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ABSTRACT OF DISSERTATION

TOWARDS THE RATIONAL DESIGN OF
ORGANIC SEMICONDUCTORS THROUGH

COMPUTATIONAL APPROACHES

Though organic semiconductors have illustrated potential as industry-
relevant materials for electronics applications, there are few guidelines that can
take one from molecular design to functional materials. This limitation is, in part,
due to incomplete understanding as to how the atomic-scale construction of the
π-conjugated molecules that comprise the organic semiconductors determines the
nature and strength of both the noncovalent intramolecular interactions that gov-
ern molecular conformation and noncovalent intermolecular interactions that reg-
ulate the energetic preference for solid-state packing. Hence, there remain several
fundamental questions that need to be resolved in order to design organic semicon-
ductors from a priori knowledge, including: What is the relevance of the relatively
weak noncovalent intramolecular interactions on determining molecular structure,
are current hypotheses put forward as to important interactions valid, and how
does chemical substitution as various positions along the π-conjugated backbone
impact these interactions? How do the intermolecular noncovalent interactions
regulate solid-state packing, are there features of the molecular structure – e.g. the
π-conjugated backbone, heteroatoms, or pendent alkyl chains – that play a more
important role? What connections can be made between the structures/properties
of the π-conjugated molecules and the resulting organic semiconductors?

In this dissertation, Chapter 1 provides an introductory discussion of these
questions and a brief review of previous studies. Chapter 2 details the computa-
tional approaches that were implemented throughout the course of the thesis work.
Chapter 3 describes the investigation of a series of pyrene-acene molecules to il-
lustrate the importance of choosing the right molecular structure in π-conjugated



chromophores. In Chapter 4, S…F noncovalent intramolecular interactions are
systematically investigated in two separate cases to highlight the varied impact
that these interactions can have on molecular and solid-state packing structures.
Chapter 5 describes the investigation of an oscillatory crystal packing structure
observed for a series of oligothiophenes that follow the odd-even carbon-atom
counts of the pendant alkyl chains. In Chapter 6, the polymorphism of func-
tionalized pentacene molecules is studied to reveal how seemingly simple atomic
substitutions can drastically alter solid-state packing. To systematically address
the aforementioned fundamental questions, Chapter 7 describes the construction
and application of a database of crystalline molecular organic semiconductors.
Finally, perspectives regarding future research are provided in Chapter 8.

Keywords: Organic Semiconductor, Polymorphism, Data-driven Approaches,
Organic Field Effect Transistor, Density Functional Theory
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CHAPTER 1

INTRODUCTION

While the semiconductor industry has been dominated by inorganic mate-

rials since the invention of the transistor in the late 1940s, organic semiconductors

have been making a strong push into commercial applications, having first been

prototyped in organic photovoltaic cells, organic light-emitting diodes, and organic

thin-film transistors in the 1980s.1,2 Thanks to progress in material synthesis and

processing, organic semiconducting materials are now not only a research focus

but have also become a commercial reality, and have taken a significant mar-

ket share in display technologies since the early 2000s.3 Such rapid development

was driven by the fact that organic semiconductors can be fabricated into thin,

light-weight and mechanically flexible devices via low-temperature, fully solution

processes. However, even after decades of effort, relatively limited performance

and low stability are generally observed for devices containing organic semicon-

ductors. For example, one of the record charge-carrier mobilities achieved by an

organic thin film transistor is 43 cm2/(V · s), which made use of a meta-stable

crystalline phase of C8-BTBT,4 whereas the charge-carrier mobility of thin film,

flexible silicon-based transistors can reach 200 cm2/(V · s).5 Thus, explorations of

novel organic materials and understanding their intrinsic chemistry are vital to

development of next-generation organic semiconductors with performance compa-

rable with inorganic materials.

Organic semiconductors have also attracted interest for the intriguing

physics behind their electronic and optical properties. The discovery of the first

conductive organic polymer, halogen doped polyacetylene in 1977,6 was honored

with the Nobel Prize in 2000 due in part to the interest that it spurred from a

fundamental perspective. Such a “synthetic metal” inspired wide interest in the
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natures of excitons, charge-carrier transport (e.g. polarons, bipolarons, solitons),

and the general electronic structure of organic materials. At first glance, the elec-

tronic structure of an organic solid should not be complicated: The active part of

the electronic structure consists of coupled π orbitals that lead to delocalized elec-

trons. However, several significant features make organic semiconductors different

from their inorganic counterparts. In organic semiconductors, charge carriers al-

most entirely come from doping, as their large fundamental gap (usually around

2∼3 eV) prevents any considerable thermal excited carriers. Organics also tend

to have relatively small dielectric constants and limited intermolecular electronic

couplings such that electronic correlations cannot be neglected.7 As organic solids

are held together by weak van der Waals forces, their soft nature makes electronic

polarization and molecular and solid-state vibrations crucial to electron dynam-

ics, thus pronounced electron-phonon couplings are expected. In addition to these

complexities that preclude in-depth descriptions, let alone accurate predictions,

of optoelectronic properties, organic chemists, while are able to realize various

molecular structures, cannot predict the resulting macroscopic solid-state struc-

ture, which is formally known as, for crystalline materials, the crystal structure

prediction (CSP) problem.8,9 Such a lack of predictive capabilities, along with

time-consuming device fabrication that is sensitive to a wide range of processing

conditions, are major obstacles towards rational design of high-performance or-

ganic semiconducting materials. To provide context for later chapters, the rest of

this chapter is organized as follows: First, a summary of noncovalent interactions

in organic semiconductors is provided. Molecular structure and packing of organic

semiconductors are then discussed. Finally, we introduce data infrastructures for

materials science studies, followed by a synopsis of this thesis.

1.1 Noncovalent Interaction

Noncovalent interactions are interactions among atoms or molecular frag-

ments that do not involve intimate sharing of electrons, and are usually an order
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of magnitude weaker than covalent bonds.10 For organic molecules, noncovalent

interactions play crucial roles in determining their ground state conformations (in-

tramolecular interactions), as well as how molecules self-assemble into extended

structures (intermolecular interactions). This can be exemplified by the complex,

versatile three-dimensional structure of a protein, which is developed by folding

covalently connected amino acids through noncovalent interactions, including di-

rected hydrogen bonds, hydrophilic/hydrophobic interactions, and van der Waals

forces.11,12 Just like a protein, the properties of an organic solid not only depends

on the chemical composition, but are also subject to conformational change of

molecules and their assemblies, which highlights the significance of noncovalent

interactions.

While the history of noncovalent interactions can be traced back to re-

search on describing real gases by van der Waals in 1870s,13 its classification

still remains non-trivial and often come with ambiguities. Excluding metallic

bonds, from a perturbation theory perspective, noncovalent interactions can be

classified into four categories: electrostatic, induction, dispersion, and exchange-

repulsion.14 Electrostatic interactions come from permanent multipoles and can

be calculated via multipole expansion among well-separated systems.15 Induction

interactions result from the polarization field generated by the electronic relax-

ation of molecules, whereas instantaneous fluctuations of charge densities give

rise to dispersion interactions. Exchange-repulsion originates from the effective

statistical interaction (Pauli’s principle),16 which appears as repulsive forces be-

tween electrons. Considering that most organic semiconducting materials consist

of neutral molecules/polymers with low dielectric constant (less polar), in these

systems, exchange-repulsion and dispersion tend to be more significant than other

noncovalent interactions.

One of the difficulties of investigating noncovalent interactions is that there

are only few descriptors can be confidently determined experimentally. While for
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molecular complexes rotational spectroscopy can be used to detect very weak in-

teractions,17,18 such technics are not readily available for the solid-state. Instead,

(changes in) vibrational and solid-state nuclear magnetic resonance (NMR) spec-

troscopies are used.19–21 In addition, the atomic positions of crystalline materials,

solved by diffraction experiments, allow the existence of noncovalent interactions

to be inferred.22–24 For theoreticians, describing noncovalent interactions often

implies a trade-off between accuracy and applicability. While chemical accuracy

can be achieved with coupled-cluster approximations (usually at the CCSD(T)

level), these calculations are challenged by scaling (N7 for floating-point opera-

tions in standard CCSD(T)) and memory requirements. Hence, researchers turn to

lower-level wavefunction methods or dispersion-corrected density functional the-

ory (DFT) methods. A brief description of the latter, which is also used in later

chapters, can be found in Chapter 2.

1.2 Molecular Structure and Solid-state Packing

Si

Si

TIPS-Pn C12-BTBT

S

S

C12H25

C12H25

C10-DNTT

S

S

C10H21C10H21

C6-DNT-VW

S

C6H13
C6H13

Figure 1.1: Molecular structures of high-mobility organic semiconductors.
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In addition to amorphous solids (derived for both molecules and polymers),

organic molecular crystals constitute an important class of organic semiconductors.

In fact, research on optoelectronic properties of molecular crystals can be traced

back to the beginning of 20th century when the photoconductivity of anthracene

was studied.25 Developments over the last few decades have led to a boom of

such materials, examples of which are showcased in Fig. 1.1, comprised of molec-

ular structures that lead to high-mobility crystalline organic semiconductors.26–29

These molecules can be described under the same molecular design paradigm as

6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-Pn): A π-conjugated core with

alkyl-based side chains appended along the periphery. The former, often referred

to as the chromophore, contributes π orbitals to the extended solid-state system

that are used to form the valence and conduction bands. The side chains are con-

sidered to be electronically inert, as their electrons tend to reside in deep energy

levels. For single molecules, we are mainly interested in the chromophore, which

portends the nature of the electronic, redox, and optical properties. However, the

electronic structure of an organic crystal also depends on electronic interactions

between molecules, which is subject to molecular packing where side groups also

play a role. Chromophore-only molecules, due to high structural rigidity, tend

to suffer from poor processability, e.g. pentacene is only sparingly soluble in or-

ganic solvents.30 Thus, the purpose of appending side groups is twofold: 1) to

improve chromophore processability, such as solubility and air stability, and 2) to

achieve molecular packing whose underlying electronic structure is preferred for

semiconducting applications.

While advances in organic chemistry allow the synthesis a wide range of

chromophores, as well as the ability to append a wide range of side groups, control

over molecular packing has never been precise, as it is related to the challenging

CSP problem. With enormous progress from CSP community in the last decade,

solutions to the CSP challenge appear reachable in near future, as reflected by the

promising results of the latest CSP blind test.31 However, organic semiconductors
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like TIPS-pentacene represent a particular class of CSP where intermolecular in-

teractions are dominated by weak dispersion forces and the number of rotatable

bonds is large. In addition, crystal configuration can be very sensitive to slight

changes in molecular structure, and crystallization method in the case of polymor-

phism, as shown in the cases of Chapter 5 and Chapter 6. Such lack of predictive

capabilities provides unique challenges in the design of organic semiconducting

materials.

1.3 Data Infrastructure for Materials Science

The history of data science in organic materials took off in 1960s as the

construction of the Cambridge Structural Database started, which has evolved

into a popular database for crystallography and pharmaceutical chemistry.32 Pow-

ered by ever-improving computational and data storage resources, along with the

wide acceptance of the concept of open science,33,34 data driven approaches have

become increasing popular in a variety of scientific communities, with materials

science being no exception. Big-data-driven approaches are proposed as the fourth

paradigm of scientific discovery from which previously unknown correlations and

dependencies that are invisible in small data set can be revealed.35,36

In materials science, in addition to data generation and collection, imple-

menting data-driven approaches requires a set of resources, from physical data

storage facilities to software platforms. These are known as data infrastructures,

which, ideally, should be able to provide:

• Schemaless data structure: As materials data are collected from various

sources, including both experimental and computational results, schemaless

data structure allows registering data with arbitrary fields. This is typically

implemented with non-relational databases.37
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• Data curation and standardization: To fully exploit the potential of a large

dataset, it is imperative to integrate and consolidate separate information to

acquire holistic knowledge. By data curation, a priori knowledge of relations

between individual data entries can be captured. Data standardization and

data integrity assessment are also necessary to ensure high data quality that

is crucial for obtaining correct results from data-driven approaches.

• High accessibility and searchability: While data accessibility has been

greatly advanced in the last few decades thanks to the open access move-

ment,38 searchability, that is, the ability to find desired information with a

short query, still has room for improvement. This is primarily due to the

inconsistent nomenclature gifted by the interdisciplinary nature of materials

science.

Recent efforts to develop data infrastructures that meet these demands

include the Materials Project,39 AFLOW,40 and NOMAD,41 where results from

high-throughput computational workflows are curated and shared with the com-

munity. While these studies have been successful in providing access to big

data (mainly for inorganic materials) and facilitating data analytics, significant

challenges remain, such as integration of experimental data, standardization and

searchability.42

1.4 Synopsis

This thesis is dedicated to expanding the understanding of organic semicon-

ductors, across the scales from molecules to materials, via computational methods,

which are reviewed in Chapter 2. The overarching hypothesis of this thesis is that

knowledge derived from computational materials chemistry approaches, generated

from a combination of molecular and solid-state electronic structure methods,

when integrated with experimental data, can be used both to corroborate and re-

fine existing materials design rules, and obtain new predictive capacities. Within
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this context, a series of molecular and crystal systems are examined in the following

chapters to provide insights to varied aspects of organic semiconductor design, in-

cluding the construction of the molecular chromophore, the roles of intramolecular

and intermolecular noncovalent interactions on molecular and solid-state packing

structures, and how data-centered approaches can advance materials discoveries.

In Chapter 3, we explore a series of pyrene-fused acene molecules to un-

derstand how the construction of the π-conjugated chromophore can impact the

electronic and optical properties of the molecular system. Here, we reveal how a

seemingly large π-conjugated system can consist of almost isolated parts, a feature

due in part to the symmetry of the constituents that comprise the system. This

feature, while leading to distinct optical response at the molecular level, is also

shown to have non-trivial implications for polymer/graphene nano ribbon design.

Intramolecular S…F interactions are believed to promote rigid, planar

conformations of extended conjugated systems, and have been introduced into

thiophene-based polymers showing improved performance.43–45 In Chapter 4, such

interactions in two thiophene-containing oligomer systems are examined to show

the impact of weak, noncovalent interactions on chromophore structure. It is re-

vealed that the stabilizing effect brought by S…F short contact can come from

different origins, and the preference towards a planar conformation is subject to

the structure of conjugated backbone.

In addition to molecular chromophore, the alkyl side groups, while being

electronically inert, can be crucial in determining molecular packing in crystal

structures In Chapter 5, an intriguing odd-even oscillation in the crystal struc-

tures of functionalized oligothiophenes is studied, which is related to oscillatory

noncovalent interactions from incremental changes among the side groups. Dis-

cussions on the generality and origin of such oscillation indicate that it could also

be observed in other homologous compounds.
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The relation between side groups and crystal structure is further discussed

in Chapter 6. Here, we focus on an extreme case in which polymorphism is in-

duced by single-atom substitution on side groups. Solid-state structural studies

on the polymorphism of 6,13-bis(triisopropylgermanylethynyl) pentacene (TIPGe-

Pn) crystals illustrate the impact of lattice vibration on electronic structures

through thermal expansion, and how phonons can improve the relative stability

of a configuration that is otherwise unfavored at finite temperature.

As an attempt to realize the idea of data-driven material discovery, in

Chapter 7, we describe the construction of OCELOT (Organic Crystals in Elec-

tronic and Light-Oriented Technologies), a digital archive for organic semiconduct-

ing materials research. Software tools, as well as curation methods, are developed

for research data generation and collection with a focus on crystalline solids. Ap-

plication of this platform is exemplified by two case studies regarding molecular

packing and material screening, respectively.

In summary, these studies reflect our efforts to address various aspects of

organic semiconductor design. As will be shown in the following chapters, compu-

tational materials chemistry, when properly integrated with experimental insights,

is able to not only refine previous understandings, but also provide irreplaceable

and interpretable information necessary for prediction. This perception, along

with future considerations, will be presented in Chapter 8 to conclude this thesis.
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CHAPTER 2

METHODS

In this chapter, the theoretical background and technical models employed

in this study are briefly reviewed. This chapter is organized as follows: In Sec-

tion 2.1 basic concepts of crystal electronic structure are reviewed. The compu-

tational workhorse of this study, density functional theory (DFT), is discussed in

Section 2.2 along with important approximations and corrections. Relevant charge

transport models are introduced in Section 2.3. Atomic units are used throughout

this chapter unless otherwise specified. The formalisms presented herein are pri-

marily taken from the following texts: Ashcroft46, Born47, Christman48, Shuai49,

Brandenburg50 and van Leeuwen51.

2.1 Electronic Structure of Crystals

2.1.1 Many Body Hamiltonian

The electronic properties of a nucleus-electron system can be depicted by

the time independent Schördinger Equation:

ĤΨ({RI}, {ri}) = EnΨ({RI}, {ri}) (2.1)

where RI and ri represent the coordinates of the Ith nucleus and the ith electron,

respectively. For now we assume the electrons are spinless. En is the energy of

the nth eigenstate, and Ψ is the many body wavefunction as an eigenstate of the

many body Hamiltonian Ĥ, which is defined as:

Ĥ =
M∑
I=1

P 2
I

2MI

+
N∑
i=1

p2i
2

+ V̂ ({RI}, {ri}). (2.2)
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Here, PI = −i∇R and pi = −i∇r are momentum operators of the Ith nucleus

with massMI and ith electron, respectively. While the first two terms of Eq. (2.2)

are the kinetic energies of the nuclei (T̂n) and electrons (T̂e), the third term comes

from the interactions among the M +N particles:

V̂ ({RI}, {ri}) =
∑
I ̸=J

ZIZJ

2|RI −RJ |
+
∑
i ̸=j

1

2|ri − rj|
−
∑
i,I

ZI

|ri −RI |
(2.3)

where ZI and ZJ represent the nuclear charge of Ith nucleus. The right hand side of

Eq. (2.3) consists of, from left to right, the Coulomb interactions of nucleus-nucleus

(V̂nn({RI})), electron-electron(V̂ee({ri})), and nucleus-electron(V̂ne({RI}, {ri})).

Consequently, Eq. (2.2) can be written as:

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne. (2.4)

While in general there are many En of Eq. (2.1), for most situations the most

important state is the state with the smallest eigenvalue E0, i.e. the ground state.

This is the quantum many body problem which is a centerpiece of quantum chem-

istry.

Considering MH

me
≈ 1840 where MH is the mass of the lightest nucleus,

proton, and me is that of an electron, it is reasonable to assume that the electrons

react to a perturbation much faster than nuclei. That is, the motion of electrons

may be, approximately, decoupled from the motion of nuclei. This motivates us to

define the electronic Hamiltonian Ĥe as

Ĥe = T̂e + V̂ne + V̂ee (2.5)

where the dynamics of nuclei is absent, but Ĥe still depends on {RI} parametri-

cally. Once the nuclei are clamped to RC the eigenfunctions of Ĥe can be solved

from:

Ĥ{RC}
e Φ{RC}

ν ({ri}) = Ee,νΦ
{RC}
ν ({ri}) (2.6)
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where Φν is the νth eigenfunction of Ĥe, Ee,ν is the eigenvalue, superscripts repre-

sent the parametric dependence on {RC}. This is the electronic structure problem

in which electronic wavefunction Φ are solved at fixed {RC}. Let Ψ({RI}, ({ri})

be an exact, ground state (this is not necessary) solution to Eq. (2.1), at an arbi-

trary {RI} it can be expanded as:

Ψ({RI}, {ri}) =
∑
ν

Λν({RI})Φ{RC}
ν ({ri}) (2.7)

where Λν({RI}) is the expansion coefficient for Φ
{RC}
ν ({ri}). Eq. (2.7) comes

from the fact that the eigenfunctions Φ
{RC}
ν ({ri}) form a complete basis of the

Hilbert space of Φ({ri}). This property leads to an alternative expansion of

Ψ({RI}, ({ri}):

Ψ({RI}, {ri}) =
∑
ν

λν({RI})Φν({RI}, {ri}) (2.8)

which is the ”dynamic” version of Eq. (2.7) since Φν explicitly depends on {RI}.

