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ABSTRACT OF DISSERTATION

Geometry of Linear Subspace Arrangements
with Connections to Matroid Theory

This dissertation is devoted to the study of the geometric properties of subspace
configurations, with an emphasis on configurations of points. One distinguishing
feature is the widespread use of techniques from Matroid Theory and Combinatorial
Optimization. In part we generalize a theorem of Edmond’s about partitions of
matroids in independent subsets. We then apply this to establish a conjectured bound
on the Castelnuovo-Mumford regularity of a set of fat points.

We then study how the dimension of an ideal of point changes when intersected with
a generic fat subspace. In particular we introduce the concept of a “very unexpected
hypersurface” passing through a fixed set of points Z. We show in certain cases these
can be characterized via combinatorial data and geometric data from the Hyperplane
Arrangement dual to Z. This generalizes earlier results on unexpected curves in the
plane due to Faenzi, Vallés [FV14], Cook, Harbourne, Migliore and Nagel [CHMN18].
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Chapter 1 Introduction

This is a thesis at the intersection of algebra, geometry and combinatorics. In broad
terms we study the algebro-geometric properties of configurations of linear subspaces
with a special focus on configurations of points. A key feature of this thesis is the use
of techniques from Matroid theory and Combinatorial Optimization.

Linear subspaces are some of the simplest objects in geometry. Yet despite their
elementary nature many basic questions about their properties remain open even if we
limit our study to finite sets of points. A classical problem in both pure and applied
mathematics is the problem of polynomial interpolation. A polynomial interpolation
problem gives data about the value of a function f : Cn → C at a finite set of points
{P1, .., Pk} and asks to the find the polynomial q ∈ C[X1, .., Xn] of minimal degree
which fits that data, meaning that q(Pi) = f(Pi). In general it can be difficult to
determine q, and it’s degree can depend heavily on the data as well as the position of
the points in space. A closely related geometric problem is to determine the Hilbert
Function of the graded ideal IZ associated to a finite set of points in Z in the projective
space PnC.

In the more general context of Hermite Polynomial interpolation, we are given
data about the values of a function f : Cn → C and the values of some partial
derivatives of f at a finite set of points {P1, .., Pk}. We again want to find a polynomial
q ∈ C[X1, .., Xn] of minimal degree whose value and partial derivatives agree with f
at each point {P1, .., Pk}. The related geometric problem becomes determining the
Hilbert Function of the graded ideal associated to a set of fat points in PnC. Here the
ideal of a fat point P of multiplicity m is the ideal consisting of those polynomial
which vanishing at P and where all partial derivatives of order less than m also vanish
at P .

Chapter 2 provides an expository account of the connections between fat points
and Hermite Interpolation problems. It also makes explicit a connection between the
Interpolation Degree and the Castelnuovo-Mumford regularity, a well known geometric
invariant(see theorem 2.3.7). This gives the Castelnuovo-Mumford regularity practical
as well as theoretical interest.

In chapter 3, we recall some background from Matroid theory and collect the
necessary results on Matroid Theory and Optimization that are used in the rest of the
thesis. In particular, theorem 3.3.11 gives a generalization of the celebrated “Matroid
Partition Theorem” due to Edmonds [Edm65]. This generalization is a key tool in the
results of the next chapter.

Chapter 4 focuses on providing upper bounds on the Castelnuovo-Mumford regu-
larity for fat point subschemes of Pn. Namely, for our fat point scheme X, the value
reg(X) is bounded above by 1 + Seg(X) where

Seg(X) := max

{⌈−1 +
∑

Pi∈Lmi

dimL

⌉
| L ⊆ Pn a linear subspace with dimL > 0

}
.
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Theorem 4.3.3. If X =
∑s

i=1 miPi is any fat point subscheme of Pn, then r(X) =
reg(X)− 1 ≤ Seg(X).

This establishes a conjecture due to Trung ([Thi00]) and independently, Fatabbi
and Lorenzini ([FL01]). A key tool in the proof is theorem 3.3.11. We then continue
to provide a generalization of the Segre Bound, in the form of a series of bounds.

In chapter 5, we take a set of points Z ⊆ Pn and a general codimension 2 linear
subspace Q ⊆ Pn and study how dim[I(Z) ∩ I(Q)d−1]d relates to dim[I(Z)]. In
particular we introduce the concept of a very unexpected hypersurface. In rough terms
a set of points Z admits very unexpected Q-hypersurfaces in degree d if the intersection
of [I(Z)]d and [I(Q)d−1]d is larger than a naive dimension count would suggest, and
the difference in dimension is not “easily explained”. A key technique is a new duality
between I(Z) and the derivation bundle D0(AZ) of the hyperplane arrangement AZ
dual to Z. This new duality builds upon a duality due to [FV14]. We show that
the degree’s in which a set of points admits very unexpected hypersurfaces can be
determined from combinatorial information and basic information about D0(AZ).
In particular to each set of points Z ⊆ Pn and degree d ≥ 1 we define an integer
Ex.C(Z, d) via a combinatorial optimization problem. Armed with this definition the
following result holds.

Theorem 5.4.23. Let Z ⊆ Pn be a finite set of points, and suppose that D0(AZ) has
splitting type (a1, .., an). Then for a fixed integer d,

n∑
i=1

max{0, d− ai} ≤ nd+ 1− Ex.C(Z, d)

and the inequality is strict if and only if Z admits very unexpected hypersurfaces in
degree d.

This gives a direct generalization of much of [CHMN18], which characterizes the
degrees of unexpected curves in P2.

We then continue establishing some further results on the structure of unexpected
curves in P2

C. We close by giving some applications of these structural results to
Terao’s Freeness Conjecture on Line Arrangements.

2



Chapter 2 The Basic Objects of Study

In this chapter we fix notation, and the basic objects which we will study. This thesis
is largely devoted to geometric problems, namely the study of subspace configurations
of projective space. However, we choose to use the algebraic language of graded
modules over graded rings and graded modules as opposed to the geometric language
of sheaves and schemes.

A recurring theme throughout this dissertation is the study of Castelnuovo-
Mumford Regularity of fat points. In section 2.3 we give an expository account
of the Castelnuovo-Mumford regularity for fat points and it’s relationship with Her-
mite Interpolation Problems.

2.1 Notation and Conventions

In this section we fix some notation which will be used throughout this thesis.

Convention 2.1.1. All rings are commutative and Noetherian with identity. Here
we let N denote the set of non-negative integers, in accordance with ISO standard
80000-2-7.1, this is the set of all positive integers and 0. If α = (α1, .., αk) ∈ Nk is a
integer vector we define

‖α‖1 =
k∑
j=1

αj.

Definition 2.1.2 (Graded Rings and Modules). A Z-graded ring is a ring R together
with a decomposition of R as a direct sum of abelian groups R = ⊕i∈Z[R]i, so that
[R]i · [R]j ⊆ [R]i+j.

For f ∈ R we say that f is a homogeneous element, if f ∈ [R]d for some d. For
any homogeneous f ∈ R \ 0, we define the degree deg(f) to be the integer d where
f ∈ [R]d.

Example 2.1.3. An example of a graded ring which we will use frequently is the
polynomial ring over a field K, namely R = K[X0, .., Xn]. In this case [R]d is the
K-vector space of homogeneous polynomials of degree d. This can be given a specific
K-basis which we construct now.

Given a vector α = (α0, α1, . . . , αn) ∈ Nn+1 we define a monomial in R, via

Xα := Xα0
0 Xα1

1 . . . Xαn
n .

Note that deg (Xα) = ‖α‖1 =
∑n

i=0 |αi|. The set of monomials {Xα | α ∈
Nk with ‖α‖1 = d} forms a K basis for [R]d. In particular, every f ∈ [R]d can
be written uniquely as

f =
∑
‖α‖1=d

cαX
α.

3



Similarly if S = R/I is a quotient ring of K[X0, X1, . . . , Xn], we define X
α ∈ R as

the image of Xα in R. More generally given f ∈ R we use f , to denote the image of
f in S.

Definition 2.1.4 (Graded Modules). A graded module over a graded ring R is an
R-module M together with a decomposition of M = ⊕j∈Z[M ]j. We further require
the action of R on M to respect the grading on M , meaning that for all f ∈ [R]i and
m ∈ [M ]j we have fm ∈ [M ]i+j.

We similarly say that m ∈M is homogeneous of degree d if m ∈ [M ]d.

Remark 2.1.5. It can be assumed for this thesis, that any module over a graded ring
is graded unless we explicitly state otherwise.

Definition 2.1.6 (Homogeneous Ideals and Graded Submodules). For a graded
module M over R, a graded submodule N ⊆ M is an R-submodule of M which is
generated by its homogeneous elements. That is N = ⊕i∈ZN ∩ [M ]i. In this case we
set [N ]d = N ∩ [M ]d.

A graded submodule of R is referred to as a homogeneous ideal.

Remark 2.1.7. In this thesis all graded rings R will have [R]0 = K a field. We will
further require that R is generated over K by [R]1, which we require to be a finite
dimensional K vector space. In particular this ensures that dimK[R]d is finite. In
this scenario there is a unique maximal homogeneous ideal m which consists of the
positively graded elements, namely m = ⊕i≥1[R]i.

Definition 2.1.8 (Hilbert Functions). If R is a graded ring so [R]0 = K is a field,
then its Hilbert Function is given by

HFR(d) := dimK[R]d.

More generally, if M is a graded R-module we define the Hilbert Function of M as

HFM(d) := dimK[M ]d.

If [R]1 is finite dimensional and generates R as a K-algebra then for any finitely
generated module M there’s a polynomial HPM(d) known as the Hilbert Polynomial
of M so that for all sufficiently large d we have

HFM(d) = HPM(d).

Local Cohomology and in particular it’s relationship with Castelnuovo-Mumford
Regularity will be an important tool in some parts of this thesis. For this reason we
recall these definitions now.

Definition 2.1.9 (Local Cohomology). Let R = K[X0, .., Xn] and I ⊆ R a homoge-
neous ideal, then the j-th local cohomology module of a graded R-module M , denoted
Hj
I (M), is the j-th right derived functor of the I-torsion functor, ΓI , defined on objects

as
ΓI(M) := {m ∈M | Ikm = 0 for some k ≥ 1}.

4



Remark 2.1.10. A particularly important variant of local cohomology on K[X0, .., Xn]
is the local cohomology with respect to the maximal ideal m = (X0, .., Xn). This is in
part due to it’s relationship with sheaf cohomology. Namely for any finitely generated
module M over K[X0, .., Xn] we get a corresponding sheaf of modules M̃ over the
structure sheaf of PnK. Then there’s an isomorphism natural in M for all i > 1

[H i
m(M)]d ∼= H i−1(Pn, M̃(d)).

The modules H0
m(M) and H1

m(M) are connected to H0(Pn, M̃(d)) via the following
exact sequence of graded modules

0 // [H0
m(M)]d // [M ]d // H0(Pn, M̃(d)) // [H1

m(M)]d // 0 .

Definition 2.1.11 (Castelnuovo-Mumford Regularity). Let M be a finitely generated
graded module over a graded ring R. The Castelnuovo-Mumford Regularity of M is
the integer reg(M) defined as

reg(M) := max{i+ j : [H i
m(M)]j 6= 0}

We recall a few results on local cohomology which will be used in the sequel.

Theorem 2.1.12. If M is a finitely generated graded module over a graded local ring
R, then

H i
m(M) = 0

for all i < depth(M) and all i > dimM . Here dim(M) refers to krull dimension of
Spec(R/Ann(M)). Furthermore,

Hj
m(M) 6= 0

for j ∈ {depth(M), dimM}.

Proof. See theorem 3.5.7 of [BH98].

Theorem 2.1.13 (Hirzeburch-Riemann-Roch for Graded Modules). If M is a graded
module over the standard graded polynomial ring R = K[X0, .., Xn] then

HPM(d)− dim[M ]d =
n∑
i=0

(−1)i+1 dimK[H i
m(M)]d.

Proof. See theorem 4.4.3 of [BH98].

2.2 Fat Linear Subspace Schemes

Here we recall the concept of a fat linear subspace of Pn, and recall some basic objects
which are associated to it.

Definition 2.2.1. A (nonempty) linear subspace L ⊆ PnK is the image of a nonzero
linear subspace c(L) ⊆ Kn+1 under the quotient map Kn+1 \ {0} → Pn.

5



Definition 2.2.2 (Ideal Associated to a Linear Subspace). Given a subspace L ⊆ Pn,
there is a corresponding homogeneous ideal IL ⊆ K[X0, ..Xn]. [IL]d consists of all
homogeneous degree d forms f where f(P ) = 0 for all P ∈ L.

Definition 2.2.3 (Fat Subspace Scheme). A Fat Subspace of Pn = PnK is a subspace
L ⊆ Pn together with a multiplicity m ∈ N. We denote this using multiplicative
notation mL. To each fat subspace mL we associate a homogeneous ideal

I(mL) = I(L)m.

More generally to a collection of Fat Subspaces, H, written using additive notation
as H = m1L1 + . . .+mkLk we associate the homogeneous ideal

I

(
k∑
i=1

miLi

)
=

k⋂
i=1

I(Li)
mi

Remark 2.2.4. I(mL) has a well known geometric interpretation, namely it consists
of those polynomials f which vanish at all points p ∈ L with multiplicity m. If
dimL = d and S = K[X0, . . . , Xn] is the projective coordinate ring we may up to
change in coordinates assume that I(L) = (Xd+1, . . . , Xn), then for f ∈ [S]k we have
that f ∈ I(L)m if and only if f can be written as

f =
∑
‖α‖1=k∑n
j=d+1 αj≥m

cαX
α.

If Char(K) = 0, then these are the polynomials f which vanish at p and where all
derivatives of f of order k < m also vanish at p.

As an illustration f ∈ I(2L) ⊆ K[X0, .., Xn] if for all p ∈ L we have f(p) = 0 and
∂f
∂Xi

(p) = 0 for all i = 0, 1, .., n.

Example 2.2.5. Consider the coordinate points E0, E1, E2 ⊆ P2
K, which have projective

coordinates (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1). Then I(Ej) ⊆ K[X0, X1, X2] is the
ideal generated by (Xi | i ∈ {0, 1, 2} \ {j}), for instance I(E0) = (X1, X2). It can then
be computed that

I(E0 + E1 + E2) = (X1X2, X0X2, X0X1).

Similarly, I(E0)2 = (X2
1 , X1X2, X

2
2 ) and so

I(2E0 + 2E1 + 2E2) = (X0X1X2, X
2
1X

2
2 , X

2
0X

2
2 , X

2
0X

2
1 ).

Definition 2.2.6 (Castelnuovo-Mumford Regularity of Subschemes). If X ⊆ Pn is
a closed subscheme we define the Castelnuovo-Mumford Regularity of X denoted
reg(X), as the regularity of the ideal I(X).

6



2.3 The Regularity of Fat Points

As the Castelnuovo-Mumford Regularity is important in this paper, and in fact the
main focus of chapter 4 we give an elementary interpretation of reg(Z) for the case
that Z ⊆ PnC is a fat point subscheme. This interpretation is well known to experts,
though not mentioned much in the literature. One notable place were this appears
is chapter 4 of [Eis05], however there the scope is limited to subschemes of simple
points. To keep this as elementary as possible we commit ourselves to working over
C, though we will remark when results go through over any field.

Definition 2.3.1 (Hermite Interpolation). If Z =
∑s

i=0 miPi ⊆ Ck is a set of fat
points, a Hermite Interpolation Problem on Z associates to each pair (Pi,α) where
Pi is one of the points in Z and α = (α1, . . . , αk) ∈ Zk is a sequence of non-negative
integers which satisfy ‖α‖1 =

∑k
j=1 αj < mi a value CPi,α ∈ C. It then asks to find a

polynomial f ∈ C[X1, .., Xk] of minimal degree so that for each pair (Pi,α) we have

∂‖α‖1f

∂Xα1
1 ∂Xα2

2 . . . ∂Xαk
k

(Pi) = CPi,α.

In order to simplify notation we use the shorthand ∂αf for
∂‖α‖1f

∂Xα1
1 ∂Xα2

2 . . . ∂Xαk
k

.

The interpolation degree of Z is the smallest integer int. deg(Z) so that every Hermite
Interpolation problem on Z has a solution f with deg(f) ≤ int. deg(Z).

We note that given any hyperplane H such as X0 = 0 in Pn we have that there
is an isomorphism of varieties Cn ∼= PnC \ H. Since for any fat point subscheme
Z ⊆ Pn we can find a hyperplane H ⊆ Pn which avoids the points in Z, this gives
a correspondence between fat point subschemes of Cn and Pn (though only up to
projective equivalence). For instance if H is the hyperplane defined by X0 = 0, then
ιH is the map

ιH(a1, a2, . . . , an) = (1 : a1 : a2 : . . . : an).

This allows us to include Cn ⊆ Pn. Which allows us to think of fat points Z ⊆ Cn

as a subscheme of Pn. Furthermore for every fat points scheme Z ⊆ Pn there is
a hyperplane H where H ∩ Z = ∅ and this allows us to take Z ⊆ Pn \ H ∼= Cn.
Essentially, we can think of a fat point scheme Z ⊆ Pn as equally lying in Cn and vice
versa.

Definition 2.3.2 (Filtered Rings). Let R = C[X1, .., Xn] thought of as a standard
graded ring. If I ⊆ R is a not necessarily homogeneous ideal, then R/I inherits a
filtration from the graded structure of R.

Let [R]≤d denote the vector space of polynomials of degree at most d. Given
a not necessarily homogeneous ideal I ⊆ R we let [R/I]≤d denote the image of
[R]≤d in [R/I] under the canonical quotient map R → R/I. We note that since
[R/I]≤d · [R/I]≤e ⊆ [R/I]≤d+e this gives R/I the structure of what is often called a
filtered algebra.

7



This filtration [R/I(Z)]≤d allows us to give a new interpretation of the interpolation
degree, int. deg(Z), of a set of fat points Z ⊆ Cn.

Proposition 2.3.3. Let Z =
∑s

i=0 miPi ⊆ Cn be a set of fat points. Then the vector
space dimension of [R/I(Z)] is equal to

∑s
i=0

(
n+mi−1

n

)
. Furthermore,

int. deg(Z) = min

{
d ∈ Z

∣∣∣∣∣ dimC[R/I(Z)]≤d =
s∑
i=0

(
n+mi − 1

n

)}
.

Proof. We first claim that f ∈ I(Z) if and only if f(Pi) = 0 for all i ∈ {0, 1, . . . , s}
and for each Pi and all nonnegative integer vectors α ∈ Zn with ‖α‖1 < mi we have

∂αf(Pi) = 0. Where we use the notation ∂β as shorthand for
∂‖β‖1

∂Xβ1
1 . . . ∂Xβn

n

. To

establish this fix a point Pi = (Pi,1, . . . , Pi,n) and write write

f =
∑

‖γ‖1≤deg(f)

cγ(X1 − Pi,1)γ1(X2 − Pi,2)γ2 . . . (Xn − Pi,n)γn .

When written in this form we note that ∂βf(Pi) = cβ
∏n

i=1(βi!), and that f ∈ I(Pi)
d

if and only if β.
We now proceed to establish the claim that dimC[R/I(Z)] =

∑s
i=0

(
n+mi−1

n

)
. We

proceed by induction on d =
∑s

i=0mi. The case d = 1 is an easy computation. Given
our Z =

∑s
i=0 miPi we suppose the result holds for Z ′ = (mt− 1)Pt +

∑s
i=0
i 6=j

miPi. We

then construct for each d ∈ {0, . . . , s} and each α with ‖α‖1 ≤ mt − 1 a polynomial
Ft,α where for each pair (Pi,β) with ‖β‖1 < mi and Pi 6= Pt we have

∂βFt,α(Pi) = 0

and where for all β with ‖β‖1 ≤ ‖α‖1 we have

∂βFt,α(Pt) = δβ,α

where δ is the Kronecker delta. Once the existence of the Ft,α is established we note
that the representative of Ft,α necessarily form a basis of [I(Z ′)/I(Z)] of cardinality(
n+mt−2
n−1

)
. This is because by our characterization in terms of partial derivatives we

have that the Ft,α are linear independent mod I(Pt)
mt and for arbitrary g ∈ I(Z ′) we

have g−
∑
|α|=mt−1 Ft,α∂αg(Pt) ∈ I(Pt)

mt . Hence, it follows then that dim[R/I(Z)] =(
n+mt−2
n−1

)
+ dim[R/I(Z ′)] =

(
n+mt−2
n−1

)
+
(
n+mt−2

n

)
+
∑

i 6=j
(
n+mi−1

n

)
=
∑s

i=0

(
n+mi−1

n

)
.

Thus establishing the result, once we have the existence of the Ft,α.
Fixing Pt and α we proceed to constructing Ft,α. For any point Pj let pj,k denote

the K-th coordinate of Pj, so pj,k = Xk(Pj). Now for each point Pj 6= Pt we can find

some index k so that pt,k 6= pj,k then setting `j =
Xk − pj,k
pt,k − pj,k

we see that `j(Pj) = 0

and `j(Pt) = 1.
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We now claim that

Ft,α :=

(
n∏
i=1

(Xi − pt,i)αi
(αi)!

) s∏
j=0
j 6=t

`
mj
j


has the desired property. First we note that for all Pi 6= Pt that as `mii divides Ft,α
we have letting G = Ft,α/(`

mi
i ) that by the product rule for derivatives that

∂βFt,α =
∑

γ+λ=β

(∂γG)(∂λ`
mi
i )

where the summation is over all nonegative integer vectors γ and λ with γ + λ = β.
Using this expression we see that for all relevant λ that ∂λ`

mi
i (Pi) = 0 and so

∂βFt,α(Pi) = 0.
We similarly note that for any β with ‖β‖1 ≤ ‖α‖1 we have

∂βFt,α =
∑

γ+λ=β

∂γ

(
n∏
i=1

(Xi − pt,i)αi
(αi)!

)
∂λ

 s∏
j=0
j 6=t

`
mj
j

 .

Evaluating the above expression at Pt we see the term ∂γ

(∏n
i=1

(Xi−pt,i)αi
(αi)!

)
evaluates

to 0 unless γ = α, as ‖γ‖1 ≤ ‖β‖1 ≤ ‖α‖1 this occurs if and only if β = γ = α. As
`mii (Pt) = 1 the rest now follows.

We now continue to establishing the statement about int. deg(Z). Note that if
dim[R/I(Z)]≤d <

∑s
i=0

(
n+mi−1

n

)
then since dimR/I(Z) =

∑s
i=0

(
n+mi−1

n

)
there exists

some nonzero f ∈ R/I(Z) of minimial degree so that f 6∈ dim[R/I(Z)]≤d. Then for
every g ∈ [R]≤d we have f − g 6∈ I(Z) hence there is no polynomial of degree at most
d so that

∂βg(Pi) = ∂βf(Pi)

for all pairs (Pi,β) with ‖β‖1 < mi. In particular this says that any solution Hermite
Interpolation problem with values Ci,α = ∂βf(Pi) has necessarily has degree larger
than d, and so int. deg(Z) > d.

Conversely, assume that dim[R/I(Z)]≤d =
∑s

i=0

(
n+mi−1

n

)
, then by dimension

counting [R/I(Z)]≤d = R/I(Z). Then given a Hermite Interpolation Problem we know
that there is a solution f ∈ R. Since for our chosen d we have dim[R/I(Z)]≤d = R/I(Z)
it follows that theres a polynomial g ∈ [R]≤d with g − f ∈ I(Z) which implies that g
is also a solution to the Hermite Interpolation Problem. Therefore, int. deg(Z) ≤ d.
Together with the previous result this establishes the stated equality.

Definition 2.3.4 (Homogenization). Let S = K[X0, X1, . . . , Xn] then there are
K-linear maps Hmgd : [R]≤d → [S]d which maps a polynomial F (X1, . . . , Xn) to
Xd

0F (X1/X0, X2/X0, ..., Xn/X0). Alternatively, given a monomial Xe1
1 . . . Xen

n with
e1 + . . .+ en ≤ d, we define

Hmgd(X
e1
1 . . . Xen

n ) := X t
0X

e1
0 X

e2
2 . . . Xen

n

9



where t := d−
∑n

i=1 ei, and extend Hmgd linearly to all polynomials.
Given our ideal I the homogenization of I is denoted hI, and is the homogeneous

ideal where [hI]d = Hmgd(I ∩ [R]≤d).

Proposition 2.3.5. Using the notation above, and given a nonhomogeneous ideal
I ⊆ R we have

dimK[R/I]≤d = dim[S/hI]d.

Proof. As the map Hmgd : [R]≤d → [S]d is bijective, and we note that by definition
[hI]d is the image of [I]≤d under Hmgd. It follows that Hmgd induces an isomorphism
[R/I]≤d → [S/hI]d.

One corollary of the preceding proposition is that the Hilbert function HFS/I(Z)(d)
is non-decreasing.

Corollary 2.3.6. If I ⊆ R is any ideal, and hI it’s homogenization. Then

dim[S/hI]d ≥ dim[S/hI]d−1.

Proof. This follows since by proposition 2.3.5 we have

dim[S/hI]d = dim[R/I]≤d ≥ dim[R/I]≤d−1 = dim[S/hI]d−1.

Theorem 2.3.7. Let Z =
∑s

i=0miPi ⊆ Cn be a fat point scheme and ι : Cn → PnC
the inclusion of Cn as the complement of some coordinate hyperplane Xi = 0. Then

int. deg(Z) = reg(ι(Z))− 1.

Proof. Using proposition 2.3.5 and proposition 2.3.3, we see that it suffices to show

reg(Z) + 1 = min

{
r

∣∣∣∣∣ dim[R/I(Z)]r =
s∑
i=0

(
n+mi − 1

n

)}
.

Furthermore by corollary 2.3.6 we see the above equality is equivalent to

reg(Z) = max

{
r

∣∣∣∣∣ dim[R/I(Z)]r 6=
s∑
i=0

(
n+mi − 1

n

)}
.

Applying the local cohomology functor to the short exact sequence

0 // I(Z) // R // R/I(Z) // 0 ,

we get a long exact sequence in local cohomology. From this and the fact that
reg(R) = 0 we can conclude that that [H i

m(I(Z))]d ∼= [H i−1
m (R/I(Z))]d for all d ≥ −n

and all i ≥ 1. It then follows that reg(I(Z)) = reg(R/I(Z)) + 1.
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Applying theorem 2.1.13 and theorem 2.1.12, we conclude that

s∑
i=0

(
n+mi − 1

n

)
= dim[R/I(Z)]d + [H1

m(R/I(Z))]d.

By the definition of regularity and theorem 2.1.12 we have reg(R/I(Z)) = max{r |
[H1

m(M)]r−1 6= 0} from the above formula we conclude then that

reg(R/I(Z)) = min

{
r

∣∣∣∣∣ dim[R/I(Z)]r =
s∑
i=0

(
n+mi − 1

n

)}
.

We conclude then that reg(I(Z))−1 = reg(R/I(Z)) = int. deg(Z) by proposition 2.3.3.

We close this subsection, examining the well known Lagrange Interpolation formula
in this context.

Proposition 2.3.8 (Lagrange Interpolation Formula). Given a set of simple points
Z =

∑s
i=0 Pi ⊆ C1, and a Interpolation problem with values {Ci,0}. Then the

polynomial of minimal degree interpolating the data is given by

f =
s∑
i=0

Ci,0

s∏
j=0
j 6=i

x− pj
pi − pj

.

Consequently, for any set of points Z ⊆ P1
C we have reg(Z) = |Z|.

Proof. By direct evaluation we see that f(Pi) = Ci,0. Moreover, if g is any other
polynomial with deg(g) < deg(f) and g(Pi) = Ci,0 then f − g is a degree ≤ s
polynomial which vanishes on s + 1 points. Since the only polynomial vanishing
on s + 1 points of degree ≤ s is the 0 polynomial, it follows that f is the unique
polynomial of degree ≤ s with f(Pi) = Ci,0.

We see then that int. deg(Z) ≤ |Z|−1, if we take C0,0 = 1 and ci,0 = 0 for i > 1 we
see that deg(f) = |Z|−1 and so it follows that int. deg(Z) = |Z|−1. By theorem 2.3.7
we conclude that for Z ⊆ P1 that reg(Z) = |Z|.

2.4 Bounds on Regularity of Fat Point Schemes

Given the many interpretations of the regularity of a fat point scheme, the particular
value of reg(Z) has both theoretical and practical mathematical interest. Unfortunately
known methods for computing the regularity of an ideal typically involve Gröbner
basis computation which have poor computational complexity. In the context of
Hermite interpolation, reg(Z), is related to the computational complexity of the
Hermite Interpolation problem.

Remark 2.4.1. In this section we work over a fixed field K of arbitrary characteristic.
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We note that over an arbitrary field the interpretation of reg(Z) for a fat point
scheme can no longer be stated in terms Hermite Interpolation, since in particular
derivatives are poorly behaved in characteristic p. The regularity of fat point schemes
over arbitrary fields can still be stated in terms of their Hilbert Functions.

Proposition 2.4.2. If Z =
∑s

i=0 miPi ⊆ PnK is a fat point scheme then the Hilbert
Polynomial of R/I(Z) is a constant

HPR/I(Z)(d) :=
s∑
i=0

(
n+mi − 1

n

)
.

Furthermore, reg(Z) is equal to the integer

reg(Z) = min

{
r + 1

∣∣∣∣∣ dim[R/I(Z)]r =
s∑
i=0

(
n+mi − 1

n

)}
.

We omit the proof as it is identical to the proof over C.
Often it is more useful in formulas to refer to reg(Z)− 1, as opposed to reg(Z).

We introduce a piece of notation to refer to exactly this.

Definition 2.4.3 (Regularity Index). Let Z =
∑s

i=0 miPi be a fat point scheme in
Pn. Let R = K[X0, . . . , Xn] be the projective coordinate ring of Pn. We define the
regularity index of Z, as the integer, r(Z) where

r(Z) := reg(R/I(Z)).

From the previous proposition we also get a good interpretation of r(Z) in terms
of the Hilbert function.

Corollary 2.4.4. If Z =
∑s

i=0 miPi ⊆ PnK is a fat point scheme then r(Z) is equal to
the integer

r(Z) = min

{
r

∣∣∣∣∣ dim[R/I(Z)]r =
s∑
i=0

(
n+mi − 1

n

)}
.

We discussed the case of simple points in P1
C, in which case reg(Z) = |Z|. If we

instead consider arbitrary fat points in P1
K the situation is not much more complicated.

Theorem 2.4.5 (Regularity of Fat Points in P1). Given a fat point scheme Z =∑s
i=0miPi ⊆ P1

K we have

reg(Z) =
s∑
i=0

mi.

Equivalently r(Z) =
∑s

i=0mi − 1.
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Proof. Let R = K[X0, X1] be the projective coordinate ring of P1. Then if Pi = (ai : bi)
we have that I(Pi) = (biX0 − aiX1), and more generally I(Pi)

mi = ((biX0 − aiX1)mi).
Then I(Z) is generated by the polynomial QZ =

∏s
i=0(biX0 − aiX1)mi . Therefore,

dim[R/I(Z)]d = dim[R]d − dim[I(Z)]d = dim[R]d − dimQz · [R]d−deg(QZ)

= dim[R]d − dim[R]d−deg(QZ).

For 0 ≤ d < deg(QZ) =
∑s

i=0mi we have dim[R]d−deg(QZ) = 0 and so

dim[R/I(Z)]d = dim[R]d = d+ 1 ≤ deg(QZ).

If d ≥ deg(QZ), then

dim[R/I(Z)]d = dim[R]d−dim[R]d−deg(QZ) = (d+ 1)− (d+ 1−deg(QZ)) = deg(QZ).

We note that d = deg(Qz)− 1 is the smallest integer where dim[R/I(Z)]d =
∑s

i=0 mi.
Hence applying proposition 2.4.2 we see that reg(Z) = deg(QZ) =

∑s
i=0mi as

desired.

Copyright c© William Trok, 2020.
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Chapter 3 Matroids and Optimization

This chapter recalls the concepts from combinatorics that are needed for the rest of the
dissertation. A unifying theme is the study of non-decreasing submodular functions
f : 2E → Z. These are functions f : 2E → Z where f(A) ≤ f(B) if A ⊆ B and for
subsets X, Y ⊆ E we have

f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).

In section 3.1, we recall the concept of a matroid, a combinatorial object which
abstracts the concept of linear independence in a vector space. In particular any
finite set of vectors in a vector space has an associated matroid. More generally any
increasing submodular function f : 2E → Z defines a matroid Mf , a class of examples
which is important in this dissertation.

Section 3.2 studies partitions {A1, .., An} of E where
∑n

i=1 f(Ai) achieves a mini-
mum for f : 2E → R a submodular function. This section largely follows [Nar91].

Lastly section 3.3 focuses on a subclass of submodular functions. Namely those of
the form f(X) = k rkM (X)− p, where rkM is a the rank function of a matroid and k
and p are positive integers. It is here that we give our generalization of Edmond’s
Matroid Partition theorem, which first appeared in [NT20].

3.1 Matroids and Submodular Functions

We recall some definitions from matroid theory and collect the necessary results in
the area needed for the remaining sections of this thesis. Matroids are known for the
vast number of seemingly different axiomatizations, which define the same concept.
The correspondences between these are colloquially referred to as cryptomorphisms.

We recall two of these cryptomorphic definitions below.

Definition 3.1.1 (Matroids). A matroid M is a finite set E = E(M) called the base
set or edge set along with a rank function rkM : 2E → Z, which satisfies the following
3 conditions for subsets A,B ⊆ E.

(Rk. 1) 0 ≤ rkM(A) ≤ |A|

(Rk. 2) If A ⊇ B, then rkM(A) ≤ rkM(B)

(Rk. 3) rkM(A) + rkM(B) ≥ rkM(A ∪B) + rkM(A ∩B)

We note a function satisfying only (Rk. 3) is a submodular function.
Equivalently, a matroid may be defined as a nonempty collection of subsets I of

E, which satisfy

(Ind. 1) If A ∈ I and B ⊆ A then B ∈ I

(Ind. 2) If A,B ∈ I and |A| < |B|, then there exists some b ∈ B so that A∪ {b} ∈ I.
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We refer to [Oxl11] for definitions and proofs that the stated axiomatic formulations
are equivalent.

Example 3.1.2. Every finite set of points Z ⊆ P(V ) defines a matroid, M(Z). Namely
for every nonempty A ⊆ Z, we set

rkM(Z)(A) = 1 + dim Span(A).

Here Span(A) is the smallest linear subvariety of P(V ) containing all the points of A.
An independent set I in M(Z) is a subset I = {i1, .., ik} ⊆ Z so that for every

linear subspace L ⊆ Pn we have that |L∩ I| ≤ dimL+ 1. In particular, taking L = Pn
we see |I| ≤ n+ 1.

Matroids of this type are referred to as representable matroids, and are in some
sense the prototypical example of a matroid.

Remark 3.1.3. An abuse of notation common in the literature is to identify a matroid
M with it’s base set E(M). We will use this convention when convenient. Be warned
that there will be situations where we have two matroids M1 and M2 both defined on
the same edge set E.

We now recall a few more pieces of related terminology. We refer to [Oxl92] for
definitions.

• A subset I ⊆ M is Independent if and only if |I| = rkM(I). Conversely for
A ⊆M , rkM(A) is equal to the largest size of an independent I ⊆ A.

• A maximal independent set is a Basis of M . Every basis has the same size
namely rkM(M), and every independent subset is contained in some basis.

