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ART ICLE Open Ac ce s s

Protein tyrosine phosphatase 4A3 (PTP4A3/PRL-3)
drives migration and progression of T-cell acute
lymphoblastic leukemia in vitro and in vivo
M. Wei1, M. G. Haney1,2, D. R. Rivas1 and J. S. Blackburn 1,2

Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer. There are no immunotherapies and few
molecularly targeted therapeutics available for treatment of this malignancy. The identification and characterization of
genes and pathways that drive T-ALL progression are critical for the development of new therapies for T-ALL. Here, we
determined that the protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) plays a critical role in T-ALL initiation and
progression by promoting leukemia cell migration. PRL-3 is highly expressed in patient T-ALL samples at both the
mRNA and protein levels compared to normal lymphocytes. Knock-down of PRL-3 expression using short-hairpin RNA
(shRNA) in human T-ALL cell lines significantly impeded T-ALL cell migration capacity in vitro and reduced their ability
to engraft and proliferate in vivo in xenograft mouse models. Additionally, PRL-3 overexpression in a Myc-induced
zebrafish T-ALL model significantly accelerated disease onset and shortened the time needed for cells to enter blood
circulation. Reverse-phase protein array (RPPA) and gene set enrichment analysis (GSEA) revealed that the SRC
signaling pathway is affected by PRL-3. Immunoblot analyses validated that manipulation of PRL-3 expression in T-ALL
cells affected the SRC signaling pathway, which is directly involved in cell migration, although Src was not a direct
substrate of PRL-3. More importantly, T-ALL cell growth and migration were inhibited by small molecule inhibition of
PRL-3, suggesting that PRL-3 has potential as a therapeutic target in T-ALL. Taken together, our study identifies PRL-3
as an oncogenic driver in T-ALL both in vitro and in vivo and provides a strong rationale for targeted therapies that
interfere with PRL-3 function.

Introduction
T-cell acute lymphoblastic leukemia (T-ALL) is an

aggressive hematologic malignancy, representing 10–15%
of pediatric and 25% of adult ALL cases1. The treatment
of T-ALL lags behind that of B-cell ALL (B-ALL) and
other leukemia subtypes in regard to both availability of
immunotherapies and the development of molecular
targeted therapies2. Additionally, relapsed T-ALL remains
a major clinical concern, with less than 30% of children

and 10% of adults surviving relapse, and current intensive
chemotherapy regimens for T-ALL have long-term
adverse effects in patients1,3–5. More effective and selec-
tive treatment strategies are critically needed for T-ALL.
The development of novel therapeutics requires the
identification and characterization of targetable drivers of
T-ALL progression.
Protein phosphatases cooperate with kinases to pre-

cisely maintain appropriate protein phosphorylation and
have important roles in modulating the strength and
duration of signaling events, critical for normal cellular
functions. Abnormal protein phosphorylation is a com-
mon feature in cancer and disease. While kinase inhibitors
have achieved significant success in clinic6, phosphatases
are underexplored as drug targets7,8, largely due to the
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misconception that phosphatases function primarily as
tumor suppressors, as well as the challenges in developing
specific phosphatase inhibitors. To date, more than 30
potentially oncogenic phosphatases have been identified,
and are being explored as drug targets in cancer therapy9.
Protein tyrosine phosphatase 4A3 (PTP4A3), also