These expansions allow us to separate the motion of nuclei (λν) from the electronic

wavefunctions Φ. Use Eq. (2.8) in Eq. (2.4) along with Eq. (2.5), we have:

ĤΨ = ĤeΨ+ T̂nΨ+ V̂nnΨ (2.9)

ĤeΨ =
∑
ν

λνEe,νΦν (2.10)

V̂nnΨ =
∑
ν

λνV̂nnΦν (2.11)

but for T̂nΨ the expansion is more complicated as T̂n does not commute with λν :

T̂nΨ =
M∑
I=1

∑
ν

− 1

2MI

∇2
RλνΦν

=
M∑
I=1

∑
ν

− 1

2MI

[λν(∇2
RΦν) + 2(∇Rλν)(∇RΦν) + (∇2

Rλν)Φν ]

(2.12)

where the chain rule has been invoked. Now we would like to calculate λν so we
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just need to solve Φ from Eq. (2.6) to get Ψ. Multiply both sides of Eq. (2.9) with

Φ∗
µ (an eigenfunction of Ĥe) then integrate over ri, for the left side we have:

⟨Φµ| Ĥ |Ψ⟩ = E0 ⟨Φµ|Ψ⟩ = E0λµ ⟨Φµ|Φµ⟩ = E0λµ (2.13)

and for the right side we obtain:

⟨Φµ| Ĥe |Ψ⟩+ ⟨Φµ| T̂n |Ψ⟩+ ⟨Φµ| V̂nn |Ψ⟩ = (Ee,µ + V̂nn)λµ + ⟨Φµ| T̂n |Ψ⟩ (2.14)

where the third term should be evaluated based on Eq. (2.12):

⟨Φµ| T̂n |Ψ⟩ =
M∑
I=1

∑
ν

− 1

2MI

[λν ⟨Φµ|∇2
R |Φν⟩

+ 2(∇Rλν) ⟨Φµ|∇R |Φν⟩+∇2
Rλν ⟨Φµ|Φν⟩].

(2.15)

Combining Eq. (2.13), Eq. (2.14) and Eq. (2.15), for each eigenstate Φµ of Ĥe we

have:

E0λµ =(Ee,µ + Vnn + T̂n)λµ

+
M∑
I=1

∑
ν

− 1

2MI

[λν ⟨Φµ|∇2
R |Φν⟩+ 2(∇Rλν) ⟨Φµ|∇R |Φν⟩]

(2.16)

where the terms in rectangle brackets are the electron-phonon coupling terms

which correlate the motion of nuclei (∇R) with electronic states Φν and Φµ. We

first look at the electron-phonon coupling terms when µ = ν (diagonal), the

⟨Φµ|∇R |Φν⟩ terms vanish (in the absence of a magnetic field) since

⟨Φµ|∇R |Φν⟩ =
1

2
∇R ⟨Φµ|Φν⟩ (2.17)

where the right side is zero. For the − 1
2MI

⟨Φµ|∇2
R |Φν⟩ terms if we assume Φν =

Φν({RI − ri}) we have

− 1

2MI

⟨Φµ|∇2
R |Φν⟩ = − 1

MI

1

2
⟨Φµ|∇2

r |Φν⟩ (2.18)
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which means these terms are at most in the order of 10−4 times the kinetic energy

of an electron.

Now we introduce the Born-Oppenheimer approximation which states that

the electrons will always be in an eigenstate of Ĥe and nuclear motions would

not induce transition between these states (adiabatic), which effectively zeros the

electron-phonon coupling terms in Eq. (2.16) when µ ̸= ν (off-diagonal). With

this approximation we can rewrite Eq. (2.16) as:

(T̂n + V̂nn + Ee,µ)λµ = E0λµ (2.19)

where the nuclei motions are described by λµ which has no ri dependence, thus

Eq. (2.19) is the Schördinger equation for nuclei and V̂nn + Ee,µ is the potential

energy surface of eigenstate µ. Now we can calculate Ψ as a simple product

Ψ = λ0({RI})Φ0({RI}, {ri}) (2.20)

by solving Eq. (2.19) and Eq. (2.6), where the subscript 0 denotes the ground

state.

2.1.2 Electronic Structure in a Periodic Potential

The periodic systems investigated in this study, also known as crystals, are

infinitely extended atomic systems that can be completely defined by a finite local

image (unit cell) and a set of translational vectors. Let Rij be the coordinates of

ith atom in jth image, for a crystal we have:

Rij + T = Rij′ (2.21)

where i, j, j′ are the indexes of images and T is a translational vector of the

crystal. In general, T is not a unique vector but a linear combination of linearly
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independent basis vectors. Following Eq. (2.21), we can define the translation

operators ÛT , for an arbitrary spatial function f(r):

ÛT f(r) = f(r + T ). (2.22)

where f(r) is called to be cell periodic if

ÛT f(r) = f(r) (2.23)

which represents the translational symmetry of function f(r).

We now look at an electron-nucleus system where nuclei positions are

clamped and subject to Eq. (2.21), and electrons are not interacting with each

other. We can write the electronic Hamiltonian Ĥni of this system as

Ĥni =
i=N∑
i=1

(−1

2
∇2

ri
+ v(ri)) (2.24)

where xi is the electron coordinates of the ith electron, v(ri) is the V̂ne term in

Eq. (2.5), subscript ni denotes non-interacting electrons. We note the terms in

the bracket of Eq. (2.24) can be considered as a single-electron Hamiltonian in the

potential induced by fixed nuclei positions, that is ĥ = −1
2
∇2

r + v(r) which will

be referred to as the Hamilton operator. Inspecting Eq. (2.22), Eq. (2.21) and

Eq. (2.24) we noticed that

ÛT v(r) = v(r) (2.25)

which means v(r) is cell periodic, and

ÛT ∇2
rf(r) = ∇2

rf(r + T ) = ∇2
rÛT f(r) (2.26)

which leads to

[ÛT , ĥ] = 0 (2.27)

15



i.e., the Hamilton operator commutes with the translation operator. Thus we

immediately know that ÛT and ĥ share the same eigenfunctions. For ĥ we have:

ĥϕ(r) = ϵψ(r); (2.28)

where ϵ is the eigenvalue of eigenfunction ψ(r). Here we also assume there is no

degeneracy in solving Eq. (2.28). Similarly, for ÛT we have:

ÛT ψ(r) = c(T )ψ(r) (2.29)

where c(T ) is the eigenvalue of ÛT . Considering ÛT ÛR′=ÛR+R′ , from Eq. (2.29)

we obtain:

c(T + T ′) = c(T )c(T ′). (2.30)

From crystallography we know that T is a Bravais lattice vector and can be

decomposed to
∑

j njaj where aj are primitive vectors and nj are linear combina-

tion coefficients. This implies Eq. (2.30) is true for any aj. Additionally, knowing

Eq. (2.30) is exactly in the form of Cauchy functional equation, we can write c(aj)

in an exponential form:

c(aj) = e2πixj (2.31)

where xj is a complex number in general. Combining Eq. (2.31) and Eq. (2.30)

we have:

c(T ) =
∑
j

c(aj)
nj = e2πi

∑
j njxj , (2.32)

which can be written in a more compact form:

c(T ) = eik·T (2.33)

where k is defined as:

k =
∑
j

xjbj (2.34)

16



in which bj are the basis vectors of reciprocal lattice:

bj · a′
j = 2πδjj′ . (2.35)

Based on Eq. (2.33) and Eq. (2.29), we have:

ÛRψk(r) = eik·T ψk(r) (2.36)

which is the Bloch theorem. This allows us to write ψk(r) in a general form. We

start by introducing a function uk(r) such that

ψk(r) = eik·ruk(r). (2.37)

Substitute Eq. (2.37) into Eq. (2.36) we have:

ÛRψk(r) = eik·(T +r)uk(r + T ) = eik·(T +r)uk(r) (2.38)

which gives

uk(r + T ) = uk(r) (2.39)

i.e. uk(r) is cell periodic. That is, Eq. (2.36) guarantees that the wavefunctions of

single-electron Hamiltonian in a periodic potential can be written as a product of a

plane wave and a cell periodic function. Such single-electron states/wavefunctions

are commonly referred to as Bloch states/waves.

While Bloch’s theorem is only rigorously valid for one particle system or

non-interacting systems (Bloch electrons), it is surprising that most of realistic

correlated systems can be, in one way or another, renormalized to a single-particle

picture where the characteristics of the system are nicely explained by the collec-

tive behaviors of non-interacting (quasi-)particles.

Bloch’s theorem introduces a new quantum number, the wave vector k,
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which is also formally denoted as crystal momentum of Bloch electrons. By defin-

ing the first Brillouin zone as the first Wigner–Seitz cell in the reciprocal space,

we can denote any k′ based on a k in the first Brillouin zone:

k′ = k +G (2.40)

where G is the reciprocal lattice vector. This relation, along with eiG·T = 1 from

the definition of reciprocal lattice, gives us the freedom to approach the electron

structure with the eigenstates in the first Brillouin zone only. Furthermore, with

Eq. (2.37), we can rewrite the Schördinger equation into:

Ĥkuk(r) = ϵkuk(r) (2.41)

by defining the Bloch Hamiltonian Ĥk = 1
2
(k − i∇)2 + v(r). In Eq. (2.41) the

eigenstates are cell periodic in real space, this means we can solve the eigen-

value problem in finite volume (one primitive cell), which inevitably quantized

the eigenspectrum and leads to another quantum number, band index nb. Thus

the eigenstates of this one-particle picture can be uniquely denoted by k and nb,

and the eigenspectrum ϵnb(k) is often referred to as the electronic band structure

or dispersion relation named after its analogue in wave mechanics.

An important property of the band structure is the effective mass which

will be employed in Section 2.3. For a specific band without degeneracy, if we are

only interested in the case when k0 is a extreme of the nth band, we can expand

ϵ(k) as:

ϵ(k) ≈ ϵ(k0) +
1

2

∑
i,j

1

m∗
ij

(ki − ki0)(kj − kj0) (2.42)

where 1
m∗

ij
= ∂2ϵ

∂ki∂kj
is the inverse effective mass tensor and Eq. (2.42) is the effective

mass approximation. If the band has spherical symmetry (thus the k components
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are orthogonal to each other), the tensor can be reduced to a scalar m∗ such that:

ϵ(k) ≈ ϵ(k0) +
3

m∗ (k − k0)
2 (2.43)

2.2 Density Functional Theory

2.2.1 Hohenberg-Kohn Theorem (DFT)

Here we introduce the basic formalism of Kohn-Sham density functional

theory (DFT), which is a powerful method for solving the electronic structure

problem as defined in Eq. (2.6). We assume that the ground state is non-

degenerate and the electrons remain spinless. The electronic Hamiltonian is

Ĥe = T̂e + V̂ne + V̂ee =
N∑
i=1

−∇2
i

2
+

N∑
i=1

V (ri) +
∑
i ̸=j

1

2|xi − xj|
) (2.44)

where we introduce the potential function V to represent a specific set of nuclei

positions, in contrast to Eq. (2.3). We note that the expressions of T̂e and V̂ee are

system-independent.

We start by introducing the density operator as:

n̂(r) =
N∑
i=1

δ(r − ri), (2.45)

and its expectation value

n(r) = ⟨Ψ| n̂ |Ψ⟩ (2.46)

is the electron density, so we have the constraint
∫
n(r)d3r = N . Note Eq. (2.45)

implies all electrons are identical. This allows us to represent V̂ne as:

V̂ne =
N∑
i=1

V (ri) =

∫
V (r)

N∑
i=1

δ(r − ri)d
3r =

∫
V (r)n̂(r)d3r (2.47)
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so the expectation value of V̂ne can be written as:

V̄ne = ⟨Ψ| V̂ |Ψ⟩ =
∫
V (r)n(r)d3r (2.48)

which indicates V (r) and n(r) are conjugate variables. From Eq. (2.44), Eq. (2.46)

and Eq. (2.48) we find the following maps exist

V → Ĥ → Ψ → n (2.49)

and it can be proven that the maps are unique.

Based on Eq. (2.48), for non-degenerate ground states, Hohenberg and

Kohn proved the bijective nature of Eq. (2.50), which allows unique maps:

n→ V → Ĥ → Ψ, (2.50)

which is referred to as Hohenberg-Kohn theorem. A corollary is we can represent

any expectation value as a functional of n:

Ō[n] = ⟨Ψ[n]| Ô |Ψ[n]⟩ . (2.51)

By defining Hohenberg-Kohn functional FHK ≡ ⟨Ψ[n]| T̂+Ŵ |Ψ[n]⟩, we can rewrite

the energy functional as:

E[n] =

∫
V (r)n(r)d3r + FHK[n]. (2.52)

Since FHK is not system-dependent, considering Rayleigh-Ritz principle, the

ground state energy E0 at a specific V (r) can be obtained by minimizing the

energy functional of electron/charge densities:

E0 = inf{FHK[n] +

∫
V (r)n(r)d3r}. (2.53)
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2.2.2 Kohn-Sham Equations

Now the problem is reduced to the minimization of E[n] with constraint∫
n(r)dr = N . The Lagrangian is:

LV,N [n] = E[n]− µ[

∫
n(r)d3r −N ], (2.54)

where µ is the Lagrange multiplier. The basic idea in DFT is to find the n(r) that

zeros the Lagrangian’s derivative with respect to n(r):

δLV,N [n]

δn(r)
=
δFHK[n]

δn(r)
+ V (r)− µ = 0. (2.55)

However, the mathematical form of FHK[n] is still a mystery. To solve this problem,

Kohn and Sham proposed a scheme for a practical form of FHK[n] with only

part of it is approximated by the exchange-correlation functional Exc[n]. From

(functional) Hellmann-Feynman theorem we have:

δE

δv(x)
= ⟨Ψ| δĤe

δV (r)
|Ψ⟩ = n(r), (2.56)

which allow us to define a Legendre transform based on Eq. (2.52)

L[n] = E[V ]−
∫
V (r)n(r)d3r. (2.57)

Due to the uniqueness of the map n → V → L[n] provided by Hohenberg-Kohn

theorem and Eq. (2.52) we conclude that:

L[n] = FHK[n]. (2.58)

Based on Eq. (2.57), the chain rule of functional derivative gives us:

δFHK

δn(r)
= −V (r). (2.59)
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Now consider an auxiliary system that has N non-interacting electrons with a

specific external field Vs(r) and an electron density n(r) identical to the interacting

system that we are interested in. We can obtain its Hohenberg-Kohn functional

Fs[n] with the same procedure based on Eq. (2.57):

Fs[n] = Es[Vs]−
∫
Vs(r)n(r)d

3r. (2.60)

The beauty of Fs[n] is it is merely the kinetic energy of a non-interacting system,

which can be written explicitly as:

Fs[n] = −1

2

N∑
i=1

∫
ϕ∗
i (r)∇2ϕi(r)d

3r (2.61)

where ϕi stands for the element in Slater determinant of the non-interacting ground

state Φs (Kohn-Sham wavefunction). Now we try to approximate FHK with Fs by

defining Exc[n] within:

FHK[n] = Fs[n] + EH [n] + Exc[n] (2.62)

where EH [n] =
1
2

∫ ∫ n(r)n(r′)
|r−r′| d

3rd3r′ is the Hartree energy functional representing

electrostatic energy associated with n[r]. Combining Eq. (2.52) and Eq. (2.62),

we have:

E[n] = Fs[n] + EH [n] + Exc[n] +

∫
V (r)n(r)d3r (2.63)

Combining Eq. (2.59) and Eq. (2.62), the derivative of FHK[n] with respect to n(x)

gives the expression of Vs(r):

δFHK[n]

δn(x)
= −V (r) = −Vs(r) +

δEH [n]

δn(x)
+
δExc[n]

δn(x)
. (2.64)

This gives an alternative expression for the single-particle Schördinger equations

of the non-interacting system, by defining exchange-correlation potential Vxc(r)
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as δExc[n]
δn(x)

:

(−1

2
∇2 + Vs(r))ϕi(r) = (−1

2
∇2 +

δEH [n]

δn(x)
+ Vxc(r))ϕi(r) = ϵiϕi(r) (2.65)

where ϵi stands for the eigenvalue for ϕi (also known as Kohn–Sham orbitals). The

electron density can be calculated from the non-interacting system:

n(r) =
N∑
i=1

ϕ∗
i (r)ϕi(r). (2.66)

Eq. (2.63), Eq. (2.65) and Eq. (2.66) constitute the non-degenerate ground state

Kohn-Sham equations. Once a suitable Exc[n] is defined, we can calculate Vxc(r),

solve Eq. (2.65) and compute any observable via n(r) from Eq. (2.66). Since Kohn-

Sham equations are coupled and highly nonlinear, practically, a self-consistent

iterative scheme is used to solve them numerically.

2.2.3 Exchange-Correlation Functional

While Eq. (2.63) is in principle exact, Exc[n] remains unknown and so

does the exchange-correlation potential Vxc. Various approximations have been

developed to give a closed form of Exc[n]. The “mother” of all approximations is

the local density approximation:

ELDA
xc =

∫
ϵxc-LDA(n(r))n(r)d3r (2.67)

where ϵxc-LDA[n] is the exchange-correlation energy per particle of the homogeneous

electron gas of density n(r). Strictly speaking Eq. (2.67) is only valid for slowly

varying n(r).

An exact form of Exc can be obtained via the gradient expansion:

Exc = ELDA
xc +

∫
g1(n(r))(∇n(r))2d3r +

∫
g2(n(r))(∇2n(r))2d3r + . . . (2.68)
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where gi are expansion coefficients. This gives rise to the generalized gradient

approximation (GGA):

EGGA
xc =

∫
n(r)ϵGGA

xc (n(r),∇n(r))d3r (2.69)

where ϵGGA
xc depends on not only electron density but its gradient. A more ad-

vanced functional type is the meta-GGA functional:

EmGGA
xc =

∫
n(r)ϵmGGA

xc (n(r),∇n(r),∇2n(r), τ(r))d3r (2.70)

where τ =
∑Noccu

i=1
1
2
|∇ϕi(r)|2 is the kinetic energy density. Moreover, EDFT

xc can

be mixed with the exact Hartree-Fork exchange energy calculated from ϕi:

Ehybrid
xc = (1− a)EDFT

xc + aEHF
x (2.71)

where 0 < a < 1 is the mixing coefficient and Ehybrid
xc is the hybrid exchange-

correlation functional. Eq. (2.67), Eq. (2.69), Eq. (2.70) and Eq. (2.71) are the

first four rungs of Jacob’s ladder of the density functional approximation, while

Exc of the fifth rung also includes information of unoccupied ϕi in addition to

Eq. (2.71).