• A subset D ⊆M is dependent if it is not independent. A circuit of M is minimal
dependent set, meaning a dependent set C ⊆ M so that for all C ′ ⊆ C with
C ′ 6= C we have that C ′ is independent.

• A flat of rank r is a subset F ⊆ M , which is maximal among subsets of M
with rank r. Every subset A of M is contained in a unique flat, F , with
rkM(A) = rkM(F ), this flat F is called the closure or span of A and is often
denoted ClM(A).

For M(Z) a flat, is any set of the form Z ∩ L where L ⊆ P(V ) is a linear
subspace. The closure of a subset A ⊆ Z is ClM(Z)(A) = Span(A) ∩ Z.

We mention one more example of matroids those that arise from submodular set
functions.

Definition 3.1.4 (Submodular Functions). A submodular set function or simply
submodular function on a finite set X is a function f : 2X → R satisfying either one
of the following equivalent conditions

(I) For all subsets A,B ⊆ X we have

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).
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(II) For all subsets A ⊆ X and all x, y ∈ X \ A with x 6= y we have

f(A ∪ {x, y}) + f(A) ≤ f(A ∪ {x}) + f(A ∪ {y})

A submodular set function is non-decreasing if for all A,B ⊆ X with A ⊆ B we have

f(A) ≤ f(B).

Given the axioms above and those appearing in definition 3.1.1, we see that
rank functions of matroids gives one class of examples of increasing submodular
functions. This map from matroids to non-decreasing submodular functions has a left
inverse, which associates to every submodular function an underlying matroid. This
construction is important in the sequel.

Proposition 3.1.5. If f : 2E → Z is a non-decreasing submodular function, then
there is a matroid M(f) on E whose independent subsets, I(f) are those I ⊆ E where
for all nonempty J ⊆ I we have

|J | ≤ f(J).

Proof. First, note that ∅ ∈ I(f) even if f(∅) < 0 since there are no nonempty subsets
of ∅, and so ∅ trivially satisfies the condition. Furthermore, if J ⊆ I and I ∈ I then
for any nonempty A ⊆ J we have that A ⊆ I and so by assumption |A| ≤ f(A), hence
J ∈ I(f) and I(f) satisfies (IND 1).

Finally, we must show it satisfies the axiom (IND 2). Suppose that I, J ∈ I(f)
and |J | < |I|. Let S be the subset of I \ J consisting of those a with J ∪ {a} 6∈ I(f).
We note it suffices to show that |S| ≤ |J \ I|.

For each a ∈ S, there exists some nonempty subset Ca ⊆ J ∪ {a} so that |Ca| >
f(Ca). As Cl I(f) is closed under inclusion we can conclude that a ∈ Ca and that
Ja := Ca ∩ J is not contained in I ∩ J . As f in increasing and Ja is independent we
have

|Ja| ≤ f(Ja) ≤ f(Ca) < |Ca| = |Ja|+ 1.

Hence, |Ja| = f(Ja) = f(Ca) = |Ca| − 1.
Furthermore, if b ∈ I \ J with b 6= a we have that if Ca ∩ Cb 6= ∅ then

f(Ca ∪ Cb) + f(Ca ∩ Cb) ≤ f(Ca) + f(Cb) = |Ja|+ |Jb|

and so

|Ja ∪ Jb| ≤ f(Ca ∪Cb) ≤ |Ja|+ |Jb| − f(Ca ∩Cb) ≤ |Ja|+ |Jb| − |Ca ∩Cb| = |Ja ∪ Jb|.

We can then build a partition {S1, .., St} of S which is generated by the equivalence
relation a ≡ b if Ca ∩ Cb 6= ∅. Letting Ci =

⋃
a∈Si Ca it follows by induction that

f(Ci) = f(Ci ∩ J) = |Ci ∩ J | = |Ci| − |Si|. Furthermore, Ci ∩ I is nonempty and
contained in I(f) and so we have

|Ci ∩ I| ≤ f(Ci ∩ I) = |Ci| − |Si|.

Rearranging yields |Si| ≤ |Ci|−|Ci∩I| = |Ci\I|. Hence |S| ≤
∑t

i=1 |Ci\I| ≤ |J\I|.
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3.2 Submodular Functions and the Partition Lattice

Given any finite set X and a function f : 2X → R. We can extend f to its partition
associate, f̂ : 22X → R. This is defined on any collection of subsets χ = {X0, .., Xs}
of X where we set

f̂(C) :=
s∑
i=0

f(Xi).

In this section we study the case where f is a non-decreasing submodular set function
and χ is a partition of X (or possibly some subset of X). We do not claim originality
for the results in this section, and largely follow [Nar91]. The main difference between
this section and [Nar91], is that we focus almost entirely on the case that f is a
non-decreasing submodular function. Even in the few cases our results are stronger,
we note the proofs are straightforward extensions of those appearing in [Nar91].

Definition 3.2.1 (Partition Lattice). Let X be a finite set. A partition of X is a
collection of nonempty subsets π = {P0, P1, . . . , P`} of X, so that Pi ∩ Pj = ∅ for
i 6= j and

X =
⋃̀
i=0

Pi.

The elements of a partition π are called blocks.
The collection of partitions of X can be given the structure of a lattice, called the

partition lattice of X and denoted ΠX . If α,β ∈ ΠX we say that α is finer than β
and write α � β if for every block A ∈ α there is some block B ∈ β so that A ⊆ B.
We dually say α is coarser than β if α � β.

The meet of two partitions α and β is denoted α∧β and is the partition consisting
of all blocks of the form A ∩B, with A ∈ α, B ∈ β and A ∩B 6= ∅.

The join of two partitions α and β is denoted α ∨ β. α ∨ β is the partition
of X where x, y ∈ X are in the same block if and only if there is a sequences of
blocks A1, ..., Ak ∈ α and B1, . . . , Bk ∈ β so x ∈ A1, y ∈ Bk and for each i we have
Ai ∩Bi 6= ∅ and for all i > 1 we have Ai ∩Bi−1 6= ∅.

Remark 3.2.2. • Note that if A,B ⊆ X are disjoint sets, and α = {A1, .., An} is
a partition of A and β is a partition of B. Then β ∪α is a partition of A ∪B.
This is distinct from the α ∨ β which is not defined in this context.

• We note that that each partition α defines an equivalence relation ∼α on the
set X. Where x1 ∼α x2 if x1 and x2 lie in the same block of α. Conversely
to each equivalence relation R on X we can associate a partition where each
block consists of the elements in a single equivalence class of R. These maps
give bijections between partitions and equivalence relations.

Viewed in these terms the meet of two partitions α and β, corresponds to the
equivalence relation ∼α∧β. Where x ∼α∧β y if and only if x ∼α y and x ∼β y.

The join is slightly more complicated. If ∼1 and ∼2 are equivalence relations.
Then relation R where xRy if and only if x ∼1 y or x ∼2 y is reflexive and
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symmetric but is not transitive in general. For this reason, ∼α∨β is instead the
equivalence relation generated by the relations x ∼1 y and x ∼2 y. Meaning
x ∼α∨β y if and only if there is a sequence of elements x0, x1, .., xn with

x = x0 ∼α x1 ∼β x2 . . . ∼α xn−1 ∼β xn = y

We define a few special partitions, and note a few basic properties of the partition
lattice.

Remark 3.2.3. For a set X we introduce some notation to refer to certain special
partitions of X.

• Given any set X we define πX0 as the partition consisting of the singletons of X.
We note that πX0 � α for all other partitions α ∈ ΠX .

• If A ⊆ X we set πXA := {A} ∪ πX\A0 . If A ⊆ B ⊆ X then note that πXA � πXB .
In particular we note that if E ⊆ X with E either empty or a singleton, then
πXE = πX0 .

• If α = {A0, A1, . . . , As} is a partition of X, then α =
∨s
i=0 π

X
Ai

.

• If A,B ⊆ X, then πXA ∧ πXB = πXA∩B, and πXA ∨ πXB = πXA∪B.

• More generally if A ⊆ X and α is a partition of A then we set πXα = α ∪ πX0 .

If f : 2X → R is a submodular function, and α,β are partitions of X. Then it is
not necessarily true that the partition associate f̂ satisfies the analogous inequality

f̂(α ∨ β) + f̂(α ∧ β) ≤ f̂(α) + f̂(β).

However, this property does hold for some partitions of X.

Proposition 3.2.4. If f : 2X → R is a submodular set function then every A ⊆ X
and every partition β of X we have

f̂(πXA ∨ β) + f̂(πXA ∧ β) ≤ f̂(πXA ) + f̂(β).

Proof. We first establish the following claim.

Claim 3.2.5. If β = {B1, .., Bn} is a collection of nonempty disjoint subsets of X and
then for any A ⊆ X

f

(
A ∪

n⋃
i=1

Bi

)
+

n∑
i=1

f(Bi ∩ A) ≤ f(A) +
n∑
i=1

f(Bi).

The case n = 1 follows immediately as f is submodular. If the statement holds for
n = k − 1. The consider the case when |β| = n = k, by inductive hypothesis we have

f(Bk) + f

(
A ∪

k−1⋃
i=1

Bi

)
+

k−1∑
i=1

f(Bi ∩ A) ≤ f(A) +
k∑
i=1

f(Bi).

18



As f is submodular we have f
(
A ∪

⋃k
i=1 Bi

)
+ f

(
Bk ∩

(
A ∪

⋃k−1
i=1 Bi

))
≤ f(BK) +

f
(
A ∪

⋃k−1
i=1 Bi

)
. Yet BK ∩

(
A ∪

⋃k−1
i=1 Bi

)
= Bk ∩ A since the elements in β are

pairwise disjoint. Therefore,

f

(
A ∪

k⋃
i=1

Bi

)
+ f(Bk ∩ A) +

k−1∑
i=1

f(Bi ∩ A) ≤f(Bk) + f

(
A ∪

k−1⋃
i=1

Bi

)

+
k−1∑
i=1

f(Bi ∩ A)

≤ f(A) +
k∑
i=1

f(Bi).

Establishing our desired claim.
Continuing with the proof of the proposition, we fix a partition β = {B1, .., Bn}.

Up to relabeling we may assume that A ∩Bi 6= ∅ for precisely those i with 1 ≤ i ≤ k.
We have that

f

(
A ∪

k⋃
i=1

Bi

)
+

k∑
i=1

f(Bi ∩ A) ≤ f(A) +
k∑
i=1

f(Bi).

Adding
(∑

j=k+1 f(Bj)
)

+
∑

x∈X\A f({x}) to both sides we get

f̂(πXA ∨ β) + f̂(πXA ∧ β) ≤

(
f

(
k⋃
i=1

Bi

)
+
∑
j=k+1

f(Bj)

)
+ ∑

x∈X\A

f({x}) +
k∑
i=1

f(Bi ∩ A)


≤

f(A) +
∑

x∈X\A

f({x})

+
n∑
i=1

f(Bi)

≤ f̂(πXA ) + f̂(β).

As we will see one consequence of the preceding proposition is that the collection
of partitions α = {A1, .., An} of E which minimize

∑n
i=1 f(Ai) form a sublattice of

πE. Before we give this proof we introduce a convenient piece of notation.

Definition 3.2.6 (Lower Dilworth Truncation). If f : 2X → R is a submodular
function, then the Lower Dilworth Truncation of f is the function f∗ : 2X → R defined

f∗(A) = min

{
S∑
i=1

f(Ai)

∣∣∣∣∣ {A1, . . . , As} is a partition of A

}
.

Where f∗(∅) = 0 by convention.
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Proposition 3.2.7. If f : 2X → R is a submodular function, then the collection of
partitions α ∈ ΠX with

f̂(α) = f∗(X)

forms a sublattice of ΠX which we denote Πf .
In particular, there is a unique finest, πf0 , and a unique coarsest, πf1 , partition of

X with
f̂(πf0 ) = f∗(X) = f̂(πf1 ).

Proof. First, note that if χ = {A1, .., As} is any partition of X with f̂(χ) = f∗(X).
Then if αi is any partition of Ai we necessarily have that f̂(αi) ≥ f(Ai) since otherwise
χ′ = χ \ {Ai} ∪ αi, would be a partition with f̂(χ′) < f̂(χ). Consequently, if γ is
any partition of X we must have that f̂(γ ∧ πXAi) ≥ f̂(πXAi).

Applying this, we see that if α = {A1, .., As} and β = {B1, . . . , Bt} are in Πf , we
see by proposition 3.2.4 that f̂(β ∨πXAi) + f̂(β ∧πXAi) ≤ f̂(β) + f̂(πXAi). From this we
conclude the following two inequalities

f̂(β) ≤ f̂(β ∨ πXAi) ≤ f̂(β) + f̂(πXAi)− f̂(β ∧ πXAi) ≤ f̂(β) (3.2.7.1)

and

f̂(πXAi) ≤ f̂(β ∧ πXAi) ≤ f̂(β) + f̂(πXAi)− f̂(β ∨ πXAi) ≤ f̂(πXAi). (3.2.7.2)

The first inequality allows us to conclude that β ∨ πXAi ∈ Πf for any β ∈ Πf . Hence,
β ∨α = β ∨

(∨s
i=1 π

X
Ai

)
∈ Πf .

Similarly, for each Ai let λi = {Bj ∩ Ai | for all Bj ∈ β with Bj ∩ Ai 6= ∅}, so that

β ∧πXAi = π
X\Ai
0 ∪λi. Then as f̂(β ∧πXAi) = f̂(πxAi) = f̂(π

X\Ai
0 ) + f(Ai) we conclude

that f̂(λi) = f(Ai). Then

f̂(β ∧α) =
s∑
i=1

f̂(λi) =
s∑
i=1

f(Ai) = f∗(X)

so β ∧α ∈ Πf as well.

An important class of non-decreasing submodular functions are the integer poly-
matroids.

Definition 3.2.8. An integer polymatroid on a set E is a non-decreasing submodular
function f : 2E → Z, so that f(∅) = 0.

Proposition 3.2.9. Let f : 2X → Z be a non-decreasing submodular function, with
f(A) ≥ 0 for all non empty A ⊆ X. Then f∗ is an integer polymatroid where
Mf∗ = Mf .

Proof. First, we show that f∗ is increasing. If A ⊆ B ⊆ X and πB = {B1, .., Bk} is
any partition of B so that f̂(πB) = f∗(B). Then up to reordering we may assume
there’s an index ` so that that Bi ∩A 6= ∅ if and only if i ≤ `. Setting Ai = Bi ∩A for
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1 ≤ i ≤ ` we get a partition πA = {A1, .., A`}. Then as f is increasing and f(Bj) ≥ 0
all j we have

f∗(A) ≤
∑̀
i=1

f(Ai) ≤
∑̀
i=1

f(Bj) ≤
k∑
j=1

f(Bj) = f∗(B).

To show that f∗ is submodular we use condition (II) of definition 3.1.4 namely for
any set A ⊆ X and distinct x1, x2 ∈ X \ A that

f∗(A ∪ {x1, x2}) + f∗(A) ≤ f∗(A ∪ {x1}) + f∗(A ∪ {x2}).

To establish this, suppose that τ = {T0, . . . , Tm} is a partition of A ∪ {x1} and η is a
partition of A ∪ {x2} so that f̂(τ ) = f∗(A ∪ {x1}) and f̂(η) = f∗(A ∪ {x2}). We may
without loss of generality assume that x1 ∈ T0. Set τ ′ = {T ′0, .., T ′m} where T ′i = Ti for
i > 0 and T ′0 = T0 \ {x1}. Extending η to a partition η̃ of A ∪ {x1, x2} by η ∪ {x1}
we get by proposition 3.2.4,

f̂(η̃ ∨ πA∪{x1,x2}T0
) + f̂(η̃ ∧ πA∪{x1,x2}T0

) ≤ f̂(π
A∪{x1,x2}
T0

) + f̂(η̃)

adding (
∑m

i=1 f(Ti))− f(x0)− f(x1)− f̂(π
A\T ′0
0 ) to both sides gives

f∗(A ∪ {x1, x2}) + f∗(A) ≤ f̂(η̃ ∨ πA∪{x1,x2}T0
) + f̂(τ ′)

≤ f̂(τ ) + f̂(η) = f∗(A ∪ {x1}) + f∗(A ∪ {x2})

establishing the desired claim.

Proposition 3.2.10. If ρ : 2E → Z is an integer polymatroid and rkρ the rank
function of the induced matroid Mρ then for any X ⊆ E we have

rkρ(X) = min {|A|+ ρ(X \ A) |A ⊆ X}

Proof. Let rkρ denote the rank function of Mρ and define r : 2E → Z via the proposed
formula r(X) := min {|A|+ ρ(X \ A) |A ⊆ X}. From the definition we see for any
subset I ⊆ E that r(I) = |I| if and only if I ∈ I(ρ).

Furthermore, we see that r is increasing, since if X ⊆ Y and r(Y ) = |Y \B|+ρ(B)
then r(X) ≤ |X \B|+ ρ(X ∩B) ≤ r(Y ). Lastly by definition we have 0 ≤ r(A) ≤ |A|
for all subsets A Hence, if we show that r is submodular we see that r is the rank
function of a matroid on E call it Mr. Since Mr and Mρ would necessarily have the
same independence sets, we would conclude that Mr = Mρ and so r = rkρ as desired.

The proof of submodularity is relatively straightforward, though it requires the
following set theoretic identities whose proofs we omit. Given sets X, Y,A,B with
A ⊆ X and B ⊆ Y the following identities hold where t denotes disjoint union

(Id. 1) (X \ A) ∪ (Y \B) = [(X ∪ Y ) \ (A ∪B)] t [A ∩ (Y \B)] t [B ∩ (X \ A)]

(Id. 2) (X ∩ Y ) \ (A ∩B) = [(X \ A) ∩ (Y \B)] t [A ∩ (Y \B)] t [B ∩ (X \ A)]

21



Using these identities we see that

|X \ A|+ |Y \B| = |(X \ A) ∪ (Y \B)|+ |(X \ A) ∩ (Y \B)|
= |(X ∪ Y ) \ (A ∪B)|+ |(X ∩ Y ) \ (A ∩B)|.

Now for subsets X, Y ⊆ E find A ⊆ X and B ⊆ Y so that r(X) = |X \A|+ ρ(A)
and r(Y ) = |Y \B|+ρ(B). Then by submodularity of ρ we have ρ(A∪B)+ρ(A∩B) ≤
ρ(A) + ρ(B). Adding |(X ∪ Y ) \ (A ∪B)|+ |(X ∩ Y ) \ (A ∩B)| = |X \ A|+ |Y \B|
to both sides gives

r(X ∪ Y ) + r(X ∩ Y ) ≤ |(X ∪ Y ) \ (A ∪B)|+ |(X ∩ Y ) \ (A ∩B)|+
ρ(A ∪B) + ρ(A ∩B)

≤ |X \ A|+ |Y \B|+ ρ(A) + ρ(B)

≤ r(X) + r(Y )

.

Establishing that r is submodular and the proof of the theorem.

The previous two theorems combine to give the following result.

Corollary 3.2.11. Let f : 2E → Z be a non-decreasing submodular function, and let
rkf : 2E → Z denote the rank function of the matroid M(f). Then for any X ⊆ E we
have that

rkf (X) = min

{
|X0|+

s∑
i=1

f(Yi)

}
where the minimum is taken over all collections of subsets where {Y1, .., Ys} is a
partition of X \X0.

Remark 3.2.12. Note X0 may be empty so {X0, Y1, .., Ys} does not necessarily form a
partition of X.

Fix a non-decreasing submodular f : 2E → Z. It turns out that any collection of
subsets E0, A1, .., An ⊆ E where α = {A1, .., An} forms a partition of E \ A0 and

rkf (E) = |E0|+ f̂(α)

contains lots of structural information about the induced matroid Mf . In particular,
one can achieve the following characterization of basis.

Proposition 3.2.13. Let f : 2E → Z be a non-decreasing submodular function and
E0 ⊆ E a subset and α = {A1, .., An} a partition of E \ E0 with

rkf (E) = |E0|+ f̂(α).

Then B ⊆ E is a basis of Mf if and only if E0 ⊆ B and for each i ∈ {1, .., n} the set
B ∩ Ai is independent in Mf with

|B ∩ Ai| = f(B ∩ Ai) = f(Ai).
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Proof. [⇒] First suppose B ⊆ E is a basis of Mf . Define B0 = |E0∩B| and Bi = B∩Ai
for 1 ≤ i ≤ n. Then |B0| ≤ |E0| as each Bi is independent and f is non-decreasing we
have |Bi| ≤ f(Bi) ≤ f(Ai). Then

|B| = |B0|+
n∑
i=1

|Bi| ≤ |B0|+
n∑
i=1

f(Bi) ≤ |E0|+
n∑
i=1

f(Ai) = rkf (E) = |B|.

We conclude that B0 = E0 and |Bi| = f(Bi) = f(Ai).
[⇐] For this direction suppose B ⊆ E with E0 ⊆ B and assume each Bi := B ∩Ai

is independent with f(Bi) = f(Ai) = |Bi|. Then |B| = |E0|+
∑n

i=1 |Bi| = rkf (E), so it
suffices to show that B is independent. Note it suffices to show that rkf (E) = rkf (B).
If note there would be some e ∈ E \ B so that rkf(B ∪ {e}) > rkf(B). However,
each such e is contained in some Ai. Noting that |Bi| = rkf(Bi) < rkf(B ∪ {e}) ≤
rkf (Ai) ≤ f(Ai) = |Bi| gives our contradiction. Thereby establishing the result.

In order to give a stronger interpretation of the pairs (E0,α) with rkf(E) =

|E0|+ f̂(α). We recall another piece of terminology from matroid theory.

Definition 3.2.14 (Direct Sums). If M is a matroid and µ = {M1, ..,Mn} is a
partition of the ground set. Giving each Mi the matroid structure induced from M ,
we say that M is a direct sum of M1, ..,Mn and write

M = ⊕ni=1Mi

if either of the following equivalent conditions holds.

(1) A subset I ⊆M is independent if and only if each I ∩Mi is independent.

(2) Given A ⊆M , rkM(A) =
∑n

i=1 rkM(A ∩Mi).

Proposition 3.2.15. Let f : 2E → Z be a non-decreasing submodular function. Given
E0 ⊆ E and α = {A1, .., An} a partition of E \E0 so rkf (E) = |E0|+ f̂(α). We have
that each e ∈ E0 is a coloop of Mf meaning for each X ⊆ E not containing e we
have rkf (X ∪ {e}) = 1 + rkf (X). Furthermore,

Mf = E0 ⊕

(
n⊕
i=1

Ai

)
.

Proof. Let X ⊆ E be any set not containing e. Let I ⊆ X be an independent subset of
X which spans X. Extending I to a basis B ⊇ I of Mf we know by proposition 3.2.13
that e ∈ I and so {e} ∪ I is independent. Hence,

rkf (X) + 1 ≥ rkf ({e} ∪X) ≥ rkf ({e} ∪ I) = |I ∪ {e}| = rkf (X) + 1.

Establishing that rkf ({e} ∪X) = rkf (X) + 1.
Continuing to the proof that M = E0 ⊕ (

⊕n
i=1Ai), we use the independent subset

criterion. If I ⊆ E is a subset so that I ∩Ai is independent for 1 ≤ i ≤ n then we can
extend each I ∩Ai to an independent subset Bi ⊆ Ai with rkf (Bi) = rkf (Ai) = f(Ai).
Then by proposition 3.2.13 B = E0 ∪

⋃n
i=1 Bi is a basis of M so in particular I ⊆ B

is independent.
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3.3 Special Submodular Functions coming from Matroids

Fix a matroid M on a base set E, with rank function rk : 2E → Z. In this section we
study increasing submodular functions of the form

fk,p(X) = k rk(X)− p.

For the rest of the chapter we are interested in the case where k and p are nonnegative
integers where k > p. In this section we take k and p to be arbitrary real numbers
unless specified otherwise.

The main result of this section is a generalization of the following classical result
of Edmonds.

Theorem 3.3.1. Fix an integer k ≥ 0. Then there exists a partition I1 t . . . t IK of
a matroid M into independent k independent subsets if and only if for all A ⊆M we
have

|A| ≤ k rk(M).

Our generalization results in a characterization of those matroids M where for all
nonempty A ⊆M we have

|A| ≤ k rk(A)− p.

If k and p are integers we denote by Mk,p the induced matroid Mfk,p . We note in
this case that unless k > p then rank(Mk,p) = 0.

We similarly use the notation Πk,p to denote the sublattice Πfk,p of the partition
lattice ΠE.

Proposition 3.3.2. Let k, p, λ be real numbers with λ > 0 then

Πk,p = Πλk,λp.

In particular, if k and p are positive then Πk,p = Π1,p/k = Πk/p,1.

Proof. This follows since λfk,p = fλk,λp and for any submodular function g

min

{
n∑
i=1

λg(Ai)

∣∣∣∣∣ {A1, .., An} is a partition of E

}

= λmin

{
n∑
i=1

g(Ai)

∣∣∣∣∣ {A1, .., An} is a partition of E

}
.

Proposition 3.3.3. If r1, r2 are postive real numbers with 0 < r2 < r1 then for any
α1 ∈ Πr1,1 and any α2 ∈ Πr2,1 we have

α2 � α1.
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Remark 3.3.4. We note that above result can be easily shown to follow from the results
of [Nar91], which in fact proofs an analogous result replacing rk with any submodular
function µ. We state it in this form for convenience of exposition.

Proof of proposition 3.3.3. Let g1 = fr1,1 and g2 = fr2,1. Given any block B of α2 we
know that {B} minimizes ĝ2 among partitions of B, and more generally

ĝ2(πEB) ≤ ĝ2(πEB ∧ ε)

for any partition ε of E. More specifically if β = {B1, .., Bk} is a partition of B then(
k∑
i=1

rk(B1)

)
− rk(B) ≥ k − 1

r2

.

Continuing to the proof of the statement, still letting B be an arbitrary block
of α2. We note that it suffices to show that B is contained in some block of α. By
proposition 3.2.4 we see that

ĝ1(α1) + ĝ1(πEB) ≥ ĝ1(πEB ∧α) + ĝ1(πEB ∨α).

Adding (ĝ2 − ĝ1)(πEB) = (r2 − r1)r̂k(πEB) to both sides we see

ĝ1(α1) + ĝ2(πEB) ≥ ĝ2(πEB ∧α) + ĝ1(πEB ∨α) + (r1 − r2)
(

r̂k(πEB)− r̂k(πEB ∧α1)
)
.

As ĝ1(α) ≤ ĝ1(πEB ∧α) then we have

ĝ2(πEB) ≥ ĝ2(πEB ∧α) + (r1 − r2)
(

r̂k(πEB)− r̂k(πEB ∧α1)
)
.

As rk is subadditive and r1 > r2 the above inequality says that ĝ2(πEB) ≥ ĝ2(πEB ∧α)

with equality if and only if r̂k(πEB)− r̂k(πEB ∧α1) = 0.

Yet from our earlier discussion ĝ2(πEB) ≤ ĝ2(πEB ∧α), so r̂k(πEB)− r̂k(πEB ∧α1) = 0.
Letting β be the partition of B induced by α1 ∧ πEB we see that

0 = r̂k(πEB)− r̂k(πEB ∧α1) = r̂k(β)− rk(B) ≥ |β| − 1

r2

.

so |β| − 1 = 0, and consequently B is contained in some block of α.

Proposition 3.3.5. For any positive integers k, p with k > p if α = {A1, .., An} ∈
Πk,p, then each Ai is a flat in M . Furthermore for each J ⊆ {1, .., n} we have

(|J | − 1)
p

k
≥

(∑
j∈J

rk(Aj)

)
− rk

(⋃
j∈J

Aj

)
.

Consequently, we have rk(Ai ∪ Aj) = rk(Ai) + rk(Aj) for any distinct blocks Ai and
Aj.
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Proof. First for any collection of subsets J ⊆ {1, 2, . . . , n} define AJ =
⋃
j∈J Aj.

As f̂k,p(α) = f∗(E) we have f̂k,p(α) ≤ f̂k,p(α ∨ πXAJ ), cancelling like terms reveals
fk,p (AJ) ≥

∑
j∈J fk,p(Aj). Using the formula fk,p(A) = k rk(A)− p we see that

(|J | − 1)
p

k
≥

(∑
j∈J

rk(Aj)

)
− rk

(⋃
j∈J

Aj

)
.

If J = {i, j}, and k > p then this becomes

1 >
p

k
≥ rk(Ai) + rk(Aj)− rk(Ai ∪ Aj).

As rk(Ai) + rk(Aj) ≥ rk(Ai ∪Aj) we conclude that rk(Ai) + rk(Aj) = rk(Ai ∪Aj).

Proposition 3.3.6. Let M be a matroid and fix integers k > p > 0. Let Mk,p denote
the matroid induced by fk,p(A) = k rkM(A)− p. Then

rank(Mk,p) ≤ rank(Mk−1,p−1) + rkM(E)− 1.

Proof. Let E0, A1, .., An ⊆ E be subsets so α = {A1, .., An} is a partition of E \ E0

and

rkMk−1,p−1
(E) = |E0|+

n∑
i=1

[k rkM(Ai)− p] .

Let I be a basis of Mk−1,p−1 and extend it to a basis B of Mk,p. Letting X = B \ I
it suffices to show that |X| ≤ rkM (E)− 1. By proposition 3.2.13, we have E0 ⊆ I ⊆ B
and so X ⊆

⋃n
i=1Ai. Hence, let Xi = X ∩ Ai, then

|B ∩ Ai| = |Xi|+ |I ∩ Ai| = |Xi|+ fk−1,p−1(Ai) ≤ fk,p(B ∩ Ai).

Therefore, |Xi| ≤ fk,p(B ∩ Ai)− fk−1,p−1(Ai) ≤ rkM(Ai)− 1.
Additionally, applying the inequality from the previous proposition we have

n∑
i=1

(|Xi|+ 1)− rkM(E) ≤

(
n∑
i=1

rkM(Ai)

)
− rkM

(
n⋃
i=1

Ai

)
≤ (n− 1)

p

k
.

So |X| + n − rkM(E) ≤ (n − 1) p
k

or |X| + 1 ≤ rkM(E) + (n − 1)
(
p
k
− 1
)
. As p

k
< 1

we conclude that |X| ≤ rkM(E)− 1 as desired.

There is a generalization of theorem 3.3.1 due to Edmonds and Fulkerson [EF65,
Theorem 1c], which we recall below.

Theorem 3.3.7. Given matroids M1, . . . ,Mk on a ground set E with rank functions
rk1, . . . , rkk, there is a partition E = I1 t · · · t Ik such that each set Ij is independent

in Mj if and only if, for each subset A ⊆ E, one has |A| ≤
∑k

j=1 rkj(A).
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Given the simplicity of proposition 3.3.6, it natural to ask if their is a generalization
of proposition 3.3.6 to the case where fk,p(A) = k rk(A)−p is replaced with a function

of the form F (A) = −p+
∑k

i=1 rkk(A). If a generalization is possible then much of what
follows could almost certainly be similarly generalized, including a version of Segre
Bound to mixed degrees. We note however that a generalization of proposition 3.3.6
where f is an arbitrary increasing submodular function is not possible. Namely
there exists increasing submodular functions f, g : 2E → Z with f(A) and g(A) both
nonnegative where rank(Mf+g) > rank(Mf ) + g(E).

Example 3.3.8. Let g be the rank function of the uniform rank 1 matroid on a set E.
Let f(A) = rkM (A)− 1 where rkM is the rank function of a matroid having rank ≥ 2.
Then for all nonempty A ⊆ M we have f(A) + g(A) = rkM(A). Yet rank(Mf) = 0.
Therefore,

rank(Mf+g) = n > rank(Mf ) + g(E) = 1

.

Despite the above example we close noting, that rank(Mf+g) ≥ rank(Mf ) + g(E)
does hold if f and g are integer polymatroids. However, in [Oxl11][Exercise 12.3] it
is shown that if f and g are integer polymatroids then rank(Mf+g) ≤ rank(Mf) +
rank(Mg) ≤ rank(Mf) + g(E). It is in fact further shown that Mf+g = Mf ∨Mg

where ∨ denote the operation of matroid union. Here Mf ∨Mg is the matroid whose
independence sets are those of the form I = If ∪ Ig where If ∈ I(f) and Ig ∈ I(g).

We now recall a few modifications which can be made to any matroid M .

Definition 3.3.9. Let M be a matroid on E.
(i) Suppose M is a submatroid of a matroid M̃ on Ẽ. For any e ∈ Ẽ \ E, define

a matroid M/e on E by the rank function rkM/e(A) = rkM̃(A + e) − 1 for subsets
A ⊆ E. It is called an elementary quotient of M . Note that the independent sets of
M/e are the independent sets of M whose span does not contain e.

(ii) Let S be any subset of E. Realize the disjoint union E t S as (E, 0) ∪ (S, 1).
Denote by M+S the matroid whose independent sets are of the form (I1, 0) ∪ (I2, 1)
with rkM (I1 ∪ I2) = |I1|+ |I2|. The matroid M+S is called the parallel extension of M
by S.

Using theorem 3.3.7 we can obtain a corollary of proposition 3.3.6.

Corollary 3.3.10. Let M̃ be a matroid on Ẽ 6= ∅, and let M be the submatroid
induced on a subset E 6= ∅ of Ẽ. Assume that, for non-negative integers k and p and
each non-empty subset A ⊆ E, one has

|A| ≤ (k + 1) · rkA− (p+ 1).

Then, for any e ∈ Ẽ, there is an independent set I ⊂ E such that e /∈ Cl(I) and

|B| ≤ k · rk(B)− p

for each non-empty subset B ⊆ E − I.
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Proof. Consider the function f : 2E → Z defined by f(A) = k · rk(A)− p, and denote
the submatroid of M̃ induced on E by M .

Let A 6= ∅ be any subset of E. Applying Proposition 3.3.6 to the submatroid of
M induced on A, we get rkA(f)(A) ≥ |A| − rk(A) + 1, and so

|A| ≤ rk(A) + rkA(f)(A)− 1 ≤ rk(A) + rkM(f)(A)− 1. (3.3.10.1)

We now consider two cases.

Case 1 : Suppose e is not in E. Consider the elementary quotient M/e on E. By
definition, for each subset A ⊆ E, one has rkM/e(A) = rkM̃ (A+ e)− 1. It follows that
rkM/e(A) ≥ rk(A)− 1. Hence, Equation (3.3.10.1) gives

|A| ≤ rkM/e(A) + rkM(f)(A).

Using Theorem 3.3.7, we conclude that there is a decomposition E = I t J such that
I is independent in M/e and J is independent in M(f). Be definition of M/e, the
span of I does not contain e. Therefore, E = I t J is a partition with the required
properties because, for each subset B 6= ∅ of J , one has

|B| ≤ f(B) = k · rk(B)− p

as J is independent in M(f).

Case 2 : Suppose e is in E. Then consider first the parallel extension M+{e} of
M on the set (E, 0) ∪ {(e, 1)}. Second, passing to an elementary quotient of M+{e},
we get a matroid M+{e}/(e, 1) on the ground set (E, 0). To simplify notation, let us
denote the latter matroid by M+e/e and identify its ground set with E. Thus, we get
for A ⊆ E that

rkM+e/e(A) = rkM+{e}((A, 0) ∪ {(e, 1)})− 1 = rk(A+ e)− 1 ≥ rk(A)− 1.

Now we conclude as in Case 1, using M+e/e in place of the matroid M/e.