known as phosphatase of regenerating liver 3 (PRL-3), is
an oncogenic phosphatase that has received significant
attention as a potential therapeutic target in a variety of
cancers7,8,10. PRL-3 is highly expressed in ~80% of 151
human tumor tissue samples across 11 tumor types,
including liver, lung, colon, breast, stomach, thyroid,
pancreas, kidney, bladder, and prostate cancer10, and
PRL-3 has been extensively reported as a biomarker of
tumor progression and metastasis in breast11, colon12,13,
gastric14, brain15, and prostate16 cancers. Elevated PRL-3
correlates with reduced survival in patients with breast17,
gastric14, ovarian18, and liver19 cancers and in acute
myelogenous leukemia (AML)20,21. More importantly, the
causative role of PRL-3 in solid tumors has been func-
tionally demonstrated by overexpression and knock-down
of PRL-3 in normal or cancer cells. For example, ectopic
expression of PRL-3 in human melanoma, breast, lung,
and colorectal cancer cells has been reported to increase
cell motility, migration, invasion, and proliferation in vitro
and to accelerate tumor formation, progression, and
metastasis in vivo22–25. Similarly, knock-down of PRL-3
expression using short-hairpin RNA (shRNA) led to
decreased cell proliferation, adhesion, migration, and
invasion in a range of solid tumors in vitro and inhibited
primary tumor proliferation and invasion in vivo in col-
orectal, gastric and ovarian cancers and in melanoma,
ultimately improving the prognosis and life span of
mice26–29.
Given the proven role of PRL-3 in solid tumor malig-

nancies, efforts have been made to develop specific PRL-3
inhibitors, including JMS-05330, Compound 43 and its
analogs31, and Analog 332, all of which target the entire
PRL family (PRL-1, −2, and −3). In addition, a humanized
PRL-3 antibody has been developed that specifically tar-
gets PRL-3 over other family members10,33. These efforts
suggest that PRL-3 is a feasible therapeutic target in
cancer.
The role of PRL-3 in leukemia is less well defined, and

its contribution to T-ALL progression has not been
reported. Here, we demonstrate that PRL-3 plays a role in
T-ALL development and migration both in vitro and
in vivo in mice and zebrafish, and we provide a
mechanism by which PRL-3 may function as an oncogene
in ALL via modulation of the SRC signaling pathway to
promote T-ALL migration. Taken together, our study
identifies a critical role of PRL-3 in T-ALL onset and
progression both in vitro and in vivo and suggests that
PRL-3 may be a targetable oncogenic driver in T-ALL.

PRL-3 is highly expressed in T-ALL patient samples
and T-ALL cell lines
Analysis of bone marrow aspirate from T-ALL patients

showed that PRL-3 mRNA expression was significantly
higher in primary T-ALL (n= 174) compared to healthy
donor samples (n= 72, GSE13159, p= 6.8e−10, Fig. 1a),
although there was no significant difference found in
PRL-3 expression between patients who achieved com-
plete remission (n= 29) versus those that relapsed (n=
11) or suffered induction failure (n= 7, GSE14615, Fig.
1b). However, the sample size was relatively small in the
latter study, and further investigation is warranted to
determine whether PRL-3 expression may be a predictor
of T-ALL treatment failure. Analysis of other PRL family
members showed that PRL-1 expression was significantly
lower in primary T-ALL patient samples compared to
healthy bone marrow, while PRL-2 expression is sig-
nificantly higher (Supplemental Fig. 1).
Western blot showed 3 out of 8 T-ALL patient per-

ipheral blood mononuclear cell (PBMC) samples expres-
sed very high PRL-3, while it was detected at low levels, if
at all, in PBMCs from five healthy donors (Fig. 1c).
Additionally, PRL-3 protein was expressed at varying
levels across 14 T-ALL cell lines (Fig. 1d). Interestingly,
PRL-3 expression in the same cell line fluctuated notably
across independent assays (Supplemental Fig. 2), although
we did not find the expression level to be related to cell
density or serum deprivation. Consistent with gene
expression datasets, PRL-1 was not detected across
T-ALL cell lines, while PRL-2 protein was expressed in
most T-ALL cell lines examined (Supplemental Fig. 3).