2.2.4 Dispersion Correction

One important caveat of Eq. (2.67), Eq. (2.69), Eq. (2.70) and even

Eq. (2.71) is that only local contributions to the electron correlation are included

in Exc. One direct consequence is long range dispersion is neglected such that the

correct R−6 dependence of the interaction energy on interatomic distance in long

range cannot be produced. To reduce such errors, especially for molecular/inho-

mogeneous systems, currently there are two types of correction methods have been

frequently employed:
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• vdW-DF using a nonlocal term ENL to describe the dispersion interaction:

EvdW−DF
xc = EDFT

xc + ENL. Generally, ENL is calculated by

ENL =

∫ ∫
n(r)χ(r, r′)n(r′)d3rd3r′ (2.72)

where χ is the nonlocal correlation kernel which is flavor-dependent.

• DFT-D is a type of semiclassical corrections that add a correction term

Edisp to the Kohn–Sham energy (Eq. (2.63))

EDFT−D = −
∑
AB

∑
n=6,8,10,...

snC
AB
n

Rn
AB

fdamp(RAB) (2.73)

where AB denotes an atomic pair, R the interatomic distance, sn the global

scaling factor. fdamp is the damping function used to control the range of

dispersion correction and Cn is the averaged nth order dispersion coefficient.

The negative sign comes from the attractive nature of dispersion interactions.

In vdW-DF the dispersion effects are taken into account via Exc which allows

charge density corrections if it is applied self-consistently. However, considering

its high computational complexities, along with few tests for organic molecular

systems, DFT-D scheme is used throughout this study.

2.3 Charge Transport Models

One of the most fundamental processes in an organic semiconductor is the

charge-carrier transport process where (excess) charges percolate from site to site.

This process is particularly interesting in organic materials due to their soft nature,

which leads to potentially large electron-phonon coupling, and the intermediate

couplings between molecules/π-fragments. The latter makes the charge transport

behaves fall between the band model (strong coupling limit) and hopping model

(weak coupling limit). Here we briefly introduce these two limits.
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2.3.1 Band Model

Due to the uncertainty principle, the dynamics of microscopic particles can

no longer be described with point-mass model. While it is meaningless to ask what

the position of an electron is for a specific eigenstate, alternatively, wave packets,

constructed from Bloch states, could be used to describe the particle dynamics.

For the nth band without degeneracy, a wave packet ψk0(r, t) localized around k0

can be constructed as a superposition of Bloch states:

ψk0(r, t) =
∑
k

Ak0(k)uk(r)e
ik·r−iϵ(k)t (2.74)

where Ak0(k) is the amplitude function that strongly peaked at k0, ϵ(k) is the

dispersion relation. Such wave packet has a group velocity v(k0) as:

v(k0) = ∇kϵ(k)|k=k0 . (2.75)

Considering the one-dimensional cases, the physical quantity of interest

here is the mobility µ, which is formally defined as:

µ = ⟨v(k)⟩ /E (2.76)

where ⟨v(k)⟩ is the mean velocity of the Bloch wave packets and E is the applied

constant, uniform electric field which is parallel to v(k). The mean velocity, by

definition, can be calculated by:

⟨v(k)⟩ =
∫

v(k)f(k)dk (2.77)

where f(k) is the distribution function such that f(k)dk is the number of wave

packets in the unit volume around k and the integral runs over the whole reciprocal

space.
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While at thermal equilibrium f(k) is the Fermi-Dirac distribution fF(k),

in general the form of f(k) is unknown. To address this issue, we need to examine

the Boltzmann equation, which has the general form:

∂f

∂t
+ v(k) · ∇rf + k̇ · ∇kf =

∂f

∂t collision
. (2.78)

The right side of the Boltzmann equation is the collision contribution to the time

variation of f , noting now f is defined in the phase space. Assuming the system

is at a stationary state (∂f
∂t

= 0), spatially uniform (∇rf = 0) and weak electric

field, with relaxation time approximation ∂f
∂t collision

= −f−fF
τ(ϵ)

(τ(ϵ) is the relaxation

time), the Boltzmann equation now is:

k̇ · ∇kf(k) = −f(k)− fF(k)

τ(ϵ)
. (2.79)

Within the semiclassical scheme of electron dynamics, for constant, uniform elec-

tric field we have k̇ = −E , and the left side of Eq. (2.79) can be written as:

− ∂fF(ϵ(k))

∂ϵ(k)
∇kϵ(k) · E = −∂fF(ϵ)

∂ϵ
v(k) · E (2.80)

and now Eq. (2.79) is:

f(k) = fF(k) + τ(ϵ)v(k)E ∂fF(ϵ)
∂ϵ

(2.81)

which can be considered as a first order perturbation of f(k) by E .

From now till the end of this section we would abandon atomic units for

a precise description of mobility. Combining Eq. (2.81) and Eq. (2.77), applying

ϵ(k) = 1
2
m∗v2(k) (semiclassical scheme) and ∂fF(ϵ)

∂ϵ
= fF(ϵ)(1−fF(ϵ))

kBT
, we have:

⟨v(k)⟩ = 2e0E
m∗kBT

∫
ϵ(k)τ(k)fF(ϵ(k))(1− fF(ϵ(k)))dk (2.82)

where the term
∫
v(k)fF(k)dk is absent since fF(k) is an even function. When
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fF ≪ 1 (Boltzmann limit), fF(k) reduces to a Maxwellian fF(k) = e
− ϵ−ϵF

kBT and its

derivative now is ∂fF(ϵ)
∂ϵ

= − 1
kBT

e
− ϵ−ϵF

kBT , where ϵF is the Fermi level and kB is the

Boltzmann constant. Thus Eq. (2.82) can be rewritten to:

⟨v(k)⟩ = − 2e0E
m∗k2BT

2

∫
ϵ(k)τ(k)e

− ℏ2k2
2m∗kBT dk (2.83)

where we used the one-dimension effective mass approximation ϵ− ϵF = ℏ2k2
2m∗ .

Now the only variable left is the relaxation time τ(k), which indicates

the mean time needed for the system to return to fF from f . In a scattering

picture, this is equivalent to the mean time between two scattering events. Here

we introduce the one-dimension deformation potential theory to estimate τ(k) as

this approach will be used in the later chapter. For one-dimension system with

elastic electron-phonon scattering, τ(k) is expressed as:

1

τ(k)
=

∑
q

Θ(k, k′)(1− k′

k
) (2.84)

where Θ(k, k′) is the transition probability for the wave packet scattered from k

to k′ = k + q. Fermi’s golden rule enables us to calculate Θ(k, k′) by:

Θ(k, k′) =
2π

ℏ
|M(k, k′)|2δ(ϵ(k)− ϵ(k′)− ℏωq) (2.85)

where M(k, k′) = ⟨ψk|∆V̂ (r) |ψk′⟩ is the electron-phonon coupling element be-

tween state ψk and ψk′=k+q, ∆V̂ (r) is the perturbation potential used to describe

the electron-phonon coupling, q is the phonon momentum and ωq is the phonon

frequency. The deformation potential theory gives an estimation of M(k, k′) by

assuming ∆V̂ (r) = E1∆(r) where ∆(r) is the relative volume change of the unit

cell and constant E1 is the deformation potential constant associated with a band

extreme (intravalley scattering).52 That is, the electron-phonon scattering is sim-

ulated via a perturbation manner induced by the change in unit cell. Assuming
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the phonon band is fully occupied, we have:

|M(k, k′)|2 = kBTE
2
1

2CL
(2.86)

where C is the elastic constant and L is the length of the one-dimension unit cell.

Combining Eq. (2.85), Eq. (2.84) and Eq. (2.86), we have:

1

τ(k)
=
πkBTE

2
1

ℏCL
∑
q

(1− k′

k
)δ(ϵ(k)− ϵ(k′)− ℏωq) (2.87)

which can be rewritten into its integral form for intravalley scattering (ℏωq → 0):

1

τ(k)
=
kBTE

2
1

2ℏC

∫
q

q

k
δ(
ℏ2q2

2m∗ )dq (2.88)

where we used
∑

q q = L
2π

∫
qdq from Born-von Karman boundary condition and

effective mass approximation. Performing the integration in Eq. (2.88) we obtain:

1

τ(k)
=
m∗kBTE

2
1

ℏ3Ck
. (2.89)

Finally, with Eq. (2.76), Eq. (2.89) and Eq. (2.83), we obtain the expression for

mobility in one-dimension deformation potential theory:

µ =
e0ℏ2C

(2πkBT )
1
2m∗ 3

2E2
1

. (2.90)

2.3.2 Hopping Model

In the weak coupling limit the charge becomes localized on a molecular

(fragment) site and the charge transport process becomes temperature-driven.

The rate of such process can be described via the Marcus charge-transfer theory:

k =
2π

ℏ
J2

√
4πλkBT

e
−∆G0λ

4kBT (2.91)
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where J is the electronic coupling, λ the reorganization energy, ∆G0 the free

energy change of charge transport process, kB the Boltzmann constant and T the

temperature. Eq. (2.91) can be extended to a more general form:

k =
2π

ℏ
J2

√
4πλskBT

inf∑
ν=0

e−SS
ν

ν!
e
− (λs+νℏω)2

4λskBT (2.92)

where λs is the reorganization energy from environment (outer sphere) and S

represents the Huang-Rhys factor calculated at an effective mode ω contributing

to molecular (inner sphere) reorganizations. Eq. (2.92) is the Marcus-Levich-

Jortner equation which treats molecular vibrations quantum mechanically, unlike

the pure classical treatment in Eq. (2.91). Thus, whether using Eq. (2.91) or

Eq. (2.92) depends on temperature and the vibrational modes: if ℏω ≫ kBT then

Eq. (2.92) should be used, if ℏω ≪ kBT then Eq. (2.91) may be considered as a

good approximation.

Now we look at mobility calculation. Instead of wave packets we have

charge carriers hopping from a siteS to its neighbors. Assuming Brownian motion

of charge carriers, the diffusion coefficient D can be approximated as:

D =
1

2

∑
i

a2i kiPi (2.93)

where ai, ki, Pi =
ki∑
i ki

are the distance, rate and probability of hopping to the

ith neighbor of S, respectively. Eq. (2.93) is used in the Einstein–Smoluchowshi

equation:

µ =
q

kBT
D (2.94)

to give mobility, where q is the charge of charge carriers.
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CHAPTER 3

FUSING ACENES TO PYRENE: A LONGER ACENE?

3.1 Introduction

It is remarkable how the simple structures built from laterally fusing ben-

zene rings known as acenes have attracted considerable attention from different

scientific communities since the term was coined in 1930s by Clar and colleagues.53

While applications in electronic devices, especially in field-effect transistors,54–56

contributed enormously to the field of organic electronics, theoreticians are fasci-

nated by phenomena the stem from its unique optoelectronic properties (e.g. sin-

glet fission).57–59 On the other hand, from the perspectives of organic chemistry,

long acenes present a synthetic challenge due to their notorious air and light insta-

bilities, which pose strict requirements on reaction environment .60 As the quest

of making longer acenes has led to the successful synthesis of undecacene,61,62 an

interesting byproduct is the development of various chemical modifications used

to increase the stability of acene backbone, including attaching functional groups

(e.g. 6,13-bis(triisopropylsilylethynyl)pentacene),63 heteroatom substitution (e.g.

azaacene64) and polycyclic aromatic hydrocarbon (PAH) insertion.65 While the

last approach, corroborated by Clar’s sextet rule, has been quite successful in

stabilizing the molecular system such that molecules with 15 rings in a row can

exist as single crystals at room temperature,66 it is questionable that the resultant

can be considered as an acene since the molecular backbone has been significantly

altered.67
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Figure 3.1: Prene-azaacene systems in previous studies with absorption
spectra onset of the first peak.66,68,69

Among various PAH-inserted acenes and azaacenes,66,68,70,71 we are in-

trigued by the pyrene-inserted molecules. Such systems can be extended to al-

most macromolecule size without suffering from significant temperature/air insta-

bility.68,71,72 Unlike acenes, they are also able to support a stable dianion, whose

ground state is believed to be an open-shell singlet.73 Aromaticity of their molec-

ular backbone is said to be “broken” at the pyrene units where weak magnetic

shielding is identified.66 Anomalies are also present in their UV-vis absorption

spectra. Let nxrings be the number of fused benzene rings in an acene or a pyrene-

(aza)acene molecule along the long axis, and ϵS1
acene, ϵS1

PA be the excitation energy

of the first singlet excited state S1 for acene and pyrene-(aza) acene, respectively:

ϵS1
PA is always much higher than ϵS1

acene with the same nxrings, and ϵS1
PA barely decrease

within a homologous series, as shown in Fig. 3.1.

In this chapter, we present a systematic computational analysis of coupled
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Figure 3.2: Molecular structures and their abbreviations of pyrene-acene
systems.

pyrene-acene systems (Fig. 3.2, where m and n denote the lengths of acene seg-

ments). We relate this property to local structural relaxations, which in turn leads

to anomalous optical responses and triplet localization. Finally, the implication

of pyrene insertion in polymer is discussed and another PAH is identified to be

able to interrupt the large acene system in a manner similar to pyrene. An ear-

lier version of some parts of this chapter was published in Chemistry of Materials

2018 30(3), 947-957.

3.2 Methods
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#  f ring#

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

GS
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experiment
tuned LC-ωHPBE

Figure 3.3: Vertical excitation energies of the first bright excited state
(1B2u) in acenes.
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Unrestricted Kohn-Sham density functional theory (DFT) calculations

were performed to investigate the electronic states involved in this study. For

molecular systems, the long-range corrected functional LC-ωHPBE was used along

with def2tzvp basis set as implemented in Gaussian 16.74–77 Molecular excited

states were studied via linear response time-dependent density functional theory

(TDDFT). To accurately estimate the excitation energies for conjugated systems

with various sizes, the range-separation parameter ω was tuned via minimizing the

sum of the ionization energy and the highest occupied molecular orbital (HOMO)

energy.78,79 Such tuning process, combined with geometric optimization, was per-

formed iteratively such that ∆ω < 0.005 Bohr−1. As a benchmark for this method,

the lowest bright state of acene, from naphthalene to nonacene, is calculated and

compared with experimental results, as shown in Fig. 3.3. While reasonably good

agreement was obtained for acenes up to hexacene, starting from heptacene, the

difference between calculated and experimental excitation energy increases with

increasing system size, reaching ∼360 meV at nonacene. Such difference may come

from the strong static correlations in higher acenes that cannot be accurately de-

scribed by single-determinant methods. To minimize inconsistency, all molecular

calculations are performed at the optimally tuned LC-ωHPBE/def2tzvp level of

theory, and spin contamination, if any, is negligible (< S2 > −s(s+ 1) < 0.02,

where < S2 > is the total spin and s equals 0.5 times the number of unpaired

electrons) in all cases.

Nuclear magnetic shielding tensors were calculated with the gauge-

including atomic orbital (GIAO) method,80 and the magnetic shielding tensors

were calculated for a scan path 1.7 Å above the molecular plane.81 For all

molecules, the scan path was defined along the long axis of the molecular backbone

with a step size of 0.4 Å.

For polymer systems, the Perdew, Burke, and Ernzerhof (PBE) exchange-

correlation functional82 with electron-ion interactions described by the projector
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augmented-wave method83 and full periodic boundary conditions using the Vi-

enna Ab-initio Simulation Package.84 In order to obtain accurate energy-volume

relations, the fast Fourier transformation mesh was manually set to 150×150×150

for all unit cells. The kinetic energy cutoff for the plane-wave basis set was 520 eV,

and Gaussian smearing with a width of 0.05 eV was employed. The total energy

convergence criterion was set to 0.01 meV in all self-consistent field iterations, and

the maximum force allowed on each atom was 0.01 eV/Å. The Brillouin zone, un-

less specified otherwise, was sampled with a (300/a)×1×1 Γ-centered grid, where

a is the lattice constant of the polymer in Å. Note that vacuum is inserted into

the respective unit cells in order to treat each structure as a non-interacting, one-

dimensional polymer; enough vacuum is inserted such that the shortest distance

between two 1D polymers is larger than 10 Å.

3.3 Results and Discussion

Molecular structures of pyrene-acene systems and their abbreviations are

shown in Fig. 3.2. These structures are classified as acenes, pyrene-acenes (P-A),

and acene-pyrene-acenes (A-P-A), where A stands for 1∼5 linearly fused rings

(from benzene to pentacene). A specific molecule is denoted based on the number

of rings in its acene segments, e.g. P-A3 represents a pyrene-anthracene molecule,

and A2-P-A3 a naphthalene-pyrene-anthracene molecule.

3.3.1 Ground State

DFT calculations were performed to obtain the ground-state structures of

molecules in Fig. 3.2 (see Section 3.2 for details). Bond length alternation (BLA)

patterns in the π-conjugated backbones are shown in Fig. 3.4, where C-C bonds are

colored such that the color linearly changes from blue (long, 1.46 Å) to red (short,

1.35 Å). For the trans-polyacetylene-like edges of acene molecules, the C-C bond

length oscillates around the commonly seen aromatic C-C bond length (1.40 Å)
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Figure 3.4: Bond length alternation patterns of (left) from top to bot-
tom: anthracene, tetracene, pentacene, hexacene, pyrene, and (right) P-
A3, P-A4, A3-P-A3, A3-P-A4, A4-P-A5. Only C-C bonds in molecular
backbones are shown.

from the ends to the middles of molecules with decreased amplitude. Interestingly,

for both P-A and A-P-A, their BLA patterns can be roughly considered as a direct

concatenation of those of pyrene and the corresponding acenes, with the exception

of the C-C bond that directly connects these two fragments. In fact, some of the

bonds in the pyrene units are so long (1.47∼1.48 Å) that a P-A (A-P-A) molecule

can almost be regarded as a combination of biphenyl unit and acene unit(s) by σ

bonds. We note that in the A-P-A case such statement remains valid even two

acenes with different length were added, e.g. A3-P-A4.

A chemically intuitive approach to understand such BLA patterns is the

Clar formulae, originated from the Clar sextet rule, where it is proposed that the

chemical structure with a maximum number of sextets best represents the (local-

ization) behavior of π electrons.53 Within this framework, as shown in Fig. 3.5,

for acenes of arbitrary length, while degenerate Clar formulae can be drawn based
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Figure 3.5: Clar formulae of, from top to bottom, anthracene, pentacene,
P-A3, A3-P-A3.

on the number of fused rings, only one sextet (i.e. the migrating sextet85,86) from

their Kekulé formula is allowed without bond breaking (e.g. forming radicals). In

passing we note that while the instability of long acenes can be related to the

lack of sextets in their Clar formulae, the migrating sextet cannot accurately rep-

resent the nature of long acenes where the central ring exhibit higher reactivity

and, based on several local aromaticity descriptors, higher aromaticity, than the

terminal rings. For P-A (A-P-A) molecules, just as their BLA patterns, their Clar

formulae resulted from merging Clar formulae of pyrene and acenes, leading to

three (four) isolated sextet. This is also in agreement with the stability of large

pyrene-acene systems, e.g. the stability of A3-P-A3 should be comparable to that

of anthracene, not that of octacene.