We are now ready to state the main theorem of this section. Before stating it
we discuss it in the context of Edmond’s Matroid Partition Theorem. If M is any
matroid so that for all nonempty A ⊆ M we have that |A| ≤ k rk(M)− p. Then it
is a corollary of Edmond’s Theorem, that if N ⊇ M is another loopless Matroid so
|N \M | ≤ p then there is a partition of N into k independent sets.

It can further be shown using theorem 3.3.7 that if N \M = {n1, .., np} then there
is a partition of M into independent subsets sets I1, .., Ik so that Ij ∪ {nj} is also
independent for all j ≤ k. However, this statement ends up not being strong enough
for the algebraic applications we have in mind. In rough terms our statement below
says we can in fact build this partition iteratively, so that for t ≤ p the sets I1, .., It
depend only the matroid M ∪{n1, .., nt}. In particular the sets I1, .., It can be choosen
independently of nt+1, .., nk.

Theorem 3.3.11. Let M̃ be a matroid on Ẽ 6= ∅, and let k and p be non-negative
integers. Assume there is a subset E 6= ∅ of Ẽ such that

|A| ≤ k · rkM̃ A− p
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for each non-empty subset A ⊆ E, and fix an integer q with 0 ≤ q ≤ p. Then, for each
q-tuple (e1, . . . , eq) ∈ Ẽq, there are disjoint independent sets Ĩ1, . . . , Ĩq of E with the
following property: If (a1, . . . , ap) ∈ Ẽp is a p-tuple whose first q entries are e1, . . . , eq,
that is, ai = ei if 1 ≤ i ≤ q, then there is a partition E = I1t · · · t Ik into independent
sets such that aj /∈ Cl(Ij) whenever 1 ≤ j ≤ p and Ij = Ĩj for j = 1 . . . , q.

Proof of Theorem 3.3.11. If p = 0, then the assertion is true by Edmond’s criterion
(theorem 3.3.1).

Let p ≥ 1. First, we construct a suitable partition for a fixed p-tuple (a1, . . . , ap) ∈
Ẽp step by step. Consider a1 ∈ E. By Corollary 3.3.10, there is a partition E = I1tJ1

such that I1 is independent in M , e1 /∈ Cl(I1), and |B| ≤ (k − 1) · rk(B) − (p − 1)
for each non-empty subset B ⊆ J1. Thus, we are done if p = 1. If p ≥ 2, we apply
Corollary 3.3.10 again, this time to a2 ∈ E and the submatroid of M induced on J1.
After p applications of Corollary 3.3.10, we obtain a partition E = I1 t . . . t Ip t Jp
such that I1, . . . , Ip are independent in M , aj is not in the span of Ij for each j, and
|B| ≤ (k − p) · rk(B) for each non-empty subset B ⊆ Jp. Applying theorem 3.3.1 to
the submatroid on Jp, we get a partition Jp = Ip+1 t . . . t Ik into independent sets of
M . This produces a desired partition for a fixed (a1, . . . , ap).

Second, we note that in the above construction the first p independent sets
are obtained sequentially. Once the sets I1, . . . , Ij−1 have been found, the set Ij is
determined in the complement of I1 t . . . t Ij−1. It depends on the choice of aj, but
not on the elements aj+1, . . . , ak. This shows in particular that the sets I1, . . . , Iq are
independent of the elements aq+1, . . . , ak. Thus, the argument is complete.

Remark 3.3.12. (i) Using the notation of the proof of Corollary 3.3.10, the partition
result in Theorem 3.3.11 can be also stated as follows: There is a partition E =
I1 t · · · t Ik such that Ip+1, . . . , Ik are independent in M and, for each j = 1, . . . , p,
the set Ij is independent in M/aj if aj /∈ E and independent in M+aj/aj if aj ∈ E,
respectively.

(ii) If the ground set E of a matroid can be partitioned into k independent sets,
then Edmond’s criterion (theorem 3.3.1) implies that there is an independent set
I such that |A| ≤ (k − 1) · rkA for each subset A of E \ I. Thus, for a matroid
satisfying the assumptions of Theorem 3.3.11, it is natural to wonder if there is an
independent set I of E such that, for each e ∈ I and each A ⊂ (E \ I) + e, one
has |A| ≤ (k − 1) · rkM̃ A − p. However, this is not always possible, not even for
representable matroids, see Example 4.2.8.

Copyright c© William Trok, 2020.
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Chapter 4 The Segre Bound

In this section we give an application of the results from the previous section on
Matroids to the study of fat points. Specifically we establish a conjectured bound on
the regularity of an arbitrary fat point scheme. This chapter has appeared in [NT20].

For any set of fat points Z =
∑s

i=1miPi ⊆ P1
K, we saw in proposition 2.4.2 that

r(Z) = −1 +
∑s

i=1mi. However, the case even for P2 is quite complicated. One of the
earliest results in this area was a result due to Beniamino Segre

Theorem 4.0.1. [Seg61] For Z =
∑s

i=0miPi ⊆ P2 a general set of fat points,

r(Z) ≤ max

{
m1 +m2 − 1,

⌈
−1 +

∑s
i=0mi

2

⌉}
.

This result was then subsequently generalized in a few directions. It was shown by
Catalisano [Cat91] that the same bound holds as long as the points are in linearly
general position, a concept we recall below.

Definition 4.0.2 (Linearly General Position). We say Z =
∑n

i=0 miPi ⊆ Pn is in
linearly general position if every hyperplane H ⊆ Pn contains at most n points of
Supp(Z).

In [CTV93] a generalized bound was given for the regularity fat points in linearly
general position in Pn. This bound was named the Segre Bound in honor of the
original result.

Theorem 4.0.3. [CTV93] Let Z =
∑s

i=0miPi ⊆ Pn be a set of points in linearly
general position. Further suppose that m0 ≥ m1 ≥ m2 ≥ . . . ≥ ms then

r(Z) ≤ max

{
m0 +m1 − 1,

⌈
−1 +

∑s
i=0mi

n

⌉}
Inspired by this result it was conjectured by Trung (as reported in [Thi00]) and,

independently, by Fatabbi and Lorenzini in [FL01] that a generalized version of this
bound holds for arbitrary sets of fat points. Namely, that r(X) ≤ SegX, where SegX
is

SegX := max

{⌈−1 +
∑

Pi∈Lmi

dimL

⌉
| L ⊆ Pn a linear subspace with dimL > 0

}
.

The generalized conjecture had been shown in rather few cases, namely

• for any fat point subscheme of P2 in [94] and [Thi99], independently,

• for any fat point subscheme of P3 in [FL01] and [Thi00], independently, and

• if s ≤ n+ 3 and the s points span Pn in [BDP16].

30



Furthermore, there are partial results for certain fat point subschemes of P4 (see
[Bal15a; Bal15b]) and for some fat point subschemes of Pn supported at at most 2n−1
points (see [CFL16]). In the first section of this chapter we establish the conjecture in
full generality, that is, we show r(X) ≤ SegX for each fat point subscheme X of some
projective space. We then continue to give a further generalization which improves
the bound in some cases, for instance in the case of general points. The Segre Bound
cannot be improved in general (see Corollary 4.3.5).

4.1 Inductive Techniques

We now begin considering zero-dimensional subschemes of projective space. In this
section we collect some facts that are used in subsequent parts of this chapter.

Let K be an arbitrary field, and let X be any projective subscheme of some pro-
jective space Pn = PnK . For short, we often write H1(IX(j)) instead of H1(Pn, IX(j))
for the first cohomology of its ideal sheaf IX . We use R = K[x0, . . . , xn] to denote
the coordinate ring of Pn.

Lemma 4.1.1. Let X ⊂ Pn be a zero-dimensional subscheme.

(a) Then r(X) = min{j ∈ Z | H1(IX(j)) = 0}.

(b) For any zero-dimensional subscheme Z of X, one has that r(Z) ≤ r(X).

Proof. These results are known to specialists. We include a proof for the convenience
of the reader. Part (a) is a consequence of

hX(j)− degX = − dimK H
1(IX(j)).

This relation also shows that hX(j) ≤ degX for all integers j and that equality is true
if and only if j ≥ r(X). Hence, the exact sequence 0→ IZ/IX → R/IX → R/IZ → 0
gives that hX(j) = degX implies hZ(j) = degZ. Now (b) follows.

A special case of lemma 4.1.1(b) has been shown in [Thi16, Proposition 3.2]. We
also need the following fact about the Castelnuovo-Mumford regularity, which can be
found, e.g., in [Eis05, Corollary 4.4].

Lemma 4.1.2. If A 6= 0 is an artininan graded K-algebra, then one has

reg(A) = max{j | [A]j 6= 0}.

The following observation is an extension of [CTV93, Lemma 1].

Lemma 4.1.3. Let Z ⊂ Pn be a zero-dimensional scheme, and let P ∈ Pn be a point
that is not in the support of Z. Then one has, for every integer m ≥ 1,

r(Z +mP ) = max{m− 1, r(Z), 1 + reg(R/(IZ + ImP ))}.
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Proof. The argument is essentially given in [CTV93]. We recall it for the reader’s
convenience.

Consider the Mayer-Vietoris sequence

0→ R/IZ+mP → R/IZ ⊕R/ImP → R/(IZ + ImP )→ 0.

Since deg(Z+mP ) = degZ+deg(mP ) and r(mP ) = m−1, it shows that hZ+mP (j) =
deg(Z+mP ) if and only if hZ(j) = degZ, hmP (j) = degmP , and [R/(IZ+ImP )]j = 0.
Since R/(IZ + ImP ) is artinian we conclude by Lemma 4.1.2.

The following result follows from a standard residual sequence (see [FL01, Theorem
3.2] for a special case).

Lemma 4.1.4 (Inductive Technique 1). Let Z ⊂ Pn be a zero-dimensional scheme,
and let F ⊂ Pn be a hypersurface defined by a form f ∈ R. Denote by ∅ 6= W ⊂ Pn
the residual of Z with respect to F (defined by IZ : f). If Z ∩ F 6= ∅, then one has

r(Z) ≤ max{r(W ) + degF, r(Z ∩ F )}.

Proof. Let d = degF . Multiplication by f induces the following exact sequence of
ideal sheaves

0→ IW (−d)→ IZ → IZ∩F → 0.

Its long exact cohomology sequence gives, for all integers j,

H1(IW (j − d))→ H1(IZ(j))→ H1(IZ∩F (j)).

Now the claim follows because r(Z) = min{j ∈ Z | H1(IZ(j)) = 0} (see Lemma
4.1.1).

If a hypersurface F is defined by a form f , then we also write Resf (Z) for ResF (Z).
For induction on the multiplicity of a point in the support of a fat point scheme,

the statement below will be useful.

Lemma 4.1.5 (Inductive Technique 2). Let Z =
∑s

i=1miPi ⊂ Pn be a fat point
scheme, and let P ∈ Pn be a point that is not in the support of Z. Fix integers b,
k and m with 0 ≤ k ≤ m − 1 ≤ b. Assume there are polynomials g1, .., gt ∈ IkP and
f1, .., ft ∈ R so that [IkP ]b−m+k+1 = [(g1, .., gt) + Ik+1

P ]b−m+k+1, fi(P ) 6= 0 and

r(Resgifi(Z +mP )) ≤ b− deg(gifi)

for all i ∈ {1, 2, . . . , t}. If r(Z + (m− 1)P ) ≤ b, then r(Z +mP ) ≤ b.

Proof. Note that it is enough to show [R/(IZ + ImP )]b = 0. Indeed, [R/(IZ + ImP )]b = 0
implies 1 + reg(R/(IZ + ImP )) ≤ b by Lemma 4.1.2. Furthermore, the assumption
r(Z + (m − 1)P ) ≤ b gives r(Z) ≤ b by Lemma 4.1.1(b). Since we also assume
m− 1 ≤ b, Lemma 4.1.3 shows r(Z +mP ) ≤ b.
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In order to prove [R/(IZ + ImP )]b = 0 observe that

dimK [R/(IZ + ImP )]b =
m−1∑
j=0

dimK [(IZ + IjP )/(IZ + Ij+1
P )]b.

By assumption and Lemma 4.1.1, we know r(Z + jP ) ≤ b if 0 ≤ j < m. Hence
Lemma 4.1.3 gives [IZ + IjP ]b = [R]b. It follows that

dimK [R/(IZ + ImP )]b = dimK [(IZ + Im−1
P )/(IZ + ImP )]b.

Thus, we are done once we have shown

[IZ + Im−1
P ]b = [IZ + ImP ]b. (4.1.5.1)

Let ` ∈ R be any linear form that does not vanish at P . Then (x0, . . . , xn) = (`, IP ).
Since Im−1

P is generated by polynomials of degree m−1, it follows that Equality (4.1.5.1)
is true if and only if

`b−m+1 · [Im−1
P ]m−1 ⊂ IZ + ImP . (4.1.5.2)

Observe that, for each i ∈ [t] = {1, 2, . . . , t}, the scheme Wi := Resgifi(Z +mP )) is
defined by IZ+mP : (gifi) and has multiplicity m− k at P because fi(P ) 6= 0 and gi
vanishes precisely to order k at P by assumption. Denote by Ji the homogeneous
ideal of Wi − (m− k)P . Thus, IWi

= Ji ∩ Im−kP . Hence, Lemma 4.1.3 gives

r(Wi) = max{m− k − 1, r(Wi − (m− k)P ), 1 + reg(R/(Ji + Im−kP ))}.

Since r(Wi) ≤ b− di by assumption, where di = deg(gifi), we get as above, for each
i ∈ [t],

0 = dimK [R/(Ji + Im−kP )]b−di =
m−k−1∑
j=0

dimK [(Ji + IjP )/(Ji + Ij+1
P )]b−di .

In particular, this yields [Ji + Im−k−1
P ]b−di = [Ji + Im−kP ]b−di . Letting D = b−m+k+ 1

we conclude

`D−di · [Im−k−1
P ]m−k−1 ⊂ Ji + Im−kP (4.1.5.3)

because D−di = b−di−m+k+1 ≥ 0. This latter estimate follows from (m−k)P ⊂ Wi,
which implies 0 ≤ m− k − 1 = r((m− k)P ) ≤ r(Wi) ≤ b− di (see Lemma 4.1.1).

Note that, for each i ∈ [t], one has Ji = IZ : (gifi). Using gi ∈ IkP this gives

gifi · (Ji + Im−kP ) ⊂ IZ + ImP .

Combined with Inclusion 4.1.5.3, we get

gifi`
D−di · [Im−k−1

P ]m−k−1 ⊂ IZ + ImP .
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Since f(Pi) 6= 0, possibly after rescaling, we may write fi = hi + `deg(fi) for some
hi ∈ IP . Substituting, we obtain,

gi(hi + `deg(fi))`D−di · [Im−k−1
P ]m−k−1 ⊂ IZ + ImP .

Now gihi ∈ Ik+1
P yields `D−deg(gi)gi · [Im−k−1

P ]m−k−1 ⊆ IZ + ImP . Furthermore, as
(Ik+1
p )(Im−k−1

P ) ⊆ ImP we can also conclude that

[(`D−deg(gi)gi) + Ik+1
P ]D · [Im−k−1

P ]m−k−1 ⊆ IZ + ImP , for each i ∈ [t]. (4.1.5.4)

Now note that as a R-module Ann(IkP/I
k+1
P ) = IP so IkP/I

k+1
p is a R/IP module. As

[R/Ip]d is spanned by `d for all d ≥ 0, and gi ∈ IkP then [(gi) + Ik+1
p ]d = [(`d−deg(gi)gi) +

Ik+1
P ]d for d ≥ deg(gi). By assumption g1, . . . , gt generate a ideal with [IkP ]D =

[(g1, . . . , gt) + Ik+1
p ]D. Since

[(g1, . . . , gt) + Ik+1
p ]D = [(`D−deg(g1)g1, . . . , `

D−deg(gt)gt) + Ik+1
P ]D,

we see in particular that `b−m+1[IkP ]k ⊆ [(`D−deg(g1)g1, . . . , `
D−deg(gt)gt) + Ik+1

P ]D, com-
bined with (4.1.5.4) this establishes the desired Containment (4.1.5.2).

4.2 Reduced Zero-dimensional Subschemes

We now establish the Segre bound for an arbitrary finite set of points. To this end we
use suitable vector matroids.

Recall that a vector matroid or representable matroid M over a field K is given
by an m× n matrix A with entries in K. Its ground set E is formed by the column
vectors of A, and the rank of a subset of E is the dimension of the subspace of Kn

they generate. Here we adapt this idea in order to use it in a projective space instead
of an affine space.

Definition 4.2.1. (i) For a point P of Pn and an integer m ≥ 1, denote by [P ]m an
(n+ 1)×m matrix whose m columns are all equal to a vector v ∈ Kn+1, where v is
any representative of the point P .

(ii) Let X =
∑s

i=1miPi ⊂ Pn be a fat point scheme. We write AX := ⊕si=0[Pi]
mi for

the concatenation of the matrices [Pi]
mi . Define the matroid of X on the column set EX

of AX , denoted MX , as the vector matroid to the matrix AX . Thus |VX | =
∑s

i=1mi.

Remark 4.2.2. (i) Since we are only interested in the span of a subset of columns, the
above definition does not depend on the choice of coordinate vectors for the points.
Abusing notation slightly, we will identify a non-zero vector of Kn+1 with a point in
Pn.

(ii) For consistency of notation, rk will always refer to rank in the matroid sense,
that is, to a dimension of a subspace of Kn+1, and dim will always refer to dimension
in Pn. Hence, if S is a subset of the column set EX , then rk(S) = 1 + dimPn Span(S).
Furthermore, we will use Cl to refer to the closure operator in a matroid and Span to
refer to the span of the points in Pn.
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Recall that the Segre bound of X =
∑s

i=1 miPi is

Seg(X) = max

{⌈
wL(X)− 1

dimL

⌉
| L ⊆ Pn a linear subspace with dimL > 0

}
,

where wL(X) =
∑

Pi∈Lmi is the weight of X|L.

Remark 4.2.3. In the literature the Segre bound has also been defined as

Seg(X) = max

{⌊
wL(X) + dimL− 2

dimL

⌋
| L ⊆ Pn a subspace with dimL > 0

}
.

Obviously, this is equivalent to our definition above.

Lemma 4.2.4. If X =
∑s

i=1 miPi is a fat point scheme whose support consists of
at least two distinct points, then mi ≤ Seg(X) for all i and Seg(X) ≥ mi + mj − 1
whenever i 6= j.

Proof. Let L be a line passing through two distinct points Pi and Pj in the support
of X. Then wL(X) ≥ mi +mj, which implies Seg(X) ≥ mi +mj − 1.

Remark 4.2.5. If X = m1P1 is supported at a single point, then r(X) = SegX = m1−1.

The following is the main result of this section.

Theorem 4.2.6. Let Z ⊂ Pn be a fat point scheme satisfying r(Z) ≤ Seg(Z). Then,
for every point P ∈ Pn that is not in the support of Z, one has r(Z+P ) ≤ Seg(Z+P ).

Proof. We want to use inductive technique 1. To this end, consider the matrix

A = AZ ⊕ [P ]B = ⊕si=1[Pi]
mi ⊕ [P ]B,

where B = Seg(Z + P ) and Z =
∑s

i=1miPi. Let M be the vector matroid on the
column set V of A. Set X = Z + P .

Consider any subset S of V . If P /∈ Span(S), then the definition of weight gives

|Cl(S)| = wSpan(S)(Z) = wSpan(S)(X).

If P ∈ Span(S), then wSpan(S)(X) = 1 + wSpan(S)(Z), and thus

|Cl(S)| = wSpan(S)(X) +B − 1.

In either case we have
|S| ≤ wSpan(S)(X) +B − 1.

Using rk(S) = 1 + dimPn S, the definition of B = Seg(X) yields, for any subset S ⊂ V
with rk(S) ≥ 2,

|S| −B
rk(S)− 1

≤
wSpan(S)(X)− 1

dim(Span(S))
≤ Seg(X) = B.
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It follows that
|S| ≤ rk(S) ·B.

This estimate is also true if rk(S) ≤ 1 as B ≥ mi for all i (see Lemma 4.2.4). Therefore
Corollary 3.3.1 gives that there is a partition of the column set V into B linearly
independent subsets I1, . . . , IB. Note that P ∈ Ij for each j ∈ {1, 2, . . . , B} as B
columns of the matrix A correspond to the point P . Thus, for each such j, there is a
hyperplane Hj such that

Span(Ij \ {P}) ⊂ Hj and P /∈ Hj.

It follows that the hypersurface F = H1 + · · · + HB does not contain P . However,
F does contain Z because any form defining F vanishes at each point Pj to order
at least mj as mj columns of A correspond to Pj. Hence we get ResF (X) = P and
X ∩ F = Z. Now Lemma 4.1.4 gives r(X) ≤ max{B, r(Z)} = B, as desired.

Corollary 4.2.7. If X is any reduced zero-dimension subscheme of Pn, then r(X) ≤
Seg(X).

Proof. This is true if X consists of one point (see Remark 4.2.5). Thus, we conclude
by induction on the cardinality of X using the above theorem.

We conclude this section with an example as promised in Remark 3.3.12(ii).

Example 4.2.8. Consider any integers k > p > 0, and let K be an infinite field. Let
L1, . . . , Lt ⊂ Kt−1 be t generic one-dimensional subspaces, where t ≥ k

p
+1. On each of

the lines choose generically k−p points. Let M be the vector matroid on the set E of all
these vectors. Then, one has for each non-empty subset A ⊂ E that |A| ≤ k · rkA− p.
Indeed, if A = E this follows because |E| = t(k− p) ≤ k · rkE − p = k · (t− 1)− p by
the assumption on t. If the rank of A is at most t− 2, then it contains at most rkA
of the lines L1, . . . , Lt, which implies |A| ≤ rkA · (k − p) ≤ k · rkA− p, as desired.

Assume now there is an independent I ⊂ E with at most t − 2 elements such
that for each non-empty subset B ⊂ E \ I one has |B| ≤ (k − 1) · rkB − p. Thus,
|B| ≤ k − 1 − p if B has rank one. Consider now B = E \ I. By assumption on
I, we have |B| ≥ t(k − p) − (t − 2) = t(k − p − 1) + 2. However, we also obtain
|B| =

∑t
i=1 |B ∩ Li| ≤ t(k − p− 1). This contradiction shows that M is a matroid as

desired in Remark 3.3.12(ii).

4.3 Arbitrary Fat Point Schemes

The goal of this section is to establish the conjecture by Trung, Fatabbi, and Lorenzini.
We also discuss the sharpness of the Segre bound and establish an alternate regularity
estimate.

We need one more preparatory result on the matroid introduced in Definition
4.2.1.

Lemma 4.3.1. Consider the vector matroid M to a fat point scheme Z =
∑s

j=1mjPj
on the column set EZ. Then, for every subset S ⊂ EZ with rkS ≥ 2, one has

|S| ≤ Seg(Z) · {rk(S)− 1}+ 1.
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Proof. Recall that rk(S) = dim(Span(S)) + 1 for any subset S ⊂ EZ . Moreover, one
has |S| ≤ |ClM(S)| = wL(Z), where L = Span(S). Hence, if rkS ≥ 2 we obtain

|S| − 1

rk(S)− 1
≤ wL(Z)− 1

dimL
≤ Seg(Z).

Now the claim follows.

The following result allows us to use induction on the cardinality of the support of
a fat point scheme.

Proposition 4.3.2. Let Z ⊂ Pn be a fat point scheme satisfying r(Z) ≤ Seg(Z).
Then, for every point P ∈ Pn that is not in the support of Z and every integer m ≥ 1,
one has r(Z +mP ) ≤ Seg(Z +mP ).

Proof. We want to apply Inductive Technique 2 to X = Z + mP , where Z =∑s
j=1mjPj. This requires some preparation. Consider the vector matroid associated

to the matrix
AZ = ⊕si=1[Pi]

mi

with column set EZ . Define another matroid M on EZ by setting the rank of any
subset S ⊆ EZ as rkM(S) = rk(S + P )− 1 = dim Span(S + P ). Thus, we get

rkM(S) ≥ dim Span(S) = rk(S)− 1.

In particular, a subset I of EZ is independent in M if and only if I + P is a linearly
independent subset of Pn. Notice that the matroid M is determined by Z and P only
and independent of the multiplicity of P in X. We now argue that, for every subset
S 6= ∅ of EZ , one has

|S| ≤ Seg(X) · rkM(S)− (m− 1). (4.3.2.1)

Indeed, given any subset S 6= ∅ of EZ , extend S by m copies of P to a subset S ′ of
EX . Then one has rkS ′ ≥ 2, and thus by applying Lemma 4.3.1 to S ′ we obtain

|S|+m =|S ′| ≤ Seg(X) · {rk(S ′)− 1}+ 1 = Seg(X) · rkM(S) + 1,

which completes the argument for Estimate (4.3.2.1).
We are now going to show the following key statement.

Claim: Given Z and P as above, suppose that there are integers σ and m ≥ 1
such that, for every non-empty subset S ⊆ EZ , one has

|S| ≤ σ · rkM(S)− (m− 1). (4.3.2.2)

Then there are t =
(
n+m−2
n−1

)
generators g1, . . . , gt of Im−1

P and degree σ −m+ 1 forms
f1, . . . , ft with fj(P ) 6= 0 such that

gjfj ∈ IZ+(m−1)P for j = 1, . . . , t. (4.3.2.3)
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To establish this claim, we use induction on m ≥ 1. Let m = 1. Then Assumption
(4.3.2.2) is also true for S = ∅. Hence Corollary 3.3.1 gives a partition EZ = I1t. . .tIσ
into independent sets of M . Thus, P is not in any Span(Ij), and so there are σ linear
forms `j such that `j(P ) 6= 0 and Ij ⊂ Hj, where Hj is the hyperplane defined by `j.
It follows that f = `1 · · · `σ is in IZ and f(P ) 6= 0, as desired.

Let m ≥ 2. Choose a point Q1 ∈ Pn \ {P}. Pass from the vector matroid

to the matrix AZ ⊕ [Q1] to a matroid M̃ on EZ ∪ {Q1} as for M above. That is,
rkM̃(S) = rk(S + P )− 1 = dim Span(S + P ) for any subset S ⊆ EZ ∪ {Q1}. Due to
Assumption (4.3.2.2) we can apply Corollary 3.3.10 to obtain a partition

EZ = I1 t J1,

where I1 is independent in M , Q1 /∈ Span(I1 + P ), and

|B| ≤ (σ − 1) · rkM(B)− (m− 2) (4.3.2.4)

for each subset B 6= ∅ of J1. Let W1 be the fat point scheme determined by J1, that
is, W1 =

∑s
j=1 njPj , where nj is the number of column vectors in J1 corresponding to

the point Pj. Estimate (4.3.2.4) shows that the induction hypothesis applies to W1.

Hence, there are u =
(
n+m−3
n−1

)
generators h

(1)
1 , . . . , h

(1)
u of Im−2

P and degree σ −m+ 1

forms q
(1)
1 , . . . , q

(1)
u with q

(1)
j (P ) 6= 0 such that h

(1)
j q

(1)
j ∈ IW1+(m−2)P for each j.

Since Q1 is not in the span of the linearly independent set I1 + P , there is a linear
form `1 such that `1(Q1) 6= 0 and I1 + P ⊂ H1, where H1 is the hyperplane defined

by `1. Taking into account that EZ = I1 t J1, it follows that `1h
(1)
j q

(1)
j ∈ IZ+(m−1)P

for each j.
Notice that the above construction of the forms h

(1)
1 , . . . , h

(1)
u , q

(1)
1 , . . . , q

(1)
u , and `1,

depending on the choice of Q1, works for any point in Pn \ {P}. Repeating it (n− 1)
more times by choosing alltogether points Q1, . . . , Qn ∈ Pn \ {P}, we obtain linear

forms `1, . . . , `n ∈ IP as well as n generating sets {h(i)
1 , . . . , h

(i)
u } of Im−2

P , and degree

σ −m+ 1 forms q
(i)
j with q

(i)
j (P ) 6= 0 such that

`ih
(i)
j q

(i)
j ∈ IZ+(m−1)P for all i = 1, . . . , n, j = 1, . . . , u. (4.3.2.5)

The forms h
(i)
1 , . . . , h

(i)
u , q

(i)
1 , . . . , q

(i)
u , and `i depend on the choice of the point Qi,

i = 1 . . . , n.
We now claim that by choosing the points Q2, . . . , Qn suitably we can additionally

achieve that the linear forms `1, . . . , `n are linearly independent. We show this
recursively. Let 2 ≤ i ≤ n and assume that points Q1, . . . , Qi−1 have been found such
that the linear forms `1, . . . , `i−1 are linearly independent. Let Hj be the hyperplane
defined by `j. Since dim(

⋂i−1
j=1Hj) ≥ 1, there is a point Qi in (

⋂i−1
j=1 Hj) \ {P}. By

construction of Hi, the point Qi is not contained in Hi. Thus, we get

dim
i⋂

j=1

Hj = dim
i−1⋂
j=1

Hj − 1 = n− (i− 1)− 1 = n− i.
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In particular, we have shown that dim(
⋂n
j=1Hj) = 0. Since each of the hyperplanes Hj

contains the point P , we conclude that the ideal of this point is IP = (`1, . . . , `n). Now

it follows that {`ih(i)
j | 1 ≤ i ≤ n, 1 ≤ j ≤ u} is a generating set of IP · Im−2

P = Im−1
P .

It is not minimal. However, it contains a minimal generating set {f1, . . . , ft) of Im−1
P ,

where each fk is of the form `ih
(i)
j . Setting gk = q

(i)
j , Containment (4.3.2.5) implies

the claim.

After these preparations we are ready to show r(Z +mP ) ≤ Seg(Z +mP ). We
use induction on m ≥ 1. If m = 1, then we are done by Theorem 4.2.6.

Let m ≥ 2. Estimate (4.3.2.1) shows that we can apply the above claim with
σ = Seg(X) and m being the multiplicity of P in X = Z +mP . Adopt the notation
of this claim. Since each form gj vanishes precisely to order m − 1 at P , it follows
that IZ+mP : fjgj = IP , and thus

r(Resgjfj(Z +mP )) = r(P ) = 0

for each j. Since Z + (m − 1)P is a subscheme of Z + mP , the definition of the
Segre bound implies Seg(Z + (m− 1)P ) ≤ Seg(Z +mP ) = Seg(X). By the induction
hypothesis on m, we know r(Z + (m − 1)P ) ≤ Seg(Z + (m − 1)P ), and so we
get r(Z + (m − 1)P ) ≤ Seg(X). Thus, applying Lemma 4.1.5 we conclude that
r(Z +mP ) ≤ Seg(X), as desired.

The regularity bound announced in the introduction follows now easily.

Theorem 4.3.3. If X =
∑s

i=1 miPi is any fat point subscheme of Pn, then r(X) =
reg(X)− 1 ≤ Seg(X).

Proof. This is true if X consists of one point (see Remark 4.2.5). Thus, we conclude
by induction on the cardinality of SuppX using the above proposition.

We conclude by discussing a modification of the above Segre bound. To this end
consider the d-th Veronese embedding vd : Pn → PN , where d ∈ N and N =

(
n+d
d

)
− 1.

We use it to compare the regularity indices of fat point schemes in Pn and PN ,
respectively.

Proposition 4.3.4. Let X =
∑s

i=1miPi be a fat point subscheme of Pn. Define a fat

point subscheme X̂ of PN by X̂ =
∑s

i=1mivd(Pi). Then one has

⌈
r(X)

d

⌉
≤ r(X̂).

Moreover, if both n = 1 and d(mj +mk) ≤ 2d− 2 +
∑s

i=1mi for all integers j, k

with 1 ≤ j < k ≤ s, then this is an equality and r(X̂) =
⌈
−1+

∑d
i=1mi
d

⌉
.

Proof. Let S = ⊕j∈N0 [R]jd be the d-th Veronese subring of R = K[x0, ..., xn]. It is a
polynomial ring in variables ya, where ya corresponds to the monomial xa = xa11 · · ·xann
of degree d. Consider the ring homomorphism ϕ : S → R that maps ya onto xa.
Observe that, for each point P ∈ Pn, one has ϕ(Ivd(P )) ⊂ IP . If follows that ϕ(IX̂) ⊂
IX , and so IX̂ ⊂ ϕ−1(IX). Furthermore, the ideal ϕ−1(IX) of S is saturated. Indeed, if
f ∈ S is a homogeneous polynomial that multiplies a power, say, the k-th power of the
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ideal generated by all the variables in S into ϕ−1(IX), then ϕ(f) · (x0, ..., xn)kd ⊂ IX .
Since IX is saturated, this implies f ∈ ϕ−1(IX), as desired.

Thus, the ideal ϕ−1(IX) is the homogenous ideal of a zero-dimensional subscheme
W ⊂ PN , and one has

H1(Pn, IX(j)) ∼= H1(PN , IW (jd)).

Hence, Lemma 4.1.1(a) implies r(W ) =
⌈
r(X)
d

⌉
. Since W is a subscheme of X̂, Lemma

4.1.1(b) gives r(W ) ≤ r(X̂), and now the first assertion follows.
In order to show the second claim, assume n = 1. Thus N = d, and Supp X̂

lies on a rational normal curve of Pd. It follows that the support of X̂ is in linearly
general position, that is, any subset of j + 1 ≤ d + 1 points span a j-dimensional
linear subspace of Pd. Therefore, a straightforward computation shows that the Segre
bound of X̂ is determined by the one-dimensional subspaces and Pd, that is,

Seg X̂ = max

{
mj +mk − 1,

⌈
−1 +

∑s
i=1mi

d

⌉
| 1 ≤ j < k ≤ s

}
.

Combining the assumption and Theorem 4.3.3, we obtain

r(X̂) ≤ Seg X̂ =

⌈
−1 +

∑s
i=1mi

d

⌉
.

Since X is a subscheme of P1, its homogeneous ideal is a principal ideal of degree∑s
i=1mi. Thus, r(X) = −1 +

∑s
i=1mi. Now the first assertion gives the desired

equality.

As a first consequence, we describe instances where the Segre bound in Theo-
rem 4.3.3 is sharp. The result extends [CTV93, Proposition 7].

Corollary 4.3.5. Let X ⊂ Pn be a fat point subscheme, and let L ⊂ Pn be a positive-

dimensional linear subspace such that SegX =
⌈
wL(X)−1

dimL

⌉
. If the points of SuppX

that are in L lie on a rational normal curve of L, then r(X) = SegX.

Proof. Consider the fat point subscheme Y =
∑

Pi∈LmiPi of X such that wL(X) =
wL(Y ). If dimL = 1, then wL(Y ) − 1 = r(Y ) ≤ r(X) ≤ wL(X) − 1, and thus the
claim follows.

Assume dimL ≥ 2. Considering lines through any two points in the support of X,

the assumption on L gives mj +mk − 1 ≤
⌈
wL(Y )−1

dimL

⌉
for all j < k. Hence, applying

Proposition 4.3.4 with X̂ = Y , we conclude r(Y ) =
⌈−1+

∑
Pi∈L

mi

dimL

⌉
=
⌈
wL(Y )−1

dimL

⌉
=

SegX. Since r(Y ) ≤ r(X), the desired equality follows by Theorem 4.3.3.

The second consequence of Proposition 4.3.4 is a generalized regularity bound.
Notice that the following result specializes to Theorem 4.3.3 if d = 1.
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Theorem 4.3.6. Given any scheme of fat points X =
∑s

i=1 miPi ⊆ Pn and any
integer d ≥ 1, the regularity index of X is subject to the bound

r(X) ≤ max

{
d ·
⌈ −1 +

∑
Pi∈Y mi

dimK [R/IY ]d − 1

⌉
| Y ⊆ SuppX and |Y | ≥ 2

}
.

