, (c) precision, (d) HD95, (e) HD, (f) MSD.
In each box, the central mark is the median and edges are the 25 and 75th percentiles and the upper and lower whiskers represents the highest
and lowest values. Paired t test was used for analysis. *P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, ns, no significance
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head and neck radiotherapy. Results indicate that our in-
house DLAS as compared to the commercial ABAS tool
provides accurate, consistent, reproducible MM counters
without the need of any manual correction or user inter-
ference. Dosimetric comparison of MMs for DLAS and
ABAS shows that the dose difference from that of man-
ual contours has a minimal clinical impact with less vari-
ation and improved consistency.
Many studies [6, 28, 34, 35] had characterized inter-

observer variation in contouring. Yang et al .[28] used
three cases by three observers to measure inter-rater
variability in thoracic OAR segmentation. Nelms et al.
[6] provided one patient CT data to several physicians to
quantify the OAR contouring variation in the head and
neck. We selected five cases and three physicians to esti-
mate the interobserver variation for the MM contouring.
While a larger dataset, or more observers, may help im-
prove the statistical power of analysis. The focus of this
study is not an accurate measurement of interobserver
variability, but rather to provide a rough reference when
evaluating the automatic algorithms’ performance. Our
results suggest that there is contour variation between
observers. Among all the structures, T and MP showed
more variation indicating that T and MP are more diffi-
cult to define anatomically. Prior to clinical implementa-
tion it is important to determine if these automated
segmentation results fall within the variability seen with
manual segmentation. Comparison of quantitative

geometric indices showed that DLAS of MMs was more
reproducible (less variable) than manual segmentations.
The results of overall scores also indicates that DLAS
perform better than ABAS, and DLAS segmentations re-
quire less contour revision before using clinically.
Several studies [7–9, 17, 18, 36] previously evaluated the

performance of different methods of auto-segmentation
for head and neck radiotherapy. Hague et al [18] devel-
oped a new contouring atlas to evaluate the reduction in
interobserver variability for MP, LP, M, and T muscles.
The authors found that an atlas reduced interobserver
variability for all muscles and the mean DTA improved
when the trainees used the atlas. Furthermore, they found
that T had the largest reduction in variability (4.3 ± 7.1
v1.2 ± 0.4 mm, p = 0.06), and for MP and T the distance
between the center of mass (COM) and interobserver vari-
ability reduced in all directions. Our results indicated that
DLAS was associated with smaller contour variation for
all muscles compared to ABAS, with a higher mean DSC,
Recall and a lower mean HD/HD95 and MSD, while pre-
cision stayed on a similar level. It means that DLAS has
increased overlap with the ground-truth contours without
over-contouring.
Comparison of MM segmentation strategy (DLAS,

ABAS, manual segmentation) showed small contouring
differences (on the order of millimeters) in general.
While the dosimetric impact for those contouring differ-
ences was usually small, large dosimetric differences did

Fig. 4 The overall scores achieved by DLAS and ABAS for all pairs of muscles. *P < 0.05. In each box, the central mark is the median and edges
are the 25 and 75th percentiles and the upper and lower whiskers represents the highest and lowest values

Table 3 The percentages (%) of cases for each muscle auto segmented by DLAS and ABAS which were worse than that achieved
by physicians (mean DSC was used to compare the results)

M-R M-L T-R T-L LP-R LP-L MP-R MP-L

DLAS 62.1% 51.7% 20.7% 24.1% 65.5% 65.5% 44.8% 37.9%

(18/29) (15/29) (6/29) (7/29) (19/29) (19/29) (13/29) (11/29)

ABAS 96.6% 89.7% 48.3% 41.4% 96.6% 82.8% 79.3% 69.0%

(28/29) (26/29) (14/29) (12/29) (28/29) (24/29) (23/29) (20/29)

P value* 0.02 0.03 0.05 0.26 0.01 0.23 0.01 0.03

* represents Chi-Square test was performed between DLAS and ABAS
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occur. In this study, we found there is one case for
which ΔD50% of MP-L was up to 50% (≥10Gy in abso-
lute dose). A closer inspection showed that the structure
passed through the penumbra region created by the jaw.
The dose gradient for the jaw penumbra was >4Gy/mm.
Thus, geometric errors on the order of 2.5 mm produced
a > 10Gy change in absolute dose. This indicates that
segmentation accuracy in areas with high dose and steep
dose gradients is important.
So far, there are a few studies investigating the dose-

volume factors correlating with trismus. Molen et al.
[25]. found that dose-parameters (mean, max, V20, V40,
and V60) of all mastication structures had strong correl-
ation with subjective mouth-opening problems at 1-year.
It was also observed that [37] after a dose of 40 Gy, the
probability of trismus will increase 24% for every 10 Gy
in the pterygoid muscle. If trismus-related muscles were
irradiated bilaterally [37], it will also increase the inci-
dence of trismus. Other authors [22, 24, 38] indicated
that mean radiation dose to the ipsilateral structures (i.e.
masseter and medial pterygoid muscles) is an important
risk factor. While small dose differences were observed
for most cases in our study, depending on the location
of the tumor and high dose gradient location, MMs can
receive high doses and should be given consideration
during the planning process.
This study validated a deep learning model for fast

auto-segmentation of the MMs. Using the DLAS, there
was a reduction in variability of contours of all muscles.
It also increases clinical efficiency in eliminating manual
contouring time. This method should be easily adopted
by other radiotherapy centers to improve structure de-
lineation consistency for head and neck patients, which
may also help to aid the development consistency in
multi-institutional clinical trials.

There are potential limitations in our study. The
“ground truth” contours are based on manual contours
created by the physician. The contouring bias of the
physician may impact our results. However, we adopted
strategies to minimize this bias. Contouring guidelines
of the published study by Rao et al. [22] were followed.
In addition, all manual contours were reviewed carefully
by an expert before they were used in this research. An-
other limitation is the limited dataset size. Twenty-seven
cases were used for training and twenty-nine cases were
used for testing. It is possible that our results are biased
due to the limited variety of cases and possible imbal-
ance of case representations in training and testing data-
set. In addition, while the performance for both DLAS
and ABAS would improve with more training data, it is
possible that one method may benefit more than the
other. For future studies, we plan to create a larger data-
set and compare the performance gain of both methods
as training data increases.

Conclusion
In summary, a deep learning model was validated for the
automatic segmentation of the mastication muscles for
improving workflow and efficiency in the radiation ther-
apy treatment planning process. This method has been
shown to significantly improve consistency in contour-
ing of all masticatory muscles compared with a commer-
cial ABAS method, or manual segmentation. It is
important to note that this study identifies the import-
ance of contouring and dose monitoring for well latera-
lized oral cavity or oropharyngeal tumors during the
planning phases, in which segmentation variability of
several millimeters may drastically change ipsilateral
MMs dosimetric endpoints.

Fig. 5 Comparisons of Δdose of DLAS vs ABAS. Paired t test was used for analysis. *P < 0.05. In each box, the central mark is the median and
edges are the 25 and 75th percentiles. and the upper and lower whiskers represents the highest and lowest values
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