Nucleus-independent chemical shift (NICS) based methods, where the neg-

ative of the absolute magnetic shielding tensor (NICSαβ, where α, β stand for

the indices of components for eternal magnetic field and magnetic moment, re-

spectively) are calculated under an external magnetic field, are important com-

putational tools to investigate aromaticity in PAHs. Here, the NICS scan was

used as an approach to assess the aromatic characteristics of P-A, A-P-A systems
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Figure 3.6: NICS-xy scan of pentacene, P-A5, and A5-P-A5. NICSzz, its
π and σ components are colored black, blue and red, respectively. For each
molecule, the scan path consists of points on a straight line, separated by
0.4 Å, running from the left end to the right end.

and acenes.81 In particular, the NICSzz component (z represents the normal di-

rection of molecular plane) is further decomposed into the contributions from π

orbitals and σ orbitals by calculating NICSzz for an artificial conformation where

aromatic carbons are terminated by hydrogen atoms. As shown in Fig. 3.6, us-

ing pentacene, P-A5 and A5-P-A5 as examples, we observe a clear resemblance

between their pentacene segments in terms of their NICS-xy profiles. For A5-

P-A5, the NICSπzz profiles are quite similar (< 5 ppm at ring centers) to the

NICSσzz profile at their pyrene segments, indicating weakly induced ring currents,

thus more localized π electrons in these regions. Interestingly, in P-A5, while the

small differences between NICSπzz and NICSσzz present in the pyrene ring which

shares an edge with the acene segment (green ring in Fig. 3.6, the second ring
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along the scan path), for the other pyrene ring in scan path (magenta ring), val-

ues of NICSπzz are much lower than NICSσzz. This observation, along with the

BLA patterns and Clar formulae of P-A and A-P-A, suggest that fusing acene to

pyrene induces local structural relaxations at the junction, and concurrent limited

electronic communication among pyrene and acene segments.

HOMO

LUMO

HOMO HOMO-1

LUMO LUMO+1

Figure 3.7: Frontier molecular orbitals (isovalue of 0.03 e/Å3) of an-
thracene, tetracene, P-A3 and A3-P-A3.

This argument is further confirmed by inspecting the frontier molecular

orbitals (FMOs) of, without loss of generality, P-A3 and A3-P-A3. As shown

in Fig. 3.7, both the highest occupied molecular orbital (HOMO) and the low-

est unoccupied molecular orbital (LUMO) of P-A3 localize heavily at the acene

segment and the “junction” ring of pyrene. This, along with the resemblance be-

tween HOMO/LUMO of P-A3 and that of tetracene, even that of anthracene to

a lesser degree, suggests that the fused pyrene segment, instead of extending the

π-conjugation to “five rings in a row”, only contributes approximately one addi-

tional ring to the anthracene segment. In the case of A3-P-A3, while the HOMO
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seems delocalized along the entire molecular backbone, it can also be described as

two tail-to-tail tetracene HOMOs, just as the LUMO of A3-P-A3 is similar to two

isolated tetracene LUMOs. Considering that the HOMO-1 of A3-P-A3 consists of

two isolated anthracene HOMOs, the small energy splitting (35 meV) between the

HOMO and HOMO-1 implies limited electronic coupling among the π orbitals of

pyrene and acene segments. This scenario is synonymous with a Class II mixed-

valence system, as named by Robin and Day,87,88 where the pyrene acts as a very

weak electronic bridge between the two acene (redox center) units. Indeed, such

almost degenerate HOMOs also appear in pyrene-azaacene systems, implying the

universality of the disruptive impact from pyrene insertion.68

3.3.2 Excited States
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P-A
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Figure 3.8: ϵS1 as a function of nxrings for acenes, P-A and A-P-A.

We now turn to the vertical electronic excitations in P-A and A-P-A, which

led to our initial suspicions about being a large degree of π-conjugation in these

systems. Excitation energies for low-lying singlet states were calculated via linear
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response TDDFT, as detailed in the Section 3.2. Fig. 3.8 shows ϵS1 (excitation

energy of the first singlet excited state) plotted against nxrings (the number of rings

along the long axis). For acenes longer than naphthalene, the first bright excited

state (1B2u) is a singlet with dominant HOMO→LUMO transition, whose exci-

tation energy decreases with increasing number of fused rings, in accord with pre-

vious studies.89,90 Approximately, ϵS1
PA(nxrings) can be considered as ϵS1

acene(nxrings)

shifted by one along the x-axis, e.g. ϵS1
P-A3 is close to ϵS1

tetracene. This can be under-

stood by previous MO analyses, as the first excited state of P-A is also dominated

by HOMO→LUMO transition.

Figure 3.9: The pair of natural transition orbitals (isovalue of 0.03 e/Å3)
for the first singlet excitation in A2-P-A3.

ϵS1
A-P-A(nxrings) is further shifted along the x-axis comparing with ϵS1

P-A(nxrings)

as pyrene insertion breaks the molecular backbone into two shorter acene seg-

ments. An odd-even oscillation appears in ϵS1
A-P-A(nxrings), as ϵS1

An-P-An is close to or

sometimes even slightly larger than ϵS1

A(n−1)-P-An. Such oscillation can be explained

using A2-P-A3 and A3-P-A3 as examples. For A2-P-A3, the first bright excita-

tion can still be described as a HOMO→LUMO transition, with corresponding

natural transition orbitals (NTOs) shown in Fig. 3.9 where the electron-hole pair

is localized at the side of anthracene segment due to the lower molecular symme-

try (C2v). For A3-P-A3 (D2h), there are two dominant excitation configurations

of the first excitation, HOMO(g)→LUMO+1(u) and HOMO−1(u)→LUMO(g)

with similar coefficients (0.48 and 0.50, see Fig. 3.7 for the MOs), and both of

them resemble the HOMO→LUMO excitation of anthracene. Thus, the excited

state of both A2-P-A3 and A3-P-A3 come from anthracene-like excitations, lead-

ing to similar ϵS1 values. In passing, we note this excitation in An-P-An is always
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accompanied by an almost degenerate excitation with equally-weighted configu-

rations HOMO(g)→LUMO(g) and HOMO−1(u)→LUMO+1(u), which is dark

due to one-photon absorption selection rules (g→ u or u→ g).

Figure 3.10: Total spin density (isovalue of 0.002 e/Å3) of A3-P-A3 at the
lowest triplet state.

In contrast to a delocalized singlet state, the exciton of An-P-An in its

first triplet state is localized at one of the acene segments. Using A3-P-A3 as

an example, from BLA patterns and total spin density (Fig. 3.10), the unpaired

electrons are localized at the edges of one anthracene segment, while the other

anthracene segment remains as in the ground state. The molecular symmetry is

further lowered to Cs as two acene segments deviate from the pyrene plane to form

a bent butterfly shape. The adiabatic and vertical triplet energies are estimated to

be 1.49 eV and 1.51 eV, respectively. Such triplet exciton localization in A3-P-A3

is very similar to the case in platinum-acetylide oligomer,91,92, where optimized

triplet structure features a distortion around platinum that lowered the ground

state symmetry.

Spin density localization also applies to the monocation state of A3-P-A3,

where structural relaxations and charge are localized at one of the anthracene

segments, giving a lower molecular symmetry (Cs). Such localization behaviors

may be related to the unusual stability of fused pyrene-azaacene dianions.73 The

electronic ground state of a metastable monocation structure with D2h symmetry

(with delocalized spin density) is estimated to be 90 meV higher than that of Cs
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symmetry, which can be regarded as the lower bound of charge transfer barrier

(from one acene segment to the other). It is thus informative to reconsider the idea

of using A-P-A molecular crystals with brickwork packing structure in transistor

applications:93 If the charge tends to localize on the one end of a “brick”, the

percolation pathways of charge would still be one-dimensional even with brickwork

packing.

3.3.3 The Blocker Effect: Origin and Its Implications in Polymers
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Figure 3.11: (Top) LUMO and (bottom) HOMO of pyrene, 1,2-
benzodiene, and P-A2, isovalue was set to 0.03 e/Å3.

We note pyrene may not be the only PAH that could act as an electronic

“blocker” between acenes. In fact, the origin of such blocking effect can be un-

derstood by inspecting the molecular orbital (MO) symmetries of each fragment.

Fig. 3.11 shows that the FMOs of pyrene and 1,2-benzodiene moieties possess

mismatched symmetries, which forbids effective overlap of MOs when they are

combined to form P-A2. Thus, fusing a second 1,2-benzodiene to the other side

of the pyrene would lead to limited orbital overlap between the naphthalene seg-

ments.
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Figure 3.12: Structure of poly-P-Ax (x=5), bond length alternation pat-
tern (purple rectangle represents the repeating unit, while the black box
incorporates the pentacene segment), and electronic band structure, where
the valence and conduction bands are colored red.

Knowing the nature of pyrene insertion, it is informative to look at the

polymer version of pyrene-acene system (poly-P-Ax, e.g. poly-P-A5 in Fig. 3.12),

which is a subset of delimited polyacenes.94 While polyacene can be free of Peierls

instabilities,95 thus free of BLA at its edges, BLA pattern of, for example, poly-

P-A5 is almost identical to that of P-A5, with conspicuous acene characteristics.

The electronic band structure of poly-P-Ax features a flat valence band, of which

the charge density localized at the acene segments. Thus, while poly-P-Ax can

be a chemically realizable target (stability brought by three Clar sextets per re-

peating unit) for synthetic chemist, its electronic structure would be similar to a

set of oligoacenes, rather than polyacene, thus not suitable for reaching high hole

mobility. Interestingly, while the hold mobility of poly-P-Ax vanishes due to in-

finitely heavy hole, based on the one-dimension deformation potential theory (Sec-

tion 2.3.1), electron mobility of poly-P-Ax is estimated to be 5 ∼ 31 cm2/(V · s)for

x = 2 ∼ 5 which is much lower than that of other graphene nanoribbons, but higher

than most of molecule-based devices . Following the MO symmetry argument, we

found another PAH, dibenzo(bc,kl)coronene (DBC), with whom pyrene shares the
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same FMO symmetry. Delimited polyacene formed by DBC insertion indeed pro-

vides electronic structure and BLA similar to that of poly-P-Ax, as illustrated in

Fig. 3.13.

A
u

B
1g

Figure 3.13: Left: HOMO and LUMO (from top to bottom, isovalue
of 0.03 e/Å3) of dibenzo(bc,kl)coronene (DBC). Right: Electronic band
structure and BLA pattern of DBC delimited polyacene.

3.4 Conclusion

In this chapter, electronic structures of pyrene-acene systems are inves-

tigated with detailed analyses on their structural relaxation, aromaticity, and

excited states. It has been shown that the presence of pyrene, as indicated by the

local structural relaxations, effectively blocks the electronic communications be-

tween acene segments. The implications of this effect for polymers are discussed,

and the origin of such effect can be traced back to molecular orbital symmetry
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of pyrene FMOs, which is evidenced by DBC delimited polyacene system. These

results provide insights on large acene-based conjugated systems, as well as narrow

graphene nanoribbons from bottom-up synthesis.
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CHAPTER 4

INTRAMOLECULAR S…F INTERACTIONS: THE IMPACT ON

MOLECULAR CONFORMATION

4.1 Introduction

Fluorine substitution has emerged as a popular method to alter molecular

and electronic structures and the resulting solid-state molecular packings of or-

ganic semiconductors.96,97 The rationale reported from previous studies rely on,

besides fluorine being a strong electron-withdrawing agent, the existence of weak

but persistent, stabilizing interactions involving fluorine.98,99 Such noncovalent

interactions, usually hydrogen bonding or halogen bonding,100,101 are able to sup-

port a rigid conjugated backbone, which in turn can facilitate consistent, ordered

solid-state molecular packings and impact charge-transport process. To explore

the chemical space for high-performance organic semiconductors, it is thus neces-

sary to understand the nature and strengths of fluorine-related interactions that

are important or, in some cases, determinant of molecular conformation.102

Despite the variety of fluorine-related noncovalent interactions in organic

molecules and crystals, introducing intramolecular sulfur…fluorine (S…F) inter-

actions has been frequently adopted in designing semiconducting polymers,43,44

where such interactions are believed to reduce rotational disorder along polymer

chain. The success of this strategy, however, is not transparent as the stabiliz-

ing nature of S…F interaction remains unclear.103 The S…F pair consists of two

electronegative atoms, where, from an electrostatic perspective, attractive interac-

tions are unlikely to exist. On the other hand, the two atoms are often introduced

as substituents on π-conjugated units, thus the stabilizing effect is also subject to

the nature of these conjugation systems.
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In this chapter, intramolecular S…F interactions in two fluorinated chro-

mophores, namely benzodithiophene (BDT) trimers104 and EDOT-ph-EDOT105

(EDOT = 3,4-ethylenedioxythiophene, ph = phenylene), are studied based on

computational results. It is revealed that while in BDT systems the S…F in-

teraction features a stabilizing effect to promote a more rigid, planar conjugate

backbone, in the case of EDOT-ph-EDOT, in addition to S…F interaction, fluo-

rination on the phenylene unit can also significantly alter the strength of nearby

intramolecular O…H interaction (hydrogen bond), which has a greater impact on

altering the molecular geometries and packing structures. These cases demon-

strate two distinct mechanisms through which conformation is influenced by S…F

interactions, thus providing insight as to how to make use of these noncovalent

interactions to design organic semiconductors. An earlier version of some parts of

this chapter was published in Chemistry of Materials 2019 31(17), 7070-7079, in

collaboration with Dr. Peter Skabara’s group at University of Glasgow.

4.2 Methods

Density functional theory (DFT) calculations were carried out on isolated

molecules and bulk crystal structures. For the isolated molecules, structures were

computed at the ωb97xd/jun-cc-pvdz level of theory as implemented in Gaussian

16.74,106,107 All optimized, unconstrained geometries were confirmed as minima

on the potential energy surface through normal mode analyses. Potential energy

surface (PES) scans, where the interunit dihedral angles were held constant and

the remainder of the molecules allowed to relax, were also performed. Atoms-in-

molecules (AIM) analyses were carried out with topological analysis module in

Multiwfn package.108,109
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4.3 Results and Discussion

4.3.1 The case of BDT trimer: Stabilizing S…F interactions
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Figure 4.1: Chemical structures of BDT-3 and F-BDT-3.
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Figure 4.2: Multiple stable conformations of BDT trimer, X=H, F.

The benzodithiophene (BDT) trimer (BDT-3, Fig. 4.1a) has been proposed

as a “universal crystal engineering core” due to its simple and scalable prepara-

tion method and amenability to addition of functionalized alkynes.104 While the

hole mobility of BDT-3 based field-effect transistors (FETs) can reach as high as

1.6 cm2/(V · s), the presence of a large amount of (static) conformational disorder

(the syn/anti disorder from the rotation between BDT units, as shown in Fig. 4.2)

in the crystal structures can be a challenge for FET applications as such disorder

may lead to an increase in charge trapping, therefore lower device performance.110

In an attempt to mitigate the disorder in BDT-3 and further improve material

performance, fluorine substitutions were introduced in the central BDT unit (F-

BDT-3, Fig. 4.1b). Interestingly, while the device performance of fluorinated ma-

terials tends to be better than nonfluorinated ones (if preferred molecular packing

preserves), the S…F interaction does not always promote a specific backbone con-

formation, e.g. both syn-syn and anti-anti conformations can both be found in

the major configuration of solid-state F-BDT-3. In this section, we present the
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computational analyses regarding S…F intramolecular interaction in F-BDT-3 and

the implications of fluorination was discussed.
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Figure 4.3: PES of (F-)BDT-3 (R=H) defined by dihedral scan. The
relative occupation is computed by assuming room temperature (298.15
K) assuming Boltzmann distribution of the conformations. The rotation
was carried out as shown in Fig. 4.2: The first data point, the vertical
dashed line and the last data point represent perfectly planar anti-anti,
syn-anti, syn-syn conformations, respectively.

Figure 4.4: Critical point analysis for (top) syn-anti conformation and
(bottom) syn-syn conformation. The NCPs, RCPs and BCPs are colored
black, red and blue, respectively. Note BCPs and RCPs between F and H
in both conformations.

PES line scans for BDT-3 and F-BDT-3, defined by the dihedral rotation of

the C-C bonds connecting BDT units, were performed along the transformation in

Fig. 4.2, and the results are shown in Fig. 4.3. For each scan profile, three obvious

local minima, corresponding to three quasi-planar conformations, are separated by

energies comparable to kBT at room temperature (kB is the Boltzmann constant,

T the temperature). Such small differences between (meta)stable conformations
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are related to potential static disorder in solid-state, as observed in the crystal

structures of several BDT-3.104 Notably, syn-anti and syn-syn conformations are

stabilized (using the planar anti-anti conformation as the reference), and become

more planar after fluorine substitution at the central BDT unit. This can be

understood by the formation of F…H hydrogen bond(s) in syn-anti and syn-syn

conformations. Fig. 4.4 shows the electron density critical points (EDCPs) in

syn-anti and syn-syn conformations of F-BDT-3 based on DFT results. EDCPs

are points in three-dimensional space where the gradient norm of electron density

vanishes. They can be classified, by the Hessian matrix of electron density, into

four categories, among which (3,−3) (nuclear critical point, NCP), (3,−1) (bond

critical point, BCP) and (3,+1) (ring critical point, RCP) EDCPs are present in

Fig. 4.4. In syn-anti conformation, two pairs of BCP-RCP appear between BDT

units, indicating F…S interaction and F…H hydrogen bond, respectively, while in

syn-syn conformation such BCP-RCP pairs represent two F…H hydrogen bonds.
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Figure 4.5: PES of (F-)BDT-2, which are 2-unit systems derived from
BDT-3, defined by dihedral scan from perfectly planar anti to perfectly
planar syn conformation. See the caption of Fig. 4.3 for instructions.

We now turn to the rigidity of BDT-3 backbone, that is, the stability of PES

local minima against dihedral rotation of bonds connecting BDT units, which is

related to dynamic disorder in crystals. While the transition barrier between local

minima decreases slightly (< 25 meV) after fluorination, we note that the rigidity

should be measured by the curvature at PES local minima. In order to estimate

the impact of S…F interaction on backbone rigidity, a dihedral scan similar to
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Table 4.1: Curvature (10−5 eV/degree2), relative energy (meV), short con-
tact between BDT units, and dihedral angle (in degrees) between BDT
units for all conformations (local minima in Fig. 4.5) of BDT-2 and F-
BDT-2. The relative energy of a conformation was calculated against the
energy of anti conformation

Molecule Conformation Curvature Energy Contact Dihedral
BDT-2 anti 1.09 0 None 0.07
F-BDT-2 anti 4.08 0 S…F 0.02
BDT-2 syn 10.06 35 None 38.51
F-BDT-2 syn 2.99 6 H…F 19.32

that shown in Fig. 4.3 is performed for BDT dimer (BDT-2) and fluorinated

BDT dimer (F-BDT-2) such that the interference from the other dihedral can

be disregarded. The results of the dimer dihedral scans (Fig. 4.5), where the

dihedral angle between BDT units was changed from 0°(perfectly planar anti) to

180°(perfectly planar syn), are summarized in Table 4.1. The order of curvature

(rigidity) at local minima follows BDT-2 syn > F-BDT-2 anti > F-BDT-2 syn

> BDT-2 syn, which suggests (1) comparing with BDT-2, the S…F interaction is

able to lock the dihedral between BDT units in the anti conformation, and so is

H…F hydrogen bond for syn conformation, to a less degree, (2) H…F hydrogen

bond is able to, to some extent, planarize two BDT units. While BDT-2 syn

may be less sensitive to rotational disorder, it should be noted that the relative

energy is approximately 1.4kBT and the dihedral angle at equilibrium is rather

large (38.51°), which is not desired for most semiconducting applications.