Proof. Consider the d-th Veronese embedding vd : Pn → PN . As above, let R and S
be the coordinate rings of Pn and PN , respectively. Notice that the Segre bound of
X̂ =

∑s
i=1 mivd(Pi) is

Seg X̂ = max

{⌈
−1 +

∑
vd(Pi)∈Lmi

dimL

⌉
| L ⊆ PN linear, dimL ≥ 1

}
.

Consider a linear subspace L ⊂ PN for which the right-hand side above is maximal.
Set Y = {Pi ∈ SuppX | vd(Pi) ∈ L}. The assumption on L gives that Ŷ = vd(Y ) is
not contained in a proper subspace of L, that is, dimK [S/IŶ ]1 − 1 = dimL. Since
dimK [S/IŶ ]1 = dimK [R/IY ]d, Theorem 4.3.3 gives

r(X̂) ≤ Seg X̂ =

⌈ −1 +
∑

Pi∈Y mi

dimK [R/IY ]d − 1

⌉
.

Using r(X)
d
≤ r(X̂) due to Proposition 4.3.4, the claim follows.

If one has information on subsets of the points supporting a fat point scheme,
then the above result can be used to obtain a better regularity bound than the Segre
bound of Theorem 4.3.3. We illustrate this by a simple example.

Example 4.3.7. Let X =
∑s

i=1mPi ⊂ Pn be a fat point scheme, where all points have
the same multiplicity m. Suppose that the support of X consists of five arbitrary
points and

(
d+n
n

)
generic points for some d ≥ 5. Thus, s = 5 +

(
d+n
n

)
. Let L ⊂ Pn

be a linear subspace of dimension k with 1 ≤ k < n. Then |L ∩ SuppX| ≤ k + 4. It
follows that for sufficiently large d (or n)

SegX = max

{⌈
(k + 4)m− 1

k

⌉
,

⌈
[
(
d+n
n

)
+ 5]m− 1

n

⌉
| 1 ≤ k < n

}

=

⌈(
d+n
n

)
m+ 5m− 1

n

⌉
.

Consider now any subset Y ⊂ SuppX of t ≥ 2 points. Since d ≥ 5, one gets

dimK [R/IY ]d =

{
t if t ≤

(
n+d
n

)(
n+d
n

)
otherwise.

Hence, Theorem 4.3.6 and a straightforward computation give

r(X) ≤ d ·max

{⌈
tm− 1

t− 1

⌉
,

⌈
[
(
d+n
n

)
+ 5]m− 1(

d+n
n

)
− 1

⌉
| 2 ≤ t ≤

(
d+ n

n

)}

= d ·max

{
2m− 1,

⌈
[
(
d+n
n

)
+ 5]m− 1(

d+n
n

)
− 1

⌉}
.
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For sufficiently large d (or n), this implies r(X) ≤ d(2m− 1). In comparison, SegX
is essentially a polynomial function in d of degree n.

4.4 Generalizations of Segre Bound

In this section we give a conjectural further extension of the Segre bound on regularity
and prove it for fat point schemes consisting only of double and single points. We state
this in parallel with a conjecture in matroid theory which would imply the regularity
bound.

Conjecture 4.4.1 (Segre Type Regularity Bounds). Let Z =
∑s

i=0 miPi ⊆ PnK =
Proj(R) be a fat point subscheme with s ≥ 1. For any A ⊆ Supp(Z) and any integer
d > 0 let hY (d) := dimK[R/IY ]d. Then if (d1, d2, .., dk) is a k-tuple of positive integers
and for every nonempty A ⊆ Supp(Z) with |A| ≥ 2 we have

− 1 +
∑
Pi∈A

mi ≤
k∑
i=1

(hA(di)− 1). (4.4.1.1)

Then r(Z) ≤
∑k

i=1 di.

We note that if d1 = d2 = . . . = dk then we recover the statement of theorem 4.3.6.
The analogous statement for matroids was discussed briefly following proposition 3.3.6,
though we make the formal statement now.

For convenience we will introduce a piece of notation to refer to certain cases of
the above conjecture.

Definition 4.4.2. Let STm denote the proposition that conjecture 4.4.1 holds for all
Z =

∑s
i=0miPi where mi ≤ m.

As tools from matroid theory worked to establish theorem 4.3.3, we discuss a
possible matroid theoretic approach for establishing conjecture 4.4.1. We consider the
following statement which is in someway a matroid theoretic analog of STm.

Definition 4.4.3. Let MSp denote the following proposition: “ Let rk1, .., rkk denote
the rank functions of matroids M1, ..,Mk on a finite set E, with p < k. Further
suppose that there is a subset F ⊆ E so that for all nonempty A ⊆ F we have

|A| ≤
(∑k

i=1 rki(A)
)
− p. Then there is an integer 1 ≤ j ≤ k so that for every e ∈ E

there is a subset I ⊆ F so that I ∪ {e} is independent in Mj and for every nonempty

B ⊆ (F \ I) we have |B| ≤
(∑k

i=1
i 6=j

rki(B)

)
− (p− 1)?”

A natural question to ask is then the following:

Question 4.4.4. Does MSp hold for all p?
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We note that if we restrict the matroids in MSp so that M1 = M2 = . . . = Mn,
then the answer to the above question is yes, as shown in corollary 3.3.10. We first
note that while an affirmative answer to question 4.4.4 would imply conjecture 4.4.1
(see proposition 4.4.7), we only need the result for a very limited subset of all
possible sequences of matroids. Namely, we only need the result in the case E
is the set corresponding to

∑k
i=1 miPi (containing mi copies of Pi) and rki(A) =

hA+Q(di)− hQ(di) where Q is any point not in Supp(Z). Hence, one obvious restraint
is that the matroids M1, ..,Mn are representable over some fixed field K.

A perhaps more useful constraint, assuming we have ordered the matroids so
rki(A) = hA+Q(di) − 1 and d1 ≤ d2 ≤ . . . ≤ dk is that for i ≤ j the induced map
Mi →Mj is a strong map of matroids (at least when restricted to F ).

However, the general statement may be true in general. In fact we note below that
the case p = 1 is true. Allowing us to establish ST2 (see theorem 4.4.9)

Proposition 4.4.5. Let rk1, .., rkk denote the rank functions of matroids M1, ..,Mk

on a finite set E. Further suppose that there is an integer 0 < p < k and a subset
F ⊆ E so that for all nonempty A ⊆ F we have

|A| ≤

(
k∑
i=1

rki(A)

)
− 1.

Then for any e ∈ E and any integer 1 ≤ j ≤ k there is a subset I ⊆ F so that I ∪ {e}
is independent in Mj and for every nonempty B ⊆ (F \ I) we have

|B| ≤
k∑
i=1
i 6=j

rki(B).

Proof. This is in some sense a direct corollary of theorem 3.3.7. Namely for any 1 ≤ j ≤
k and any e ∈ E \F define r̂ki = rki for i 6= j and set r̂kj(A) = rkj(A∪{e})− rkj({e}).
That is r̂kj is the rank function of the quotient matroid Mj/e. Then by assumption
for every A ⊆ F we have

|A| ≤

(
k∑
i=1

rki(A)

)
− rkj({e}) ≤

k∑
i=1

r̂ki(A).

Applying theorem 3.3.7 we can conclude that there is a partition I1 t I2 t . . .t Ik of F
so that for I` is independent in M` for ` 6= j and Ij is independent in Mj/e. Note this
means that Ij∪{e} is independent. Moreover, we note that I1t. . .tIj−1tIj+1t. . .tIk
is a partition of F \ Ij and so again by theorem 3.3.7 we have for every B ⊆ F \ I that

|B| ≤
k∑
i=1
i 6=j

rki(B).
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As mentioned one evidence for conjecture 4.4.1 is that it holds in some cases. One
example is the case of reduced sets of points, which follows directly from theorem 3.3.7
similarly to how theorem 4.2.6 follows directly from theorem 3.3.1.

Theorem 4.4.6. Let Z =
∑s

i=0 Pi ⊆ PnK = Proj(R) be finite set of points subscheme
s ≥ 1. For any A ⊆ Z any integer d > 0 let hY (d) := dimK[R/IY ]d. Then for any
k-tuple of positive integers (d1, d2, .., dk) if for every nonempty A ⊆ Supp(Z) we have

− 1 + |A| ≤
k∑
i=1

(hA(di)− 1). (4.4.6.1)

Then r(Z) ≤
∑k

i=1 di.

Proof. Let Z =
∑s

i=0 Pi ⊆ Pn and let 0 ≤ d1 ≤ . . . ≤ dk be a sequence of integers so
that Z satisfies eq. (4.4.6.1). It suffices by theorem 2.3.7 to find for every Pi ∈ Z a
polynomial fi of degree D =

∑k
j=1 dj where fi(Pi) 6= 0 but fi(Pj) = 0 for j 6= i.

Fix arbitrary Pi ∈ Z, and for any integer d ≥ 0 consider the matroid MZ/Pi(d) on
the set Z − Pi with rank function

rkMZ/Pi
(d)(A) = hA+Pi(d)− hPi(d) = hA+Pi(d)− 1.

By assumption for every nonempty A ⊆ Z − Pi we have

|A| = −1 + |A+ Pi| ≤
k∑
j=1

(hA+Pi(d)− 1) =
k∑
j=1

rkMZ/Pi
(dj)(A).

By theorem 3.3.7 we conclude that there is a partition B1 tB2 t . . . tBk of Z − Pi
so that Bj is independent in MZ/Pi(dj). Note then |Bj| = hBj+Pi(dj) − 1 and so
|Bj +Pi| = hBj+Pi(dj). Consequently, there exists some gj ∈ [I(Bj)]dj with gj(Pi) 6= 0.

We now define fi =
∏k

j=1 gj and claim that fi has the desired property. Note first

that deg(fi) =
∑k

j=1 deg(gj) =
∑k

j=1 dj = D. Moreover, since gj(Pi) 6= 0 for each j
we see that fi(Pi) 6= 0. Lastly, given Pj ∈ Z − Pi we know there exists some B` so
Pj ∈ B`. Then g`(Pj) = 0 and consequently fi(Pj) = 0 as well. Thus establishing this
case.

Proposition 4.4.7. For all p > 0 we have that MSp implies STp+1.

Proof. We suppose that MSp holds for some p > 0. Let Z =
∑s

i=0 miPi with
m0 ≥ m1 ≥ . . . ≥ ms and suppose (d1, d2, . . . , dk) is a k-tuple so that Z satisfies
eq. (4.4.1.1). We proceed by induction on ρ(Z) =

∑s
i=0(mi − 1), the base case where

ρ(Z) = 0 is established by theorem 4.4.6.
The inductive step is a consequence of the claim below along with lemma 4.1.5.

Claim 4.4.8. Assuming MSp holds. Fix an integer 1 ≤ m ≤ p and a point Q 6∈ Supp(Z).
If for all A ⊆ Supp(Z) we have we have

m+
∑
Pi∈A

mi ≤
k∑
j=1

hQ+A(dj)− 1, (4.4.8.1)
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then there exist polynomials g1, .., gt ∈ ImQ and f1, .., ft ∈ R so letting D =
∑k

j=1 dj

[(g1, .., gt) + Im+1
Q ]D = [ImQ ]D

and for each 1 ≤ i ≤ t, fi 6∈ IQ and gifi ∈ IZ+mQ.

(Proof of claim.) Given our fat point scheme Z =
∑s

i=0miPi ⊆ Pn, we define a set EZ
which contains mi copies of each point Pi ∈ X. Given A ⊆ EZ we define A ⊆ Supp(Z)
to denote the underlying reduced set of points. With this we define for each integer
d ≥ 0 a matroid MZ/Q(d) on EZ , via

rkd(A) = hA+Q(d)− 1.

We note that MZ/Q(d) is representable via the map sending each Pi to the linear
form `Pi ∈ [IQ]∗d which sends each polynomial f ∈ IQ to f(Pi) (for some choice of
coordinates for Pi).

We now proceed by induction on m, the base case m = 0 is essentially identical to
the proof of theorem 4.4.6 so we omit it. Continuing with the case m ≥ 1 we next
establish that there exists polynomials `1, .., `s ∈ IQ so that the following conditions
are satisfied

(Cond. I) [(`1, .., `s) + I2
Q]D−m+1 = [IQ]D−m+1.

(Cond. II) For each `i, we can associate an index 1 ≤ ji ≤ k so that `i ∈ [IQ]dji ,
and letting (Z : `j) =

∑s
i=0 mi,jPi we have all A ⊆ Supp(Z) that

m− 1 +
∑
Pi∈A

mi,j ≤
k∑
j=1
j 6=ji

rkdj(A) (4.4.8.2)

To establish the existence of the (`1, .., `s), we assume we have `1, .., `s′−1 ∈ IQ
where each `i satisfies (Cond. II). We show that if (Cond. I) is not yet satisfied we
can find some `s′ satisfying (Cond. II) where

[(`1, .., `s′) + I2
Q]d ) [(`1, .., `s′−1) + I2

Q]d

for some d < D −m+ 1.
First, note that for each Pi ∈ Z we have by eq. (4.4.8.1) that m + mi ≤∑k
j=1 rkdj(Pi) = k so m ≤ k − mi ≤ k − 1. Furthermore, as 1 ≤ d1 ≤ . . . dk we

see for each di that

di ≤ di +
k∑
j=1
j 6=i

rkdi = D − k + 1 ≤ D −m+ 1.

Hence, it suffices to find `s′ ∈ [IQ]di so that [(`1, .., `s′) + I2
Q]d ) [(`1, .., `s′−1) + I2

Q]d.
Since by assumption [(`1, .., `s′−1) + I2

Q]D−m+1 6= [IQ]D−m+1, for each dj we can find
some αdj ∈ [IQ]∗dj where αdj(h) = 0 for all h ∈ [(`1, . . . , `s′−1) + I2

Q]dj . We may then
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extend, for each dj, the matroid MZ/Q(dj) to a matroid on EZ t {α}. We do this by
declaring for A ⊆ EZ that rkdj(A t {α}) is the dimension of the K-subspace of [IQ]∗dj
spanned by {`Pi | Pi ∈ A} ∪ {αdj}.

By MSp we have that there exists some I ⊆ EZ and an index di, so that I t {α}
is independent in MZ/Q(di), and for all B ⊆ (EZ \ I) we have

|B| ≤

 k∑
j=1
j 6=i

rkdi(B)

−m+ 1. (4.4.8.3)

Extend I t {α} to a basis B of [IQ]∗di , then B \ {α} defines (up to scaling) a
polynomial `s′ ∈ [IQ]di . Furthermore, the linear form αdj does not vanish on `s′ , hence
`s′ 6∈ [(`1, .., `s′−1) + I2

Q]dj . This ensures that [(`1, .., `s′−1) + I2
Q]dj ( [(`1, .., `s′) + I2

Q]dj .
Continuing we need to show that `s′ satisfies (Cond. II). For each Pi ∈ Supp(Z) let

ri denote the number of copies of Pi appearing in EZ\I. Letting (Z : `j) :=
∑s

i=0mi,jPi
we get for all A ⊆ Supp(Z) that

m− 1 +
∑
Pi∈A

mi,j ≤ m− 1 +
∑
Pi∈A

ri ≤
∑
j=1
j 6=ji

rkdj(A),

where the second inequality holds by eq. (4.4.8.3). Thus we have established the
existence of (`1, .., `s).

Continuing with the proof of claim 4.4.8, for each 1 ≤ i ≤ s set Wi = (Z : `i) =∑s
j=0mj,iPj. By (Cond. II) and our inductive hypothesis there exists gi,1, . . . , gi,t ∈

Im−1
Q and fi,1, . . . , fi,t ∈ R \ IQ so that gi,jfi,j ∈ [IWi+(m−1)Q]D−deg `i and setting

Ji = (gi,1, . . . , gi,t) we have [Ji + ImQ ]D−deg `i = [Im−1
Q ]D−deg `i .

We see that `igi,jfi,j ∈ IZ+mQ, fi,j 6∈ IQ and `igi,j ∈ ImQ , so to establish the claim
and thus proposition 4.4.7 it suffices to show that[(

s′∑
i=1

`iJi

)
+ Im+1

Q

]
D

= [ImQ ]D.

Define J as the ideal
∑s′

i=1 `iJi. As `iI
m
Q ⊆ Im+1

Q we have

[J + Im+1
Q ]D =

s∑
i=1

`i[Ji + ImQ ]D−deg `i

=
s∑
i=1

`i[I
m−1
Q ]D−deg(`i)

As Im−1
Q is generated in degree m−1 then `i[I

m−1
Q ]D−deg(`i) = [(`i)]D−m+1·[Im−1

Q ]m−1.
Therefore,
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[J + Im+1
Q ]D =

s∑
i=1

`i[I
m−1
Q ]D−deg(`i)

=
s∑
i=1

[(`i) + I2
Q]D−m+1 · [Im−1

Q ]m−1

= [(`1, . . . , `s) + I2
Q]D−m+1 · [Im−1

Q ]m−1

= [IQ]D−m+1 · [Im−1
Q ]m−1 = [ImQ ]D

Thus establishing the claim and finishing the proof.

We close this section by noting that proposition 4.4.7 together with proposition 4.4.5
implying the following theorem.

Theorem 4.4.9. ST2 holds. In fact let Z =
∑s

i=0miPi ⊆ PnK be a fat point subscheme
with s ≥ 2 and mi ≤ 2 for each 1 < i ≤ k. For Y ⊆ Supp(Z) let hY (d) :=
dimK[R/IY ]d. If for a given tuple of integers (d1, .., dk) so that for every A ⊆ Supp(Z)
with |A| ≥ 2 we have

−1 +
∑
Pi∈A

mi ≤
k∑
i=1

(hA(di)− 1) .

Then r(Z) ≤
∑k

i=1 di.

Proof. The proof follows directly from proposition 4.4.7 and proposition 4.4.5. We
further note that we can take m0 and m1 to be arbitrary. To see this note that
r(m0P0 +m1P1) = m0 +m1−1 and so since −1+m0 +m1 ≤

∑k
i=1(hP0+P1(di)−1) = k,

we have r(m0P0 +m1P1) ≤ k ≤
∑k

i=1 di.
Therefore, conjecture 4.4.1 holds for the case of two points. Since MS1 holds by

proposition 4.4.5, applying the inductive technique of claim 4.4.8 yields the result.

Copyright c© William Trok, 2020.
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Chapter 5 Very Unexpected Hypersurfaces

Given subschemes X, Y ⊆ Pn a natural topic of study is their intersection X ∩ Y .
Algebraically, this operation is not so well behaved, while I(X) + I(Y ) ⊆ I(X ∩ Y )
this containment is almost always strict. Restricting to the case where X ∩ Y = ∅, so
I(X ∩ Y ) = R we in fact have that I(X) + I(Y ) 6= R unless X = ∅ or Y = ∅.

The natural followup question then becomes for which d is [I(X)]d+[I(Y )]d = [R]d,
in fact this formula holds for all d� 0. If dim[I(X)]d and dim[I(Y )]d are known and
dim[I(X)]d + dim[I(Y )]d ≥ dim[R]d, then the formula dim[I(X)]d + dim[I(Y )]d =
dim[I(X ∪ Y )]d + dim[I(X ∩ Y )]d, reduces the question to the following: “For which
d is

dim[I(X) ∩ I(Y )]d = max{0, dim[I(X)]d − dim[R/I(Y )]d}?”

If Y is in someway generic, we might expect the above formula to hold for all d, and
refer to the number on the right as an “expected dimension”. This chapter concerns
itself with this problem in the case that X is a finite set of points and Y is a fat
linear subspace (usually of codimension 2). Much of the content in this chapter has
appeared as a preprint in [Tro20].

Continuing with this discussion, we consider the projective coordinate ring R =
C[X0, X1, X2, X3] of P3

C. For Z ⊆ Pn a finite set of fat points and a generic linear
subspace L ⊂ P3 we expect that

[I(Z) ∩ I(L)m]d = min{0, dim[I(Z)]d − dim[R/I(L)m]d}. (1)

For instance, taking m = 1 we see that vanishing on L imposes
(

dimL+d
d

)
con-

ditions on forms of degree d. Hence, we might expected that dim[I(Z) ∩ I(L)]d =
max

{
0, dim[I(Z)]d −

(
dimL+d

d

)}
.

Many papers have been written exploring when eq. (1) fails to give the actual
dimension. If Z is a set of double points with general support and L is a general point
with m = 2, the celebrated theorem of Alexander and Hirschowitz [AH95] gives a
complete characterization of when equation eq. (1) fails to give the correct count.

More recently, a number of papers have been released (see for instance [HMT19],
[Dum+19], [BMSS18] and [HMNT18]), which studied failure of expected dimension
when Z is a reduced set of points under the name unexpected hypersurfaces or
unexpected curves. These papers all study the above linear systems, where Z is a
reduced sets of points in Pn, and L is (possibly multiple) general linear subspace
with an associated multiplicity. Many of these papers took inspiration from the
paper [CHMN18]. The authors of [CHMN18] built off of earlier work in [DIV14] and
introduced the concept of unexpected curves in P2. Namely, they said that Z admits
unexpected curves in degree d if for a general point X,

dim[I(Z) ∩ I(X)d−1]d > max
{

0, dim[I(Z)]d − dim[R/I(X)d−1]d
}
.

The authors of [CHMN18] were able to give a full characterization of the degrees in
which a set of points admits unexpected curves. Surprisingly, this characterization does
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not directly depend on the dimensions of either [I(Z)]d or [I(Z) ∩ I(X)d−1]d. Namely,
this information can be replaced with combinatorial information about Z, and data
coming from the (reduced) module of derivations, D0(AZ), of the line arrangement,
AZ , dual to Z. See definition 5.2.18 for the definition of splitting type.

Theorem 5.4.1 ([CHMN18]). For a finite set of points Z ⊆ P2, let AZ denote the
dual line arrangement, and let (a1, a2) denote the splitting type of the bundle defined
by D0(AZ). Then exactly one of the following statements holds:

(i) There is some line L ⊆ P2 with |L ∩ Z| > a1 + 1, in which case |L ∩ Z| = a2 + 1
and Z never admits unexpected curves.

(ii) Z admits unexpected curves in degree d for precisely those d with a1 < d < a2.

This result allowed researchers to discover many new examples of unexpected
curves by taking advantage of decades of prior research on line arrangements.

Given the observed connection between certain line arrangements and unexpected
curves, it is natural to wonder if a similar connection exists in higher dimensions. In
this chapter we show that this is true at least to a certain extent. More specifically, if
Z ⊆ Pn is a finite set of points and L is a general codimension 2 linear subspace, we
establish a general duality connecting the module of derivations D0(AZ) of the dual
hyperplane arrangement to the intersection of ideals [I(Z) ∩ I(L)d]d+1. In particular
this allows us to recover dim[I(Z) ∩ I(L)d]d+1 from knowledge of the splitting type of
D0(AZ).

In order to generalize 5.4.1, we introduce a modified definition of unexpected
hypersurface which we call very unexpected hypersurfaces. Given a generic linear sub-
space L, we say a finite set of points Z ⊆ Pn admits very unexpected L-hypersurfaces
if the intersection [I(Z) ∩ I(L)d−1]d is larger than expected, as long as this failure
is not “easily explained” (see definition 5.4.7). Our definition of very unexpected
hypersurfaces is more technical than that of unexpected hypersurfaces. However the
two definitions agree in P2, in that a set of points Z ⊆ P2 admits very unexpected
curves if and only if it admits unexpected curves.

This new definition has a few advantages compared with the definition for unex-
pected hypersurfaces. The first is that with the standard definition of unexpected
hypersurfaces a generalization of theorem 5.4.1 to higher dimensions is impossi-
ble. The second is that, as we mentioned, in certain cases the “unexpectedness”
can be relatively easily explained. For instance, if all of the points in Z lie on a
proper subspace H, “unexpectedness” may simply be a consequence of the fact that
[I(H)∩ I(L)d−1]d ⊆ [I(Z)∩ I(L)d−1]d (for further discussion, see example 5.4.4). It is
then somewhat surprising that by merely accounting for cases where “unexpectedness”
is well explained, we are able to recover a generalization of theorem 5.4.1. More
specifically, if L is a generic codimension 2 subspace, the degrees in which Z admits
very unexpected L-hypersurfaces can again be characterized by the combinatorial
data of Z in conjunction with the splitting type of the Derivation Bundle of AZ . We
define, for every integer d ≥ 0, a number Ex.C(Z, d) via a combinatorial optimization
problem on the matroid of Z (see definition 5.4.19). Using this number, Ex.C(Z, d),
we obtain the result below.

49



Theorem 5.0.1. Let Z ⊆ Pn be a finite set of points, and suppose that D0(AZ) has
splitting type (a1, .., an). Then for a fixed integer d,

n∑
i=1

max{0, d− ai} ≤ nd+ 1− Ex.C(Z, d)

and the inequality is strict if and only if Z admits very unexpected hypersurfaces in
degree d.

In the case the points of Z are not too concentrated on some proper subspace we
obtain the following result which mimics theorem 5.4.1.

Theorem 5.4.27. Let Z ⊆ Pn and let (a1, .., an) be the splitting type of D0(AZ),
where ai ≤ ai+1. Suppose for all positive dimensional linear subspaces H ⊆ Pn, we
have that

|Z ∩H| − 1

dimH
≤ |Z| − 1

n
.

Then for an integer d the following are equivalent:

(a) Z admits very unexpected hypersurfaces in degree d.

(b) Z admits unexpected hypersurfaces in degree d.

(c) a1 < d < an.

Moreover we show in proposition 5.5.4 that this condition holds if an irreducible
reflection group G ⊆ PGL(K, 2) acts on Z.

After discussing the theory of Unexpected Hypersurfaces in general, we apply this
duality between I(Z) and D0(AZ) to establish some structural results about both
very unexpected Q-hypersurfaces and the module of derivations D0(AZ). Unlike the
first part of the chapter where there are few dimension and field constraints, these
results focus on unexpected curves in P2

C. In particular, we establish the following
bound sharp for all d ≥ 1.

Theorem 5.7.6. Let Z ⊆ P2
C and suppose that |Z| admits an unexpected curve in

degree d ≥ 1, then |Z| ≤ 3d− 3.

We note that if d is the smallest such degree in which Z admits unexpected curves
then it follows from theorem 5.4.1 that 2d+ 1 ≤ |Z|. Consequently, no Z ⊆ P2

C admits
unexpected curves in degree 3 or lower.

Additionally, we show the splitting type of D0(AZ) can be easily determined using
only the initial degree of D0(AZ). We note that the splitting type is determined by
the initial degree of the restriction of D0(Az) to a general line.

Theorem 5.6.9. Let Z be a finite set of points in P2
C and let α(D0(AZ)) denote the

initial degree of D0(AZ). Define a = min
{
α(D0(AZ)),

⌊
|Z|−1

2

⌋}
then D0(AZ) has

splitting type (a, |Z| − a− 1).
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The chapter proceeds as follows. After defining some notation in section 5.1,
we discuss some needed background on the module of logarithmic derivations of
a hyperplane arrangement in section 5.2. The reader familiar with Hyperplane
Arrangements can likely skip this section with perhaps the exception of some non-
standard notation found in definition 5.2.7 and definition 5.2.14.

We proceed in section 5.3, expanding on the Faenzi-Vallés duality between the
module of derivations D0(AZ) of a hyperplane arrangement and certain elements of
the ideal I(Z) of points dual to AZ . The results of this section are not wholly original
as much of this is implicit in the first section of [FV14]. Our approach however,
is much more explicit and amenable to computation. It also has the advantage of
working in arbitrary characteristic. We state two versions of this correspondence, the
first (theorem 5.3.8) applies to the module, D0(AZ) itself, and we do not believe it has
been stated before in this form. The second correspondence (theorem 5.3.14) applies
to the restriction of D0(AZ) to a general line, generalizes the duality found in [FV14].
We note that despite the similarities in results, our method of proof and presentation
is quite different from the one given in [FV14]. Additionally, the results here are not
dependent on the characteristic of the ground field K.

Section 5.4 introduces our definition of an very unexpected Q-hypersurface (see
definition 5.4.7) for Q a generic subspace. We then look at the case when Q has
codimension 2, establishing in theorem 5.4.20 that the degrees in which Z admits
very unexpected Q-hypersurfaces depends only on the splitting type of D0(AZ) and a
combinatorial optimization problem involving Z.

Section 5.6 starts by establishing a lifting criterion for the restriction of D0(AZ) to
a general line (see proposition 5.6.2). We then recall some results on vector bundles on
P2
C and apply these to show that proposition 5.6.2 has especially strong consequences

in P2
C (see theorem 5.6.8 and corollary 5.6.10).

In Section 5.7 we give strong combinatorial constraints on the sets of points Z ⊆ P2
C

which can admit unexpected curves. In particular, if Z ⊆ P2
C admits an unexpected

curve in degree d, then theorem 5.7.9 shows that no more than d+ 1 points of Z are in
linearly general position and theorem 5.7.6 establishes a sharp bound on the number
of points in Z showing that |Z| ≤ 3d− 3.

In section 5.8 we show that if Z ⊆ P2
C admits unexpected curves in degree d,

then Z imposes independent condition on (d − 1) forms. We then briefly discuss
generalizations to higher dimensions and some consequences.

We close with section 5.9, which discusses a few applications of these results to the
field of Hyperplane arrangements. We focus on Terao’s Freeness Conjecture mainly in
P2
C. In particular, we look at the conjecture for real line arrangements and connect it

to the Weak Dirac Conjecture on real point configurations.
We have attempted to keep this Chapter as self contained and elementary as

possible. This is largely true for the first 5 sections. However, in later sections we do
apply some results from the theory of Vector Bundles and from the combinatorics of
line arrangements in PnC.
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5.1 Notation and Conventions

Throughout this chapter K will denote an algebraically closed of arbitrary characteris-
tic, unless specified otherwise. However, most of these results hold as long as K is
infinite. V and W will be dual K-vector spaces. That is we suppose that there is a
non-degenerate bilinear pairing B( , ) : V ×W → K, inducing isomorphisms V ∼= W ∗

and W ∼= V ∗

If V is a K vector space, then V ∗ will denote the dual vector space of linear maps
V → K. Our pairing gives isomorphisms V ∼= W ∗ and W ∼= V ∗, we denote these
isomorphisms v 7→ `v and w 7→ `w, respectively. Here `v(w) = `w(v) = B(v, w). If
H ⊆ V is a linear subspace, then H⊥ = {w ∈ W | `w(H) = {0}}. We similarly define
L⊥ ⊆ V , for L ⊆ W .

Sym(V ∗) will denote the graded K-algebra of symmetric tensors. Given a choice of
basis {Y0, Y1, .., Yn} of V ∗, Sym(V ∗), is naturally isomorphic to the polynomial algebra
K[Y0, .., Yn].

Moreover, the graded ring R = Sym(V ∗) is naturally identifiable with the projective
coordinate ring of P(V ). Dually, S = Sym(W ∗) is the projective coordinate ring of
P(W ).

The goal of this chapter, is to relate properties of a finite set of points in P(V ) to
their dual hyperplanes in P(W ).

5.2 Derivations of Hyperplane Arrangements

In this section we recall some facts about the module of logarithmic derivations D(A)
of a hyperplane arrangement A. In particular we state a few different known criteria
for a general S derivation to lie in D(A). We also give the definition (definition 5.2.18)
of the splitting type of D(A) which is used heavily in the sequel.

Definition 5.2.1. A (central) Subspace Arrangement, A, is a finite collection of linear
subspaces {H0, .., Hs} of a vector space W .

If each Hi is a hyperplane, we say that A is a Hyperplane Arrangement. We
say A is essential if the only subspace contained in all the hyperplanes in A is the
0-subspace.

Remark 5.2.2. All subspace arrangements in this chapter will be central. We make
this restriction in order to identify a subspace arrangement A in W with it’s image in
P(W ), something we will do freely and often without comment.

A hyperplane arrangement is often defined in terms of a defining polynomial
QA =

∏
H∈A `H . This is the product of linear forms each one defining a unique

hyperplane in A.

Definition 5.2.3. If S is our graded polynomial ring and M is a graded S-module,
then a K-derivation of S into M is a graded K-linear map θ : S →M which satisfies
the Leibniz product rule. Namely for f, g ∈ S

θ(f · g) = θ(f) · g + f · θ(g)
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.
These form a graded S-module, denoted Der(S,M), obtained by setting (f ·θ)(g) =

f(θ(g)).
We grade Der(S,M) by the polynomial degree, namely, we set deg θ = deg(θ(`)),

where ` ∈ [S]1.

In the case that M = S, we set Der(S) := Der(S, S). In this chapter our module
M will either be S or a quotient ring of S.

Definition 5.2.4. If A ⊆ P(W ) is a Hyperplane Arrangement, we define the module
of A-derivations, denoted D(A), as submodule of Der(S) via

D(A) := {θ ∈ Der(S) | θ(I(H)) ⊆ I(H) for all H ∈ A}

Remark 5.2.5. Each element α ∈ W defines a K-derivation, θα, of S = Sym(W ∗).
Namely, for ` ∈ [S]1 we set θα(`) = `(α) and extended to all of S via the Leibniz
product rule.

Proposition 5.2.6. Let S = Sym(W ∗) and let M be a graded S-module, then there’s
an isomorphism of graded S-modules Der(S,M) ∼= M ⊗K W . Here the grading on
M ⊗K W is given by that of M .

Consequently, theres an isomorphism Der(S)⊗S M ∼= Der(S,M).

Proof. Picking a basis Y0, .., Yn for W ∗, we have S ∼= K[Y0, .., Yn]. Let θ ∈ Der(S,M),
let gi = θ(Yi), by linearity and the Leibniz product rule we get these gi completely
determine θ. It follows that θ is equal to the derivation

∑n
i=0 gi

∂
∂Yi

.
Hence if W0, ..,Wn is a basis of W dual to Y0, .., Yn, meaning Yi(Wj) = δi,j. Then

θ =
∑n

i=0 gi ⊗Wi ∈M ⊗K W establishing the first result.
The second statement follows from the isomorphisms

M ⊗S Der(S) ∼= M ⊗S (S ⊗K W ) ∼= M ⊗K W

Definition 5.2.7. Let S = Sym(W ∗), and fix a basis Y0, Y1, .., Yn of W ∗, so S ∼=
K[Y0, .., Yn]. Also take W0, ..,Wn to be the dual basis of W . Given λ =

∑
i fi ⊗Wi ∈

S ⊗W , the preceding proposition shows λ defines a derivation θλ ∈ Der(S). Namely,

θλ(g) =
∑
i

fi
∂g

∂Yi
.

Moreover, λ defines a polynomial map ρλ : W → W, or equivalently a rational
map P(W )→ P(W ), via

ρλ(w) =
n∑
i=0

fi(w)Wi

= (f0(w) : f1(w) : .. : fn(w))
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Finally, it defines a pairing 〈 , 〉λ : W ×W ∗ → K, linear only in W ∗, where for
(s, `) ∈ W ×W ∗

〈s, `〉λ :=
n∑
i=0

(fi(s))(`(Wi));

or in coordinates

〈(a0, .., an), coY0 + ..cnYn〉λ :=
n∑
i=0

fi(a0, .., an)ci.