PRL-3 knock-down in T-ALL cell lines inhibits cell
migration in vitro and engraftment in a xenograft
mouse model
In order to define the role of PRL-3 in T-ALL, we used

shRNAs to knock-down PRL-3 expression in Jurkat cells, a
T-ALL line with high endogenous PRL-3 expression. Wes-
tern blot analysis of samples collected four days after lenti-
viral infection of shRNA constructs showed that PRL-3 was
successfully knocked-down by shRNA constructs #2 and #3
compared to scrambled (SCR) control shRNA (Fig. 2a).
Expression of the other PRLs did not increase to compensate
for PRL-3 loss (Supplemental Fig. 4A). Interestingly, despite
puromycin selection of the shRNA construct, PRL-3
expression levels recovered over time (Supplemental Fig.
4B), suggesting that cells with higher PRL-3 expression may
outcompete those with stronger knock-down.
PRL-3 knock-down did not negatively impact cell

growth (Fig. 2b), however, silencing PRL-3 expression
significantly reduced cell migration by approximately 50%
(p < 0.02, Fig. 2c). Similarly, when we overexpressed PRL-
3 in Jurkat and HBP-ALL cells (Supplemental Fig. 5A), we
found no significant difference in cell growth
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(Supplemental Fig. 5B), but significantly enhanced
migratory capability compared to control (p ≤ 0.009,
Supplemental Fig. 5C). Together, these data suggest that
PRL-3 plays an important role in regulating cell migra-
tion, but not proliferation, in T-ALL cells in vitro.
In order to determine whether silencing PRL-3

expression in human T-ALL affects its oncogenic ability
in vivo, Jurkat cells expressing a scrambled shRNA or a
shRNA targeting PRL-3 were injected intravenously into
immune-compromised mice. At 4, 6, and 8 weeks after
transplantation, blood samples were collected and stained
with anti-human CD45 (Fig. 2d). Flow cytometry showed
no human CD45-positive cells in the circulation of mice
injected with PRL-3 knock-down Jurkat cells, while mice
injected with Jurkat expressing scrambled shRNA cells
showed increasing numbers of CD45 positive cells in the
blood each week (Fig. 2e, f). Three mice harboring
scrambled shRNA expressing T-ALL had to be eutha-
nized before the 8-week time point due to mobility issues
likely caused by T-ALL infiltration into the spine or
central nervous system, while mice with PRL-3 knock-
down remained healthy throughout the duration of the
study. The survival of mice xenografted with PRL-3
knock-down T-ALL cells may be due to decreased ability
of the cells to engraft and/or circulate, and further studies
are needed to differentiate between these possibilities.

PRL-3 enhances T-ALL onset in a zebrafish model
The elevated expression of PRL-3 in T-ALL patient

samples and its role in promoting migration in T-ALL cell
lines suggests it may play an oncogenic role in T-ALL. We
used a zebrafish Myc-induced T-ALL model34,35 to assess
the role of PRL-3 in T-ALL onset and progression. Zebra-
fish prl-3 has 88% homology to human PRL-3 with con-
servation of critical domains36. One-cell stage zebrafish
embryos were injected with plasmids containing rag2:Myc
with rag2:mCherry, and with or without rag2:prl-3; the rag2
promoter drives gene expression in lymphocytes. T-ALL
developed in zebrafish from the thymus and expanded into
local tissues before entering the circulation. Fish were
monitored for leukemia growth by quantifying the percent
mCherry-positive cells within the body of the animal; >70%
mCherry-positive was considered leukemic. Zebrafish T-
ALL that expressed prl-3 consistently expanded from the
thymus into surrounding tissues earlier than T-ALL
expressing Myc alone (Fig. 3a), although there was no sig-
nificant difference in time to full leukemia onset between
the groups (Fig. 3b). Because the T-ALL cells were fluor-
escently labeled, we were also able to determine the time at
which leukemia cells begin to circulate by visualizing cells
within the vasculature in the tail fin (Fig. 3c, Supplemental
Videos 1 and 2). While more than half of animals with T-
ALL in the Myc-expressing group never developed