In summary, computational results from PES scans and AIM analyses re-

vealed that noncovalent F…S interactions were introduced in fluorinated BDT

oligomers (with syn conformation for dimer, and syn-syn or syn-anti for trimer),

which leads to more planar, rigid molecular conformations at PES wells. On

the other hand, for BDT-3, syn-anti and syn-syn conformations are stabilized

(with respect to anti-anti conformation) after fluorination through the formation

of F…H bonds, which could promote static disorder in solid-state. We stress that

such results should not be directly translated to solid-state where intermolecular
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interactions could also affect molecular conformations.

4.3.2 The case of EDOT-ph-EDOT: The illusion of stabilizing S…F

interaction

3, 4-ethylenedioxythiophene (EDOT) is a popular moiety for high-

performance functional polymers and a frequent subject for research on nonco-

valent chalcogen-chalcogen interactions.98,111 For example, in the polymeric form

of EDOT, PEDOT features a highly planar structure originates from intramolec-

ular S…O interactions,99 leading to low optical gap (1.63 eV) and excellent charge

transport performance. In this section, we focus on a series of fluorinated EDOT-

ph-EDOT and ph-EDOT (ph = phenylene),105 as shown in Fig. 4.6, with inten-

tion to probe stabilizing S…F intramolecular interactions, which could be used as

a design strategy in developing functional organic/polymer materials containing

EDOT. To our surprise, instead of forming strong, stabilizing F…S interaction,

fluorine substitutions impact the molecular conformation via strengthening the

dominating O…H hydrogen bond. This case study highlighted the potential unex-

pected consequences of introducing F…S interactions and emphasized the impor-

tance of a holistic view in molecular design.
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Figure 4.6: Chemical structures of (fluorinated) EDOT-ph-EDOT
molecules studied in this section. Five two-unit molecules and five three-
unit molecules are shown in top and bottom panel, respectively. The bond
related to PES scans (Fig. 4.7 and Fig. 4.8) is denoted by blue color. The
sites on phenyl ring are labeled with Arabic numbers for discussion.

53



To evaluate the impact of fluorine substitution on the molecular confor-

mation, it is illustrative to examine the PES as a function of the dihedral angles

among the aromatic units; here, the PES scans were performed by twisting EDOT

around the bond between EDOT and the phenyl ring (the blue bonds in Fig. 4.6).

The results are shown in Fig. 4.7 and Fig. 4.8 for two-unit and three-unit sys-

tems, respectively. Comparing two sets of scan profiles, we noticed that adding

an additional EDOT unit only introduce trivial changes. Thus we will focus on the

two-moiety structures with their PES scans shown in Fig. 4.7, where two half-scans

are performed for each structure based on twisting direction; the yellow dots in

the figure represent the minimum position for each half-PES scan. Notably, there

is a rapid rise in the PES for 1F-E, 2F-E in the second half-scan, and 4F-E in

both half-scans that can be directly attributed to repulsive O…F interactions. In

general, fluorine substitution at positions labeled 4 or 6 on the phenyl ring reduces

the rigidity of the dihedral torsion. Interestingly, the local minimum in the first

half-scan of 1F-E is less stable than that in the second half-scan, where no direct

S…F interaction can be established. Hence, instead of acting as an agent to “lock”

the structure into a quasi-planar configuration, such substitution tends to reduce

the transition barrier among the local minima, as well as the curvature at the local

minima on the PES. The only exception is 1F′-E, where fluorination, without es-

tablishing S…F interaction, indeed stabilized the local minima with conformations

more planar than that of 0F-E. This, as will be shown later, is primarily due to

strengthened O…H bond between EDOT and the phenyl ring.

AIM analyses of the noncovalent interactions confirms the existence of S…F

BCP at the scan local minima of 1F-E and 2F-E (selected parameters of local

minima are presented in Table 4.2, no such BCP is found for 1F-E and 4F-E due

to large S…F distance). The S…F distances in these situations are smaller than

the sum of their van der Waals radii (3.27 Å). The nature of these interactions is

revealed by reduced density gradient (RDG) analyses (Fig. 4.9), where both weak

attractive and repulsive interactions are identified by the sign of λ2, the second
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Figure 4.7: PES scans of five two-unit structures where the dihedral angle
between EDOT and phenyl ring is being twisted from −90°to 0°. Two
subplots represent two different twisting directions as shown in the inset
schemes where F represents the fluorine (if any) which is the closest to
EDOT unit. Local minima are denoted by yellow dots.

largest eigenvalue of electron density Hessian matrix.112 The existence of such

repulsive interactions, indicative of often-referred steric effects, is in agreement

with the RCP found at the center of C-C-C-F…S ring. While previous studies

have discovered S…F interactions as halogen-type bonds,113–115 we note that in

these EDOT-ph structures the S…F interaction is limited and the charge depleted

region around sulfur does not point towards fluorine, as illustrated by the electron

density Laplacian (Fig. 4.10).

On the other hand, fluorine atoms substituted at positions labeled 1 or 3

on the phenyl ring result in more rigid structures. Here, it is apparent, however,

that the O…H interaction gains prevalence. The strength of this interaction is

significantly affected by the bond acidity of the C-H bond, as the electronic density

at the BCP increases significantly after fluorine atoms are introduced onto the

phenyl ring. By defining |VH| as the electrostatic potential at H without the
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Figure 4.8: PES scans of five three-unit structures where the dihedral
angle between EDOT and phenyl ring is being twisted from -90°to 0°.
Two subplots represent two different twisting directions as shown in the
inset schemes where F represents the fluorine (if any) which is the closest
to EDOT unit. Local minima are denoted by yellow dots.

Table 4.2: Parameters of the minimum configuration for two-unit struc-
tures, including D (the dihedral angle between two aromatic units in de-
grees), ρ (the electron density at BCP in 10−2 e/Bohr3), d (the distance
between a pair of atoms in Å), ∆E (the energetic difference between this
configuration and scan origin in meV) and |VH| (the electrostatic poten-
tial (in Ha/e) at H without the contribution from the H nucleus of the
hydrogen atom involved in the O…H interaction).

Label Half-scan D ρ(O…H) d(O…H) |VH| ρ(F…S) d(F…S) ∆E

0F-E 1st -27.3 1.15 2.40 1.0988 - - 92
1F-E 1st -28.5 1.34 2.32 1.0910 1.32 2.87 40
1F′-E 1st -25.6 1.21 2.37 1.0924 - - 99
1F′-E 2nd -23.1 1.29 2.34 1.0815 - - 110
2F-E 1st -21.9 1.56 2.24 1.0743 1.44 2.81 60
4F-E 1st -58.9 - - - - - 14

contribution from the H nucleus itself, we can evaluate the pKa of C-H bond, which

is inversely correlated with |VH|.116 Interestingly, while generally a larger C-H bond

acidity yields a stronger O…H interaction (reflected by ρ(O…H), charge density at

BCP), E-1F seems to be an outlier with a larger |VH| but also a larger ρ(O…H)

comparing to E-1F′ (in the second half-scan). This could be addressed by steric
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Figure 4.9: Left: RDG isosurface with RDG=0.5 that is colored based
on the sign of λ2 as shown in the scatter plot. Right: Scatter plot of
the RDG values for the S…F interaction versus sign(λ2)ρ, where λ2 is the
second largest eigenvalue of electron density (ρ) Hessian matrix. The data
is collected in a 3 Bohr × 3 Bohr × 3 Bohr box centered at the midpoint
between F and S, evenly sampled with 216000 grid points. The horizontal
line represents the isovalue that is shown in the RDG isosurface.

Figure 4.10: Contour map of electron density Laplacian in the S…F region.
Contour lines are colored red/blue for negative/positive values. The charge
depletion region on sulfur is labeled (valence shell of charge concentration,
VSCC).

effects due to S…F interactions in E-1F that partially bend the structure, leading

to a closer O…H pair (Fig. 4.11). Here, one can surmise that the relative structural

rigidity of the two-moiety structures comes from strong O…H interactions, and not

necessarily from the S…F interactions.

Finally, knowing the impact of fluorination on O…H pair, it is informative to
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Figure 4.11: Structural features in the optimized structures of (left) E-1F
and (right) E-1F′ in the second half-scan.

revisit the PES scans in Fig. 4.7 and Fig. 4.8. The scan profiles of 1F′-E and E-1F′-

E (green profiles in Fig. 4.7 and Fig. 4.8) can be understood via the strengthened

O…H hydrogen bond, which stablize/planarize the conformation at local minima

with respect to that of non-fluorinated molecules. Such understandings can then

be extended to the scan profiles of 2F-E and E-2F-E, where a combination of

mostly repulsive F…S interaction and strong O…H hydrogen bond (due to diflu-

orination) resulted in a planar conformation that is less rigid than 0F-E. These

findings suggest that introducing fluorine to conjugated systems can have multi-

faceted impact that cannot be simply described as “formation of attractive F…S

interactions”.

4.4 Conclusion

In this chapter, two case studies were conducted to examine the impact

of introducing fluorine substitution and S…F intramolecular interactions in conju-

gate units commonly adopted in functional material design. In the case of BDT

oligomer, after fluorination at the central BDT unit, stabilizing S…F interactions,

which lead to a more planar, rigid molecular backbone, were identified. How-

ever, fluorination also stabilized syn-anti and syn-syn conformations through the

formation of F…H hydrogen bond. In the case of EDOT-ph-EDOT, however, in-

stead of forming strong, directional S…F interactions, fluorination at the phenyl

ring increased the strength of O…H hydrogen bonding on the other side of phenyl

ring, which supported a rigid, planar conformation. These results illustrated the

58



diverse conformational consequences of constructing S…F interactions in organic

molecules, and the possibilities of forming/strengthening other noncovalent inter-

actions upon fluorination, thus provided insights for rational molecular/polymer

design towards target properties.
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CHAPTER 5

ALKYL CHAIN INDUCED STRUCTURE ALTERNATION:

CRYSTAL STRUCTURES OF 2,5-BIS-(3-ALKYLTHIOPHEN-2-YL)

THIENO[3,2-B]THIOPHENES

5.1 Introduction

Though advances in molecular and materials design has contributed to con-

tinued improvements in organic semiconductor performance, the ability to control

molecular packing, in molecular or polymeric materials, remains a grand challenge.

Such capacity, known as crystal engineering for molecular crystals, is crucial as the

electronic and optical properties of organic semiconductors are determined by the

packing pattern of π-conjugated chromophores. Among various methods in crystal

engineering, it is believed that the alkyl side-chains, while being electronically in-

ert, serve as key contributors to govern the solid-state molecular packing, making

them important “handles” in design of functional organic semiconductors.117–120

Alternating pattern in material properties can frequently be found for

molecular crystals with normal alkyl groups, such as (end-substituted) n-alkanes

and alkanedicarboxylic acids.121,122. Such alternation in material properties is of-

ten accompanied by alternation in crystal structures. For example, the melting

point alternation of n-alkanedithiols originates from varied packing densities of

their crystal structures.123 While research on this phenomenon is reinvigorated by

crystallographers thanks to development in instrumentation and characterization

techniques,124–126, little attention has been paid to this effect in the community of

organic semiconductor research: Researchers rarely synthesized materials as a ho-

mologous series, with those that do often overlooking the possibility of a property

alternation. The seminal work of Ebata et al. on Cx-BTBT ([1]benzothieno[3,
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Figure 5.1: Out-of-plane d-spacing of a series of BTBT molecules with
systematically varied side-chain length. The nonlinear increase in spac-
ing is highlighted in the d-spacing difference, demonstrating a molecular
packing alternation. Data adopted from the study by Ebata et al..28.

2-b]benzothiophene) molecules with x = 5− 14 (x is the number of methyl units

in the alkyl side chains) is one such example.28 The authors noted that:

“…d-spacing of the other (BTBT) derivatives depended on the length of

the alkyl groups: With longer alkyl groups, larger d-spacings were ob-

tained, indicating that all the derivatives take similar molecular pack-

ing structures.”

and extrapolated the crystal structure of C12-BTBT to all other molecular crys-

tals. From their d-spacing data, however, a distinct even-odd oscillation pattern

can be observed by plotting d-spacing against x in Cx-BTBT, as shown in Fig. 5.1.

In this chapter, we examined the crystal structures of a series of 2,5-bis-(3-

alkylthiophen-2-yl) thieno[3,2-b]thiophenes (BTTT-Cx, with x = 7 ∼ 12 denoting

the number of carbon atoms in the alkyl side chains, see Fig. 5.2) to investigate the

effect of side-chain length, atom count (even versus odd number of methyl groups),

and terminal methyl arrangement on molecular packing. While all molecules form

layered structures with BTTT chromophores exhibiting intralayer herringbone
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packing, interlayer packing pattern of BTTT-Cx is a function of the parity of x.

This observation, along with accompanied melting point alternation, was associ-

ated with distinctive interlayer interactions, as highlighted by density functional

theory (DFT) investigations and geometric analyses. Finally, we comment on the

observed intralayer disorder, which can be related to irregularities in interlayer

stacking. The BTTT-Cx series present an extreme case of this crystal packing

alternation, highlighting side-chain alternation as an underexploited handle to

modify molecular packing.
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S

R

R
R = C7H15, C8H17, C9H19, C10H21, C11H23, C12H25

Figure 5.2: Chemical structures of BTTT-Cx.

This work was done in collaboration with the group of Dr. Alejandro

Briseno (University of Massachusetts, Amherst), who carried out the molecular

and materials synthesis and characterization, and Dr. Sean Parkin (University

of Kentucky), who carried out x-ray diffraction experiments for crystal structure

determination. An earlier version of some parts of this chapter was published in

Chemistry of Materials 2019 31(17), 6900-6907.

5.2 Methods

5.2.1 DFT calculations for lattice energies

Density functional theory (DFT) calculations for lattice energies DFT cal-

culations were carried out with Vienna Ab-initio Simulation Package,84,127,128 mak-

ing use of the Perdew, Burke, and Ernzerhof (PBE) exchange-correlation func-

tional.82 The electron-ion interactions were described with the projector augment

wave (PAW) method.83 The kinetic energy cutoff for the plane-wave basis set was
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set to 520 eV, and a Gaussian smearing with a width of 50 meV was employed.

The DFT-D3 correction was employed with BJ-damping to describe the dispersion

forces.129,130 The convergence criterion of the total energy was set to 10−5 eV in

the self-consistent field loop, and that of forces during relaxation was set to 0.001

eV/Å. The Brillouin-zone was sampled with a 4 × 4 × 1 Γ-centered grid. For

2D structures (molecular monolayers), 15 Å vacuum is inserted into the unit cell

to block interlayer interactions. The tetrahedron method with Blöchl corrections

is used for total energy calculations based on pre-relaxed structure. The lattice

energy of a periodic structure S, ES, is defined by ES = −(EPBE
S −N ·EPBE

mol )/N ,

where EPBE
S is the total energy per unit cell from DFT calculations, EPBE

mol is the

total energy of a single molecule, N is the number of molecules per unit cell.

5.2.2 Molecular surface

For the DFT relaxed structures, we used the solvent excluded surface to

describe the morphology of the interlayer interfaces and to carry out the geometric

analyses. Surfaces were built with a 2 Å solvent probe, which is the smallest probe

for constructing a pinhole-free monolayer surface, as implemented in Jmol.131,132

One should note that, to correctly calculate the height of a point on these surfaces

(defined as HP in main text), it is necessary to use fractional coordinates as the

stacking direction may not be collinear with the z-axis in the Cartesian basis.

5.3 Results and Discussion

5.3.1 Even-odd oscillation regulated by chain-length

We start our analysis by classifying the crystal structures of BTTT-Cx.

As shown in Fig. 5.3, oscillation in (interlayer) molecular packing was observed

in the crystal structure of BTTT-Cx, as x, the number of carbon atoms in the

alkyl side chains, oscillates between odd and even numbers. With x = 7, 9, 11,

63



Figure 5.3: Crystal packing motifs of, from left to right, BTTT-C7, BTTT-
C8 (major), BTTT-C9, BTTT-C10, BTTT-C11, and BTTT-C12. The red
molecules demonstrate the type I stacking as defined in the main text.

from one layer to its adjacent layer, BTTT-Cx molecules undergo an approxi-

mately 90°rotation along the layer stacking direction. This packing configuration

is referred to as type I packing. For x = 8, 10, 12, however, magnitude of such

rotation is approximately 180°, a situation referred to as type II packing. One

should note that such classification is not based entirely on the symmetry opera-

tions connecting the adjacent layers, as among crystals with type I packing, two

different interlayer arrangements (Ia and Ib) were observed. In BTTT-C7 and

BTTT-C11, the monoclinic crystals have adjacent layers related by a 21 screw

axis along the stacking direction (Ia, space group P21/c), while for BTTT-C9 the

operation is a c-glide (Ib, space group C2/c). Regardless of this differentiation,

the interlayer interfaces of type I crystals are almost identical to each other. We

also note that we later found a few exceptions for crystals of BTTT-C8, which

showed a similar c-glide operation as in type I packing; this observation was not

found for any other even chain length BTTT variant. Nevertheless, the even alkyl

side-chain BTTT-Cx tend to show a preference for type II packing over type I.

Oscillations in the melting point were also identified, with the BTTT-Cx
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containing odd-numbered alkyl chains tending to have higher melting points than

those even-numbered alkyl side chains.133 We note that even-odd melting point

alternations are well documented for n-alkanes,121 where, however, the oscillating

pattern was opposite (even-numbered alkanes generally melting at higher temper-

atures than odd-numbered alkanes).

Figure 5.4: Along the layer stacking direction, (black) the d-spacing of
the BTTT monomer crystals as a function of chain length, and (blue) the
d-spacing difference with the addition of one carbon.

Differences in the terminal ethyl group orientations of the alkyl chains

correlate with the crystal packing and material property alternations. Here, we

define Vethyl as the vector pointing from the penultimate carbon to the last carbon

in the side chain. Vethyl of BTTT-Cx tend to be perpendicular to the stacking

direction when x is odd, while the opposite is true when x is even. The crystal

d-spacing of the plane defined by the layer stacking direction, derived as a function

of increasing side-chain length (Fig. 5.4), shows an alternation pattern similar to

the Cx-BTBT case (Fig. 5.1).28 The relatively tighter interlayer packings for the

type I configurations, in turn, are reflected by higher melting temperatures when

compared to their type II counterparts.
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5.3.2 Origin of the oscillation: Interlayer interactions

To dig deeper into the underlying interlayer interactions of the effects due

to the even or odd alkyl side chains, lattice energies were calculated for both

three-dimensional (3D) crystals and two-dimensional (2D) periodic monolayers

(extracted from the crystals) via periodic DFT. Here, we use the lattice energy

differences between respective 3D and 2D structures as a descriptor to estimate the

strengths of interlayer interactions. The intralayer interactions are much stronger

than the interlayer interactions (Fig. 5.5), a result expected due to the considerable

intralayer overlap of the π-conjugated backbones and alkyl chains. Interestingly,

while the 3D and 2D intralayer interactions increase almost linearly with respect

to the side chain lengths, there is a definite even-odd oscillation in the interlayer

interaction.