We extended this definition to a pairing 〈 , 〉λ : W × V → K via

〈s, t〉λ :=
∑
i

fi(s)(B(t, ui)).

The following is immediate from the definitions

Lemma 5.2.8. For (s, t) ∈ W × V and λ ∈ S ⊗W

[θλ(`t)] (s) = 〈s, t〉λ = `t(ρλ(s)).

This proposition is essentially due to Stanley, though the presentation is our own.

Proposition 5.2.9. Let λ ∈ S ⊗W , and A ⊆ W a hyperplane arrangement with
QA =

∏
H `H . Then the following are equivalent:

(i) θλ ∈ D(A)

(ii) θλ(`H) ⊆ I(H) for all H ∈ A

(iii) ρλ(H) ⊆ H for all H ∈ A

(iv) For all H ∈ A, the restriction of 〈−,−〉λ to H ×H⊥ ⊆ W × V is identically 0.

Proof. [(i) ⇐⇒ (ii)] The implication (i) =⇒ (ii) follows from the definition. For
the converse note that I(H) is generated by `H , so every element f ∈ I(H) may be
written f = g`H . Applying the Leibniz product rule we get

θλ(f) = θλ(ai)`H + aiθλ(`H).

The first term is necessarily in I(H), and so if θλ(`H) ∈ I(H) then we conclude that
the second sum is in I(H) as well, establishing the result.

[(ii) ⇐⇒ (iii) ⇐⇒ (iv)] (ii) can be rephrased as follows: “for all ` ∈ [I(H)]1
and all p ∈ L, [θλ(`)](p) = 0“.

Now using the fact that [I(H)]1 is naturally isomorphic to H⊥ under our isomor-
phism V ∼= W ∗, we conclude by applying 5.2.8.
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Definition 5.2.10. Under the characterization above, the identity map on W cor-
responds to a derivation known as the Euler Derivation which we denote θe. In
coordinates, if S = K[Y0, .., Yn], then

θe = Y0
∂

∂Y0

+ Y1
∂

∂Y1

+ . . .+ Yn
∂

∂Yn
.

The Euler Derivation can be alternatively characterized as the unique derivation
where θe(f) = deg(f)f for all homogeneous f , an identity originally due to Euler.

Definition 5.2.11. (Reduced Module of Derivations) Denoting the Euler Derivation
by θe we define the Reduced Module of Derivations, denoted D0(A), as the quotient

D0(A) := D(A)/(Sθe).

By convention, we set D(∅) = Der(S) and D0(∅) = Der(S)/(Sθe).

Definition 5.2.12. Let A ⊆ P(W ) be a hyperplane arrangement, then D(A) defines

a reflexive sheaf, D̃(A) on P(W ) of rank dimW .

If L ⊆ P(W ) is a line we may tensor D̃(A) with the structure sheaf OL. This may

equivalently be viewed as a sheaf of OP(W ) modules, or the restriction of D̃(A) to L.
We let D(A) |L denote the corresponding graded module, that is

[D(A) |L]d = H0(D̃(A)⊗OL(−d), L)

We may similarly define D0(A) |L.

If the line L is general the module D(A) |L has an equivalent algebraic definition
which we state now.

Proposition 5.2.13. For a general line L ⊆ P(W ), and for ` ∈ S let ¯̀ denote the
image of ` in S/I(L), then

D(A) |L= {θ ∈ Der(S, S/I(L)) | θ(`) ∈ (¯̀) for all ` dividing Q(A)}

and similarly for D0(A).

Proof. First, for any f ∈ S we let f̄ denote the image of f in S/I(L), and similarly if
θ =

∑n
i=0 fi

∂
∂Yi

we let θ̄ =
∑n

i=0 f̄i
∂
∂Yi
∈ Der(S, S/I(L)).

Note that D(∅) |L is isomorphic to Der(S, S/I(L)), and so D(A) |L is isomorphic
to a submodule of Der(S, S/I(L)).

Now consider the case that A consists of a single hyperplane H. Choosing
our coordinates Y0, .., Yn so that H = (Y0 = 0), then D(A) is free on gener-
ators {Y0

∂
∂Y0
, ∂
∂Y1
, . . . , ∂

∂Yn
}. Then D(A) |L is a free S/I(L) module with basis

{Ȳ0
∂
∂Y0
, ∂
∂Y1
, . . . , ∂

∂Yn
}. Yet these are also precisely the derivations θ ∈ Der(S, S/I(L))

where θ(X0) ∈ (X̄0), so the result follows in this case.
More generally, if A = {H0, H1, . . . , Hk} and L is any line not contained in a

hyperplane in A. Then for all i 6= j we have that L ∩ Hi and L ∩ Hj consist

55



of distinct points. Consequently, letting Ui denote the complement of A \ {Hi},
we have that {Ui ∩ L}i=0,..,k is an open cover of L. Therefore, for a section σ ∈
H0(D̃er(S)⊗OL(−d), L), we have that σ ∈ D(A) |L if and only if

σ |Ui∈ H0(D̃(A)⊗OL(−d), Ui ∩ L) = H0(D̃(Hi)⊗OL(−d), Ui ∩ L)

for all j = 1, .., k.

Finally, note that for i 6= j we have that H0(D̃(Hi) ⊗ OL(−d), Uj ∩ L) = σ ∈
H0(D̃er(S) ⊗ OL(−d), Uj ∩ L). Therefore, it follows that for σ ∈ H0(D̃er(S) ⊗
OL(−d), L), that we have the following string of equivalences

σ ∈ H0(D̃(A)⊗OL(−d), L) ⇐⇒

for all i ∈ {1, .., k}, σ |Ui∩L∈ H0(D̃(Hi)⊗OL(−d), L ∩ Ui) ⇐⇒

for all i ∈ {1, .., k}, σ ∈ H0(D̃(Hi)⊗OL(−d), L)

The result now follows from the previous case.

We can emulate the constructions from 5.2.7 for the module D0(A) |L, to achieve
a characterization similar to 5.2.9.

Definition 5.2.14. Let L ⊆ P(W ) be a line, for γ =
∑

j fj ⊗ wj ∈ S/I(L)⊗W , we
obtain a pairing 〈 , 〉γ : L× V → K, defined by

〈p, v〉γ :=
∑
j

fj(p)(`v(wj))

Similarly, define the polynomial map ργ : L→ W and θγ ∈ Der(S, S/I(L)).

Proposition 5.2.15. Let L ⊆ P(W ) be a general line, and A ⊆ Pn a hyperplane
arrangement, then for γ ∈ S/I(L)⊗K W , the following are equivalent.

(i) θγ ∈ D0(A) |L

(ii) ρ(L ∩H) ⊆ H for all H ∈ A

(iii) The restriction of 〈 , 〉γ to (H ∩ L)×H⊥ is identically 0.

Proof. The proof is essentially identical to that of proposition 5.2.9 so we omit it.
Note that in particular, we still have an analogue of lemma 5.2.8 for (p, q) ∈ L× V
that

〈p, q〉γ = θγ(`q)(p) = `q(ργ(p))

.
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If M is a finite reflexive graded module over K[Y0, .., Yn] defining a reflexive sheaf
M̃ on PnK. Then the restriction of M̃ to a general line L ⊆ PnK, defines a vector bundle
over L. By the well known theorem of Birkhoff and Grothendieck, there exist integers
k0 ≤ k1 ≤ k2 ≤ .. ≤ km where

M̃ |L∼= ⊕mi=0OL(−ki).

If A ⊆ PnK is a hyperplane arrangement, then D(A) can be naturally identified
with the first syzygy module of the ideal J = (QA,

∂
∂Y0
QA,

∂
∂Y1
QA, . . . ,

∂
∂Yn

QA). This
ensure that D(A) is reflexive.

We show thatD0(A) is reflexive for any nonempty arrangementsA ⊆ PnK. If |A| 6= 0
mod CharK, this is well known as J = Jac(QA) = ( ∂

∂Y0
QA,

∂
∂Y1
QA, . . . ,

∂
∂Yn

QA) and
D0(A) can be identified with the syzygy module of Jac(QA).

We establish this more generally, our proof requires the following reflexive criterion.
We refer to [Aut20] (see Lemma 15.23.5) for a proof.

Proposition 5.2.16 (Reflexive Criterion). Suppose

0 //M // L // K

is an exact sequence of finite modules, over a commutative notherian domain R. Then
if L is reflexive and K is torsion free, then M is reflexive.

With this criteria we can establish our claim. This is well known for arrangements
over C and likely in general we include it for completeness.

Proposition 5.2.17. If A ⊆ PnK = Proj(K[Y0, .., Yn]) is a nonempty hyperplane
arrangement, then D0(A) is a reflexive module.

Proof. The proof is by induction on the number of hyperplanes in A. First we consider
the case |A| = 1 or |A = 2|, in these cases we can choose coordinates so that QA = Y0

or QA = Y0Y1 respectively. It can now be checked by direct computation that D0(A)
is free on generators { ∂

∂Y1
, . . . , ∂

∂Yn
} and {Y1

∂
∂Y1
, . . . , ∂

∂Yn
} respectively.

For the general case if A′ is a hyperplane arrangement with k > 2 hyperplanes
pick two distinct hyperplane L and H in A. Let A = A′ \ {H} and let B denote the
hyperplane arrangement {L,H}. Then we have the following exact sequence

0 // D0(A′) // D0(A)⊕D0(B) // D0({L}) .

As D0({L}) is free it is in particular torsion free. Furthermore by inductive
hypothesis D0(A) and D0(B) are both reflexive so we conclude by applying the
preceding proposition.

Definition 5.2.18 (Splitting Type). If A ⊆ Pn is a hyperplane arrangement (resp.
nonempty hyperplane arrangement), then there exists tuple of integers (a0, a1, .., an),
(resp. (a1, .., an)) referred to as the Splitting Type of D(A) (resp. D0(A)).

This is the unique tuple satisfying 0 ≤ a0 ≤ a1 ≤ ... ≤ an, so that if L is a general
line then there’s an isomorphism

D(A) |L∼=
n⊕
i=0

S/I(L)(−ai)

(
resp. D0(A) |L∼=

n⊕
i=1

S/I(L)(−ai)

)
.
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5.3 Derivation Bundle of Hyperplane Arrangements and the Ideals of
Dual Points

In this section we introduce our duality and establish a relationship between D0(AZ)
and I(Z). We can summarize this relationship as follows: Given a set of points
Z ⊆ P(W ) with dual hyperplane arrangement AZ ⊆ P(V ), we consider a ring
T = R⊗K K[Gr(n− 2, V )] that contains naturally isomorphic copies of R = Sym(V ∗)
and S = Sym(W ∗). We then show in theorem 5.3.8 that D0(A) is isomorphic to
an S-submodule of the extended ideal I(Z)T . This is analogous to the standard
construction used in [FV14]. In theorem 5.3.10 we then give a novel interpretation of
the restriction of this S-submodule to a general line.

Definition 5.3.1. Let
∧• V , denote the exterior algebra of V . This is the graded

K-algebra generated in degree 1 by V , subject to the relation v2 = v ∧ v = 0 for all
v ∈ V .

Definition 5.3.2. Let Gr(k, V ) denote the k-th grassmanian of V as a projective
subvariety of P(

∧k V ). The projective coordinate ring of Gr(k, V ) as a quotient of
the polynomial ring of the ambient space is the Plücker Algebra, PL(k, V ).

Fix a set of coordinates X0, .., Xn on V , so that Sym(V ∗) ∼= K[X0, .., Xn]. Extend
these to coordinates on V ⊕k for some 1 ≤ k ≤ n, by letting Ai,0, .., Ai,n denote an
isomorphic copy of X0, .., Xn, for each i ∈ {0, .., k − 1}. We organize these into a
k × n+ 1 matrix A with entries (A)i,j = Ai,j.

Let c(Gr(k, V )) denote the affine cone of Gr(k, V ) as a subvariety of
∧k V . Then

the multiplication map ∧ : V ⊕k → c(Gr(k, V )) ⊆
∧k V , identifies the Plücker algebra

PL(k, V ) with the K algebra generated by the maximal (k × k) minors of A.
Restricting to the case where k = n, multiplication in

∧
V gives a non-degenerate

pairing ∧ : V ×
∧n V →

∧n+1 V . Choosing an isomorphism
∧n+1 V ∼= K gives an

isomorphism
∧n V ∼= V ∗, natural up to a K-scalar. We fix one of these isomorphisms

and let τ denote the induced isomorphism of polynomial rings τ : Sym(W ∗) ∼=
Sym(

∧n V ∗). As n = dimV − 1, then
∧n V ∗ = Gr(n, V ), and we can identify

PL(n, V ) with Sym(
∧n V ∗) ∼= Sym(W ∗). We further describe τ in coordinates below.

Definition 5.3.3. Taking the definitions of Xi and Aj,` from above, further require
that A0,i = Xi. Define

K[A] := K[Ai,j | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n]

:= K[X0, .., Xn][Ai,j | 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n]
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Let PL(n) be the subalgebra of K[A] generated by the determinants Mi where

Mi :=

∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 1 0 . . . 0
A0,0 . . . A0,i−1 A0,i A0,i+1 . . . A0,n

A1,0 . . . A1,i . . . A1,n
...

...
...

An−1,0 . . . An−1,i . . . An−1,n

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 1 0 . . . 0
X0 . . . Xi−1 Xi Xi+1 . . . Xn

A1,0 . . . A1,i . . . A1,n
...

...
...

An−1,0 . . . An−1,i . . . An−1,n

∣∣∣∣∣∣∣∣∣∣∣
.

Finally, taking Yi to be a dual basis of Xi we define τ : K[Y0, .., Yn]→ PL(n) via
τ(Yi) = Mi.

The preceding conversation shows that PL(n)) is a polynomial algebra in the
generators Mi. The lemma below shows that our definition of τ above matches the
construction from the preceding remark.

Lemma 5.3.4. Let v ∈ V = Spec(K[X0, .., Xn]) and let `v =
∑n

i=0 ciYi ∈ W ∗ be
the corresponding linear form. Then as a polynomial in X0, .., Xn the linear form
τ(`v) =

∑
i ciMi vanishes on v.

Proof. Following definition 5.3.3 we see that τ(`v) =
∑n

i=0 ciMi is the Laplace ex-

pansion along the first row of the determinant of the matrix

[
~v
A

]
, where ~v =[

c0 c1 ... cn
]
. If we then evaluate X0, .., Xn at v, so that Xi 7→ ci, the matrix

is singular as two rows are identical hence the determinant vanishes.

Definition 5.3.5. If X0, .., Xn form a basis of V ∗ and Y0, .., Yn are dual coordinates on
W ∗. Then for any λ =

∑n
i=0 fi(Y0, .., Yn)`Xi ∈ Sym(W ∗)⊗W , we define a polynomial

Fλ ∈ K[A] via

Fλ :=
n∑
i=0

Xiτ(fi) =
n∑
i=0

Xifi(M0, ..,Mn)

Definition 5.3.6. Let J ⊆ Sym(V ∗) = K[X0, . . . , Xn] be any homogeneous ideal. We
define a graded module denoted J� over PL(n), thought of as a polynomial ring in
the minors M0, ..,Mn.

First, if m = (X0, X1, . . . , Xn) is the maximal ideal we define m� as the PL(n)-
submodule of K[A] generated by (X0, . . . , Xn). We grade both PL(n) and m� by
the X-degree, meaning deg(Mi) = deg(Xi) = 1. Equivalently, the d-th graded
component of m� is generated over K by all terms of the form XiM

e0
0 M

e1
1 . . .M en

n

where
∑n

i=0 ei = d− 1.
More generally for any homogeneous ideal J , we set J� = (JK[A]) ∩m�.
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The following example and proposition that follows are the main motivation for
the definition of J�.

Example 5.3.7. If P is the 0-th coordinate point in P2 = Proj(K[X0, X1, X2]), then
I(P ) = (X1, X2). Given

∑2
i=0 GiXi ∈ m� where Gi is a polynomial in the maximal

minors M0,M1,M2 of the matrix [
X0 X1 X2

A0 A1 A2

]
.

It’s not hard to see that
∑n

i=0GiXi ∈ I(P )� if and only if G0 ∈ I(P )K[A].
Treating G0 as a polynomial in X0, .., Xn with coefficients in the ring K[A0, A1, A2]

and consider the evaluation map eP : K[A] → K[A0, A1, A2] obtained by evaluting
at P , we note that G0 ∈ I(P )K[A] if and only if εP (G0) = 0. Furthermore, as eP
sends M0 7→ 0, M1 7→ −A2 and M2 7→ A1 then G0(P ) = 0 if and only if M0 divides
G0. From this it follows that I(P )� is generated by {X0M0, X1, X2}.

In fact this generating set is redundant as we have the nontrivial relation X0M0 +
X1M1 +X2M2 = 0, and so a minimal generating set for I(P )� is given by {X1, X2}.

The preceding definition is motivated by the following proposition.

Theorem 5.3.8. Let Z ⊆ P(V ) = Proj(K[X0, .., Xn]) be a finite set of points, and
let AZ ⊆ P(W ) denote the dual hyperplane arrangement. Then for λ ∈ S ⊗W the
following are equivalent:

(i) θλ ∈ D(AZ)

(ii) Fλ ∈ I(Z) ·K[A]

Moreover, Fλ = 0 if and only if there exists g ∈ S so that θλ = gθe, where
θe =

∑n
i=0 Yi

∂
∂Yi

is the Euler derivation.
In essence there’s an isomorphism η : PL(n, V )⊗S D0(AZ)(−1)→ I�(Z) given

by

η

(
n∑
i=0

fi(Y0, .., Yn)
∂

∂Yi

)
=

n∑
i=0

fi(M0, ..,Mn)Xi

The above theorem is a consequence of the following lemma which is useful in it’s
own right.

Lemma 5.3.9. Fix α = (α1, .., αn−1) a tuple of (n− 1) linearly independent vectors
in V . Letting αi := (αi,0, αi,1, . . . , αi,n) in our chosen set of coordinates. We define
the partial evaluation map

εα : K[A]→ K[X0, .., Xn]

via εα(Ai,j) = αi,j for 1 ≤ i ≤ n− 1.
Let λ =

∑n
i=0 fiXi ∈ [S ⊗W ]d = Symd(W ∗)⊗W , for any nonzero w ∈ W where

`w ∈ V ∗ vanishes on Span(α), there exists some nonzero linear form h vanishing on
Span(α) so that

εα(Fλ) ≡ hd`ρλ(w) = hd

(
n∑
i=0

Xifi(ρλ(w))

)
mod I(`w)
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Proof. Take w,α and λ as stated above. Let λ =
∑n

i=0 fi(Y0, .., Yn)⊗Xi ∈ [S ⊗W ]d,
then Fλ =

∑n
i=0Xifi(M0, ..,Mn).

Write `w =
∑n

i=0 ciXi and assume without loss of generality that cn 6= 0. Fix
some index j ∈ {0, .., n − 1} and let `u = cnYj − cjYn ∈ [S]1 = W ∗. Noting that
`u(w) = `w(u) = 0, we may write εα(τ(`u)) as the determinant of the matrix

εα(τ(`u)) =

∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 cn 0 . . . −cj
X0 . . . Xj−1 Xj Xj+1 . . . Xn

α1,0 . . . α1,j . . . α1,n
...

...
...

αn−1,0 . . . αn−1,j . . . αn−1,n

∣∣∣∣∣∣∣∣∣∣∣
As u ∈ ker `w and Span(α) ⊆ kerw, then either εα(τ(`u)) = 0 and u ∈ Span(α),
or εα(τ(`u)) 6= 0 and Span(α, u) = ker `w which implies theres a scalar r ∈ K so
εα(τ(`u)) = r`w. In either case we have cnMi − ciMn ≡ 0 mod (`w). We conclude
with the equalities below where here Mi = εα(Mi),

εα(Fλ) =
n∑
i=0

fi(M0,M1, ..,Mn)Xi

≡
n∑
i=0

fi

(
c0

cn
Mn,

c1

cn
Mn, ..,

cn−1

cn
Mn,Mn

)
Xi mod (`w)

≡
(
Mn

cn

)d∑
i=0

fi(c0, .., cn)Xi mod (`w)

≡
(
Mn

cn

)d
ρλ(w) mod (`w)

Noting that because cn 6= 0, we must have that En = (0 : .. : 0 : 1) 6∈ Span(α) ⊆
ker `w. Therefore, εα(Mn) 6= 0 as it is the determinant of a non-singular matrix
thereby establishing the result.

Proof of theorem 5.3.8. Let λ =
∑

i fi ⊗ wi ∈ S ⊗W . We note that since D(AZ) =⋂
P∈Z D(HP ) and I(Z) =

⋂
P∈Z I(P ), it suffices to establish the equivalence in consider

the case Z consists of a single point P . Furthermore, to establish the case for a single
point it suffices to show that εα(Fλ) is in I(P ) for every (or even for general) α. This
is because θ ∈ Der(S) is in D(AZ) if and only if the restriction of θ to L is in D(A) |L
for general L, and similarly Fλ vanishes at P if and only if εα(Fλ) vanishes on P for
general α.

Continuing, assume that α is sufficiently general and let `Q denote the linear form
vanishing on α and P . We consider εα(Fλ) mod (`Q). By lemma 5.3.9, we get that
εα(Fλ) ≡ hd`ρλ(Q) = hdρλ(`Q). Yet for general α, we see that h(P ) 6= 0 so Fλ vanishes
on P if and only if ρλ(`Q) vanishes on P .

Now for any linear form `L recall that `L(P ) = 0 if and only if the corresponding
L ∈ W lies on P⊥ = HP . Hence, we apply proposition 5.2.9 and conclude the proof
of the first statement with the following chain of equivalences:
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Fλ ∈ I(P ) ⇐⇒ for general α, εα(Fλ) ∈ I(P )

⇐⇒ for general α, ρλ(`Q) ∈ I(P ) where `Q vanishes on Span(α, P )

⇐⇒ for general Q ∈ Hp, ρλ(Q) ∈ HP

⇐⇒ θλ ∈ D(HP )

To finish the proof, we must establish the claim about the kernel of η. We see that
Fλ = 0 if and only if for general α and arbitrary `H vanishing on α that εα(Fλ) ≡ 0
mod I(`H). By lemma 5.3.9 the later condition occurs precisely when ρλ(`H) ∈ (`H)
for every linear form `H . If this occurs we conclude for all H ∈ W that ρλ(H) = rHH
for some scalar rH . It immediately follows that as a rational map on P(W ), ρλ can be
extended to the identity, allowing us to conclude that θλ = fθe where θe is the Euler
derivation.

We note that the proof above also establishes the following.

Theorem 5.3.10. Let Z ⊆ P(V ) and let AZ ⊆ P(W ) be the dual hyperplane arrange-
ment. Let L ⊆ P(W ) be a general line, and Q = L⊥ ⊆ P(V ) the dual linear subspace.
Then there’s an isomorphism of vector spaces

[I(Z) ∩ I(Q)m]m+1
∼= [D0(AZ) |L]m.

We can in fact, prove a slightly stronger statement. Namely, the above isomorphism
corresponds to an isomorphism of modules over naturally isomorphic (up to scalar)
rings, we give this proof after 5.3.14. In order to make this stronger statement and to
aid with the exposition for the rest of the chapter, we introduce some new notation.

Definition 5.3.11. For Q ⊆ Pn a codimension 2 subspace we define a ring FQ via

FQ := SymK([I(Q)]1).

We note that if L0, L1 are linear forms which generate I(Q), then FQ is a polynomial
ring in the generators L0, L1.

Fix Q and let α be any basis of Q. The following proposition shows that FQ can
be viewed yet another way, as the image of the map εα : Sym(W ∗)→ Sym(V ∗).

Proposition 5.3.12. Let Q = Span(α), and L = Q⊥, then the map εα : S =
Sym(W ∗)→ R = Sym(V ∗), induces an isomorphism of K-algebras

τα : S/I(L)→ FQ.

Proof. First consider the restriction of τα as a map [S]1 → [R]1. By lemma 5.3.4, εα(`)
must vanish on all points of Q = Span(α), hence εα(`) ∈ I(Q). In fact, given P ∈
P(V )\Q, we see again by lemma 5.3.4, that εα(`P ) defines the hyperplane Span(Q,P ).
It follows that τα induces an isomorphism of vector spaces [Sym(W ∗)/I(L)]1 ∼= [FQ]1.

As Sym(W ∗) and FQ are both symmetric algebras generated over K in degree 1.
The isomorphism τα : Sym(W ∗)→ FQ follows.
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Definition 5.3.13. Let Q ⊆ P(V ) be a codimension 2 subspace, and let J ⊆ Sym(V ∗)
be any homogeneous ideal. We define a graded FQ-module, J�Q , as the FQ-submodule
of Sym(V ∗) whose d-th graded component is given by

[I�Q (Z)]d := [I(Z) ∩ I(Q)d−1]d.

We state the full version of this duality.

Theorem 5.3.14. Let Z ⊆ P(V ) = ProjR be a finite set of points and AZ ⊆ P(W ) =
ProjS the dual hyperplane arrangement. Let L ⊆ P(W ) be a general line, then the
isomorphism of K algebras τQ : S/I(L) ∼= FQ = Sym([I(Q)]1), induces an isomorphism
of graded modules I�Q (Z)(−1) ∼= D0(AZ) |L ⊗S/I(L)FQ via the map

ηQ : D0(AZ) |L ⊗FQ ∼= I�Q (Z)(−1)

ηQ

(
n∑
i=0

fi
∂

∂Yi

)
=
∑
i

τQ(fi)Xi

Here {Yi}i∈[n+1] and {Xi}i∈[n+1] are dual bases of W ∗ and V ∗ respectively.

Proof. This proof is very similar to the proof of theorem 5.3.8. We make note of some
of the differences. Given γ ∈ S/I(L)⊗W , we get both a rational map ργ : L→ P(W )
and a derivation θγ of Sym(W ∗) into Sym(W ∗)/I(L).

Similarly, we get a polynomial Fγ ∈ I�Q (∅) uniquely determined up to scalar. Now
it again follows that θγ ∈ D0(A) |L if and only if ργ(H ∩ L) ⊆ H for all H ∈ A.
Additionally, we have that for any ` ∈ [I(Q)]1, that Fγ = `d−1

Q ργ(`) mod (`).
The proof now continues as in theorem 5.3.8.

Applying this isomorphism of modules, we note that the splitting type of of AZ
determines the dimension of I�Q (Z).

Corollary 5.3.15. If D0(AZ) has splitting type (a1, a2, .., an), then for a general
codimension 2 linear subspace,

dim[I�Q (Z)]d =
n∑
i=1

max{0, d− ai}

Example 5.3.16 (Ceva Configurations). Let m ≥ 2 be an integer which is not divisible
by Char(K), so that there exists a primitive m-th root of unity ζ ∈ K. Fix n ≥ 1 and
a basis {E0, E1.., En} (dual to {X0, .., Xn}) of the underlying vector space of PnK. We
consider the set of points Fm ⊆ Pn which is the projectivization of the set of vectors{

−Ei + ζ`Ej ∈ Kn+1 | where 0 ≤ i < j ≤ n and 0 ≤ ` < m
}
.

Further define Cm ⊆ Pn to be the set of points which includes Fm and the n+ 1
coordinate points corresponding to our basis {E0, E1, . . . , En}. Then Cm is a set of
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n + 1 + m
(
n+1

2

)
points. The corresponding ideal I(Cm) has

(
n+1

2

)
+
(
n+1

3

)
=
(
n+2

3

)
generators which are given by

{XiXjXk | 0 ≤ i < j < k ≤ n} ∪ {XiX
m+1
j + (−Xi)

m+1Xj | 0 ≤ i < j ≤ n}.

It’s dual hyperplane arrangement, ACm , can be defined by the vanishing of the
polynomial

QCm = Y0Y1 . . . Yn
∏

0≤i<j≤n

(Y m
i − Y m

j ).

If m ≥ 3 ACm is often called the Extended Ceva Arrangement, or complete monomial
arrangement. This well studied arrangement is a reflection arrangement corresponding
to the monomial group G(m, 1, n + 1). Then D0(ACm) is a free S-module and one
possible choice of basis elements are the elements {θ1, . . . , θn} where

θj =
n∑
i=0

Y mj+1
i

∂

∂Yj
.

Hence, we conclude that I�(Cm) is free with basis

Fθi :=
n∑
i=0

Mmj+1
i Xi,

where the Mi’s are the minors from definition 5.3.3.

The previous results about the module I�(Z) and it’s relationship with D0(AZ) can
be summed up as stating that the isomorphism of projective spaces P(W ) ∼= P(

∧n V )

extends to an isomorphism of sheaves D̃0(AZ) ∼= Ĩ�(Z)(−1). This sheaf Ĩ�(Z) and

it’s relationship with D̃0(AZ) is implicit in [FV14]. The relationship of I�Q (Z) with a
general codimension 2 subspace however was only made explicit in the case Z ⊆ P2.

As we have committed to working algebraically we state and prove one more result
which is a simple corollary of the fact that previously stated isomorphisms correspond
to an underlying isomorphism of sheaves.

Proposition 5.3.17. The following diagram commutes for all codimension 2 subspaces
Q,

D0(AZ)
res

Q⊥//

η

��

D0(AZ) |Q⊥
ηQ

��
I�(Z)

εQ // I�Q (Z)

with the sides isomorphisms for general Q.

Proof. First note, that by proposition 5.3.12 we have a commuting diagram of com-
mutative K-algebras

Sym(W ∗) //

τ

��

Sym(W ∗)/I(Q⊥)

τQ

��
PL(n)

εQ // FQ

,
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where the top map sends f ∈ Sym(W ∗) to its coset f̄ ∈ Sym(W ∗)/I(Q⊥).
Working in coordinates given θ =

∑n
i=0 Fi

∂
∂Yi

, we have that

εQη(θ) =
n∑
i=0

εQ(τ(Fi))Xi =
n∑
i=0

τQ(F̄i)Xi = ηQ(resQ⊥(θ))

establishing the result.

5.4 Unexpected Hypersurfaces

In [CHMN18], the authors gave a characerization of the degrees d, in which a finite set
of points Z ⊆ P2

C admits unexpected curves in the specific case when m = d−1. In this
section we introduce the concept of very unexpected hypersurfaces (definition 5.4.7)
and study them using the duality of section 5.3. Namely in theorem 5.4.27, we achieve
a higher dimensional generalization of the main result of [CHMN18] which we recall
below.

Theorem 5.4.1 ([CHMN18]). For a finite set of points Z ⊆ P2, let AZ denote the
dual line arrangement, and let (a1, a2) denote the splitting type of the bundle defined
by D0(AZ). Then exactly one of the following statements holds:

(i) There is some line L ⊆ P2 with |L ∩ Z| > a1 + 1, in which case |L ∩ Z| = a2 + 1
and Z never admits unexpected curves.

(ii) Z admits unexpected curves in degree d for precisely those d with a1 < d < a2.

The most striking part of this characterization is that it does not depend directly
on dim[I(Z)]d or dim[I(Z) ∩ I(Q)]d, a feature also present in our generalization. As
some papers have already introduced a notion of unexpected hypersurface we recall
this definition below, before discussing why it is inadequate for our needs.

Definition 5.4.2. If Z ⊆ Pn = Proj(R) is a set of points and Q is some general linear
subspace, we say Z admits unexpected mQ-hypersurfaces in degree d if

dim[I(Z) ∩ I(Q)m]d > max

{
0,

(
n+ d

n

)
− dim[R/I(Z)]d − dim[R/I(Q)m]d

}
> max {0, dim[I(Q)m]d − dim[R/I(Z)]d}

If Z ⊆ P2 we instead say that Z admits unexpected curves.

If Q, m or d are obvious from context, we may avoid these qualifiers and simply
specify that Z admits unexpected hypersurfaces.

If we filter [R/I(Q)m] by I(Q) and look at the corresponding graded module.
We get that each graded component, [I(Q)i−1/I(Q)i] is a free module over [R/I(Q)]
generated by [I(Q)i−1/I(Q)i]i−1. It follows that

dim[I(Q)i−1/I(Q)i]d =

(
dimQ+ d− i

dimQ

)(
codimQ− 1 + i

codimQ− 1

)
.
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We conclude that

dim[R/I(Q)m]d =
m−1∑
i=0

(
dimQ+ d− i

dimQ

)(
codimQ− 1 + i

codimQ− 1

)
.

This result in combination with the Chu-Vandermonde identity,

m−b∑
j=0

(
a+ j

a

)(
m− j
b

)
=

(
a+m+ 1

a+ b+ 1

)
,

allows us to conclude the following

Proposition 5.4.3. Z ⊆ Pn admits unexpected mQ-hypersurfaces in degree d if and
only if letting NmQ =

∑m−1
i=0

(
dimQ+d−i

dimQ

)(
codimQ−1+i

codimQ−1

)
and taking

MmQ =
∑d

j=m

(
dimQ+d−j

dimQ

)(
codimQ−1+j

codimQ−1

)
we have

dim[I(Z) ∩ I(Q)m]d > max {0, dim[I(Z)]d −NmQ}
or equivalently

dim[I(Z) ∩ I(Q)m]d > max {0,MmQ − dim[R/I(Z)]d}

In particular, if m = d− 1 and dimQ = n− 2 the inequality becomes

dim[I(Z) ∩ I(Q)d−1]d > max{0, nd+ 1− dim[R/I(Z)]d}

Despite the ease in which the above definition can be stated, it has a few short-
comings. The first shortcoming is of a semantic nature, namely there are sets of
points which by definition admit unexpected mQ-hypersurfaces, but where we believe
the difference in dimension is unsurprising. The second issue is somewhat larger if
we hope to generalize theorem 5.4.1, namely it can not be determined from D0(AZ)
whether or not Z admits ostensibly unexpected (d− 1)Q-hypersurfaces in degree d.

Both of these issues are illustrated by the following example.

Example 5.4.4. Let H ⊆ P3 be any plane, and let W consist of 10 of points on H.
Now take two general points P0 and P1 not on H. Let Z = P0 + P1 + W , and
Q ⊆ P2 a generic line, if we let `H be a linear form defining H, and `0, `1 be linear
forms defining Span(Q,P0) and Span(Q,P1) respectively. Then taking f = `H`0`1,
we get that f lies in [I(Z + 2Q)]3. If the points in W are general points on H, then
hw(3) = min

{(
2+3

3

)
, |W |

}
= 10, hZ(3) = 12, and h2Q(3) = 4 + (2)(3) = 10, in which

case Z admits an unexpected hypersurface in degree 3.
However, taking W ′ to be 10 points lying on a smooth conic in H and letting

Z ′ = P0 + P1 +W ′, then h′W (3) = 7 and h′Z(3) = 9 so Z ′ does not admit unexpected
hypersurfaces in degree 3.

Note though that there is an isomorphism of intersection lattices LAZ
∼= LA′Z , and

that both D0(AZ) and D0(AZ′) have splitting type (2, 4, 5).
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In the above example, the “unexpectedness” is explained by the fact that most of
the points of Z lie on the plane H. This gives us a lower bound on dim[I(Z + 2Q)]d
since,

dim[I(Z + 2Q)]3 > dim[I(H + 2Q) ∩ I(P0 + P1)]3 ≥ dim[I(H + 2Q)]3 − 2.

Furthermore, there is no reason to expect equality in the inequality

dim[I(H) ∩ I(Q)2]3 ≤ max
{

0, dim[I(Q)2]3 − dim[R/I(H)]3
}

since Q and H have nonempty intersection. This situation is elaborated on further
by the following proposition which computes the dimension of [I�Q (H)]d = [I(H) ∩
I(Q)d−1]d can impose on I(Q)d−1.