Fig. 1 PRL-3 is highly expressed in a majority of human T-ALL. a Microarray expression analysis of GSE13159 comparing bone marrow samples
from healthy donors (n= 72) and T-ALL patients (n= 174), ***p= 6.8e−10. b Analysis of GSE14615 comparing PRL-3 expression between bone
marrow samples from T-ALL patients achieving remission and patients with induction failure. NS= not significant. Representative western blot
analysis of (c) primary patient T-ALL and PBMCs, and (d) human T-ALL cell lines, showing PRL-3 expression. The total protein loaded in each sample
was used as loading control instead of housekeeping protein, with a band of ~50 kD chosen as a representative image in the figure.
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circulating disease by >100d, more than 80% of the Myc+
prl-3 expressing T-ALLs were circulating at a median time
point of 42d, p= 0.05 (Fig. 3d).
The lymphoblasts were morphologically similar between

groups (Fig. 3e), and there was no significant difference in
Myc expression between Myc and Myc+ prl-3 T-ALL
samples (Fig. 3f). Gene expression analyses indicated that
both the rag2:Myc and rag2:Myc+ rag2:prl-3 leukemias
expressed the lymphocyte specific genes rag1 and rag2 and
the T-cell genes lck and tcrB, but not B-cell related genes
igD or igM, indicating all leukemias generated were of T-
cell origin. We verified that the rag2:Myc+ rag2:prl-3
leukemias expressed >10-fold higher levels of PRL-3 than
the Myc control group (Fig. 3g). Interestingly, endogenous
prl-3 expression was also significantly higher in the rag2:
myc T-ALL than normal zebrafish blood cells, suggesting
that PRL-3 may be an important collaborating oncogene in
T-ALL development. Taken together, these data suggest
that PRL-3 can play an important role in T-ALL onset and
progression in vivo, likely by enhancing migration into
local tissues and contributing to the ability of the cells to
enter circulation.

PRL-3 modulates SRC pathway signaling to
promote T-ALL migration
Our in vitro and in vivo data suggest that PRL-3 func-

tions in T-ALL progression by modulating leukemia cell
migration. To identify a mechanism by which PRL-3
might contribute to cell motility, we first examined gene
signatures associated with PRL-3 expression in T-ALL
patient samples. T-ALL samples with high levels of PRL-3
(upper quartile) and low levels of PRL-3 (lower quartile)
were selected from GSE13159 (Fig. 1a) for Gene Set
Enrichment Analysis (GSEA), which identified 24 path-
ways that were significantly different between the groups.
Although PRL-3 was not associated with genes linked to
any particular subtype of T-ALL, genes linked with SRC
kinase signaling, an embryonic stem cell signature, and
VEGF pathways were significantly enriched in PRL-3 high
T-ALL (Fig. 4a and Supplemental Table 1). Additionally,
Reverse-Phase Protein Array (RPPA) on 422 proteins and
phospho-proteins identified ~20 proteins that showed
differential expression between PRL-3 knock-down or
PRL-3 overexpression T-ALL cell lines and the appro-
priate controls (Fig. 4b, c, Supplemental Tables 2,3). Top

Fig. 2 PRL-3 knock-down inhibits cell migration and T-ALL engraftment in a xenograft mouse model. a Representative western blot analysis
figure showing PRL-3 protein expression in Jurkat T-ALL cells 4d post-infection with lentivirus carrying shRNA. Numbers represent relative expression
of PRL-3 protein, normalized to total protein loaded and compared to scrambled (SCR) control. b Cells infected with SCR or PRL-3 knock-down shRNA
were cultured in media 4 days post-infection with 5 μg/ml puromycin for 72 additional hours. Cell growth was determined by Cell Titer-Glo assay and
normalized to the readout of day 0, and shows no difference between groups. Data shown are the average of three independent experiments, done
in triplicate, NS= not significant. c Knock-down of PRL-3 in Jurkat cell line reduced migration towards a serum stimulus more than 50%. Migration
was normalized to the cells infected by SCR shRNA, p < 0.05 compared to SCR control, *p < 0.05. d Schematic diagram of the xenotransplantation
assay. e Representative flow cytometry analysis of submandibular blood sample after human CD45 staining. f Quantification of human CD45 staining
of blood from mice at week 4,6, and 8 after transplantation. Each dot represents one mouse, the horizontal line represents the mean value, and the
standard deviation is shown, *p < 0.01 and **p < 0.001 compared to shRNA control xenografted mice.
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hits in both knock-down and overexpression cells inclu-
ded Histone-H3, Chk2, and Src_pY527.
Both GSEA and RPPA data suggest that the SRC