Figure 5.5: Lattice energies of BTTT-Cx crystals. Blue circles denote the
lattice energies of BTTT-Cx crystals, red circles denote that of monolayer
BTTT-Cx, and green squares denote the difference between them. For
BTTT-C8 with the type I packing, such quantities are represented by
light blue, pink and light green crosses, respectively.

The difference in interlayer interactions can be, to some extent, explained

by a purely geometric analysis of the interface morphologies. Here, we implement

the concept of the solvent excluded surface, which has been used to describe the

structures of macromolecules.131,134 By constructing the solvent excluded surface
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for each monolayer of BTTT-Cx, distinct undulating patterns determined by the

orientation of terminal ethyl groups (Vethyl), thus by the parity of x, are revealed

(Fig. 5.6).

Figure 5.6: Representative pictorial demonstrations and color maps of the
distinct, undulating alkyl-chain surface morphologies for odd (left) and
even (right) BTTT-Cx.

To quantitatively describe the surface undulation pertaining to the inter-

layer interactions, the notion of normalized undulation magnitude is introduced

as ZP = HP/Hmax where ZP is the normalized undulation magnitude of point

P on the surface, HP is the undulation magnitude at point P , and Hmax is the

67



maximum value of HP on a surface. Following the scheme in Fig. 5.7, the surface

morphology can be visualized as a colormap of ZP .135 Using the ZP colormaps

of both packing types, we can illustrate the interface interactions by the value of

(Z1
P + Z2

P ) within a unit cell, where the superscripts denote individual surfaces.

Such quantities describe the overlap or contact of two monolayer surfaces. If the

sum of Z1
P and Z2

P is 0 (2), the spatial gap (overlap) between two molecular sur-

faces at point P is maximized, if the sum is 1, two surfaces merely touch at P : In

this case, such a description is valid due to the existence of an inversion center in

the molecule, and the absolute value of (Z1
P + Z2

P ) is not related to any physical

quantity.

Figure 5.7: Color scheme for the colormap of ZP , point with ZP = 1 is
colored red while that with ZP = 0 is colored blue.

Fig. 5.8 shows the interfaces for four different crystals after periodic DFT

relaxations, BTTT-C8-I, BTTT-C8-II, BTTT-C9-I, and BTTT-C9-II, where I

and II denote the packing type. The experimentally determined crystal structures

of BTTT-C8-I, BTTT-C8-II and BTTT-C9-I are used as the starting point for the

relaxations: For BTTT-C9-II, an in silico polymorph is derived by first trimming
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Figure 5.8: Comparison between BTTT-Cx type I and type II packing
for x = 8 and x = 9. For each subplot, the top panel shows the side-view
and the top-view for interlayer interface, where groups near the interface
are colored brown or green as shown in Fig. 5.7. Especially for x = 8,
hydrogen atoms far from the interface are removed and the third carbon
(count from the end) is haloed to illustrate the orientation of alkyl chain.
The middle panel shows the color map of Z1

P and Z2
P , and the black paral-

lelogram represents the corresponding unit cell. The bottom panel shows
the distribution of (Z1

P + Z2
P ) within one unit cell.

the side chains in BTTT-C10-II to C9 and then relaxing the unit-cell structure.

The results of the periodic DFT relaxations are used here, in part, as it is well

69



known that hydrogen positions are not accurately determined by ordinary X-ray

diffraction. Examination of the interlayer interface when x = 8 shows that while

the distributions of (Z1
P +Z

2
P ) within a unit cell do differ for the two packing types,

the differences in the standard deviations and mean values are not significant, a

result consistent with the small difference in interlayer interaction (∼17 meV).

When x = 9, however, the opposite situation is present: A wide distribution

of (Z1
P + Z2

P ) is found for the type II structure, and the interlayer interactions

are much weaker, by ∼149 meV per molecule when compared to type I. This

is consistent with the results from BTTT-C7, which shares the same interlayer

interface but, as mentioned, a different interlayer arrangement with respect to

BTTT-C9; For x = 7, the type II packing configuration is determined to be ∼127

meV per molecule less stable than that for type I packing.

Figure 5.9: Definition of the alkyl side chain tilting angle, θ, where c is
the stacking direction of molecular layers.

One plausible argument as to the variation in the surface topologies as a

function of the alkyl side-chain length is that the differences are strongly affected

by the tilting angle of the side chains, θ, defined as the angle between the (linear)

direction of alkyl chain and the layer stacking direction, as shown in Fig. 5.9. It

is interesting that while the even-odd effect is still present in crystals where θ

is small, such as n-alkanes (θ = 15°∼18°),121 no oscillation in layer stacking is

observed. For BTTT-Cx, θ ranges from 42° to 45°. Hence, it seems plausible that

there exists a critical value θc beyond which the even-odd effect is strong enough

to guide layer stacking during crystallization. Notably, in C12-BTBT, θ = 30°; it
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would therefore be interesting to revisit the structures of Cx-BTBT to determine

if similar alternating orientations are observed.28

5.3.3 A note on the intralayer disorder

The diffraction patterns of all crystals contain discrete diffraction spots as

well as extended diffuse streaks. Depending on individual crystal quality, some

streaks are smooth and featureless whereas others are less uniform. By ignoring

the diffuse streaks, all films can be indexed as primitive monoclinic. Depending

on crystal quality, however, the occasional crystal (e.g. BTTT-C9 or BTTT-C12),

can be transformed to a larger C-centered monoclinic unit cell that also accounted

for non-uniformity within the streaks, i.e. the additional reciprocal lattice points

coincided with maxima within the streaks. For the simpler primitive setting, the

refined crystal structure models each have the two BTTT conformers superim-

posed (i.e. disordered, as shown in Fig. 5.10). On the other hand, the centered

model has the two BTTT orientations alternating within each layer, which results

in unit cells that were large enough to incorporate four molecules (two per asym-

metric unit), without the need to model overlapped BTTT disorder. The two

types of unit cells are related by a transformation matrix, as shown in Fig. 5.11.

It seems likely that on a sub-microscopic scale there exist domains in which the

two conformers alternate, but that for diffraction from macroscopic crystals this

alternation is scrambled, leading to disorder. We note similar phenomenon has

also been observed in 2D oligothiophene-based lead iodide perovskites,136 which

suggests the universality of such stacking-induced disorder.

Figure 5.10: Pictorial representations of the disordered groups present in
BTTT-C7, BTTT-C8, BTTT-C10, and BTTT-C11.
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Figure 5.11: the transformation, when viewed along the long axis of bttt,
relating the “primitive” two-molecule unit cell on the left and four-molecule
“supercell” on the right. note that only one layer is shown here while there
are two layers per unit cell.

To verify the intralayer disorder, we evaluated the relative stabilities of

two well-defined structures in 2D: The “primitive” structure built from the larger

unit cell, and the “supercell” structure generated by applying the aforementioned

transformation to the smaller unit cell with only one disorder group. As shown

in Fig. 5.12, the primitive structure is 28∼43 meV/molecule more stable than the

supercell structure, which suggests that the disorder is likely a result of interlayer

stacking. Interestingly, the relative stability may have non-trivial implications

on the electronic structure of these 2D crystals. The electronic band structure

of “primitive” structure differs from “supercell” structure by the degeneracy at

high-symmetry points, as shown in Fig. 5.13, which is a direct result of the higher

symmetry in the “supercell” structure.

5.4 Conclusion

We studied the oscillation of molecular packing in a series of BTTT-Cx

molecular crystals as a function of x, the number of carbon atoms in the alkyl

chains symmetrically appended to the molecules. Their crystal structures are

classified into two categories, among which the type I packing, predominately

adopted by BTTT-Cx with x being odd, exhibits an interlayer twist that enables

a smaller interlayer spacing, and in turn a higher melting point than that of type

II packing found in BTTT-Cx with even x. This phenomenon, accompanied by

a melting point alternation, resulted from variations in interlayer interactions, as
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Figure 5.12: Lattice energies and lattice energy differences for two 2d
lattice of intralayer structures.
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Figure 5.13: Electronic band structure for the (left) “primitive” unit cell
and (right) “supercell”.

revealed by DFT studies and geometric analyses. The origin of such oscillation

is related to the different orientations of terminal ethyl groups caused by the side

chain tilting angle θ. Focusing on an extreme case of crystal structure alternation,

this study highlighted the effect of side chain parity, as an under-reported handle

for controlling molecule packing in organic semiconducting materials.
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CHAPTER 6

POLYMORPHISM BY ATOMISTIC SUBSTITUTION: THE CASE

OF 6,13-BIS(TRIISOPROPYLGERMANYLETHYNYL)

PENTACENE

6.1 Introduction

While the term “polymorphism” was first introduced for phosphate salts,137

this concept has become a crucial part of solid-state organic chemistry,138 as the

synergy between weak intermolecular interactions and large molecular conforma-

tional space promotes the possibility of crystallizing into distinct crystal struc-

tures from the same molecule. In practice, at a given temperature and pressure,

a molecular crystal has only one thermodynamically stable polymorphic form,

which represents the global minimum on free energy landscape. However, other

metastable polymorphic forms could be energetically close to the stable form, and

transformations between crystalline phases could be kinetically hindered.139 In

the field of organic electronics, the existence of polymorphism can result in great

complexity of device fabrication, where there tends to be only one polymorph

possessing desired physical/chemical properties.140 This is related to the molec-

ular design principles behind organic electronic material: While the “functional

parts” of target molecule are rigid conjugate backbones to provide charge carriers

(π orbitals), bulky, flexible side groups are often attached to improve solubility by

minimizing solvation free energy, and, more importantly, to realize a certain type

of solid state order. In the crystal structure, such conformationally diverse side

groups can lead to dynamic disorder,141 conformation polymorphism,142 and, as

the main topic of this study, distinct molecular packing motifs.
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Figure 6.1: Molecular structure of (left) TIPS-Pn and (right) TIPG-Pn.

Figure 6.2: Possible molecular packing motifs for TIPG-Pn: (left) brick-
work, (middle) slip-stack, (right) herribone.

6,13-Bis(triisopropylsilylethynyl) pentacene (TIPS-Pn, Fig. 6.1 left), since

its discovery in 2001 by Anthony et al. 63 has become one of the most popular

molecular materials for high mobility organic field-effect transistors.143 It has been

argued that the high performance of TIPS-Pn mainly originated from the brick-

work packing pattern in the solid-state (Fig. 6.2 left) where the π-conjugated pen-

tacene backbones adopt a face-to-face brickwork packing motif, establishing large

intermolecular π orbital overlap. We should note that the brickwork structure

was solved via x-ray crystallography for a single crystal bulk TIPS-Pn crystal,

which is stable from 90 K to 398 K at ambient pressure.144 While multiple TIPS-

Pn polymorphs on thin films have been identified in previous studies,145,146 it is

believed that all of them share the brickwork packing motif similar to bulk TIPS-

Pn and structure differences solely come from different side group conformations.

The universality of the brickwork structure of TIPS-Pn seems to corroborate

the empirical crystal engineering principle proposed in Anthony’s original paper:

Solid-state face-to-face π stacking can be approached when the diameter of the

alkyl substituent is approximately half that of the acene length. Despite the sim-

plicity of this purely geometric-based argument and ambiguities in quantifying

parameters, a recent database study revealed that for linear acenes this principle
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has > 70% successful rate in reaching face-to-face π stacking.147

This work was done in collaboration with the group of Dr. John Anthony

(University of Kentucky), who carried out the molecular synthesis, and Dr. Sean

Parkin (University of Kentucky), who carried out x-ray diffraction experiments

for crystal structure determination.

Table 6.1: Packing parameters of TIPG-Pn and TIPS-Pn crystal struc-
tures. Two unique sets of slips can be defined for BW structure

Structure Long Axis
Slip (Å)

Short Axis
Slip (Å)

Vertical Slip
(Å)

Temperature
(K)

TIPS-BW 9.51/6.69 1.88/1.11 3.22/3.35 173
TIPG-BW 9.43/6.89 1.83/1.24 3.26/3.36 240
TIPG-SS 7.54 2.20 3.44 180
TIPG-HB N/A N/A N/A 90

Knowing the tendency of TIPS-Pn forming brickwork structure, it is puz-

zling that, being almost chemically identical to TIPS-Pn, the polymorphism of

6,13-bis(triisopropylgermanylethynyl) pentacene (TIPG-Pn, Fig. 6.1 right) in-

volves three distinct molecular packing motifs (Fig. 6.2), namely a slipped-stack

(SS) structure, a herringbone (HB) structure, and a brickwork (BW) structure

that differs only trivially from the crystal structure of TIPS-Pn, as illustrated

by the packing parameters shown in Table 6.1. Replacing the silicon atom in one

TIPS side group with germanium results in only 0.07 Å (2%) increase in the ra-

dius of side group (average distance between silicon/germanium and the outmost

hydrogens), which should not alter the conclusion from a geometry-based solid-

state packing principle. It is worth noting that the slipped-stack and herringbone

structures of TIPG-Pn are measured at different temperatures due to destruc-

tive phase transitions at low temperature (≥ 90 K). This, along with the fact that

herringbone structure of TIPG-Pn can be obtained by recrystallization while the

other two structures can only be accessed via slow evaporation of solution in Petri

dishes,140 seems to suggest the herringbone structure is the most stable crystal

form from 90 K to room temperature.
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In this study, the polymorphism of TIPG-Pn is examined computationally

based on bulk single-crystal structures solved by X-ray diffraction. Virtual poly-

morphs of TIPS-Pn constructed by replacing germanium with silicon in TIPG-

Pn structures were also studied to further understand the role of heavy atom in

the side groups. To investigate the stability of TIPG-Pn polymorphs at finite

temperature, a quasi-harmonic thermal expansion model was used to derive unit-

cells at different temperatures, and various descriptors were evaluated. While it is

still unclear why TIPS-Pn prefers the BW motif, these results highlight the sig-

nificance of the effect from lattice vibrations and the importance of configurational

entropy.

6.2 Methods

All computational models with periodic boundary conditions involved in

this study were derived from experimentally solved structure by single-crystal x-

ray diffraction performed in Dr. Sean Parkin’s lab (University of Kentucky). For

each structure, relaxation was performed for both cell parameters and atomic

positions under a certain external pressure determined by quasi-harmonic approx-

imation (see Section 6.2.2). Throughout the paper, structures are labeled based

on side group type and packing motif, e.g. TIPG-BW denotes the crystal of

TIPG-Pn molecules with brickwork (BW) packing motif. As TIPS-Pn crystals

have only been identified with BW motif, we constructed virtual crystal struc-

tures of TIPS-HB and TIPS-SS from TIPG-HB and TIPG-SS via atomistic

substitution, respectively.

6.2.1 Density functional calculations

DFT calculations were carried out with Vienna Ab-initio Simulation Pack-

age (VASP),84,127,148 making use of the Perdew, Burke, and Ernzerhof (PBE)

exchange-correlation functional.82 The electron-ion interactions were described
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with the projector augment wave (PAW) method.83 The kinetic energy cutoff for

the plane-wave basis set was set to 1000 eV, and a Gaussian smearing with a width

of 50 meV was employed. The D3 correction was employed with BJ-damping to

describe the dispersion forces.129,130 The convergence criterion of the total energy

was set to 10−6 eV in the self-consistent field loop, and that of forces during re-

laxation was set to 0.005 eV/Å. For unit cells, the k-meshes used are Gamma

centered 4x4x2, 3x3x3, 1x1x1 for BW, SS, HB structures, respectively.

6.2.2 Quasi-harmonic thermal expansion

Thermal expansion due to lattice vibrations was simulated via a quasi-

harmonic approximation (QHA) method by relaxing the periodic structures under

an external hydrostatic pressure pqha.149 This pressure at a certain temperature

was determined by

pqha = −dFvib

dV
(6.1)

where V is the volume of unit cell and Fvib is the vibrational free energy. In this

study Eq. (6.1) was evaluated by performing (central) finite difference with a step

size of 5%. Fvib was approximated by Eq. (6.4) where the harmonic vibrational

frequencies were calculated by finite displacement as implemented in Phonopy,150

where supercells (2 × 2 × 1 for SS and BW, 1 × 1 × 1 for HB) are used with

gamma-centered k-mesh, and the finite displacement is set to 0.01 Å.

6.3 Results and Discussion

6.3.1 Thermal expansion

For organic molecular crystals, it is crucial to take volumetric expansion

into account when calculating the lattice energy, as the cell volume/contraction

with temperature is typically about 3% per 100 K.151 The volumetric expansion

was simulated via the QHA as described in Section 6.2.2 and the results are shown
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Figure 6.3: Thermal expansion of TIPG-Pn and TIPS-Pn crystals
where vertical arrows point to experimental values.

in Fig. 6.3. Comparing with experimental data, thermal expansion simulated with

QHA and PBE-D3 overestimated the cell volume with an average of ∆V = 2.53%,

where the worst case is TIPG-BW (240 K) at 4.2%. This overestimation becomes

more severe at higher temperature for TIPS-Pn, as ∆V increases from 1.5% at

90 K to 2.2% at 293 K, which could be due to the anharmonic effects at high

temperature that are ignored in QHA. In general, at the same temperature cell

volume of both TIPS-Pn and TIPG-Pn follows V (SS) < V (BW) < V (HB),
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with V (TIPS-Pn) < V (TIPG-Pn) for each packing motif, which is expected

considering a TIPG side group is larger than a TIPS side group if their conforma-

tions are similar.

We now focus on BW and SS structures due to the absence of π orbital

overlap in HB structures, which is not favorable for transistor applications. By

extracting molecular dimers from the crystal structures (Table 6.2), we note that,

in general, thermal expansion increases the relative displacements between the

molecules in the dimer, and the increment tends to be larger in dimers of TIPG-

Pn than that in dimers of TIPS-Pn. The anisotropic nature of thermal expansion

is also reflected in the dimer structures, with long-axis displacement being the

largest among three types of displacement, especially for SS structures.

Table 6.2: Relative displacements between molecules of dimers extracted
from crystal structures at different temperatures. The values in parenthe-
ses denote the absolute change of slip with respect to the value at 0 K.
Two unique sets of slips can be defined for BW structure. Some rows are
shaded for readability purposes.

Structure Temperature
(K)

Long Axis
Slip (Å)

Short Axis
Slip (Å)

Vertical Slip
(Å)

TIPS-BW 0 9.53/6.64 1.89/0.88 3.33/3.47

TIPS-BW 298 9.70 (0.17)/
6.71 (0.07)

1.98 (0.09)/
0.97(0.09)

3.41 (0.08)/
3.55 (0.08)

TIPS-SS 0 7.47 2.06 3.51
TIPS-SS 298 7.58(0.11) 2.09 (0.03) 3.58 (0.07)

TIPG-BW 0 9.54/6.69 1.89/0.93 3.33/3.46

TIPG-BW 298 9.76(0.22)/
6.82(0.13)

2.03 (0.14)/
1.06 (0.13)

3.43 (0.10)/
3.57 (0.11)

TIPG-SS 0 7.55 2.04 3.49
TIPG-SS 298 7.68 (0.13) 2.07 (0.03) 3.55 (0.06)

Table 6.3: Hole effective mass (in m0, electron rest mass) at Γ point for
BW structures at different temperature calculated by finite difference.