Proposition 5.4.5. Let H,Q ⊆ P(V ) be nonempty linear subspaces, with Q general
of codimension 2. Then

dim[I�Q (H)]d = dim[I(H) ∩ I(Q)d−1]d = d(codimH).

As a consequence, if Z ⊆ H, then dim[I�Q (Z)]d ≥ d(codimH).

Proof. Let h = dimH. We may choose a basis {X0, .., Xn} of V ∗ so that I(H) =
(Xh+1, .., Xn). Moreover, let `i := εQ(Mi) ∈ [FQ]1, denote the linear form vanishing
on Q and the i-th coordinate point.

We proceed by induction on h, establishing that I�(H) is a free FQ-module with
basis {Xd+1, .., Xn}. First consider the case h = 0, so that H is the 0-th coordinate
point. For each f ∈ [I�(H)Q]d, we may write f =

∑n
i=0 fiXi with each fi ∈ [FQ]d−1.

Evaluating f at H shows that f0(H) = 0. As FQ is a polynomial ring in two
variables, we conclude that `0 divides f0. Using the identity

∑n
i=0 Xi`i = 0, and

letting gi = fi − `if0/`0 we get f =
∑n

i=1 giXi. It follows that I�(Q) is a free
FQ-module with basis X1, .., Xn.

Now when h ≥ 1, let H0 ⊆ H be the coordinate subspace, with defining ideal
I(H0) = (Xh, .., Xn) ⊃ I(H). We get by inductive hypothesis that every element
f ∈ I�Q (H0) may be written in the form f =

∑n
i=h fiXi. As Xj ∈ I(H) for j > h,

we see that f ∈ I(H) if and only if fh ∈ I(H) ∩ FQ. However, as K is infinite
and h > 0 we have for general Q that there is no finite collection of hyperplanes
through Q which vanish on H, and consequently we must have I(H)∩FQ = 0. Hence∑n

i=h fiXi ∈ I�Q (H) if and only if fh = 0, and so I�Q (H) is free with basis Xh+1, .., Xn

as claimed.
Noting that dim[FQ]t−1 = t, we obtain the desired equality

dim[I�Q (H)]d = (codimH)(dim[FQ]d−1) = d(codimH).

Example 5.4.6. In view of the preceding lemma, we see that example 5.4.4 can be
generalized. Namely, for n > 2 we let H ⊆ Pn be a proper linear subspace of
dimension d > 1. Fix a degree t > 1 and let Z consist of

(
t+d
t

)
general points on H, so
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that dim[R/I(Z)]s = min{
(
s+d
s

)
, |Z|}. Then the prior lemma shows dim[I�Q (Z)]s =

max{(n− d)s, ns+ 1− |Z|}, and hence that Z admits unexpected Q-hypersurfaces in
all degrees 2 ≤ s ≤ t.

With this discussion in mind we introduce our definition of very unexpected
hypersurface.

Definition 5.4.7. Let Z ⊆ P(V ) be a finite set of points and R = Sym(V ∗) the
projective coordinate ring. For Q a generic linear subspace, we say that Z admits
very unexpected mQ-hypersurfaces in degree d, if there is a subset W ⊆ Z satisfying
the following conditions:

(I) [I(Z) ∩ I(Q)m]d = [I(W ) ∩ I(Q)m]d

(II) For all irreducible subvarieties X ⊆ P(V ),

|W ∩X| ≤ dim[I(Q)m/(I(X) ∩ I(Q)m)]d

(III) W imposes less condition on [I(Q)m]d than on [R]d, that is

dim[R/I(W )]d > dim[I(Q)m/(I(W ) ∩ I(Q)m)]d

Remark 5.4.8. We note that condition (II) only needs to be checked on positive
dimensional irreducible subvarieties.

Remark 5.4.9. It’s possible that there are other definitions that are preferable in some
ways. One change that might be useful is to require condition (ii) in the case where
X is not necessarily irreducible, or if we allow Z to be nonreduced perhaps take X
to be a positive dimensional subscheme. We use the above definition for now as it is
strong enough for our purposes while still being relatively easy to check.

In this chapter we will be focusing on the case where codimQ = 2 and m = d− 1.
We introduce this definition in general because we think it is a natural and potentially
useful modification given our discussion in example 5.4.4.

Remark 5.4.10. Despite the fact the above definition is strictly stronger than defi-
nition 5.4.2, the two definitions agree in P2. This is a consequence of the fact that
the only positive dimensional subvarieties that are needed to check in condition (ii)
are hypersurfaces. More generally, if Z ⊆ Pn is a finite set of points contained in a
hypersurface defined by (f = 0) and Q ∈ Pn is the generic point. Then applying the
dimension count from 5.4.3, that

dim[I(Q)m/(f) ∩ I(Q)m]d = dim[I(Q)m/(fI(Q)m)]d

= dim[I(Q)m]d − dim[I(Q)m]d−deg f

= max

{
0,

(
n+ d

n

)
−
(
n+ d− f

n

)}
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It follows for all m and d that

dim[R/I(Z)]d ≤ dim[R/(f)]d

≤
(
n+ d

n

)
−
(
n+ d− deg(f)

n

)
≤ dim[I(Q)m/((f) ∩ I(Q)m)]d

Establishing that condition (iii) could never be satisfied under these conditions.
A similar argument shows that if Q is a hyperplane, then no set of points Z can

admit very unexpected mQ-hypersurfaces.

One potential issue with 5.4.7 is that condition (II) seems difficult to verify, given
that naively there is a potentially infinite number of irreducible varieties we must
check. However, we make a few observations showing that it is easier to verify than it
may seem, and can be reduced to a finite number of subvarieties.

Suppose that Z ⊆ Pn admits unexpected mQ-hypersurfaces in degree d and
furthermore, that there’s no P ∈ Z where [I(Z) ∩ I(Q)m]d ( [I(Z − P ) ∩ I(Q)m]d.
This is a relatively harmless assumption since if such a P does exist, then Z \ P still
admits unexpected hypersurfaces in degree d.

Now if there is some positive dimensional variety X1 ⊆ Pn so that |Z ∩ X1| >
dim[I(Q)m/I(X1) ∩ I(Q)m]d. Then Z ∩X1 imposes less than |Z ∩X1| conditions on
I(Q)m and so we may can find a subset U1 ⊆ Z ∩X1 with |U1| = dim[I(Q)m/(I(X1)∩
I(Q)m)]d and [I(Q)m ∩ I(U1)]d = [I(Q)m ∩ I(X ∩Z)]d. Setting Z1 = (Z \X)∪U1 we
make two observations both of which follow readily:

(A) [I(Z) ∩ I(Q)m]d = [I(Z \X) ∩ I(X ∩ Z) ∩ I(Q)m]d = [I(Z1) ∩ I(Q)m]d

(B) If there’s a strict containment [I(X1)∩I(Q)m]d ( [I(U1)∩I(Q)]d, then Z1 admits
unexpected hypersurfaces if and only if Z does.

We may continue in this way stopping when we find a subset Zk ⊆ Zk−1 ⊆ ... ⊆ Z,
where either

1. Zk does not admit unexpected hypersurfaces; or

2. W = Zk satisfies the conditions (I), (II) and (III) of definition 5.4.7.

If Zk does not admit unexpected hypersurfaces then by observation (B), we must
have [I(Xk) ∩ I(Q)m]d = [I(Uk) ∩ I(Q)m]d. Then

[I(Z) ∩ I(Q)m]d ⊆ [I(Uk) ∩ I(Q)m]d = [I(Xk) ∩ I(Q)m]d.

Hence, the polynomials in [I(Z) ∩ I(Q)m] vanish on the positive dimensional variety
Xk.

From the preceding discussion we can conclude the following proposition.

Proposition 5.4.11. Let Z ⊆ Pn be a set of points which admits unexpected mQ-
hypersurfaces in degree d. Then there exists W ⊆ Z, so that W satisfies conditions I
and II of definition 5.4.7 and Z admits very unexpected hypersurfaces if and only if
W admits unexpected hypersurfaces.

69



With this discussion in mind we introduce the following definition.

Definition 5.4.12. Fix positive integers m,n, c and d. If Z ⊆ Pn is a finite set of
points we set

B. locd(Z,m, c) :=
⋂
Q

V ([I(Z) ∩ I(Q)m]d).

Where Q is over all linear subspaces of dimension c. Moreover, we set B. locd(Z) :=
B. locd(Z, d− 1, n− 2) as this is the case we will focus on.

If m = d− 1 and c = n− 2, we also define B. locd(M) for a submodule M ⊆ m�

via
B. locd(M) =

⋂
F∈[M ]d

⋂
Q∈Gr(n−2,n)

V (εQ(F )).

That is B. loc(Fσ) is the intersection of all the hypersurfaces defined by εQ(Fδ) as Q
varies.

From the discussion proceeding this definition, we may conclude the following

Proposition 5.4.13. Fix m,n, c and d as above. For Z ⊆ Pn = ProjR, and Q
the generic c-dimensional linear subspace, we have Z admits very unexpected mQ-
hypersurfaces if and only if there’s a subset W ⊆ Z satisfying

(I) [I(Z) ∩ I(Q)m]d = [I(W ) ∩ I(Q)m]d

(II’) For all irreducible components X of B. locd(Z,m, c)

|W ∩X| ≤ dim[I(Q)m/(I(X) ∩ I(Q)m)]d

(III) W imposes less condition on [I(Q)m]d than on [R]d, that is

dim[R/I(W )]d > dim[I(Q)m/(I(W ) ∩ I(Q)m)]d

Consequently, if dim B. locd(Z,m, c) = 0 then Z admits very unexpected hypersur-
faces if and only if Z admits unexpected hypersurfaces.

Remark 5.4.14. Note that W ⊆ Z may satisfy (II ′) without satisfying (II). For
instance the points Z = C5 dual to the Ceva Arrangement AC5 ⊆ P2

C consist of 18
points which admit unexpected curves in all degrees d with 6 < d < 11. Taking d = 7
we note that W = Z does not satisfy condition (II) of definition 5.4.7, since taking
X = P2 we see that |W ∩X| = 18 > 15 = dim[I(Q)6/(0)]7.

More generally, if H is a 2-dimensional linear subspace in P3 then taking Z ⊆ H it
follows from proposition 5.5.11 that W = Z does not satisfy condition (II) in degree
d = 7. However, in either case W = Z satisfies condition (II ′) above.

Example 5.4.15. It should be noted here that B. locd(Z) and B. locd(I
�(Z)) are not

necessarily the same. For instance, if Z ⊆ P2
C is 5 general points, then a computation

shows that [I�(Z)]3 = 0, and so B. loc3(I
�(Z)) = P2. Yet a direct computation

shows that dim[I(Z) ∩ I(Q)2]3 = 2 and B. loc3(Z) = Z. It is true, however, that
B. locd(Z) ⊆ B. locd(I

�(Z)).
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Remark 5.4.16. From here on we restrict the view of the chapter, to the case where
c = n− 2 and m = d− 1 that is we study [I(Z) ∩ I(Q)d−1]d.

The following proposition provides a classification of those varieties that can appear
in B. locd(Z).

Proposition 5.4.17. For any submodule M ⊆ m�, (resp. Z ⊆ Pn) the base locus
B. locd(M) (resp. B. locd(Z)) is a union of linear subspaces.

Proof. We prove both statements in parallel, let B = B. locd(M) or B = B. locd(Z).
Let C be a positive dimensional irreducible subvariety which is contained in B and

not a linear subspace. We establish that Span(C) ⊆ B from which the result follows.
First we show for a general hyperplane H, that Span(H ∩ C) = H ∩ Span(C).

Note that Span(H ∩C) ⊆ H ∩ Span(C) and so it suffices to show they have the same
dimension. To do this take c1, .., ct ∈ C to be t = dim Span(C) linearly independent
points, and let L be any hyperplane containing Span(c1, .., ct), but with C 6⊆ L. Then

dim Span(L ∩ C) = dim Span(C)− 1 = dim(L ∩ Span(C)).

It now follows that dim Span(H ∩ C) ≥ −1 + dim Span(C) for a general hyperplane
H ⊆ Span(C), since among hyperplanes H which properly intersect C, the quantity
dim Span(H ∩ C) is lower semi-continuous. So in particular,

dim Span(C)− 1 = dim Span(L ∩ C) ≤ dim Span(H ∩ C)

≤ dim(H ∩ Span(C)) = dim Span(C)− 1.

Thus establishing the claim.
Proceeding let Q ⊆ Pn be a general codimension 2 subspace , and let ` a general

linear form vanishing on Q. As Q is a hypersurface considered as a subvariety of
(` = 0), we get for any f ∈ εQ([M ]d) (resp. any f ∈ [I�Q (Z)]d) that there exist linear
forms r ∈ [R]1 and `Q ∈ I(Q) so that

f = (`Q)d−1r mod (`).

Note that as ` is general, we may assume that f 6= 0 mod (`). Since Q is general we
can assume that for every positive dimensional component C of B, that C 6⊆ Q and
furthermore that Q contains no component of C ∩ (` = 0). As r is linear, it vanishes
on Span((` = 0) ∩B) = Span(B) ∩ (` = 0). It follows that for any component C of B
that f vanishes on a general hyperplane section of Span(C). As Span(C) is irreducible
we conclude that if dim(C) > 0 then f vanishes on Span(C) as desired.

In fact more can be said about the varieties that appear as the base loci of I�(Z).
The following gives a classification of such subvarieties.

Proposition 5.4.18. Given a subvariety B ⊆ Pn there exists a set of points Z ⊆ Pn
and an integer d so

B = B. locd(Z)
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if and only if B =
⋃k
i=1 Hi where Hi are pairwise disjoint linear subvarieties so for all

J ⊆ {1, .., k} with |J | ≥ 2 we have

∑
i∈J

dimHi < dim Span

(⋃
i∈J

Hi

)
. (5.4.18.1)

Proof. We first prove the forward implication. Note from proposition 5.4.17 we
obtain that B every irreducible component of B is linear. Therefore, we can write
B = W∪

⋃s
i=1 Hi where W is a finite set of points, and each Hi is a positive dimensional

linear subspace, so Z\W ⊆
⋃s
i=1Hi. We can further assume that W∩Hi = ∅, and that

Hj 6⊆ Hi for each pair of indices i 6= j. We observe that B satisfies the hypothesized
condition if and only if B \W satisfies the condition, and therefore we assume that
B =

⋃s
i=1Hi.

Now take Q ⊆ Pn a general codimension 2 subspace, and let L be a general
hyperplane containing Q. If `, `Q are linear forms so ` defines L and I(Q) = (`, `Q),
we see by lemma 5.3.9 f ∈ [I�Q (Z)]d can be written as

f ≡ (`Q)d−1r mod (`)

for some linear form r. Since Q and L are general we may assume that no irreducible
component of B ∩L is contained in Q. Therefore, B ∩L is contained in the subvariety
defined by the ideal (`, r).

We now establish 5.4.18.1, proceeding by induction on k = |J |. Keeping the
notation from the previous paragraph, we make two key observations before continuing

with the proof. The first is that since Span
(⋃

j∈J Hj

)
is not contained in B. locd(Z) we

must have that Span
(⋃

j∈J Hj

)
∩ L 6⊆ V (`, r). Consequently the following inequality

holds

dim Span

(⋃
j∈J

(Hj ∩ L)

)
< dim Span

(⋃
j∈J

Hj

)
∩ L. (5.4.18.2)

In particular dim Span
(⋃

j∈J(Hj ∩ L)
)
≤ dim Span

(⋃
j∈J Hj

)
− 2. The second

observation is that in view of the above inequality it suffices to establish that

dim Span

(⋃
j∈J

(Hj ∩ L)

)
= −1 +

∑
j∈J

dimHj. (5.4.18.3)

We continue with the induction, establishing inductively the above equality. If
J = {i, j}, note that if Hi ∩Hj 6= ∅ then dim(Hi ∩Hj ∩L) = dim(Hi ∩Hj)− 1 (recall
by convention dim ∅ = −1) and so

dim Span((Hi ∩ L) ∪ (Hj ∩ L)) = dim(Hi ∩ L) + dim(Hj ∩ L)− dim(Hi ∩Hj ∩ L)

= dim(Hi) + dim(Hj)− dim(Hi ∩Hj)− 1

= dim(Span(Hi ∪Hj) ∩ L)

72



which contradicts eq. (5.4.18.2). Therefore, Hi ∩ Hj = ∅ and Hi ∩ Hj ∩ L = ∅.
Hence dim Span((Hi ∩ L) ∪ (Hj ∩ L)) = dim Span(Hi ∩ L) + Span(Hj ∩ L) + 1 =
dim(Hi) + dim(Hj)− 1.

Now suppose that |J | = ` > 2 and that for all J ′ ( J with |J ′| ≥ 2 that
eq. (5.4.18.3) holds. Furthermore assume for simplicity that J = {1, .., `}. We proceed
by contradiction assuming that eq. (5.4.18.3) does not hold. For each 1 ≤ i ≤ `
find an basis, Bi, of Hi ∩ L (aka, an affinely independent subset which spans Hi).
Let B′ =

⋃`−1
i=1 Bi, then by inductive hypothesis B′ is affinely independent and there

exists a proper subset R ( B` so that B′ ∪ R is a basis of Span
(⋃

j∈J(Hj ∩ L)
)

.

Pick any x ∈ H` \ L, we claim that B = B′ ∪R ∪ {x} is a basis of Span
(⋃

j∈J Hj

)
.

Assuming this claim we see that dim Span
(⋃

j∈J(Hj ∩ L)
)

= |B \ {x}| = |B| − 1 =

dim Span
(⋃

j∈J Hj

)
∩ L contradicting eq. (5.4.18.2), and therefore establishing the

result.
It suffices to show that Hj ⊆ Span(B) for 1 ≤ j ≤ `. If j = `, this follows as

H` = Span((H` ∩ L) ∪ {x}) ⊆ Span(B). Otherwise if j 6= ` pick a sufficiently general
hyperplane L′ ⊆ Pn so that for all 1 ≤ i ≤ `− 1 with i 6= j we have L′ ∩Hi = L ∩Hi.
We may similarly assume we have H` ∩Span(

⋃`−1
i=1(Hi ∩L′)) 6= ∅, and so by dimension

counting we see

(L′ ∩Hj) ⊆ (L′ ∩ L ∩Hj) +
∑
i 6=j

(Hi ∩ L′) ⊆ L′ ∩ SpanB.

Now since Hj = Span((L′ ∩Hj) ∪ (L ∩Hj)) we conclude that Hj ⊆ Span((L′ ∩
Span(B) ∪ (L ∩ Span(B))) ⊆ Span(B). Establish the result.

For the reverse direction, consider a finite set of points Z ⊆ Pn. If (a1, a2, . . . , an)
is the splitting type of D0(AZ) then by corollary 5.3.15 Z imposes independent
conditions of [I(Q)d−1]d for all d > an. Since

∑n
i=1 ai = |Z| − 1 and 0 ≤ a1 ≤ . . . ≤ an

we conclude that for any P 6∈ Z we have that [I�Q (Z)]|Z|+1 6= [I�(Z + P )]|Z|+1, and
hence that B. locd(Z) = Z for all d > |Z|.

Now consider B = Z ∪
⋃k
i=1Hi where Z is a finite set of points and {H1, .., Hk}

is a collection of positive dimensional linear subspace satisfying eq. (5.4.18.1), and
where

∑k
i=1 dimHi = n− 1. We note that it suffices to show that there exists some

F ∈ [I�(∅)]d so that F 6= 0 and B. loc(F ) ⊇ B. This is because by the first part of
the proposition we necessarily have that B. loc(F ) = B. Furthermore taking Zi to be(

dimHi+d
d

)
sufficiently general points on Hi, we have [I(Zi)]d = [I(Hi)]d and so setting

Z = Z ∪ Z1 ∪ . . . ∪ Zk it follows [I(ZB)]d = [I(B)]d and B. locd(ZB) = B.
We construct F as follows. Again take L to be a sufficiently general hyperplane

and construct a basis bi,0, . . . , bi,di of Hi for all 0 ≤ i ≤ k where d = dimHi and
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bi,1, . . . , bi,di ∈ L ∩Hi. We now let N denote the (n+ k)× (n+ 1) matrix

N =



X0 X1 . . . Xn

b0,0
...

b0,d0

b1,0
...

b1,d1
...

bk,dk


where bi,j denotes the corresponding row vector. Let C = {0, . . . , d1}× . . .×{0, . . . , dk}
for each j = (j1, . . . , jk) ∈ C we take Nj to denote the determinant of the minor of N
obtained by removed the rows corresponding to b1,j1 , . . . , bk,jk .

Further let εj = (−1)
∑k
i=1 ji , and assuming bi,j = (bi,j,0 : . . . : bi,j,n) let Mbi,j =∑n

k=0 bi,j,kMk as in definition 5.3.3. We then define

F =

(∏
P∈Z

Mp

)(∑
j∈C

εjNj

k∏
i=1

Mbi,ji

)
.

First note that F 6= 0 since letting Q = Span
(⋃k

i=1 L ∩Hi

)
, it follows εQ(F ) =

εQ
(∏

P∈ZMp

)
εQ

(
N(0,...,0)

∏k
i=1Mbi,0

)
. Furthermore, this is nonzero since the all of

the matrices involved are nonsingular.
We complete the proof in this case by showing B ⊇ B. loc(F ). For any element

v` of H`, we can write v` =
∑dj

i=0 tib`,i for some scalars ti ∈ K. Pick some j =
(j1, . . . , jk) ∈ C, and for 0 ≤ i ≤ dj define ji = (j1, . . . , j`−1, i, j`+1, . . . , jk), we show
that

F`,j =

d∑̀
i=0

εjiNji

Mb`,i

k∏
m=1
m 6=`

Mbm,jm


is 0 when evaluated at v`. Since F can be written as sums of the terms of the form
above this establishes the result. Define a matrix N̂j,` to be the determinant of the
maximal minor of N obtained by removing the first row

[
X0 . . . Xn

]
and the rows

corresponding to bm,jm for all 1 ≤ m ≤ k with m 6= `. The using row operations and

that some of {b`,0, .., b`,d`} are rows of Nji , we see that Nji(v`) = (−1)δ(−1)itiN̂j,`(v`)
where (−1)δ is some fixed sign. Finally we apply this to see
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F`,j(v`) =

d∑̀
i=0

εjiNji(v`)

Mb`,i(v`)
k∏

m=1
m 6=`

Mbm,jm
(v`)


=

d∑̀
i=0

εji(−1)δ(−1)itiN̂j,`(v`)

Mb`,i(v`)
k∏

m=1
m6=`

Mbm,jm
(v`)


= εj(−1)δ(−1)j`N̂j,`(v`)

 k∏
m=1
m6=`

Mbm,jm
(v`)

( d∑̀
i=0

tiMb`,i(v`)

)

= εj(−1)δ(−1)j`N̂j,`(v`)

 k∏
m=1
m6=`

Mbm,jm
(v`)

 (Mv`(v`)) .

Since Mv`(v`) = 0 we conclude.

Lastly we have the general case where B = Z∪
⋃k
i=0Hi and n−1−

∑k
i=0Hi = r > 0.

In this case let B′ denote the union of B and a sufficiently general subspace Hk+1

of dimension r. Then we see from the previous case that B′ = B. locd(ZB′) for
d = |Z| + 2k. Hence, B. loc(ZB) ⊆ B′, now as Hk+1 is sufficiently general we can
easily see that B. loc(ZB) ⊆ B.

Combining the preceding propositions with proposition 5.4.3, it follows that
conditions (I) and (II) of proposition 5.4.13 can be checked by looking at the
combinatorics of linear subspaces spanned by subsets of Z. With this in mind we
introduce the definition below.

Definition 5.4.19. Given a finite set of points Z ⊆ Pn and a real number d ∈ R we
define the modified expected number of conditions, as the integer Ex.C(Z, d), which is
the solution to optimization problem

Ex.C(Z, d) = min

{
s∑
i=0

(d dim(Hi) + 1)

∣∣∣∣∣ where {H0, ..., Hs} are nonempty
linear subspaces with Z ⊆

⋃s
i=0Hi

}
.

It turns out that the linear program defined in definition 5.4.19 can be studied via
the techniques defined in section 3.1.

We are now ready to state and prove the main result of this section.

Theorem 5.4.20. Let Z ⊆ P(V ) be a finite set of points. Then Z admits unexpected
(d− 1)Q-hypersurfaces in degree d if and only if

dim[I(Q)d−1]d − dim[I(Q)d−1 ∩ I(Z)]d < Ex.C(Z, d)

or in the notation of section 5.3,

dim[I(Q)d−1]d − dim[I�Q (Z)]d = dim[I(Q)d−1/I�Q (Z)]d < Ex.C(Z, d)

75



Proof of Theorem 5.4.20. Fix a integer d, note that it follows from the definition that

Ex.C(Z, d) = min

{
s∑
i=0

(d dim Span(Ai) + 1)

∣∣∣∣∣ where {A0, ..., As}
form a partition of Z

}
.

Before proving either direction of the equivalence. We establish the claim below.

Claim 5.4.21. Ex.C(Z, d) is equal to the largest size of a subset B ⊆ Z which satisfies
the following 3 conditions

(C1) [I�Q (B)]d = [I�Q (Z)]d

(C2) For all linear subspaces L, |B ∩ L| ≤ dim[I(Q)d−1/I�Q (L)]d = d(dimB) + 1

(C3) B imposes independent conditions on d forms.

proof of claim. Applying results from [Edm] (see theorem (8) and comment (16)),
we may define a matroid Md on the set Z whose independent sets are precisely
those I ⊆ Z where |A| ≤ d dim(SpanA) − 1 for all nonempty A ⊆ I. The linear
programming duality given in [Edm], now states that

rk(Md) = Ex.C(Z, d).

From this we can conclude that Ex.C(Z, d) is equal to the largest size of a subset
which satisfies condition (C2), namely any basis of Md works. To finish the proof of
the claim we find a basis of Md satisfying (C1) and (C3).

By proposition 5.4.11, there is some W ⊆ Z so that W satisfies conditions (C1)
and (C2). As W satisfies (C2) it is independent in Md and we can therefore extend
it to a basis W ⊆ B of Md. Now as W ⊆ B ⊆ Z we have that [I�(B)]d = [I�(Z)]d,
and therefore B satisfies (C1).

Lastly, we note that theorem 4.3.3 ensures thatB sinceB satisfies (C2) it necessarily
imposes independent conditions on d forms, thereby establishing condition (C3) and
the claim.

Now continuing with the proof of the equivalence. If dim[I(Q)d−1]d− dim[I�Q (Z)]d
is less than Ex.C(Z, d), then we can find some B ⊆ Z so that |B| = Ex.C(Z, d) and
B satisfies conditions (C1), (C2) and (C3). We then have

dim[I(Q)d−1]d − dim[I(Q)d−1 ∩ I(Z)]d < Ex.C(Z, d) = |B| = dim[Sym(V ∗)/I(B)]d.

Letting W = B, we see that W satisfies the necessary criteria of definition 5.4.7, and
so Z admits very unexpected hypersurfaces.

Conversely, suppose that Z admits very unexpected hypersurfaces. Then by
definition there exists U ⊆ Z so that for general Q the following conditions hold:

(I) [I�Q (U)]d = [I�Q (Z)]d.

(II) For all linear subspaces L, we have

|U ∩ L| ≤ dim[I(Q)d−1/I�Q (L)]d = d(dimL) + 1.
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(III) dim[R/I(U)]d > dim[I(Q)d−1/I�Q (U)]d.

Finding a subset W ⊆ U so that [I(U)]d = [I(W )]d and W imposes independent
conditions on d forms. We get by the claim above that |W | ≤ Ex.C(Z, d) and so

dim[I(Q)d−1/I�Q (U)]d < dim[R/I(U)]d = |W | < Ex.C(Z, d).

Remark 5.4.22. Let L ⊆ Pn be a nonempty linear subspace. We note that the
above proof relies on a somewhat remarkable agreement between the dimension
dim[I(Q)d−1/(I(L)∩I(Q)d−1)]d and the quantity d dimL+1 appearing in the inequality
from theorem 4.3.3. This is even more remarkable considering that the proof of
theorem 4.3.3 is almost entirely combinatorial relying on a generalization of Edmonds
Matroid Partition Theorem.

Combining the above result with theorem 5.3.14, we obtain the following as a
corollary.

Theorem 5.4.23. Let Z ⊆ Pn be a finite set of points, and suppose that D0(AZ) has
splitting type (a1, .., an). Then for a fixed integer d,

n∑
i=1

max{0, d− ai} ≤ nd+ 1− Ex.C(Z, d)

and the inequality is strict if and only if Z admits very unexpected hypersurfaces in
degree d.

Remark 5.4.24. Note one consequence of this is if Z admits very unexpected hyper-
surfaces in degree d, then a1 < d < an.

Proof. Let H1, .., Hs be any collection of linear subspaces covering Z. Note that
I�Q (Z) ⊇

⋂s
i=1 I

�
Q (Hi) and that

⋂s
i=1 I

�
Q (Hi) is the kernel of the canonical map

[I(Q)d−1]d → ⊕si=1[I(Q)d−1/I�Q (Hi)]d. We have by dimension counting that for a fixed
d

dim[I�Q (Z)]d ≥ dim
s⋂
i=1

[I�Q (Hi)]d ≥ nd+ 1−

(
s∑
i=1

d dim(Hi) + 1

)
.

Taking H1, .., Hs so
∑s

i=1 d dim(Hi) + 1 = Ex.C(Z, d), the rest follows directly from
theorem 5.4.20 and corollary 5.3.15.

The final consequence follows since if d ≤ a1 then I�Q (Z) = 0, if d ≥ an then note
that Ex.C(Z, d) ≤ |Z|, and so

nd− (|Z| − 1) =
n∑
i=1

max{0, d− ai} ≥ nd+ 1− Ex.C(Z, d) ≥ nd+ 1− |Z|

Establishing that Ex.C(Z, d) = |Z| and that the middle inequality is an equality.
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The following lemma, shows that the inequality in the preceding corollary above
may be replaced by

n∑
i=1

max{0, ai − d} ≥ |Z| − Ex.C(Z, d) ≥ 0.

Lemma 5.4.25. Let Z ⊆ Pn be a finite set of points and suppose that (a1, .., an) is
the splitting type of D0(AZ). Then for all real numbers c and d

n∑
i=1

max{0, d− ai} ≥ nd+ 1− c

⇐⇒
n∑
i=1

max{0, ai − d} ≥ |Z| − c

Proof. Using that
∑n

i=1 ai = |Z| − 1 we obtain

n∑
i=1

max{0, d− ai} ≥ nd+ 1− c ⇐⇒

(
n∑
i=1

d− ai

)
−

∑
j;aj≥d

d− aj

 ≥ nd+ 1− c ⇐⇒

nd− (|Z| − 1) +
∑
j;aj≥d

(aj − d) ≥ nd+ 1− c ⇐⇒

n∑
i=1

max{0, ai − d} ≥ |Z| − c

We now conclude this section by discussing a few conditions on Z which makes it
easier to determine if Z has very unexpected hypersurfaces in some degree d. The
first is a consequence of the preceding lemma and theorem 5.4.20.

Corollary 5.4.26. Let Z ⊆ Pn be a finite set of points, with (a1, a2, .., an) the splitting
type of D0(AZ). Suppose we have for a fixed integer d ≥ 0 that

Ex.C(Z, d) = min{|Z|, nd+ 1}.

Then the following are equivalent:

(a) Z admits very unexpected hypersurfaces in degree d

(b) Z admits unexpected hypersurfaces in degree d

(c) a1 < d < an
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Proof. Before proving any of the necessary equivalences note that since Ex.C(Z, d) ≤
|Z| and Ex.C(Z, d) ≤ d dim(Pn) + 1, that Ex.C(Z, d) is at most min{nd+ 1, |Z|}.

[(a) ⇐⇒ (c)] First, as mentioned after theorem 5.4.23 we have that (a) =⇒ (c).
For the reverse direction assume that a1 < d < an. First in the case that Ex.C(Z, d) =
nd+ 1 we see that Z admits unexpected hypersurfaces in degree d as d > a1, and so
the inequality in theorem 5.4.23 is strict. For the case when Ex.C(Z, d) = |Z|, we
similarly conclude by applying lemma 5.4.25 and using that d < an.

[(a) ⇐⇒ (b)] The forward direction is by definition. For the reverse we use the
equivalence of (a) and (c), and note it suffices to show that Z cannot admit unexpected
hypersurfaces in degree d if d ≤ a1 or d ≥ an. If d ≤ a1, we note this is impossible as
[I�Q (Z)]d = 0. If d ≥ an, then

dim[I�(Z)]d =
n∑
i=1

max{0, d− an} = nd−
n∑
i=1

= nd− (|Z| − 1) = nd+ 1− |Z|.

As dim[I(Q)d−1]d = nd + 1 we conclude that Z imposes independent conditions on
[I(Z)]d, and so Z cannot admit unexpected hypersurfaces.

In the case that the points of Z are not too concentrated on one or more proper
subspaces, it turns out that Ex.C(Z, d) = max{nd + 1, |Z|} holds for all d and we
obtain the following result.

Theorem 5.4.27. Let Z ⊆ Pn and let (a1, .., an) be the splitting type of D0(AZ),
where ai ≤ ai+1. Suppose for all positive dimensional linear subspaces H ⊆ Pn, we
have that

|Z ∩H| − 1

dimH
≤ |Z| − 1

n
.

Then for an integer d the following are equivalent:

(a) Z admits very unexpected hypersurfaces in degree d.

(b) Z admits unexpected hypersurfaces in degree d.

(c) a1 < d < an.

Proof. By corollary 5.4.26, it suffices to show that Ex.C(Z, d) = min{nd + 1, |Z|}.
Let H = {H1, .., Hs} be a collection of positive dimensional linear subspaces, so that
setting W = Z \

⋃s
i=1 Hi we have

|W |+
s∑
i=1

d dim(Hi) + 1 = Ex.C(Z, d).

As |W |+
∑s

i=1 d dim(Hi) + 1 is at a minimum, we make the following observations:

(Ob. 1) d dim(Hi) + 1 ≤ |Hj ∩ Z|.

(Ob. 2) For all J ⊆ H we have
∑

Hj∈J d dim(Hj) + 1 ≤ d dim Span
(⋃

Hj∈J Hj

)
+ 1.
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(Ob. 3)
∑s

i=1 dim(Hi) ≤ dim Span (
⋃s
i=1 Hi) < n.

(Ob. 1) and (Ob. 2) must hold since otherwise we could find a set of points
W ′ and a collection of subspaces H′ = {H ′1, ..., H ′k} with Z ⊆ W ′ ∪

⋃
H′i∈H′

H ′i and∑
H′i∈H′

d dimH ′i + 1 < Ex.C(Z, d). For instance, in (Ob. 1) we would consider

W ′ = W ∪ (Z ∩Hi) and H′ = H \ {Hi}. (Ob. 3) is a consequence of (Ob. 2).