pathway is associated with PRL-3 expression at both the
mRNA and protein level. Src is a non-receptor kinase that
is activated in a large fraction of cancers, where it plays a
prominent role in cell migration and metastasis37. Src
activity is negatively regulated by phosphorylation of
tyrosine 527, which is an inhibitory phosphorylation site
targeted by CSK (C-terminal Src Kinase). PRL-3 knock-
down in Jurkat cells increased phosphorylation of
Src_Y527 compared to scrambled shRNA control (Fig. 5a
and Supplemental Fig. 6A), while PRL-3 overexpression
decreased phosphorylation of Y527 (Fig. 5b and supple-
mental Fig. 6B). Interestingly, CSK expression was
inversely correlated with PRL-3 expression (Fig. 5a, b),
consistent in previous reports that found PRL-3 down-
regulates CSK expression in human embryonic kidney
cells and colon cancer cells38.
The effect of PRL-3 on phosphorylation of Src_Y527

may be through a direct action of PRL-3 phosphatase
activity or through an indirect mechanism such as reg-
ulation of CSK or other proteins. We found that a phos-
phatase deficient mutant PRL-3, PRL-3(C104S) partially
rescued the reduction of Src_Y527 phosphorylation
compared to PRL-3 wild-type expression (Fig. 5c),

suggesting that PRL-3 phosphatase activity likely plays a
role in Src regulation. Importantly, PRL-3(C104S) has
been previously shown to retain low levels of phosphatase
activity39; the artificially high levels of exogenous PRL3
(C104S) expression in the Jurkat cells may therefore
compensate for reduced phosphatase activity, leading to
incomplete rescue of the phosphorylation of Src_Y527.
Interestingly, we found that Src did not co-

immunoprecipitate with Flag-tagged PRL-3 or PRL-3
(C104S), despite being found at high levels in Jurkat cell
lysate (Fig. 5e). These results indicate that Src is not a
direct substrate of PRL-3 in T-ALL and PRL-3 modulates
Src_Y527 phosphorylation by either inhibiting CSK
expression, or via an unknown protein intermediate
(Fig. 5f).

Small molecule inhibition of PRL-3 reduces Src
pathway activation and blocks T-ALL migration
T-ALL migration plays a critical role in T-ALL pro-

gression and our data show PRL-3 can directly affect the
migratory phenotype of T-ALL cells both in vitro and
in vivo. Small molecule inhibition of PRL-3 can block
solid tumor progression40, and we wanted to examine the
effects of PRL-3 inhibition in T-ALL cells. The non-
competitive small molecule PRL inhibitor, JMS-05340

significantly reduced the viability of T-ALL cells in a dose

Fig. 3 PRL-3 enhances circulation of leukemia cells in a zebrafish T-ALL model. a Representative images of transient transgenic zebrafish
expressing rag2:Myc+ rag2:mCherry (n= 11) or rag2:Myc+ rag2:mCherry+ rag2:prl-3 (n= 6) at 34 days post-fertilization (dpf). b Kaplan–Meier
analysis of time (days) percent survival (>70% of animal is mCherry-positive). c Representative rag2:Myc+ rag2:mCherry+ rag2:prl-3 animal, showing
circulating mCherry+ leukemia cells within the tail fin. d Kaplan–Meier analysis of time (days) for each T-ALL to be visualized in circulation, * p=
0.049. e Representative images of May-Gunwald Giemsa staining of blood samples from fish from each leukemia type. Scale bar= 100 μm. f Realtime
RT-PCR analysis of Myc expression between rag2:Myc+ rag2:mCherry (n= 8) and rag2:Myc+ rag2:mCherry+ rag2:prl-3 (n= 5). Each point represents
one fish sample. NS= not significant. g Realtime RT-PCR analysis of lymphocyte, T-cell, and B-cell specific genes. Bars are the average expression of
three samples per group.
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dependent manner (Fig. 6a), with lesser to no effects in
cell lines that did not routinely express high levels of PRL-
3. PRL-3 inhibition increased apoptosis in T-ALL cells
after 24 h, although this trend was not significant across
multiple experiments (Supplemental Fig. 7A), with no
effect on cell cycle, measured by EdU uptake (Supple-
mental Fig. 7B). Short-term (<2 h) JMS-053 treatment
significantly (p < 0.001) impaired the migration capability
of all PRL-3 expressing T-ALL cell lines tested, reducing
cell migration through a transwell towards a serum sti-
mulus by 30–80% (Fig. 6b). JMS-053 treatment increased
the phosphorylation Src_Y527 (Fig. 6c), again indicating
that PRL-3 promotes cell migration by activation of Src.
Finally, we used the Src inhibitor Su6656 to treat PRL-3