Structure me 0K me 90K me 180K me 298K
TIPS-BW 0.76 0.80 0.90 1.06
TIPG-BW 0.80 0.85 0.95 1.22
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Figure 6.4: Electronic band structure of TIPS-Pn and TIPG-Pn crys-
tals at difference temperatures. Black, dark red, brown, light coral repre-
sent the structure at 0 K, 90 K, 180 K, 298 K, respectively.

The difference in intermolecular displacement can have significant impli-

cations on the electronic structure. As shown in Fig. 6.4, for all SS and BW

structures, the valence band becomes progressively flattened as the cell expands.

For BW structures, the band flattening effect is corroborated by the increase of

hole effective mass after expansion, as shown in Table 6.3. Interestingly, this obser-

vation could pose additional complexities on the negative temperature coefficient

of hold mobility identified in TIPS-Pn based field-effect transistors.152

6.3.2 Relative Stability

The sublimation free energy ∆Gsub (298K) can be used as a descriptor to

evaluate the relative stabilities of various polymorphs. ∆Gsub can be decomposed
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as:

∆Gsub = Gmol − (Ecr
ie + F cr

vib + F cr
config) (6.2)

where Gmol is the free energy of gas phase molecules. For a crystal structure, Ecr
ie ,

F cr
vib and F cr

config are the energy of ion-electron system, the vibrational free energy,

and the configurational free energy, respectively. While error from Gmol could

affect the absolute value of ∆Gsub, this term will be canceled when comparing

stability among polymorphs of the same molecule. We note that the following

assumptions are made:

• The pV term is too small to be included in the free energy of the crystal.

• Electronic excitation is negligible.

Eq. (6.2) can also be written as:

∆Gsub = Elatt +Gmol
xie − F cr

vib − F cr
config (6.3)

where Elatt = Emol
ie − Ecr

ie is the lattice energy, and Gmol
xie is the free energy of gas

phase molecule, excluding the electronic energy (of the ion-electron system), which

will be cancelled if the comparison is done for polymorphs of the same molecule.

Elatt is calculated individually as it can be used to identify the difference in static

interactions among polymorphs. The vibrational (Helmholtz) free energy F cr
vib is

calculated by sum over the contributions from each phonon mode:

F cr
vib =

∑
i,q

(
ℏωi,q

2
+ kBT ln

(
1− exp

{
−ℏωi,q

kBT

}))
(6.4)

where ωi,q is the phonon frequency of mode i with wave-vector q, kB the Boltzmann

constant, ℏ the reduced Planck’s constant.

Assuming vanishing configurational free energy (here ∆Gsub becomes

∆G0
sub, where the superscript “0” denotes F cr

config = 0), all terms in Eq. (6.3)

are calculated and shown in Table 6.4 for all six crystal structures at 298 K. From
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Table 6.4: Values for terms in equation 2 in eV or eV per molecule. Val-
ues in parentheses are differences relative to the reference values in HB
structures from shaded rows. ∆G0

sub is calculated by assuming F cr
config=0.

Structure Elatt Gmol
xie F cr

vib ∆G0
sub

TIPS-BW 2.351 (-0.047) 20.031 21.017 (0.029) 1.366 (-0.076)
TIPS-SS 2.452 (0.053) 20.031 21.078 (0.090) 1.405 (-0.036)
TIPS-HB 2.398 20.031 20.988 1.442
TIPG-BW 2.308 (-0.110) 19.917 20.815 (0.014) 1.419 (-0.116)
TIPG-SS 2.502 (-0.084) 19.917 20.908 (0.107) 1.511 (-0.024)
TIPG-HB 2.418 19.917 20.801 1.535

the lattice energies, it can be argued that the strength of static interaction follows

SS > HB > BW, which agrees with the order of cell size (Fig. 6.3). On the other

hand, HB structure suffered the least destabilizing effect from lattice vibrations

(F cr
vib being the smallest), which makes the HB structure the most stable in terms

of ∆G0
sub. While including vibrational contributions in free energy corroborated

the argument that TIPG-Pn HB is the most stable polymorph, considering the

similarity between BW and SS motifs, BW structures seem to be too unstable

to be observed experimentally.

Figure 6.5: Disorder in TIPS/TIPG side groups for BW structures. The
alternative configuration is colored red.

To address the stability of BW structures, it is beneficial to calculate

F cr
config explicitly due to the conformationally disordered TIPS/TIPG side groups

in TIPS-BW and TIPG-BW. In solving the crystal structure at 173 K, such

disorder was simulated by two configurations with fractional occupancies for each
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asymmetric unit, as shown in Fig. 6.5. Configurational free energy calculation

depend on the nature of the disorder, as the number of configurations depends

on whether the configurations are “frozen-in” (kinetically stable) or thermally

populated. It is also possible that the disordered configurations are correlated due

to close spatial vicinity.153

For “frozen-in” disorder, the configurational free energy can be calculated

by:

F cr
config-fi =

∑
j

oj(Ej − kBT ln oj) (6.5)

where oj and Ej are the experimental occupancy and relative energy of configu-

ration j, respectively. For thermally populated configurations, we have:

F cr
config-th = −kBT ln

∑
j

exp(−Ej/(kBT )) (6.6)

according to Boltzmann distribution. We note that in both Eq. (6.5) and Eq. (6.6),

the differences between vibrational free energies of different configurations are

ignored (that is, Ej only accounts for lattice energy), and Ej should be calcu-

lated for a supercell as disorder in the side groups is related to interlayer inter-

actions (Fig. 6.5) that are not captured by unit cell. Table 6.5 shows ∆Gsub

including configurational contributions where ∆Gfi
sub = ∆G0

sub − F cr
config−fi and

∆Gth
sub = ∆G0

sub − F cr
config-th. Values for SS and HB structures are also presented

for comparison only, as disorder is absent in these structures. For both TIPS-Pn

and TIPG-Pn, the BW structure is stabilized by the existence of disorder, and

TIPS-BW is almost degenerate with TIPS-SS in terms of ∆Gsub. However, at

298 K, TIPG-SS is still ∼1.8 kBT more stable than TIPG-BW, and TIPS-HB

is ∼1.6 kBT more stable than TIPS-BW, which contradicts the fact that no HB

structure has been identified for TIPS-Pn crystals. To address such contradic-

tion, results from more accurate computational methods could be informative, as

well as experimental studies on the thermochemistry and crystallization process

of BW structures.
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Table 6.5: Values of ∆G0
sub after including F cr

config in eV. Values in paren-
theses are differences relative to the reference values in HB structures
from shaded rows.

Structure ∆G0
sub ∆Gfi

sub ∆Gth
sub

TIPS-BW 1.366 (-0.076) 1.400 (-0.042) 1.400 (-0.042)
TIPS-SS 1.405 (-0.036) 1.405 (-0.036) 1.405 (-0.036)
TIPS-HB 1.442 1.442 1.442
TIPG-BW 1.419 (-0.116) 1.463 (-0.072) 1.459 (-0.076)
TIPG-SS 1.511 (-0.024) 1.511 (-0.024) 1.511 (-0.024)
TIPG-HB 1.535 1.535 1.535

6.4 Conclusion

Three TIPG-Pn crystals at finite temperature was studied via DFT cal-

culations, and QHA was employed to take thermal expansion into account. It is

revealed that, from 0 K to room temperature, hole effective mass of TIPG-BW

can have a 52.5% increase due to changes in intermolecular spacing promoted by

thermal expansion. Vibrational analyses indicate that vibrational free energy is

able to change the relative stability order of polymorphs, and so is configurational

entropy, to a less degree. While some of the results contradict experimental obser-

vations, especially in the case of TIPS-BW which is stable at room temperature,

by including all contributions to solid-state free energy, new directions are pro-

posed to explain the puzzling polymorphism of TIPG-Pn that is absent in its

structural analog TIPS-Pn.
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CHAPTER 7

DEVELOPING OCELOT: A DATA-DRIVEN APPROACH FOR

ORGANIC SEMICONDUCTOR DESIGN

7.1 Introduction

Thanks to advances in semiconductor fabrication and integrated circuits,

the costs of generating and storing data has never been cheaper, giving rise to data-

driven approaches in both industrial and scientific fields. While virtual screening

and database studies have become routine in pharmaceutical chemistry,154 sim-

ilar practices are becoming more common in materials science, though they are

scarce for organic semiconductors.155,156 The scarcity is in part related to the

unique complexities in the design of molecular semiconducting materials. Unlike

in drug discovery where direct maps between molecular structures/conformations

and molecular behavior (e.g. docking) can be established,157 the performance of

an organic semiconducting device is a macroscopic response function that directly

depends on the solid-state structure formed by small molecules at, presumably,

thermodynamic equilibrium.

Molecule

Solid-state

Response

Structure

Predic on

Property

Predic on

I

Vgate

Figure 7.1: Model of designing organic semiconductors.
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Figure 7.2: Various molecular packing motifs (left) and corresponding
molecular structure (right). Note the brickwork packing motif of TIPS-
Pn in the second row. All crystals were synthesized by John Anthony’s
group and solved by Dr. Sean Parkin at University of Kentucky.

While atomic connections in molecules can be accurately realized by well-

trained organic chemists, control over solid-state structure formation is far from

ideal, as crystal structure prediction remains a grand challenge.31 That is, the

bridge between molecular structure and material response is often blocked by the

inability to predict the solid-state structure. Thus, the extended structures formed

by molecular building blocks should be regarded as a fundamental schema in the

model, and two types of predictions should be made to correlate molecular struc-

ture with device performance, as shown in Fig. 7.1. The significance of having

solid-state structure as an additional layer can be easily understood by inspecting
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Fig. 7.2 where four similar molecular structures yield drastically different molec-

ular packing motifs. It is also implied that the “step size” of exploring chemical

space should be small, since even a miniature modification of molecular structure

could have remarkable impact on how the molecules assemble.140

6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-Pn, the second row in

Fig. 7.2) can be considered as a prototype small-molecule organic semiconductor:

The π-conjugated backbone the pentacene “core” provides polarizable π electrons

that can serve as charge carriers, while the bulky side groups with multiple rotat-

able bonds are added symmetrically to improve solubility and, more importantly,

to enable a molecular packing motif (brickwork) that is preferred for charge-carrier

transport. Considering the additional rotational degrees of freedom introduced by

the side groups, the difficulty of solid-state structure prediction is very high. How-

ever, in the seminal work of Anthony and co-workers,158 based on a small set of

crystal structures, it was proposed that face-to-face stacking of the π-conjugated

backbones can be reached when the ratio between the “diameter” of substituents

and the “length” of conjugated backbone meets particular geometric parameters.

While this model may seem overly simple, it has proven powerful even for back-

bones with nine rings in a row,104 in spite of both expected and unexpected out-

liers. The success of this purely geometry-based empirical rule revealed the intrin-

sic coherence in the structure prediction problem, and its limitations encouraged

us to refine our understanding of molecular design with a larger, more complete

data set.

As a data-driven approach to meet the challenges implicated by two pre-

diction problems (Fig. 7.1), we introduce OCELOT (Organic Crystals in Elec-

tronic and Light-Oriented Technologies), a digital archive based on experimen-

tal structures and high-throughput computational workflows, offering descriptor-

based schema of molecular, crystal, and electronic structures, allowing efficient

data processing, data curation, and chemistry interpretability for a large dataset.

In the rest of this study we present a brief description of the OCELOT application
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programming interface (API) followed by details of the computational workflow

implementations. Finally, we illustrate the potential applications of OCELOT

via two case studies with datasets collected from either established database or

community contributions.

7.2 Methods

7.2.1 Methods for crystal calculations

Density functional theory (DFT) was used

1. to relax the experimentally solved single-crystal structure so the hydrogen

positions can be reliably determined

2. to obtain electronic band structure and carrier effective mass.

These calculations were performed with Vienna Ab-initio Simulation Pack-

age,84,127,128 making use of the Perdew, Burke, and Ernzerhof (PBE) exchange-

correlation functional.82 The electron-ion interactions were described with the

projector augment wave (PAW) method.83 The kinetic energy cutoff for the plane-

wave basis set was set to 1.3 × ENMAX as suggested to avoid Pulay stress error

in relaxations,159 and a Gaussian smearing with a width of 50 meV was applied to

the partial occupancies of Kohn-Sham orbitals. For unit cells, as implemented in

the Materials Project,39 Monkhorst-Pack grids with 64 k-points per Å−3 in the re-

ciprocal space were applied to sample the first Brillouin zone, except for hexagonal

cells where Gamma centered meshes with a similar k-point density is used. The

convergence criterion of the total energy was set to 10−6 eV in the self-consistent

field loop. For structural relaxations, DFT-D3 correction was employed with BJ-

damping to describe the dispersion forces,129,130 and the convergence criterion of

forces was set to 0.02 eV/Å. For band structure calculations, line sampling was
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employed to connecting high-symmetry points in the Brillouin zone as defined by

AFLOW.160

7.2.2 Methods for molecular calculations

Molecular DFT calculations were performed with Gaussian 16 74 to deter-

mine:

(1) Gas phase geometries of the chromophores;

(2) HOMO-HOMO/LUMO-LUMO electronic couplings of dimers extracted

from crystal structures;

(3) Vertical ionization energy (VIE);

(4) Vertical electron attachment energy (VEA);

(5) The first vertical singlet transition (VS0→S1) via time-dependent DFT

(TDDFT);

(6) Inner-sphere hole reorganization energies (Eihr).

Geometry optimizations were performed at the LC-ωHPBE/Def2SVP level

of theory.75–77,163 For Item (2), while experimental data is lacking, benchmarks

against coupled-cluster calculations suggest constrained DFT with 50% exact ex-

change yield best estimates.164,165 However, considering the high-throughput na-

ture of OCELOT and the computational cost to obtain exact exchange, electronic

couplings were thus obtained via fragment molecular orbital method with po-

larization taken into account11 at the PBE/6-31g(d,p) level.166,167 To find the

proper functional for Item (3), Item (4), Item (5), Item (6), such calculations

were performed for a set of acenes, and the results were compared with the exper-

imentally determined ones as shown in Table 7.1, where pure functional (PBE),

hybrid functionals (B3LYP, M06-2X),168–172 and long-range-corrected functional
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Table 7.1: Difference between DFT and experimentally determined VIE,
VEA, VS0→S1 , Eihr for acenes from naphthalene to pentacene (2∼5 rings).
All values are shown in eV. Functionals with an asterisk are the IP-tuned
functionals.

# of rings B3LYP M062X ωB97X LC-ωHPBE PBE ωB97X* LC-ωHPBE* expt.161,162

ΔVIE
2 -0.854 0.105 -0.023 0.140 -0.282 -0.168 -0.013 8.14
3 -0.316 0.014 -0.096 0.066 -0.382 -0.307 -0.129 7.44
4 -0.388 -0.055 -0.150 0.007 -0.447 -0.407 -0.205 6.97
5 -0.436 -0.101 -0.185 -0.032 -0.489 -0.479 -0.248 6.63

ΔVEA
2 -0.110 -0.159 -0.219 -0.115 0.001 -0.253 -0.085 -0.18
3 -0.008 -0.040 -0.128 -0.021 0.111 -0.187 0.011 0.53
4 0.028 0.010 -0.095 0.017 0.144 -0.245 -0.014 1.058
5 0.101 0.095 -0.024 0.094 0.214 -0.185 0.059 1.392

ΔVS0→S1

2 -0.025 0.256 0.293 0.347 -0.282 0.198 0.146 3.593
3 -0.121 0.231 0.370 0.486 -0.386 0.167 0.144 2.734
4 -0.195 0.144 0.320 0.428 -0.454 0.081 0.051 2.174
5 -0.226 0.106 0.306 0.407 -0.478 0.042 0.016 1.759

ΔEihr

2 -0.002 0.062 0.097 0.131 -0.045 0.091 0.046 0.182
3 -0.040 0.021 0.065 0.099 -0.080 0.009 -0.005 0.174
4 -0.029 0.031 0.085 0.120 -0.067 0.017 0.000 0.138
5 -0.010 0.051 0.113 0.152 -0.046 0.028 0.014 0.102

(ωB97X, LC-ωHPBE, and their IP-tuned106,173 versions) were used to generate

the dataset with the Def2TZVP basis set.75,163 From these results we note that

the IP-tuned LC-ωHPBE outperforms other functionals, except for VIE where

the “out-of-the-box” LC-ωHPBE and ωB97X seem to be better choices. Thus

IP-tuned LC-ωHPBE/Def2TZVP was used for Item (4), Item (5), Item (6) while

the original LC-ωHPBE is used for Item (3).

7.2.3 Data structure and descriptors in OCELOT database

Computational results in the OCELOT database are organized based on

a “Structure-to-Results” scheme. Two basic classes were constructed to realize a

relatively flat data structure:

• DbStructure represents a molecular/crystal structure.

DbStructure.results contains all formatted results from OCELOT

workflow with DbStructure as the sole input.
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ConfigEnergyResult

the results of energetic calculations

ConfigGeometryResult

the geometric analysis performed

on a crystal configuration

ConfigPercolationResult

the electronic coupling graph

ConfigElectronicResult

the electronic band structure

MolconfGeometryResult

the geometric analysis performed on 

a molecular conformer

ChromophoreChargeResult

the results of charge excitation 

of a chromophore

ChromophoreOpticsResult

optical excitations of

a neutral chromophore

DSconfig

a crystal configuration

DSmolconf

a molecular conformer in

the crystal configuration

DSchromophore

the most stable conformer

of a chromophore

DbStructure

structure: a structural object

origins: a list of input data

Results: {} OcelotResult

descriptors: {}

Workflow

Name: "OcelotWF"

Version: 0.2

ParamSet: "NeutralOragnics"

DStree

the tree-like relations

between DbStructures

Figure 7.3: Collections in OCELOT database.

• OcelotResult is the class of the elements in DbStructure.results. It has

a descriptors filed such that all descriptors related to a certain calculation

can be exported.

These classes allow us to access a specific set of descriptors via a uniform method

as the complicated relations between DbStructure have been stored in DStree, as

shown in Fig. 7.3. All descriptors that can be calculated in OCELOT are listed

in Table 7.2. We note that OCELOT is still under active development thus this

list is subject to change.
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Table 7.2: Descriptors in OcelotResult classes.