Note that (Ob. 1) implies that Ex.C(Z, d) = |Z| for all d ≥ |Z|−1
n
≥ |Z∩Hi|−1

dimHi
, so

suppose that nd + 1 < |Z|. Let gi = |Z ∩Hi| − (d dim(Hi) + 1) ≥ 0, and note that

by hypothesis gi
dimHi

= |Z∩Hi|−1
dimHi

− d ≤ |Z|−nd−1
n

. Combining this with our formula for
Ex.C(Z, d), we obtain the following

Ex.C(Z, d) = |W |+
s∑
i=1

(d dim(Hi) + 1)

= |Z| −
s∑
i=1

gi ≥ |Z| −
s∑
i=1

(dimHi)

(
|Z| − nd− 1

n

)
≥ |Z| − (|Z| − nd− 1)

(∑s
i=1 dimHi

n

)
Now as

∑
dimHi ≤ n by (Ob. 3) we obtain Ex.C(Z, d) ≥ |Z| − (|Z| − nd− 1) =

nd+ 1. As it’s always true that Ex.C(Z, d) ≤ nd+ 1, the result now follows.

Remark 5.4.28. To close we spell out the connection between theorem 5.4.27 and the
original theorem 5.4.1 from [CHMN18]

proof of Theorem 5.4.1. Let Z ⊆ P2 and let (a1, a2) be the splitting type of D0(AZ).
First consider the case where there exists some L ⊆ P2 so that |L ∩ Z| > a1 + 1.
Let Q ∈ P2 be a general point, and take f ∈ [I�Q (Z)]a1+1 be a minimal generator of
I�(Z), then applying Bezout’s Theorem we see that L must be a component of the
variety f = 0. Hence, f factors as f = `g where ` is the linear form defining L and
g ∈ [FQ]a1 = [I(Q)a1 ]a1 is a product of linear forms. As f is a minimal generator and
Q is general it follows each linear form in g vanishes at precisely one point of |Z \ L|.
Therefore, as a1 = deg g = |Z \ L|, we conclude that |Z ∩ L| = |Z| − |Z \ L| = a1 + 1.

Now noting that if Ex.C(Z, d) =
∑k

i=1 d dimHi + 1 for linear subspaces, Hi

that we must have d dim(H1 + H2) + 1 ≥ d dimH1 + d dimH2 + 2. It follows that
dim(H1 + H2) > dimH1 + dimH2, in the case that Z ⊆ P2, this implies that
there is at most one line or plane among the Hi. Therefore, we conclude that
Ex.C(Z, d) = min{2d+ 1, (d dimL+ 1) + |Z \ L|, |Z|} or equivalently

Ex.C(Z, d) =


2d+ 1 If d ≤ a1

d+ 1 + a1 If a1 ≤ d ≤ a2

a1 + a2 + 1 If a2 ≤ d

Applying theorem 5.3.14 and a direct comparison now shows that Z admits no
unexpected curves, establishing this case.
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For the other case we have |L ∩ Z| ≤ a1 + 1 for all L ⊆ P2. Then for all lines

L ⊆ P2 we have the inequality |Z ∩ L| ≤ a1 + 1 ≤
⌊
|Z|−1

2

⌋
+ 1. Subtracting through

by 1 gives

|Z ∩ L| − 1 ≤ a1 ≤
|Z| − 1

2
allowing us to conclude by theorem 5.4.27.

5.5 Computations and Examples of Unexpected Hypersurfaces

Combinatorial Optimization problems similar to the linear program, Ex.C(Z, d), from
in definition 5.4.19 have been studied before. One notable instance of this is in the
chapter [Nar91]. In [Nar91] the author fixed a submodular function µ : S → R and a
real parameter λ, and studied the optimization problem

min

{
t∑
i=0

µ(Si)− λ

∣∣∣∣∣ {S0, .., St} is a partition of S

}
.

It was shown in section 3 of [Nar91] that for a fixed µ and λ that there is a unique
finest and a unique coarsest partition of S achieving this minimum. Here we say a
partition π if finer than the partition τ (or equivalently that τ is coarser than π) and
write π ≤ τ , if every block of π is contained in a block of τ . In section 4 of [Nar91] an
algorithm was given which solves this problem for a fixed µ. It was shown in particular
that minimum is a piecewise linear function of λ.

We note that Ex.C(Z, d) is equivalent to

dmin

{
t∑
i=0

(
rkM(Z)(Ai)−

d− 1

d

) ∣∣∣∣∣ {A0, .., At} is a partition of Z

}
and so the algorithm given in [Nar91] can be used to solve Ex.C(Z, d).

Definition 5.5.1. Let Z ⊆ Pn be a finite set of points, for each d ≥ 0, we define the
modified expected base locus, which we denote Ex.Bl(Z, d) to be the coarsest partition
in the partition order which satisfies∑

B∈Ex.Bl(Z,d)

(d dim Span(B) + 1) = Ex.C(Z, d).

Meaning that if Π is any other partition with
∑

P∈Π (d dim Span(P ) + 1) =
Ex.C(Z, d), then for every P ∈ Π there is some B ∈ Ex.Bl(Z, d) so that P ⊆ B.

Section 3 of [Nar91] establishes not only that Ex.Bl(Z, d) exists, but also that in
the partition order Ex.Bl(Z, d) ≥ Ex.Bl(Z, d+ 1). We now make a few observations
about Ex.Bl(Z, d) and Ex.C(Z, d) in order to compute Ex.C(Z, d) more easily. These
results are heavily influenced by the results and techniques in [Nar91]. However, our
results are stronger in some cases as we can take advantage of the fact that rkM(Z) is
the rank function of a matroid, and not merely a submodular function.
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Lemma 5.5.2. For any real number d > 0, and for distinct blocks B1, .., Bk ∈
Ex.Bl(Z, d) we have

k∑
i=1

(d dim Span(Bi) + 1) < d dim Span

(
k⋃
i=1

Bi

)
+ 1

In particular, for each pair of distinct blocks B1 and B2, Span(B1) and Span(B2) are
disjoint subspaces.

Similarly, if C1 t ... t C` is a partition of a block B` ∈ Ex.Bl(Z, d) into nonempty
subsets, then ∑̀

j=1

(d dim Span(Cj) + 1) ≥ d dim Span(B) + 1

Proof. If Ex.Bl(Z, d) = {B1, .., Bm} then let A =
{⋃k

i=1Bi, Bk+1, ..., Bm

}
. As A is

coarser than Ex.Bl(Z, d), we get∑
a∈A

d dim Span(a) + 1 >
∑

b∈Ex.Bl(Z,d)

d dim Span(b) + 1.

Subtracting away the shared terms now gives the desired inequality.
The proof of the second claim follows similarly, since we must have∑̀

j=1

d dim Span(Cj) + 1

+

 ∑
B∈Ex.Bl(Z,d);B 6=B`

d dim Span(B) + 1


≥

∑
B∈Ex.Bl(Z,d)

d dim Span(B) + 1

It can be somewhat laborious to determine if a given set of points satisfies the
combinatorial condition in theorem 5.4.27. Furthermore, most of the observed configu-
rations of points Z which admit unexpected curves possess certain kinds of symmetry,
namely their dual arrangements AZ are reflection arrangements. We designed this
next proposition with these examples in mind.

Definition 5.5.3. A psuedoreflection is a matrix R ∈ GL(n,K) so that Rk = In for
some k > 1 and the set of points in Kn, which are fixed by R, denoted FixR, form a
hyperplane. A reflection group is a subgroup, G, of GL(n,K), which is generated by
psuedoreflections. G is an irreducible reflection group if there no nontrivial G-invariant
subspace of Kn.

Proposition 5.5.4. If Z ⊆ PnK is a finite set of points, and there is an irreducible
reflection group G ⊆ PGL(K, n) acting on Z. Then for all positive dimensional linear
subspaces H ⊆ Pn we have

|Z ∩H| − 1

dimH
≤ |Z| − 1

n
.
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Consequently by corollary 5.4.26, Z admits very unexpected hypersurfaces in degree d
for precisely those d with a1 < d < an, where (a1, .., an) is the splitting type of D0(AZ).

We first note a useful criterion, which is used in the proof of the above proposition.

Claim 5.5.5. Let Z ⊆ Pn, then the following are equivalent:

1. For all positive dimensional subspaces H ⊆ Pn,

|Z ∩H| − 1

dimH
≤ |Z| − 1

n
.

2. Ex.C(Z, q) = min{qn+ 1, |Z|} for all q ∈ Q.

proof of claim. The forward direction is established in theorem 5.4.27. For the reverse
direction, we prove the contrapositive. Namely, suppose that there is some H ⊆ Pn
with |Z∩H|−1

dimH
> |Z|−1

n
. Then choose any q with

|Z ∩H| − 1

dimH
> q >

|Z| − 1

n
.

Note then that |Z ∩H| > q dimH + 1 and that qn+ 1 > |Z|, hence we have that

Ex.C(Z, d) ≤ q dimH + 1 + |Z \H| < |Z| < qn+ 1

establishing the result.

Proof of proposition 5.5.4. First, note that if G is any group acting on Z then this
action extends to the lattice of partitions of Z. Furthermore, if Π is any partition of
Z, then for any g ∈ G we have

∑
P∈Π d dim Span(P ) + 1 =

∑
P∈Π d dim Span(gP ) + 1.

From this it follows that Ex.Bl(Z, d) is fixed by the G action, in the sense that blocks
of Ex.Bl(Z, d) are taken to other blocks of Ex.Bl(Z, d).

Now we continue to establishing the proposition. By the preceding claim it suffices
to show that for rational q, Ex.Bl(Z, q) is either the discrete or the indiscrete partition.
Suppose that B ∈ Ex.Bl(Z, d) is a block with |B| ≥ 2, let r ∈ G be a psuedoreflection
and Hr = Fixr the hyperplane of the points fixed by r. As dim Span(B) ≥ 1
then consequently Hr ∩ Span(B) and hence Span(rB) ∩ Span(B) are both nonempty.
Applying lemma 5.5.2, we see that we must have rB = B and so r Span(B) = Span(B).
Therefore, Span(B) is a nonzero G-invariant subspace of Pn. As G is an irreducible
reflection group we must have that Span(B) = Pn and so B = Z by lemma 5.5.2.

For a set of points Z ⊆ Pn, if the splitting type of D0(AZ) is known, then
determining when Z admits very unexpected hypersurfaces comes down to computing
Ex.C(Z, d). The following two propositions can be useful in determining Ex.C(Z, d).
The first places bounds on how Ex.C(Z, d) can change between degrees.

Lemma 5.5.6. For Z ⊆ P(V ), the sequence of forward differences

δd = Ex.C(Z, d+ 1)− Ex.C(Z, d)

is nonincreasing. Furthermore, we have∑
A∈Ex.Bl(Z,d)

dim(A) ≥ δd ≥
∑

B∈Ex.Bl(Z,d+1)

dim(B).
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Proof. Consider the following inequalities∑
A∈Ex.Bl(Z,d)

dim Span(A) =

∑
A∈Ex.Bl(Z,d)

[(d+ 1) dim Span(A) + 1]−
∑

A∈Ex.Bl(Z,d)

[d dim Span(A) + 1]

≥
∑

A∈Ex.Bl(Z,d)

[(d+ 1) dim Span(A) + 1]−
∑

B∈Ex.Bl(Z,d+1)

[d dim Span(B) + 1]

≥
∑

B∈Ex.Bl(Z,d+1)

[(d+ 1) dim Span(B) + 1]−
∑

B∈Ex.Bl(Z,d+1)

[d dim Span(B) + 1]

=
∑

B∈Ex.Bl(Z,d+1)

dim Span(B).

Now noting that

δd =
∑

A∈Ex.Bl(Z,d+2)

[(d+ 1) dim Span(A) + 1]−
∑

B∈Ex.Bl(Z,d)

[d dim Span(B) + 1]

establishes the result.

The following proposition shows that if the splitting type (a1, .., an) is known it
suffices to check if Z admits very unexpected hypersurfaces by only looking around
the degrees in the splitting type.

Proposition 5.5.7. Let Z ⊆ Pn and let (a1, a2, .., an) denote the splitting type of
D0(AZ). If Z does not admit very unexpected hypersurfaces in degree d, but does
admit them in either degree d− 1 or degree d+ 1, then d = ai for some i.

Proof. Let d be an index satisfying the hypothesis. Define indexes j and ` so that
ak < d for all k ≤ j, and ak < d+ 1 for all k ≤ `. The proposition is established if we
show ` > j.

Applying the inequality from theorem 5.4.23 in degrees d−1, d and d+1 we obtain
the following three equations

(Eq. 1) Ex.C(Z, d− 1) +
∑j

k=1(d− 1− ak) ≥ n(d− 1) + 1

(Eq. 2) Ex.C(Z, d) +
∑`

k=1(d− ak) = nd+ 1; and

(Eq. 3) Ex.C(Z, d+ 1) +
∑`

k=1(d+ 1− ak) ≥ n(d+ 1) + 1.

Subtracting (Eq. 1) from (Eq. 2) and (Eq. 2) from (Eq. 3) gives (Eq. 4) and (Eq.
5) below.

(Eq. 4) δd−1 + j = Ex.C(Z, d)− Ex.C(Z, d− 1) + j ≤ n

(Eq. 5) δd + ` = Ex.C(Z, d+ 1)− Ex.C(Z, d) + ` ≥ n
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By the preceding lemma δd ≤ δd−1, with this and (Eqs. 4 & 5) we have

δd + j ≤ δd−1 + j ≤ n ≤ δd + `.

We may conclude that j < `, if either (Eq. 4) or (Eq. 5) is strict. Yet this happens
precisely when Z admits very unexpected hypersurfaces in degree d− 1 or d+ 1.

Example 5.5.8. Let Fq be the finite field with q = pe elements, and K an infinite
field containing Fq. Let PnFq ⊆ PnK consist of those points which in homogeneous
coordinates can be written as (α0 : α1 : .. : αn) with αi ∈ Fq. It is well known

that |PnFq | =
qn+1−1
q−1

= qn + qn−1 + . . . + q + 1, and that APnFq
is free with exponents

(1, q, q2, ..., qn). The generator in degree qi is of the form

n∑
j=0

Y qi

j

∂

∂Yi

and so the corresponding generator of I�(PnFq) is

n∑
j=0

M q
jXi =

∣∣∣∣∣∣∣∣∣∣∣∣

X0 X1 . . . Xn

Xqi

0 Xqi

1 . . . Xqi

n

Aq
i

1,0 Aq
i

1,1 . . . Aq
i

1,n
...

. . .
...

Aq
i

n−1,0 . . . . . . Aq
i

n−1,n

∣∣∣∣∣∣∣∣∣∣∣∣
Furthermore, note that PnFq is acted on by the group GL(n,Fq). This in particular

contains the irreducible reflection group consisting of the permutation matrices, so
by proposition 5.5.4 PnFq admits very unexpected hypersurfaces in all degrees d with
q < d < qn.

Example 5.5.9. Fix some primitive m-th root of unity ζ ∈ C, for m ≥ 2. Define
a configuration of points Fm ⊆ PnC as consisting of the m

(
n+1

2

)
points whose i-th

coordinate is −1 and j-th coordinate is ζk for all 0 ≤ k ≤ d − 1 and all pairs
0 ≤ i < j ≤ n. Let Cm = Fm ∪ {E0, E1, .., Em} here Ei is the i-th coordinate point.

Then ACm is an Extended Ceva Arrangement, it is a reflection arrangement
corresponding to the reflection group G(m, 1, n + 1) ⊆ PGL(C, n). The splitting
type of D0(ACm) is (m+ 1, 2m+ 1, ..., nm+ 1) (see [OT92] for details). As ACm is a
reflection arrangement, we again apply proposition 5.5.4 to conclude that ACm admits
very unexpected hypersurfaces in all degrees d with m+ 1 < d < nm+ 1.

Both of our classes of examples come from reflection arrangements, more generally
proposition 5.5.4 gives a good criterion for determining if the points dual to a given
reflection arrangement admit unexpected hypersurfaces. We note that reflection
arrangements have been classified and that their exponents and hence their splitting
type can be found in the appendix of [OT92].

Our final example shows that the degrees in which a set of points Z admits very
unexpected hypersurfaces do not need to be consecutive. This is in contrast with the
situation in the plane as shown in theorem 5.4.1. Before outlining the example we
state a useful proposition and definition.
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Definition 5.5.10. Let V1 and V2 be finite dimensional K-vector spaces, and suppose
we have finite sets of points Z1 ⊆ P(V1), Z2 ⊆ P(V2). There are inclusion maps
ιi : P(Vi)→ P(V1 ⊕ V2) for i = 1, 2. We then define Z1 ⊕ Z2 ⊆ P(V1 ⊕ V2) as the set
of points

Z1 ⊕ Z2 := ι1(Z1) ∪ ι2(Z2).

Proposition 5.5.11. Z1 ⊕ Z2 admits very unexpected curves in degree d ≥ 1 if and
only if Z1 or Z2 admits unexpected curves in degree d.

Proof. First, note that for hyperplane arrangements A1 ⊆ P(W1) and A2 ⊆ P(W2)
there is an arrangement A1 × A2 ⊆ P(W1 ⊕ W2) induced by the projections pi :
P(W1 ⊕W2)→ P(Wi). Namely, A1 ×A2 is formed by taking all hyperplanes of the
form π−1

i (H) for H ∈ Ai.
We now note two facts:

(Fact 1) AZ1⊕Z2 = AZ1 ×AZ2 ,

(Fact 2) If S is the projective coordinate ring of P(W1⊕W2) there is an isomorphism
of S-modules, D(AZ1 ×AZ2)

∼= (S ⊗D(AZ2))⊕ (S ⊗D(AZ1)).

The first can be seen by following each the constructions through the duality. We
omit a proof of the second referring to [OT92] for details.

One consequence of fact 2 is that if D0(A1) has splitting type (a1, .., an) and D0(A2)
has splitting type (b1, .., bm), then D0(A1×A2) has a splitting type (up to reordering)
of (1, a1, ..., an, b1, .., bm). Applying theorem 5.4.23, now yields the inequalities valid
for any d ≥ 1. Each inequality strict if and only if the corresponding set of points
admits very unexpected hypersurfaces

(Ineq. 1)
∑n

i=1 max{0, d− ai} ≥ nd+ 1− Ex.C(Z1, d)

(Ineq. 2)
∑m

j=1 max{0, d− bj} ≥ md+ 1− Ex.C(Z2, d)

(Ineq. 3) d− 1 +
(∑n

i=1 max{0, d− ai}
)

+
(∑m

j=1 max{0, d− bj}
)
≥ (n+m+ 1)d+

1− Ex.C(Z1 ⊕ Z2, d)

We now claim that Ex.C(Z1 ⊕ Z2, d) = Ex.C(Z1, d) + Ex.C(Z2, d). First note that
if we assume this claim and subtract d − 1 from both sides of (Ineq. 3), then the
resulting inequality may be written as the sum of (Ineq. 1) and (Ineq. 1). From this
it follows that (Ineq. 3) is strict if and only if either (Ineq. 3) or (Ineq. 3) is strict
and the proposition follows.

Continuing to the proof of our claim, we first note that if d = 1 then for any set of
points Ex.Bl(Z, 1) = {Z}. A direct computation establishes the claim in this case.

Now we may assume d ≥ 2. Take a block B ∈ Ex.Bl(Z1 ⊕ Z2, d) and define
B1 = B ∩ Z1 and B2 = B ∩ Z2. We note that if B1 and B2 are nonempty, then
lemma 5.5.2 states

d(dim SpanB − dim SpanB1 − dim SpanB2) ≤ 1.
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Yet as B1 and B2 are contained in disjoint subspaces, dim Span(B) = dim Span(B1) +
dim Span(B2) + 1 and the inequality becomes d ≤ 1 giving a contradiction. Therefore,
for each block B we have B ⊆ Z1 or B ⊆ Z2, and consequently Ex.Bl(Z1 ⊕ Z2, d) =
Π1 ∪Π2 for some partitions Π1 and Π2 of Z1 and Z2 respectively. From this it readily
follows from the definition that Ex.Bl(Z1 ⊕ Z2, d) = Ex.Bl(Z1, d) ∪ Ex.Bl(Z2, d).
This establishes the claim that Ex.C(Z1 ⊕ Z2, d) = Ex.C(Z1, d) + Ex.C(Z2, d) and
completes our proof.

Example 5.5.12. If C2, C7 ⊆ P2
C are the configurations of points described in exam-

ple 5.5.9, then C2⊕C7 is a configuration of 33 points in P5
C. The module of derivations,

D0(AC2 ×AC7), has splitting type (1, 3, 5, 8, 15). Using the computation from exam-
ple 5.5.9 along with proposition 5.5.11, it follows that C2⊕C7 admits very unexpected
hypersurfaces in degree d if and only if d = 4 or 8 < d < 15.

5.6 A Lifting Criterion and the Structure of Unexpected Curves in P2
C

One feature of the theorems 5.3.8 and 5.3.14, is they allow us to view elements
of reduced Module of Derivations as explicit polynomials. This permits us to use
techniques such as unique factorization and polynomial division that are not as well
developed for general modules. In this section we give a few applications of this
view point. First, we state a lifting criterion in proposition 5.6.2, this allows us
under certain conditions to lift an element of the restricted module D0(AZ) |L to
the module D0(AZ). This criterion has especially strong implications in P2

C, such
as in theorem 5.6.8, where we show that for Z ⊆ P2 every polynomial defining an
unexpected curve in I�Q (Z) can be lifted to an element of I�(Z).

This result ends up putting very strong conditions on the combinatorics of sets of
points Z which admit unexpected curves, which we explore in the next section.

Proposition 5.6.1. Let Z ⊆ P(V ) ∼= Pn. Consider G ∈ I�(Z) ⊆ K[A]. If there is
some F ∈ K[A] so that for general α ∈ Gr(n − 1, V ) we have that εα(F ) ∈ I�α (Z)
and εα(F ) | εα(G). Then F and G have a common divisor H ∈ I�(Z).

Proof. For any prime ideal, I, we set νI(F ) as the valuation νI(F ) := sup{m ≥ 0 |
F ∈ I(m)}. Now we define two ideals of K[A], X is the ideal (X0, .., Xn) and we let
M denote the ideal generated by the maximal minors of the matrix A. Lastly, for
α ∈ Gr(n− 1, V ), I(α) is the ideal of K[X0, .., Xn] ⊆ K[A] defined by the subspace
α.

Before continuing we note a few facts:

Fact 1 For each of the 3 ideals, X, I(α) and M , that we have defined we have
Ik = I(k).

Fact 2 For any f ∈ K[A] we have νX(f) ≥ νM(f) and νI(α)(εα(f)) = νM(f) for
general α.

Fact 3 For any f ∈ K[A], we have the inequality

(νX(f)− νM(f)) + n2νM(f) ≤ deg(f).
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Fact 4 If νX(f) = νM(f) + 1, then equality occurs in Fact 3 if and only if f ∈ m�.

The first fact follows for X and I(α) since both are complete intersections, for M we
refer to section 2.2 of [Hoc73]. The second fact follows since M is essentially I(α) for
α the generic point. The third is a consequence of the first and that deg(Mi) = n2.
Lastly, the fourth fact follows since if νX(f) = νM (f) then setting d = νX(f) we have
f ∈ [(X0, .., Xn)Md−1]n2(d−1)+1, but this is precisely [m�]d.

First we claim for general α, that any f ∈ I�α (Z) factors into irreducible com-
ponents as f = f0

∏k
i=0 `i where each `i is an element of the special fibre ring

Fα = Sym([I(α)]1). It suffices to show that if f = pq, then either p or q is in Fα.
Noting that νX(f) = 1 + νI(α)(f), and using the additive property of valuations, we
obtain

νX(p) + νX(q) = 1 + νI(α)(p) + νI(α)(q) ≤ 1 + νX(p) + νX(q).

Since all numbers above are integers, and νI(α)(h) ≤ νX(h) for every polynomial h
in K[X0, .., Xn], we may assume without loss of generality that νI(α)(p) = νX(p) and
νI(α)(q) = νX(q) + 1. It now follows that p ∈ [I(α)νX(p)]νX(p) ⊆ Fα, which establishes
our claim.

Continuing with the proof of the proposition, we let εg denote the generic evaluation.
In other words εg is the inclusion εg : K[A] → F[X0, .., Xn], for F the function field
F := K(Ai,j | (1, 0) ≤ (i, j) ≤ (n, n+ 1)). By assumption εg(F ) divides εg(G), so there
exists h ∈ K[A] and k ∈ K[Ai,j | (1, 0) ≤ (i, j) ≤ (n, n + 1)] with h and k coprime
so that h

k
εg(F ) = εg(G) ⇐⇒ hF = kG where this last equality is in K[A]. Now by

unique factorization in the polynomial ring K[A], we get k | F . Setting F̃ = F
k
∈ K[A],

we have hF̃ = G and kF̃ = F . Moreover, since εq(F ) 6∈ Fq it follows that F̃ 6∈ Fq and
so h ∈ Fq. We finish the proof by establishing that F̃ ∈ I�(Z).

Since F differs from F̃ only by F scalar, and F ∈ I(Z) we have F̃ ∈ I(Z) and so
it suffices to show that F̃ ∈ m�. Since εq(F̃ ) ∈ I�g (Z) and εq(h) ∈ Fq we have the
inequalities

νM(h) ≤ νI(q)(h) = νX(εq(h)) = νX(h); and

νM(F̃ ) ≤ νI(q)(F̃ ) = νX(εq(F̃ ))− 1 = νX(F̃ )− 1.

As hF̃ ∈ I�(Z), we have that νM (h) + νM (F ) = νX(h) + νX(F )− 1 and so the above
inequalities must be equality. Similarly, using the inequalities 1 + n2νM (F̃ ) ≤ deg(F̃ ),
n2νM(h) ≤ deg(h) and F̃ h = G ∈ I�(Z) we have that

1 + n2νm(F̃ ) + n2νM(h) ≤ deg F̃ + deg h = degG = 1 + n2νM(F̃ h).

Allowing us to conclude that 1 + n2νM (F̃ ) = deg(F̃ ) and n2νM (h) = deg(h) which
completes the proof.

The preceding lemma when combined with the results of section 5.3 allows us
under certain circumstances to lift elements of D0(A) |L to elements of D0(A). One
example of this is illustrated in the following proposition.

Proposition 5.6.2. Let A ⊆ PnK and let (a1, . . . , an) denote the splitting type of
D0(A). If a1 < a2 ≤ a3 ≤ ... ≤ an and θλ ∈ D0(A) is a nonzero element of degree
< a2, then D0(A) has a minimal generator in degree a1.
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Proof. Using the translation given by theorem 5.3.8, there’s a nonzero Fλ ∈ [I�(Z)]d
where d < a2 + 1. If Q is the generic codimension 2 linear subspace, then by
theorem 5.3.14 I�Q (Z) is free on generators f1, .., fn with deg fi = ai + 1. Hence,
εQ(Fλ) =

∑n
i=1 gifi. Yet as deg fj > deg εQ(Fλ) for all j ≥ 2, we must have εQ(Fλ) =

g1f1. After clearing denominators we may lift f1 to an element f̃1 of K[A].
Now as εQ(f̃1) divides εQ(Fλ) we see by the previous lemma that there exists F1 ∈

I�Q (Z) which divides both f̃1 and Fλ. As F1 divides f̃1 we must have F1 ∈ [I�(Z)]a1+1

and so by theorem 5.3.8 there’s a nonzero θ1 ∈ [D0(AZ)]a1 .

The previous two propositions will prove to be especially useful when our points
(or line arrangements) are in the plane P2. We will establish this using some results
on vector bundles on P2

C which we recall now.

Definition 5.6.3. We say a vector bundle M on PnC is semistable, if for all proper
subbundles N (M , we have

c1(N)

rankN
≤ c1(M)

rankM

where here c1 is the first Chern class, and rankM is the dimension of a fibre.

If rk(M) = 2, semistability has a simpler characterization originally due to
Hartshorne (see lemma 3.1 of [Har80]).

Lemma 5.6.4. Let M be a rank 2 bundle on PnC, then if M is semistable if and only
if letting c1 = c1(M)

H0

(
M
(⌊
−c1 − 1

2

⌋))
= 0.

In the case that our bundle M is the Derivation Bundle, D̃0(A) of a hyperplane
arrangement, it was shown by Terao that c1(M) = 1 − |A|, where here |A| is the
number of hyperplanes in A. Using this together with the previous lemma now allows

us to characterize semistability of D̃0(A) for A a line arrangement in P2
C.

Proposition 5.6.5. For A ⊆ P2
C define d =

⌊
|A|−2

2

⌋
. Then the derivation bundle

D0(A) is semistable if and only if [D0(A)]d = 0. In particular, if D0(A) is not

semistable, then D0(A) contains a nonzero derivation in degree
⌊
|A|
2

⌋
− 1.

One property of semistable bundles is the celebrated theorem of Grauert and
Mülich, which characterizes the splitting type of semistable bundles. In light of
theorem 5.4.1, we see that if D0(AZ) is semistable then Z ⊆ P2

C admits no unexpected
curves.

Theorem 5.6.6 (Grauert-Mülich). If B is a semistable bundle on PnC, with splitting
type a1 ≤ a2 ≤ ... ≤ ak, then for all 1 ≤ i < k, we have 0 ≤ ai+1 − ai ≤ 1.

Theorem 5.6.7. [CHMN18] For Z ⊆ P(V ) ∼= P2
C, if D0(AZ) is semistable then Z

admits no unexpected curves.
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This theorem in conjunction with 5.6.2 allows us to say that every unexpected
curve in P2

C comes from a global section of the derivation bundle. More precisely
a polynomial defining a degree d unexpected curve corresponds via the duality of
theorem 5.3.8 to an element of [D0(A)]d−1.

Theorem 5.6.8. Let Z ⊆ P2
C be a finite set of points. If D0(AZ) has splitting type

(a1, a2) with a2 − a1 ≥ 2 (in particular if Z admits unexpected curves), then D0(AZ)
has a generator in degree a1; Equivalently, I�(Z) has a generator in degree a1 + 1.

Proof. As a2 − a1 > 1, D̃0(AZ) is not semistable by the Grauert-Mülich theorem.

Hence by proposition 5.6.5, there’s a nonzero θ ∈ D0(A) with deg θ ≤
⌊
|Z|−2

2

⌋
< a2.

Applying proposition 5.6.2 now yields the required generator of degree a1.

Combining this with the Grauert-Mülich Theorem, we obtain the following result.

Theorem 5.6.9. Let Z be a finite set of points in P2
C and let α(D0(AZ)) denote the

initial degree of D0(AZ). Define a = min
{
α(D0(AZ)),

⌊
|Z|−1

2

⌋}
then D0(AZ) has

splitting type (a, |Z| − a− 1).

Translating the above statement via the duality of theorem 5.3.8, we obtain the
corollary below.

Corollary 5.6.10. For a finite set of points Z ⊆ Proj(C[X0, X1, X2]), suppose Z
admits unexpected curves. If Q = (A0 : A1 : A2) is the generic point, then I�Q (Z) is a
free FQ-module on generators f and g with deg f < deg g − 1 and f can be lifted to
an element F of I�(Z) with εQ(F ) = f .

In particular, f can be written as

f = X1f1 +X2f2 +X3f3,

where fi is a polynomial of degree (deg f)−1 in the maximal minors of

[
A0 A1 A2

X0 X1 X2

]
The above corollary states that the polynomials defining unexpected curves are

“as simple as possible”, in the sense that they have the minimal possible degree as a
polynomial in the coordinates of our general point Q. This stands in stark contrast
to most other sets of points where this is not the case. As an illustration, taking 8
randomly chosen points Z ⊆ P2

C, a computation with Macaulay2 showed that I�Q (Z)
has generators of X-degree 4 and 5. The first generator had an A-degree of 12 giving
a total degree of 16, showing that the above result is far from expected. Similar
computations with 6 points and 10 points gave minimal polynomials with A-degrees
of 6 and 20, respectively.

Below we present a simpler example illustrating a similar point.

Example 5.6.11. If Z ⊆ P2
C consists of the 3 coordinate points and (1 : 1 : 1). Then for

generic Q, I�Q (Z) has generators f1 and f2 of degrees 2 and 3 as polynomials in X.
Many different f2 are possible. On the other hand, if we require f1 to be a polynomial
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of minimal degree in K[A], it is unique up to C scalar. The corresponding polynomial
formula is

f1 = (A0 − A1)M1X1 + (A0 − A2)M2X2

= (A0 − A1)A2X0X1 − (A0 − A2)A1X0X2 + (A1 − A2)A0X1X2

where here Mi is the minor of the 2× 3 matrix from the matrix above and proposi-
tion 5.3.12. f1 is irreducible, and defines the unique smooth conic through Z and Q.
As the A degree and X degree of f1 are the same, we can see f1 cannot be written in
the form from corollary 5.6.10.

5.7 Combinatorial Constraints on Points Admitting Unexpected Curves

In this section we explore combinatorial constraints necessarily satisfied by sets of
points admitting unexpected curves. Most of these constraints apply only when this
unexpected curve is irreducible. Yet this turns out to be a fairly weak assumption,
since if Z admits a unique unexpected curve in degree d there is always a subset
W ⊆ Z so |Z \W | = k and W admits a unique irreducible unexpected curve in degree
d− k.

We start by exploring the consequences of corollary 5.6.10. In the case the curve
of degree d is irreducible we show in lemma 5.7.5 that corollary 5.6.10 gives a bound
on the number of distinct lines through a point P ∈ Z and the remaining points
of Z, showing that there are at most d lines. As |Z| ≥ 2d + 1 this is a very strong
combinatorial condition which states that on average each line through a fixed point
P contains 3 or more points of Z. We are able to use this in theorem 5.7.6 to give a
sharp bound on the number of points in Z, this bound is achieved by the Ceva type
point configurations Cd from example 5.5.9.

Furthermore, in proposition 5.7.13 we also give and upper bound on the number
of lines spanned by points of Z. We then close the section by applying a theorem
of Terao to state a combinatorial condition that guarantees that Z will admit an
unexpected curve.

We note that throughout this section, we often state theorems with the assumption
that “there’s some nonzero (possibly irreducible) f ∈ [I�(Z)]d”. By theorem 5.6.8
perhaps the prototypical example for us are points Z ⊆ P2

C admitting unexpected
curves in degree d. However, this also holds in other contexts for instance if AZ ⊆ P2

K
is free.

Lemma 5.7.1. For Z ⊆ P(V ) ∼= P2
K, consider F (X0, X1, X2;A0, A1, A2) ∈ [I�(Z)]d

then for every P = (P0 : P1 : P2) ∈ Z,

εP (F ) = F (X0, X1, X2;P0, P1, P2) ∈ I(P )d.

Moreover, εP (F ) = 0 if and only if the linear form `P = P0M0 + P1M1 + P2M2

divides F .
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Proof. We may choose coordinates so P = (1 : 0 : 0) and `P = M0. Writing F as
F = F0X0 + F1X1 + F2X2, then as F ∈ I(P ) = (X1, X2) we have

F (P0, P1, P2, A0, A1, A2) = F0(1, 0, 0, A0, A1, A2) = 0.

As each Mi is antisymmetric in A and X, it follows that εP (F0) = 0 and so F0 ∈
I(P⊥) = M0 by proposition 5.3.12. Then applying the identity M0X0 + M1X1 +

M2X2 = 0, we may write F = f1X1 + f2X2 where fi =
(
Fi − Mi

M0
F0

)
. Noting for

arbitrary Q ∈ P2, that εQ(fi) ∈ I(Q)d−1. It follows that

εP (F ) = εP (f1)X1 + εP (f2)X2 ∈ (X1, X2)I(P )d−1 = I(P )d,

which establishes the first statement.
Continuing with the proof of the second statement, we assume that εP (F ) = 0. Not-

ing εP (M1) = X2 and εP (M2) = −X1, it follows that εP (f1M2−f2M1) = −εP (f1)X1−
εP (f2)X2 = 0, so f1M2 − f2M1 ∈ (M0) = ker εP . Let f̃1, f̃2 ∈ K[M1,M2] so that
fi = f̃i mod (M0) for each i ∈ {1, 2}. Then f̃1M2− f̃2M1 ∈ (M0)∩K[M1,M2] = 0, so
f̃1M2 = f̃2M1 and we get by unique factorization that there exists some g ∈ K[M1,M2]

with g =
f̃2

M2

=
f̃1

M1

.