overexpressing cells in combination with JMS-053, and
evaluated whether the inhibitors synergized to affect cell
migration capability. While both JMS-053 and
Su6656 significantly decreased cell migration compared to
control, we found no significant additive effect when both
inhibitors were used (Fig. 6d), supporting the hypothesis
that PRL-3 modulates Src signaling to promote cell
migration. Taken together, our data showed that small
molecule inhibition of PRL-3 can block T-ALL growth
and migration in vitro, likely due to Src inhibition, and

suggest that PRL-3 might be a useful target to control T-
ALL progression.

Discussion
Compared to other types of leukemia, T-ALL is urgently

lacking immunotherapies or molecularly targeted thera-
pies, which correlates with a worse prognosis for patients
who fail traditional chemotherapy regimens. Central
nervous system (CNS) infiltration by T-ALL and both
CNS and bone marrow relapse remain critical clinical
challenges, with survival rates of relapsed disease as low as
40%41. The identification and characterization of impor-
tant drivers of T-ALL progression are needed for the
design of novel, targeted therapeutics.
We found PRL-3 was highly expressed in T-ALL patient

samples and cell lines, consistent with studies reporting
PRL-3 upregulation in solid tumors42 and B-ALL43.
Importantly, we used two different animal models to
demonstrate an oncogenic role for PRL-3 in T-ALL,
which, to the best of our knowledge, is the first in vivo
study demonstrating this finding. In zebrafish, PRL-3
expression enhanced the spread of T-ALL cells from the
thymus into surrounding tissues and promoted their rapid
entry into circulation. In mouse xenograft, human T-ALL

Fig. 4 Src is a target of PRL-3. a GSEA analysis of T-ALL patients samples (GSE13159) comparing bone marrow with high PRL-3 expression (upper
quartile) vs low PRL-3 expression (bottom quartile), showing the normalized enrichement score (NES). Reverse-phase protein array analysis (RPPA) of
(b) PRL-3 knock-down or (c) overexpression of PRL-3 in Jurkat cells showed differential protein expression when compared to controls. Red bars show
any protein that was up or down regulated 20%, and protein names shown in red are common in both groups, and include Chk2, Histone H3, and
Src_pY527.
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cells with silenced PRL-3 expression had diminished
capacity to engraft and mice remained generally
leukemia-free throughout the study. While we hypothe-
size the lack of T-ALL engraftment associated with PRL-3
knock-down may be attributed to a decreased ability of
the leukemia cells to migrate and home to the bone
marrow or thymus niche after xenograft, this needs to be
confirmed experimentally. Given PRL-3 is established as
enhancing viability and preventing apoptosis in other
cancers44, PRL-3 might be playing additional roles in vivo
that contribute to fitness of the T-ALL cells.
Overall, our data suggest that the primary role of PRL-3 in

T-ALL is to promote cell migration, similar to its role in
solid tumors. Recently, invasion and migration phenotypes

have emerged as important factors in T-ALL progression
and relapse. For example, CCR7, a known regulator of T-
lymphocyte migration, is necessary and sufficient to drive
infiltration of T-ALL cells into the CNS in a mouse model45

and inhibition of CXCR3, another lymphocyte migratory
factor, significantly reduced leukemic infiltration into bone
marrow, spleen and CNS46. Whether PRL-3 expression
drives migration on its own or is associated with lympho-
cyte migratory signaling cascades is an area we are actively
investigating. Nonetheless, there is a strong precedent for
genes involved in migration, such as CCR7, CXCR3, and
now PRL-3, as having critical roles in T-ALL progression.
We have demonstrated that PRL-3 modulates the SRC