Descriptor Description
ConfigGeometryResult

PackingParameters information about molecular packing motif

SpaceFill volume of the space enclosed by the molecular
vdW surface divided by unit cell volume

LattParam lattice parameters of the unit cell
SpaceGroup space group number as in the IUC table
CellVolume unit cell volume

ConfigPercolationResult

ElectronicCouplingGraph a graph with molecular sites as nodes, edge properties
are set to include electronic couplings between nodes

ElectronPercolationDimension the dimension of electron percolation pathways
HolePercolationDimension the dimension of hole percolation pathways

PercolationCutoff the electronic coupling cutoff used to determine
whether an edge can present in percolation pathways

ConfigElectronicResult

HoleLineEffectiveMass line effective mass calculated at the maximum
of valence band

ElectronLineEffectiveMass line effective mass calculated at the minimum
of conduction band

HoleEffectiveMassTensor tensor effective mass calculated at the maximum
of valence band

ElectronEffectiveMassTensor tensor effective mass calculated at the minimum
of conduction band

CBDispersion max(CB)−min(CB)
VBDispersion max(VB)−min(VB)
DispersionRelation electronic band structure as a 2D array
Fermi Fermi level of the system

ConfigEnergeticsResult
EwaldEnergy ion-ion electrostatic interaction energy
DispersionCorrection dispersion correction applied to total energy
TotalEnergy total energy of the ion-electron system

LatticePotentialEnergy internal energy change of the sublimation
process without vibrational contributions

MolconfGeometryResult

Fragments a list of FragConformer objects after the
fragmentation

FragmentationMethod how the fragments are generated
Descriptors3D 3D geometric descriptors
Descriptors2D 2D geometric descriptors

ChromophoreChargeResult
VIE vertical ionization energy
VEA vertical electron attachment energy
ihreorg inner hole reorganization energy
iereorg inner electron reorganization energy
AIE adiabatic ionization energy
AEA adiabatic electron attachment energy

ChromophoreOpticsResult
omega IP tuned omega value for range separated functionals
vs0s1 vertical excitation energy from s0 to s1
dscfs0t1 energy difference between s0 and t1 from delta scf
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7.2.4 Deployment details

OCELOT is a MongoDB (v 4.2.3) database hosted on a virtual server

(Ubuntu 18.04.4) provided by the Center for Computational Sciences (CCS) of

University of Kentucky (UK) via the OpenStack platform. This database is also

used to support the Fireworks platform for performing high-throughput calcula-

tions as specified by OCELOT workflow. All heavy-lifting calculations are per-

formed on Lispcomb Computer Cluster in CCS via the SLURM workload man-

ager.174 OCELOT Web UI is a Django 2.1 application175 hosted on UK College of

Arts and Sciences server. Connection between OCELOT Web UI and OCELOT

database is established via the djongo package. The Jmol 131 package was used to

present crystal structures while plotly 176 was employed for the data visualization

module in OCELOT Web UI.

7.3 Result and Discussion

7.3.1 OCELOT API

To systematically study the design model (Fig. 7.1) and to massively pop-

ulate data entries in OCELOT, a python-3.x based API, which heavily relies on

previous published cheminformatics packages,177–179 OCELOT API, was created

to provide necessary data schemas such that both chemistry concepts and material

properties can be efficiently represented by abstract data types. Fig. 7.4 shows

a summary of basic python classes defined for molecular and crystal structures.

The Config class is introduced to accommodate the fact that most of ab-initio

calculations start with well-defined atomic positions, rather than the averaged

electron densities solved from e.g. X-ray diffractions. Instead of using one class

to encapsulate both the molecular graph and molecular conformation, we make

the distinction between a MolGraph and a MolConformer to respect the poten-

tial changes in molecular conformation from gas-phase to solid-state. Finally,
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the FragmentGraph and FragConformer classes are defined for concepts such as

“conjugated backbones” and “side groups” to pave the way for molecular fragmen-

tation analysis. The flexibility brought by defining a general class for molecular

fragment allows users to customize fragmentation scheme. As shown in Fig. 7.5,

the “fused-ring-based” fragmentation on the left is useful for the structural predic-

tion problem as mentioned in the case of TIPS-Pn, while the “conjugation-based”

fragmentation is preferred for solving the property prediction problem.

MolConformer

the molecular conformer

in a crystal configuratiom

...

graph

FragConformer

the molecular conformer

in a crystal configuratiom

...

joints

graph

FragmentGraph

a subgraph of MolGraph

joints

MolGraph

the molecular graph

of a molecular structure

Config

a possible disorder-free configuration

of the crystal structure

...

molconformers: [mc1, mc2]

Figure 7.4: Basic structure classes in OCELOT API.

Si

Si

Si

Si

Figure 7.5: Molecular fragmentations: fused-ring-based (left) and
conjugation-based (right).

OCELOT API is also capable of performing simple, computationally in-

expensive tasks to obtain structural descriptors. For heavy lifting, input/output

modules to various external calculators were included. Some of the capacities are

listed in Table 7.3 along with a brief description for each task. As an example,
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in Fig. 7.6 we showcase the NICS-XY-Scan81 results of a substituted indolonaph-

thyridine thiophene180 by using OCELOT API and Gaussian 16 as the external

calculator. This example indicates that while OCELOT API was developed as a

data generator for OCELOT, it can also serve as a toolkit for other, more generic

applications in the field of computational chemistry.

Table 7.3: Some of the heavy lifting tasks available in ocelot.task.

Task Name Description Calculator Reference
bzcal Parse electronic band structure calculations. VASP, AFLOW 40
calec Calculate electronic coupling for dimers. Gaussian 181
confgen Generate then cluster conformers. RDKit 182, 183
emtensor Calculate effective mass tensors. VASP 184
hop Obtain percolation pathways for charge carriers. ZINDO, Gaussian 181, 185
nics Obtain nucleus independent chemical shift for molecules. Gaussian 81
reorg Calculate inner-sphere reorganization energies. Gaussian 186
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Figure 7.6: NICS-XY-scan of a substituted indolonaphthyridine thio-
phene. NICS-xy scan with (left) the scan path, from ring #1 to ring
#3, for (middle) S0 and (right) T1 state. Only the data from three rings
are shown due to molecular symmetry. The black, red and blue markers
represent the response from the whole molecule, the hydrogenated σ-only
model and the π electrons, respectively.

A data curation package, ocelot.curator, including a set of parsers and

checkers, was introduced into the OCELOT API to take different conventions into

account and to rule out corrupted, unphysical data. Additionally, the DataEntry

class provides a generic framework to store both data content and data access

information (e.g. data provider, license), as well as to push/pull data to/from

previously deployed database. Data importation is then standardized via the col-

lection and curation methods of the Contribution class. These implementations

guaranteed the data integrity of OCELOT and can be applied for various data

sources.
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7.3.2 Computational Workflow

The OCELOT workflow is created to calculate various descriptors of both

molecular/crystal structure and electronic structure in a high-throughput manner.

Fig. 7.7 shows a sketch of the workflow that was deployed on the Fireworks plat-

form187 with the crystallographic information files188 (CIFs) as the sole inputs.

Data collection relies on previously published structural databases e.g. the Cam-

bridge structural database32 as well as individual contributions from the scientific

community. It is important to note that while data from established structural

databases is preferred due to the uniform notations prescribed by the publisher, a

large amount of confidently solved crystal structures have never published and thus

remain as “dark” materials to the community. Just as reaction predictions can

be remarkably improved via including unreported, “dark” reactions,189 these un-

reported/underreported materials may provide irreplaceable insights to the struc-

tural prediction problem. We also note data curation is essential for CIF files

as disorder information and other irregularities often lead to faulty, unphysical

structural information.

percolation

pathway?

CIF file

OCELOT

Database

HPC

Web UI

Data Curation

• Parse disorder

• Hash configuration

• Remove duplicates

• Structural sanity check

Geometric Analysis

• Molecular descriptors

• Packing identification

Crystal Calculations

• Structural relaxations

• Electronic band structure

• Electronic couplings

• Lattice energy

Molecular Calculations

• Optical excitations

• Vertical IP/EA

• Inner reorganization energy

Figure 7.7: Workflow of OCELOT.

Fast geometric analyses are performed for all crystal structures and un-

derlying cluster/molecular structures to investigate the structure prediction prob-

lem. Descriptors of electronic structure and optical response are only calculated if
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Figure 7.8: Percolation pathway based on transfer integral cutoff. Seg-
ments connecting molecular sites are colored based on if the transfer in-
tegral between two molecules is larger than a cutoff. The blue segments
form a percolation pathway while the transfer integrals of red segments
are too low to support effective charge carrier transport.

percolation pathways exist for charge carriers, as crystals that do not have these

pathways are unlikely to be high-performing semiconducting materials due to large

spatial separations among neighboring chromophores. The existence of such path-

ways is identified based on a user-defined cutoff for transfer integrals of dimers

within a supercell, as illustrated in Fig. 7.8. Considering the solubilizing groups

in a molecular structure are often chemically inert, in the step of “molecular cal-

culations”, quantum chemistry calculations are carried out only for the largest

conjugated subgroup, i.e. the “conjugation-based” fragmentation in Fig. 7.5. We

note this practice is justified as significant conformational change is not expected

for relatively rigid, π-conjugated chromophore from gas phase to solid state. At the

end of the OCELOT workflow, computational results are collected and converted

to a set of descriptor-based schemas defined by OCELOT API (see Table 7.2 for a

detailed list of descriptors). Finally, after being stored in a non-relational database

(OCELOT database in Fig. 7.7), these formatted data are presented via a web-

based user interface (OCELOT Web UI, https://oscar.as.uky.edu/ocelot/, where

crystal structure data are generously provided by Dr. John Anthony at University

of Kentucky and Dr. Michael Haley at University of Oregon), which was developed

to provide easy access for the community, along with a data visualization module

to exploit chemical intuition.
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7.3.3 Applications

In this section, in addition to previously mentioned functions, we showcase

potential applications of OCELOT in organic semiconductors research. Among

various molecular packing motifs, the brickwork packing (Fig. 7.2, the second

row) is of particular interest due to the large spatial overlap among π-conjugated

chromophores and multiple charge-carrier percolation pathways. As an attempt

to decipher the correlations between molecular structure and brickwork packing

motifs, we attempted to answer the question of “how does one obtain an organic

crystal with brickwork packing motif through disubstitution?” With the help of

OCELOT API, a dataset of 423 organic crystals was collected from the Cambridge

structural database32 with the following three criteria:

1. The crystal structure contains only one type of neutral organic molecule.

2. The molecule can be fragmented into a linear conjugated backbone and two

side groups that each contain more than three atoms.

3. The molecule has inversion symmetry.

The dataset was further split into two subsets, the “three-ring” set (3R set) where

the range of molecular backbone length is set to be 6 Å∼9 Å and the “five-

ring” set (5R set) where the range is 11 Å∼14 Å, as backbone lengths of the

original set has a bimodal distribution. After performing geometric analyses for

each crystal structure, a set of two-dimension colored scatter plots (the “pair

plot matrix”), where axes representing different molecular descriptors and marker

colors denoting molecular packing, can be obtained as shown in Fig. 7.9 (only

subplots with relatively clear clustering are included, see caption for more details).

We first note that it is much more likely to find a crystal with brickwork packing

motif in 5R set than in 3R set, and the size (volume) of sidechains in 5R set is

centered around 200 Å3, in contrast to the wider distribution in 3R set. From the
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pair plots of 3R set, it appears that the sidechains in brickwork motif tends to

have small van der Waals (vdW) volumes (around 140 Å3) and high eccentricity

(> 0.75), which is also supported by the data from 5R set. Interestingly, in the

5R set, the position of substitution becomes important, as the molecules almost

always crystallize into brickwork structure when the substitution angle (see Fig. 7.9

caption for its definition) is around 26°. While it is clear that such assertions need

to be further validated/refined via more data and sophisticated analyses, OCELOT

provides a flexible way to investigate the correlations between molecular fragment

descriptors and crystal structure properties.

While typical materials discovery generally aims to explore unknown struc-

tures, previously reported materials with excellent properties may have been

missed due to incomplete characterization or issues with device fabrication. An-

other application of OCELOT is to “rediscover” these materials via OCELOT

workflow. From a collection of molecules synthesized by Dr. John Anthony’s re-

search group at the University of Kentucky, molecule A (codename x12556) and

molecule E (codename k14065), which had been left on the shelf previously due

to seemingly insufficient spatial overlap between the π-conjugated chromophores,

were predicted by OCELOT workflow to be excellent hole transporting materials

due to their small hole effective mass (0.73 m0 and 0.78 m0, respectively, where m0

is the rest mass of an electron), as shown in Fig. 7.10. These two molecules were

thus chosen to be the active layer in field-effect transistors fabricated by Hamna

Haneef in the group of Oana Jurchescu (Wake Forest University). The best hole

mobility measured from these devices reached 3.5 cm2/(V · s). Intriguingly, the

mobility of molecule E device (1.8 ± 0.54 cm2/(V · s)) tends to be higher than

that from molecule A device (0.76 ± 0.37 cm2/(V · s)). While the exact causes for

such difference in performance is still under investigation, this study illustrates the

potential of OCELOT to discover unexpected properties of materials that remain

“dark” to the community.
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Figure 7.9: Top panel: molecular packing, sidechain volume and backbone
length distributions in R3 and R5 datasets. Bottom panel: pair plot ma-
trix generated by seaborn,190 where off-diagonal subplots are the pair plots
generated from 4 sidechain geometric descriptors of one sidechain (there is
no need to consider both sidechains due to the inversion symmetry). V, E,
S, A stand for van der Waals (vdW) volume (in Å3), eccentricity, substi-
tution angle, asphericity, respectively. Asphericity, eccentricity, and vdW
volume were calculated by RDKit,177,191 while the “substitution angle” is
the acute/right angle between the long axis of backbone and Vsidechain (the
vector from the geometric center of backbone to the substitution site).
The diagonal plots are probability density estimate (Gaussian) of one de-
scriptor. The curve shape of eccentricity-asphericity plot comes from the
correlation between the two descriptors by definition.

7.4 Conclusion

The OCELOT database is introduced as a data-driven approach to solve

prediction problems in the design of organic semiconductors. OCELOT API, a

python 3.x package, was developed to parse experimental data for descriptor calcu-

lations, featuring flexible molecular fragmentation, input generations for complex
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Figure 7.10: Molecular structure and device performance of (top) molecule
A and (bottom) molecule E. Mobility data are provided by Hamna Haneef
in Oana Jurchescu’s research group at Wake Forest University.

computation tasks, and customized data curation. Combined with the OCELOT

workflow, various descriptors of molecular, crystal, and electronic structures can be

calculated in a high-throughput manner, which are then presented in the OCELOT

Web UI with the experimental data. We believe such capacities of data curation

and generation can provide insights to the organic semiconductor materials com-

munity, as exemplified by the case-studies on disubstitution and hole transport.
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CHAPTER 8

PERSPECTIVES

In this dissertation, several molecular and solid-state organic semiconduct-

ing materials were studied through simulation and modeling. We first focused on

molecular systems of pyrene-fused acenes (Chapter 3), from which the disruptive

effect of pyrene insertion was identified through evaluation of both the molecular

geometries and electronic structures. These effects, originating from the molecu-

lar orbital (MO) symmetry of pyrene, leads to the paradoxical observation that

seemingly large, fused ring systems could appear electronically as shorter acenes.

While this work identified another polycyclic aromatic hydrocarbon (PAH) that

should behave in a similar way to pyrene in disrupting the electronic conjugation in

extended acenes, an intuitive, computationally inexpensive method to find other

PAHs could be helpful, especially for synthetic chemists to select synthetic targets.

This might be achieved by correlating MO symmetry with molecular symmetry

(based on simple quantum chemical models, e.g. the Hückel or tight-binding ap-

proximation), or by exploiting the rich chemistry encoded in Clar formulae. Other

features worth exploring are the excited states of A-P-A systems: Considering the

similarity of these structures to an acene dimer complex, the A-P-A could sever

as a testbed suitable for singlet fission materials.192,193

In Chapter 4 we investigated intramolecular S…F interactions in two

thiophene-containing systems. Potential energy surface (PES) and charge den-

sity analyses were employed to address the impact of such interactions on pre-

ferred molecular conformations. While these results highlight the stabilizing ef-

fect brought by fluorine substitution, either by S…F interaction or by inducing

stronger hydrogen bonds, it would be naïve to assume these will be carried over

into solid-state, where intermolecular interactions could be equally important in
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determining molecular conformation. Furthermore, ambiguities still exist for the

nature of such intramolecular interactions. For example, from energy decomposi-

tion analysis, qualitatively, it is believed that the stabilizing effect mainly comes

from attractive electrostatic interactions, along with weak dispersion and inductive

interactions, overcoming exchange repulsion, but accurate quantitative analysis re-

mains elusive due to limitations in methods to segment the electron density in a

single molecule.103,194 Considering there is a wide range of potential intramolecular

interactions that can be exploited to establish conformational preference, research

on this topic can benefit from more accurate quantitative methods and physical

models that can interpret these phenomena at molecular level in the solid state.

The odd-even layer oscillation of crystals derived from BTTT-Cx, where

x = 7 ∼ 12, was studied in Chapter 5. The oscillatory intermolecular/interlayer

interactions found here echoed the first odd-even oscillation in organic crystals

found by Adolf Baeyer in 1877.195 By using a combination of periodic density

functional theory methods and geometric analysis, this phenomenon is explained

based on intermolecular (interlayer) interactions. We also suggest that this os-

cillation could be a general phenomenon for alkyl-functionalized thiophene-based

organic semiconductors with lamellar crystals structures, such as Cx-BTBT.28

Observed intralayer disorder was also discussed and attributed to irregularity in

interlayer stacking. Such conclusions could be more general, as it is analogous to

a later study regarding oligothiophene-based hybrid perovskites, where intralayer

disorder is observed for the oligothiophene layer.136

The polymorphism of TIPGe-Pn crystals was addressed in Chapter 6,

and results showed that including lattice vibrations could change the relative sta-

bility order of polymorphs. While relative stabilities of TIPGe-Pn crystals from

simulations agree with experimental observations, it is puzzling that the brick-

work structure of TIPS-Pn, being the most stable structure experimentally, is

the least stable from simulations. From a computational perspective, this could

be related to insufficient accuracy in describing weak dispersion forces under the
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framework of DFT. Experimental data, especially thermochemical data, could be

also helpful to understand the contradiction between experiments and simula-

tions. Another interesting question comes from the significant dependence of the

electronic structure on thermal expansion. It has been shown that at low tem-

peratures that charge-carrier mobility measured in TIPS-Pn-based transistors

is inversely correlated with temperature, which is attributed to the suppression

of dynamic disorder.152 How much of this inverse correlation actually come from

thermal contraction is an intriguing path to follow.

Chapter 7 represents the initial construction of a data infrastructure for or-

ganic semiconductors. The major product, OCELOT, was introduced along with

detailed implementations in data generation, curation, and presentation. While

promising results have been obtained in extracting correlations and materials redis-

covery, it is still far from a platform with complete, integrated data that can lead

to predictive capabilities. As a long-term project, efforts need to be made in not

only expanding the size of OCELOT, both the numbers of entries and numbers of

descriptors, but also consolidating data from different disciplines (synthetic chem-

istry, materials processing and characterization, device engineering, etc.) such

that the platform covers the full spectrum from molecules to crystals to thin-film

materials.

Finally, it is informative to reflect these results in the perspective of data-

driven materials research. While theoretical results can provide insights on various

aspects of materials, integrating computational data with experimental observa-

tions is vital to obtain correct, novel understanding, since most of these studies

originate from seemingly irregular experimental results. Thus, in addition to devel-

oping more accurate, computationally efficient simulations/approximations that

allow facile, high quality data generation for a variety of physical models, large

scale data collection/curation of experimental data is required to realize the fourth

paradigm in materials science.
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