Finally, applying the identity X0M0 +X1M1 +X2M2 = 0 again we can write

F = f1X1 + f2X2 − g(M0X0 +M1X1 +M2X2)

=(−gM0)X0 + (f1 − gM1)X1 + (f2 − gM2)X2.

Noting that fi − gMi = fi − f̃i ≡ 0 mod (M0), we conclude that M0 divides F . This
establishes the forward direction, the reverse direction follows as εP (`P ) = 0.

As we will see, the preceeding lemmas imposes a very strong combinatorial condition
on the configurations of points which can admit unexpected curves. Before we state
the first of these conditions we introduce a new piece of notation.

Definition 5.7.2. Let Z ⊆ P2
K be a finite configuration of points, with |Z| ≥ 2. For

each P ∈ P2
K, define a set of lines, LP (Z), as follows

Lp(Z) := {Span(Qi, P ) | Qi ∈ Z \ {P}}.

Remark 5.7.3. Note |LP (Z)| ≤ |Z \ {P}| with equality if and only if for distinct
Q,Q′ ∈ |Z \ {P}| we have Span(Q,P ) 6= Span(Q′, P ).

The number |Lp(Z)| defined above has an equivalent purely algebraic definition.

Lemma 5.7.4. Let Z ⊆ P2
K be a finite set of at least 2 points, then for any P ∈ P2

K
we have

|LP (Z)| = min{d | [I(Z) ∩ I(P )d]d 6= 0}
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Proof. Let m = min{d | [I(Z) ∩ I(P )d]d 6= 0}. For any Q ∈ Z \ {P}, we get by
Bezout’s Theorem that the line Span(P,Q) must be a component of the base locus of
[I(Z)∩ I(P )d]d. Hence, letting Gp denote the product of the linear forms defining the
elements of Lp(Z), we have degGp = |Lp(Z)| and [I(Z) ∩ I(P )d]d = [I(Lp(Z))]d =
[(Gp)]d which completes the proof.

We introduce the first combinatorial constraint below, it occurs whenever I�(Z)
contains an irreducible element. As we will see this simple constraint ends up having
a number of strong consequences.

Lemma 5.7.5. Let Z ⊆ P2
K, with |Z| ≥ 2 and suppose F ∈ [I�(Z)]d is an irreducible

polynomial. Then for all P ∈ Z we have |LP (Z)| ≤ d.
Consequently, if Z ⊆ P2

C admits an irreducible unexpected curve in degree d, then
|Lp(Z)| ≤ d for all P ∈ Z.

Proof. As F is irreducible, we know by lemma 5.7.1 that εP (F ) 6= 0 and εP (F ) ∈
[I(P )d ∩ I(Z)]d for all P ∈ Z. Hence, by lemma 5.7.4 we get |LP (Z)| ≤ d.

The second statement follows from the first in light of corollary 5.6.10.

G. Dirac conjectured (see [Dir51]) that for any set Z of noncollinear points in

R2, there always exists some P ∈ Z with |LP (Z)| ≥ b |Z|
2
c. This turned out to be

false. However, since then alternative conjectures have been proposed, one version
of the conjecture was established in [Han17] for points in C2. This result allows us
theorem 5.7.6 below. We explore possible further consequences of the conjectures in
section 5.9.

Theorem 5.7.6. Let Z ⊆ P2
C and suppose that |Z| admits an unexpected curve in

degree d ≥ 1, then |Z| ≤ 3d− 3.

Proof. This follows from 5.7.5 and Han’s improvement of the Dirac Conjecture [Han17],
which states for a finite set of points Z ⊆ P2

C which span P2 there always exists some

P ∈ Z so |Lp(Z)| ≥ |Z|
3

+ 1.
Namely, suppose Z admits an irreducible curve in degree d, then for all P ∈ Z,

|LP (Z)| ≤ d. Now applying Han’s result, there exists P ∈ Z so

d ≥ |Lp(Z)| ≥ |Z|
3

+ 1.

Solving for |Z| now yields 3(d− 1) ≥ |Z|, the desired inequality.

Remark 5.7.7. It should be noted that the paper [Han17], is rather vague and states
the result only for points in “the plane”. However, the proof works for complex line
arrangements, as the main nonelementary tool is a Hirzeburch type inequality for
complex line arrangements first proved in [Boj03]
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Equivalently, Langer’s Inequality [Lan03], could replace and or rederive [Han17]’s
result. Langer’s Inequality states that letting `r =

∣∣{L ⊆ P2
C | |L ∩ Z| = r}

∣∣ we have
that if `r = 0 for r > 2

3
|Z| that∑
P∈Z

|LP (Z)| =
∑
r≥2

r`r ≥
⌈
|Z|2 + 3|Z|

3

⌉
.

For further discussion see the survey article [Pok18], where the author first learned of
these results.

In [CHMN18] it was shown that any set of points Z ⊆ P2
C in linearly general

position can never admit unexpected curves. This proposition provides a strengthening
of that result, and extends it to an arbitrary field.

Proposition 5.7.8. Let Z ⊆ P2
K suppose there’s a nonzero F ∈ [I�(Z)]d for 1 ≤

d ≤ |Z| − 2. Then no subset W ⊆ Z with |W | > d+ 1 is in linearly general position.
If F is irreducible and d is even this can be improved to say no subset W ⊆ Z with
|W | > d is in linearly general position.

Proof. We first proceed in the special case that |Lp(Z)| ≤ d for all P ∈ Z, note that by
lemma 5.7.5 this includes the case that F is irreducible. If W ⊆ Z is in linearly general
position, then for all P ∈ W and all L ∈ LP (W ), we have that |L ∩ (W \ {P})| ≤ 1.
Therefore |W | − 1 = |LP (W )| ≤ |Lp(Z)| ≤ d implying

|W | ≤ |LP (W )|+ 1 ≤ d+ 1.

If furthermore d is even, then suppose by contradiction that W ⊆ Z is in linearly
general position with |W | = d+ 1. As |W | = d+ 1 we get that |LP (W )| = |Lp(Z)| = d
for all P ∈ W . Now fix some Q ∈ Z \W and define a partition ΠQ of W , where P ∈ W
is contained in the block Span(Q,P ) ∩W . Now as Span(Q,P ) ∈ LP (Z) = LP (W ),
we get | Span(Q,P ) ∩W | = 2, therefore ΠQ is a partition where each block has size 2
contradicting the fact that |W | = d+ 1 is odd.

Now continuing with the general case, let F be a nonzero possibly reducible
polynomial. Let Z ′ ⊆ Z be the subset Z ′ = {P ∈ Z | εP (F ) 6= 0}, and let T = Z \ Z ′.
Then by lemma 5.7.1, we see that F factors as F = G

∏
P∈T `P . Furthermore,

G ∈ I�(Z ′) and εP (G) 6= 0 for all P ∈ Z ′, so by the proof of lemma 5.7.5 we have
|LP (Z ′)| ≤ deg(G) = d− |T | for all P ∈ Z ′. If W ⊆ Z is in linearly general position,
then so is W ′ = W ∩ Z ′. Applying the result from our first case we see

|W | ≤ |W ′|+ |T | ≤ d+ 1

establishing the result.

We immediately obtain the following corollary by applying corollary 5.6.10.

Theorem 5.7.9. If Z ⊆ P2
C admits an unexpected curve in degree d, then every subset

W ⊆ Z of points in linearly general position has

|W | ≤ d+ 1.

Furthermore, we have |W | ≤ d if d is even and the unexpected curve is irreducible.
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Remark 5.7.10. The author suspects the bound of theorem 5.7.9 can be somewhat
improved over C. Namely, given Z ⊆ P2

C, which admits an unexpected curve in degree
d, then every subset W ⊆ Z in linearly general position must have |W | ≤ d. It should
be noted, however, that the bound given in proposition 5.7.8 is sharp in positive
characteristic at least if d− 1 is a prime power.

Namely, let K be a field of characteristic p > 0. Let q = pe and take Z = P2
Fq ⊆ P2

K.
Then as shown in example 5.5.8 Z will have an unexpected curve in degree q + 1. A
smooth conic such as X2

1 = X0X2 will contain exactly q + 1 points of Z which form a
subset in linearly general position. This achieves the bound from proposition 5.7.8 if
q + 1 is even.

If q + 1 is odd, then Char(K) = 2 and for each smooth conic C ⊆ P2
K there is a

point NC ∈ P2
K \C which is contained in every tangent line of C. This is often referred

to as the nucleus of C. As an example, we can verify that C : X2
1 = X0X2 has nucleus

N = (0 : 1 : 0). In this case taking W to be (Z ∩ C) ∪ {N}, gives a linearly general
subset of size q + 2.

Remark 5.7.11. Proposition 5.7.5 can be applied to generalize an inductive technique,
stated as Lemma 6.5 in [CHMN18], restricted to the case the bundle D0(AZ) is
semistable.

Proposition 5.7.12. Let Z ⊆ P2
C and P ∈ P2 and suppose I�(Z) has splitting type

(a, b) with a ≤ b. If LP (Z) > a, then I�(Z + P ) has splitting type (a + 1, b) (or
(a, a+ 1) if a = b).

In particular, if Z does not admit unexpected curves, and LP (Z) >

⌈
|Z|
2

⌉
, then

Z + P does not admit unexpected curves.

Proof. First suppose that [I�(Z)]a = 0, then by theorem 5.6.9 we have (a, b) =(⌊
|Z|+1

2

⌋
,
⌈
|Z|+1

2

⌉)
, and can conclude that |Z| admits no unexpected curves. Now for

every P ∈ P2 \ Z we have that Z + P does not admit unexpected curves. Since if it

did we would have by theorem 5.6.8, that [I�Q (Z + P )]d 6= 0 for some d ≤ a =
⌊
|Z|+1

2

⌋
.

Now suppose that [I�(Z)]a 6= 0 and that |LP (Z)| > a. Note that `pF ∈ [I�(Z +
P )]a+1 and it suffices to show that [I�(Z + P )]a = 0, since then by theorem 5.6.9

I�(Z + P ) has splitting type (α, |Z| − α) where α = min
{
a+ 1,

⌊
|Z|+2

2

⌋}
.

For any F ∈ [I�(Z + P )]d, we have that εP (F ) ∈ [I(P )d ∩ I(Z)]d. Yet as
|LP (Z)| > a we have by applying lemma 5.7.4 that εP (F ) must be 0. By lemma 5.7.1
this means that `p divides F , however then F/`P is a nonzero element of [I�(Z)]a−1

giving a contradiction.

Proposition 5.7.13. Let Z ⊆ P2
C, define

L = {Span(P,Q) | P,Q ∈ Z are distinct points }

and suppose that Z admits an irreducible unexpected curve in degree d, then

|L| ≤ d2 − d+ 1

.
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Proof. We prove the theorem under the slightly weaker assumption that there is some
irreducible Fλ ∈ [I�(Z)]d. Without loss of generality assume that E0 = (1 : 0 : 0) ∈ Z,
so we may write Fλ = f1X1 + f2X2 with fi(M0,M1,M2) ∈ K[M0,M1,M2]. Recall the
map ρλ : P2 → P2 from definition 5.2.7, in coordinates

ρλ(a0, a1, a2) = (0 : f1(a0, a1, a2) : f2(a0, a1, a2)).

By theorem 5.3.8 we get that ρλ(H) ⊆ H for all H ∈ AZ , namely all H of the form
H = P⊥ for P ∈ Z. Define P = {L ∩ H | L and H are distinct lines in AZ}. By
projective duality we have that L⊥ = P and so in particular |L| = |P|. Now as
ρλ(H) ⊆ H for all H ∈ AZ , we get for any H ∩ L = Q ∈ P that

ρλ(Q) = ρλ(H ∩ L) ⊆ ρλ(H) ∩ ρλ(L) ⊆ H ∩ L = Q.

Hence P is contained in the vanishing locus of the minors of[
Y0 Y1 Y2

0 F1 F2

]
.

So P is contained in the solutions of the polynomial system

Y1F2 − Y2F1 = 0

Y0F2 = 0

Y0F1 = 0

(5.7.13.1)

To count solutions, let V denote the variety defined by this system, we look at solutions
on the line Y0 = 0 and solutions on the subset Y0 6= 0. On Y0 = 0 we get that the
system (1), reduces to

Y1F2 − Y2F1 = 0

Y0 = 0

from which we get by Bezout’s theorem that the number of solutions is at most
deg(Y0) deg(Y1F2 − Y2F1) = d. On the subset Y0 6= 0, the first equation in the system
is redundant and the system reduces to

F1 = 0

F2 = 0.

As F is irreducible F1 and F2 have no shared component so by Bezout’s Theorem this
system has at most deg(F1) deg(F2) = (d− 1)2 solutions. Combining both results, we
can conclude that

|L| = |P| ≤ |V ∩ (Y0 = 0)|+ |V ∩ (Y0 6= 0)| ≤ d+ (d− 1)2 = d2 − d+ 1.
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Example 5.7.14. We note that the above bound is sharp in every degree. Namely,
the point configuration Cm ⊆ P2

C of example 5.5.9 achieves the bound. To see this
write Cm = {E0, E1, E2} ∪ Fm, where Fm = {−Ei + ζkEj | 0 ≤ i < j ≤ 2}. Then
the points in Fm generate m2 + 3 lines, the 3 coordinate lines (Xi = 0), and all lines
of the form Span(−E0 + ζjE1,−E1 + ζkE2,−E0 + ζj+kE2) with defining equation
ζj+kX1 + ζkX1 +X2 = 0. The only lines unaccounted for in LCm are those of the form
Span(Ei,−Ej + ζtEk) with {i, j, k} = {0, 1, 2} of which there are 3m.

Then |LCm| = m2 + 3m+ 3, and Cm admits a unique unexpected curve in degree
m+ 2. Noting that m2 + 3m+ 3 = (m+ 2)2− (m+ 2) + 1 we conclude that the above
bound is sharp for all d ≥ 4.

We close this section with a previously unnoticed combinatorial condition which
guarantees the existence of unexpected curves.

Proposition 5.7.15. Let Z ⊆ P2
C be a finite set of points. Further suppose that no

line L ⊆ P2
C has |Z ∩ L| ≥ |Z|−1

2
. Define L as in proposition 5.7.13. Then for any

integer d ≤ |Z|+1
2

, if(∑
p∈Z

|LP (Z)|

)
− |Z| − |L|+ 1 < (d− 1)(|Z| − d)

then |Z| admits unexpected curves in degree d.

Proof. Let ct(D0(AZ)) denote the Chern polynomial of D0(AZ). Then by theorem
2.5 of [Sch03],

ct(D0(AZ)) = 1− (|Z| − 1)t+

(∑
L∈L

(|L ∩ Z| − 1)− |Z|+ 1

)
t2.

Noting that ∑
L∈Z

|L ∩ Z| =
∑
L∈Z

∑
P∈(L∩Z)

1 =
∑
P∈Z

∑
L∈Lp(Z)

1 =
∑
P∈Z

|LP (Z)|.

We get the following formula for c2(D0(AZ)),

c2(D0(AZ)) =
∑
L∈L

(|L ∩ Z| − 1)− |Z|+ 1

=

(∑
P∈Z

|LP (Z)|

)
− |L| − |Z|+ 1.

In particular, we see that our hypothesized inequality is equivalent to c2(D0(AZ)) <
(d− 1)(|Z| − d).

Now theorem B of [BR10] states that if (a, b) denotes the splitting type of D0(AZ)
then ab ≤ c2(D0(AZ)). So if we satisfy c2(D0(AZ)) < (d − 1)(|Z| − d), then ab <
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(d−1)(|Z|−d). Letting k = |Z|−1
2

, g1 = k− (d−1) and g2 = k−a, then this inequality
becomes

k2 − g2
2 = (k − g2)(k + g2) = ab < (d− 1)(|Z| − d) = (k − g1)(k + g1) = k2 − g2

1.

Therefore, we may conclude that g1 < g2 and so a < d− 1. Applying theorem 5.4.1
now establishes the result.

5.8 Regularity Bounds

In remark 3.8 of [CHMN18], it is claimed that the definition of unexpected curves
“ .. leaves open the possibility that the points of Z do not impose independent

conditions on curves of some degree j+1, and ... a general fat point jP fails to impose
the expected number of conditions on the linear system defined by [IZ ]j+1. Theorem
3.7 gives the surprising result that this is impossible.”

However, it appears to the author that theorem 3.7 of [CHMN18] is a weaker
statement than the above quotation claims. Rather it establishes that Z imposes
independent conditions on a specific degree tz ≥ j + 1, if Z admits an unexpected
curve in degree j + 1.

In this section, we establish the full claim for points Z ⊆ P2
C. In fact we prove

a stronger claim. Namely if Z ⊆ P2
C admits unexpected curves in degree d + 1,

then Z imposes independent conditions on forms in degree d. This claim is false
in general in positive characteristic, though it does hold for certain values of d (see
proposition 5.8.2).

Before proceeding we recall the definition of Castelnuovo-Mumford Regularity, this
number determines when Z imposes independent conditions on d forms.

Definition 5.8.1. Given a finite set of points Z ⊆ P(V ) the Castelnuovo-Mumford
Regularity of Z, denoted reg(Z), is the integer

reg(Z) := 1 + min{r | dimK[Sym(V ∗)/I(Z)]r = |Z|}.

It should be noted that the above definition is highly nonstandard, and applies
only to this specific situation. We refer to Exercise 4E.3 and theorem 4.2 of [Eis05],
for proofs that the definition given is equivalent the standard definitions for graded
modules.

This result has some applications to Terao’s conjecture as well, which we explore
in the last section.

Proposition 5.8.2. Let K be an infinite field, and let A = K[s, t] be a standard
graded polynomial ring on 2 variables, let Powd : [A]1 → [A]d be the d-th power map,
that is the map ` 7→ `d.

Then the image of Powd spans [A]d over K if and only if the pair (CharK, d)
satisfies one of the following

Characteristic Hypothesis
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1. (CharK, d) = (0, d); or

2. (CharK, d) = (p, q(pe)− 1) for some e ≥ 0 and q, with 1 ≤ q ≤ p.

Proof. This result is likely well known and consists of standard techniques so we only
give a brief sketch.

Let L be the (d+ 1)× (d+ 1) matrix whose i-th row is (s+ ait)
d in the standard

monomial basis of [A]d, also suppose that ai 6= aj for i 6= j. Then L can be seen to
be a Vandermonde Matrix whose j column has been scaled by

(
d
j

)
. Using the well

known Vandermonde Determinant formula the matrix is nonsingular and hence the
rows span [A]d if and only if

∏d
i=0

(
d
i

)
is nonzero as an element of K. In particular, we

may conclude if Char(K) = 0.
If Char(K) = p > 0, we recall Lucas’s theorem on Binomial coefficients which

states

(
d

i

)
6≡ 0 mod p if and only if each digit of i written in base p does not exceed

the corresponding digit of d. In base p, the only numbers d where this criterion holds
for all 0 ≤ i ≤ d are those d where the non-leading digits are all p− 1. This happens
precisely when d = qpe − 1 for 1 ≤ q ≤ p.

Proposition 5.8.3. Let Z ⊆ P2
K be a finite set of points, suppose that the base

locus B. locd+1(I�(Z)) is zero dimensional and that the pair (CharK, d) satisfies the
characteristic hypothesis of proposition 5.8.2. Then reg(Z) ≤ d+ 1.

Proof. Let P2 = Proj(R), where R = K[X0, X1, X2]. Take ` ∈ [R]1 to be a general
linear form and consider the short exact sequence

0 // [R/I(Z)]t−1
` // [R/I(Z)]t // [R/(I(Z) + (`))]t // 0

Letting hZ(t) := dim[R/I(Z)]t we conclude that for integers t that

hz(t)− hz(t− 1) = dim[R/(I(Z) + `)]t.

Furthermore, as R/(I(Z) + `) is principally generated we can conclude that hz(t) =
hz(t − 1) if and only if hz(t − 1) = |Z|. From this it follows from definition 5.8.1
that reg(Z) = min{r | [R/(I(Z) + (`))]r = 0} and it suffices to prove that [R/(I(Z) +
(`))]d+1 = 0.

Fix Fλ ∈ [I�(Z)]d+1 with dim B. loc(Fλ) = 0. For all points Q on the line ` = 0,
we have by lemma 5.3.9 that

εQ(Fλ) = hdQρλ(`) mod (`)

for some linear form hQ vanishing on Q. Noting εQ(Fλ) ∈ I(Z), we get an inclusion
of K-vector spaces

[(I(Z) + (`))/(`)]d+1 ⊇ Span{hdQρλ(`) + (`) | Q ∈ P2 and `(Q) = 0}.

By proposition 5.8.2 the set {hdQ | Q ∈ (` = 0)} spans [R/(`)]d and so

[I(Z) + (`)/(`)]d+1 ⊇ ρλ(`)[R/(`)]d.
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Hence, [I(Z) + (`)]d+1 ⊇ [(`, ρλ(`))]d+1. Let P ∈ P2 denote the point defined by
the ideal (`, ρλ(`)), as B. loc(Fλ) ∩ (` = 0) = ∅ we can find some H ∈ P2 so that
εH(Fλ) ∈ I(Z) and εH(Fλ) 6∈ I(P ) = (`, ρλ(`)). Hence,

[I(Z) + (`)]d+1 ⊇ [(`, ρλ(`))]d+1 + [εH(Fλ)]d+1 = [R]d+1

allowing us to conclude that [R/(I(Z) + (`))]d+1 = 0 as desired.

Remark 5.8.4. It should be noted that the assumptions of the above theorem, may be
relaxed in various ways to give slightly different bounds, which also require different
proofs, and possibly stronger assumptions. We have choosen to give only the proof
above for the sake of brevity, but will briefly comment on two of the possible changes
now.

1. The condition 0 = dim B. locd+1(I
�(Z)) may be replaced with the weaker

condition that 0 = dim B. locd+1(Z). However the bound then becomes reg(Z) ≤
d + 2. The proof is similar to above, but ` is replaced with a line through a
general point Q, which also vanishes on a point in Z. It can then only be
concluded that dim[R/(I(Z) + (`))]d+1 ≤ 1. This worse bound of reg(Z) ≤ d+ 2
is in fact sharp, as can be illustrated by taking Z to be 2d+3 points on a smooth
conic.

Interestingly, this technique can be used to give a completely geometric proof of
theorem 4.3.3 for points in P2

C, in contrast to the combinatorial proof given in
chapter 4.

2. A generalization to Pn, at least in characteristic 0, is possible however the
proof becomes more involved and/or additional assumptions on [I�(Z)]d+1 are
necessary. The main technique is still roughly the same except now induction
is needed. After showing [I(Z) + (`)]d+1 ⊇ (`, ρλ(`)) one proceeds as before
showing

[I(Z) + (`)]d+1 = [I(Z) + (`, ρλ(`))]d+1 ⊇ [(`, ρλ(`), ρ
2
λ(`))]d+1 ⊇ ...

If (`, ρλ(`), ..., ρn−1
λ (`)) is the ideal of a point we then proceed as in the proposi-

tion.

Combining the above from some results from earlier sections, we may obtain the
following result

Theorem 5.8.5. If Z ⊆ P2
C has an unexpected curve in degree d, then reg(Z) ≤ d.

In particular, Z imposes independent conditions on forms of degree d− 1.

Proof. Suppose that Z admits an unexpected curve in degree d, without loss of
generality we assume that Z does not admit an unexpected curve in degree d − 1.
Then by theorem 5.4.1, we note that |Z| ≥ 2d+ 1 and that no line L contains more
that d + 1 points of Z. Additionally by theorem 5.6.8, there exists F ∈ [I�(Z)]d
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defining the curve. We claim that dim B. loc(F ) = 0, which in light of proposition 5.8.3
establishes the claim.

Proceeding by contradiction assume that dim B. loc(F ) = 1, applying proposi-
tion 5.4.17, we get B. loc(F ) has a component which is a line. If ` ∈ C[X0, X1, X2]
is the linear form defining this line, L, then viewing it as a polynomial in the
ring C[X0, X1, X2, A0, A1, A2] and applying lemma 5.6.1, we get F = `h with h ∈
C[M0,M1,M2]. As εQ(h) ∈ [I(Q)deg h]h for all Q ∈ P2 we get that the variety
V (εQ(F )) is a union of L and at most deg h lines through Q. For a general Q ∈ P2

C,
each line in V (εQ(h)) contains at most one point of Z. This forces us to conclude that
|L ∩ Z| ≥ |Z| − deg h ≥ d+ 2 giving us our desired contradiction.

We note that the theorem 5.8.5, gives a decent criteria purely algebraic criteria
for establishing that a set of points Z does not admit unexpected curves in a given
degree. We explore this a bit in the next section in the context of Terao’s Conjecture.

5.9 Applications to Terao’s Conjecture in P2

A much studied problem in the theory of line arrangements is the freeness of the
module of derivations D(AZ). One reason for this in particular is that if D(AZ) is
free then many of the invariants of D(AZ) can be determined from combinatorics of
the intersection lattice L(AZ) (or equivalently the matroid M(Z)). A major open
problem in the study of Hyperplane arrangements is Terao’s Freeness Conjecture

Conjecture 5.9.1 (Terao’s Freeness Conjecture). Over C freeness of D0(A) can be
determined by the intersection lattice L(AZ).

Remark 5.9.2. The above conjecture is usually stated for D(A). However the two
versions are equivalent because over C, D(A) splits as (Sym(V ∗))θe ⊕D0(A).

One natural question to ask given theorem 5.3.8, is what freeness of D0(AZ) says
about I(Z). Namely, can D0(AZ) be characterized in terms of Z? The following
proposition (which is well known to experts) is helpful in addressing this question.

Proposition 5.9.3. D0(A) is free if and only if for a general line L ⊆ P(W ), the
restriction map D0(A)→ D0(A) |L is surjective.

Proof. The forward implication is clear. For the reverse implication, we apply a
corollary of Saito’s Criterion which can be found as theorem 4.23 of [OT92]. Namely
D0(A) is free if there exists θ1, .., θn ∈ D0(AZ) which are linearly independent over
the projective coordinate ring, S, of P(W ), and where

∑n
i=1 deg(θi) = |A| − 1.

So suppose that resL : D0(A)→ D0(AZ) |L is surjective for a general line L. Let
θ̄1, ..., θ̄n be a S/I(L)-basis of D0(AZ) |L, then for each i we can find θi ∈ D0(A) so
that resL(θi) = θ̄i. As

∑n
i=1 deg(θi) =

∑n
i=1 deg(θ̄i) = |A| − 1 it suffices to show that

the θi are linearly independent over S. Yet if
∑n

i=1 siθi = 0 for some si ∈ S and some
index j, then

∑n
i=1 s̄iθ̄i = 0 in D0(Az) |L. As L is general if sj 6= 0 for some index j

then we can assume that sj 6∈ I(L) which gives a non-trivial relation among θ̄1, .., θ̄n
and a contradiction.
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Corollary 5.9.4. AZ is a free arrangement if and only if the evaluation map εQ :
I�(Z)→ I�Q (Z) is surjective for general Q.

Theorem 5.6.8 has some applications to Terao’s conjecture, namely we give a new
criterion for determining Freeness.

Proposition 5.9.5. Let A ⊆ P2
C = Proj(S) with splitting type (a1, a2). If a2−a1 ≥ 2,

then D0(A) is free if and only if it has a minimal generator in degree a2.

Proof. We use the criterion from proposition 5.9.3. As a2 − a1 > 2, then we may
apply theorem 5.6.8 to see there nonzero θ1 ∈ [D0(A)]a1 and so the image of the
restriction map contains the generator of D0(A) |L in degree a1. If D0(A) has a
minimal generator θ2 in degree a2, then θ2 6= fθ1 for any f ∈ S. For a general line
L, we still have resL(θ2) 6∈ S/I(L) resL(θ1) and conclude that {resL(θ1), resL(θ2)} is a
generating set for D0(A) |L.

Additionally, it is well known that freeness can be determined from combinatorics
and the splitting type. More precisely,

Proposition 5.9.6. Let A and B be hyperplane arrangements in Pn, and suppose A
and B have isomorphic intersection lattices. Suppose that D0(A) is free, then D0(B)
is free if and only if it has the same splitting type as A.

Proof. By a theorem of Terao c2(D0(A)) is determined solely by LA. The result is
now a consequence of the criterion that D0(A) is free if and only if c2(D0(A)) = a1a2

where (a1, a2) is the splitting type, see for instance [BR10].

This characterization allows us to generalize a theorem of [Sch03] which was stated
only for balanced free arrangements in P2

C. Here balanced means free arrangements
with splitting type (a, a) or (a, a+ 1).

Theorem 5.9.7. For a finitely generated graded module M , let α(M) denote the
initial degree of M , that is

α(M) := inf{d ∈ Z | [M ]d 6= 0}

Let A and B be combinatorially equivalent line arrangements P2
K. If D0(A) is free,

then
α(D0(B)) ≤ α(D0(A))

with equality if and only if B is free.
In particular, if A is free with exponents (1, a, b) and B is not free, then D0(B)

has a generator in degree < a and all other minimal generators are in degree > b.

Remark 5.9.8. Note if K ⊆ C, the following argument can be slightly simplified by
applying theorem 5.6.8.
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Proof. The reverse direction is immediate as in that case D0(A) and D0(B) are
isomorphic.

To prove the forward implication, we apply the characterization given in 5.9.6.
Hence, assume that D0(A) has splitting type (a1, a2), and D0(B) has splitting type
(b0, b1), with (b0, b1) 6= (a0, a1). It suffices to show that α(D0(B)) < α(D0(A)).

By [Yuz93] freeness is an open property. Hence, if B is not free it lies on closed
subvariety of VL(A) the variety parameterizing arrangements with intersection lattice
isomorphic to L(A). We can view D(B) as the kernel of the linear map Der(S) →∏

H∈B S/(I(H)) which maps θ 7→ (θ(`H)){H∈B}, so by lower semicontinuity of rank we
may conclude that dim[D0(B)]d ≥ dim[D0(A)]d for all d. Applying the same argument
to the restriction of D0(B)d to a general line, we see that b0 < a0 ≤ a1 < b1. As
dim[D0(B)]a0 ≥ dim[D0(A)]a0 > 0, we can apply proposition 5.6.2 to get

α(D0(B)) = b0 < a0 = α(D0(A)).

The final sentence follows from this and proposition 5.9.5.

One corollary of the above theorem is an extension of a theorem of [FV14] over C,
to positive characteristic.

Corollary 5.9.9. If A ⊆ P2
K is a free arrangement with splitting type (a1, a2) and

some point P ∈ P2
K is incident to at least a1 lines of A. Then any arrangement over

P2
K combinatorially equivalent to A is also free.

Proof. Let B be an arrangement that is combinatorially equivalent to A, and let
(b1, b2) denote it’s splitting type. Dualizing the problem statement, we see that there
is a line H containing at least a1 points of B⊥ so by theorem 5.4.1 and the prior
theorem we have a1 − 1 ≤ b1 ≤ a1.

Let h denote the linear form defining this line. Furthermore for a general Q,
let g denote the product of linear forms through Q and each point not on H, then
hg ∈ [I�(B⊥)]a2+2. If b1 = a1 − 1, then hg would correspond by theorem 5.3.8 to a
minimal generator of D0(B) in degree b2 = a2 + 1. The prior theorem together with
proposition 5.9.6 now gives a contradiction.

We now close by discussing connections between Terao’s conjecture and a conjecture
due to Dirac. It was conjectured in [Dir51] that for every finite set of points non
collinear points Z ⊆ P2

R, that there is always some Q ∈ Z so that

|LQ(Z)| = |{Span(Q,P ) | P ∈ Z \Q}| ≥ |Z|
2
.

However, some counterexamples have been found to the original formulation (see
[Grü72]). This has lead to two reformulations of the original conjecture which we
reprint below.

Conjecture 5.9.10 (Weak Dirac Problem). Determine the smallest constant C, so
that for every finite set of noncollinear points Z ⊆ P2

R, there exists some Q ∈ Z where

|LQ(Z)| ≥ |Z|
C

103



Conjecture 5.9.11 (Strong Dirac Conjecture). There exists some constant c0 > 0
so that for every set of finite noncollinear points Z ⊆ R2, there exists some Q ∈ Z so
that

|LQ(Z)| ≥ Z

2
− c0

Counterexamples have been found to Dirac’s Original Conjecture for every odd
n = |Z| with the exception of those n of the form n = 12k + 11 with k ≥ 4 (see
[AIKN11]). Despite that the known counterexamples only barely break the original
conjecture bound. Most satisfy the Strong Dirac Conjecture with c0 = 1/2 and all
but finitely many satisfy the conjecture with c0 = 3/2.

We now show that any minimal counterexample to Terao’s Conjecture for real line
arrangements must itself be a counterexample to the original Conjecture of G.Dirac,
and must be extremal in the regards to the other two cases.

Theorem 5.9.12. Let A and B ⊆ P2 be real (or complex) line arrangements, which
form a counter example to Terao’s conjecture. Meaning LA ∼= LB, but D0(A) is free
with splitting type (a1, a2) where as D0(B) is not free. Furthermore, suppose there is
no pair of lines (L,L′) ∈ A× B we can remove to get subarrangements A′ = A \ {L}
and B′ = B \ {L′} forming a smaller counterexample.

Then letting A⊥ be the set of points dual to A we have

|LP (Z)| ≤ a1 ≤
⌊
|Z| − 1

2

⌋
.

Our proof of the above theorem relies on the following proposition which seems
useful in it’s own right. It is related to Terao’s well known Addition-Deletion Theorem

Proposition 5.9.13. Let Az ⊆ P2
C be a free line arrangement with splitting type

(a1, a2) and Z the dual set of points. If there is some P ∈ Z with |LP (Z)| > a1 + 1,
then |LP (Z)| = a2 + 1 and AW is free where W = Z \ {P}.

Proof. By theorem B of [BR10], c2(D0(AZ)) ≥ a1a2, and A is free if and only
if equality holds. Furthermore, if LP (Z) > a1 + 1, then letting F ∈ [I�(Z)] it
follows by lemma 5.7.5 that εP (F ) = 0. Then by lemma 5.7.1 the linear form,
`p, defining the line dual to P must divide F . However, then we necessarily have
F/`P ∈ [I�(W )]a1

∼= [D0(A)]a1−1 so AW must have splitting type (a1 − 1, a2).
We note that it suffices to show that D0(AW ) is free, since Terao’s Famous Addition-

Deletion Formula then ensures that LP (W ) = a2 + 1. Yet this follows since if F and
G freely generate D0(AZ), then F/`P and G must generate D0(AW ).

Proof of theorem 5.9.12. By the preceding proposition there exists no P ∈ Z with
|LP (Z)| > a1 + 1. Furthermore, by Terao’s Addition-Deletion formula there is no
P ∈ LP (Z) with |Lp(Z)| = a1 + 1, since then letting A′ = A \ {`0 = 0} we would get
a smaller counterexample. Hence, for all P ∈ Z we have

|Lp(Z)| ≤ a1 ≤
|Z| − 1

2

establishing the result.
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