signaling pathway in T-ALL cell lines. Src activation has

Fig. 5 PRL-3 modulates Src phosphorylation. a Representative western blot analysis of Src_pY527, total Src, and CSK in Jurkat cells with PRL-3
knock-down. b Western blot validation of Src pathway in PRL-3 overexpressing Jurkat cells. Cells were serum starved overnight and added to serum
containing complete media for the indicated time points. Numbers shown represent relative protein expression. c Representative western blot
validation of Src pathway in 3xFlag PRL-3 Wt and 3xFlag PRL-3 C104S mutant Jurkat cells. d Quantification of n= 4 independent experiments
analyzing SRC_pY527, *p= 0.003. e Co-immunoprecipitation assay of Jurkat overexpressing PRL-3 substrate trapping mutants, 3xFlag PRL-3 C104S or
3xFlag PRL-3 C104D, did not pulldown Src. f Schematic of PRL-3 and modulation of Src pathway in T-ALL cells.
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been reported in many types of human cancer, with a
prominent role in regulating motility, migration, and
metastasis37,47,48. PRL-3 has been previously reported to
play a role in Src pathway activation in solid tumors and
benign human cell lines38,49. Our study expands the role
of PRL-3 in SRC signaling pathway modulation to include

T-ALL, suggesting that PRL-3 might be a central reg-
ulator of the Src signaling network across multiple cancer
types. However, our data showed that Src _Y527 is not a
direct target of PRL-3 in T-ALL. It is more likely that
PRL-3 affects CSK protein levels, which can directly
phosphorylate Src_Y527, yet the exact mechanism of SRC

Fig. 6 The PRL inhibitor JMS-053 reduces Src pathway activation and inhibits T-ALL migration. a JMS-053 reduced cell viability in T-ALL cell
lines with high PRL-3 expression, evaluated by quantifying ATP production via Cell-Titer Glo, *p ≤ 0.001 or NS= not significant, compared to DMSO.
b JMS-053 treatment (10 μM) for 2 h suppressed cell migration of T-ALL cells, **p < 0.001 compared to DMSO. For all, bars are the average of three
experiments, each done in triplicate, ± standard deviation. c JMS-053 (10 µM) treatment increased Src phosphorylation at tyrosine 527. Blots are
representative of at least three independent experiments. The numbers in the blot are relative expression normalized to total protein loaded. d Cell
migration capability of PRL-3 overexpressing cells was compared between groups treated with DMSO, Src inhibitor Su6656 (2.5 μM), JMS-053 (10 μM)
or in combination and showed no additive effects between Su6656 and JMS-053, NS= not significant, ***p < 0.05.
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activation requires further investigation. Additionally, we
cannot exclude other possible PRL-3 effectors that could
also directly or indirectly affect Src_pY527. Our RPPA
analyses determined that the expression of other proteins
were affected by PRL-3, including Histone-H3, Chk2,
JNK, Hes1, Rictor, Axl, and Hif1-alpha, all of which play
known roles in tumor progression, and may represent
novel mechanisms by which PRL-3 promotes T-ALL.
In summary, our study expanded the oncogenic role of

PRL-3 to T-ALL using both in vitro and in vivo assays.
We found PRL-3 promotes T-ALL development and
onset in both zebrafish and mouse xenograft models.
Importantly, we also found that chemical inhibition of
PRL-3 can inhibit cell growth and migration, suggesting
that PRL-3 is a feasible therapeutic target in T-ALL. Cell-
culture based assays revealed that PRL-3 modulates SRC
signaling in T-ALL to enhance migratory capability, with
no significant effect on cell growth. Given that several
genes involved in T-cell migration promote CNS and
bone marrow relapse, further studies on the role of PRL-3
in CNS infiltration and relapse of T-ALL are necessary.
There is increasing interest in developing PRL-3 inhibi-
tors for use in solid tumors; our study indicates that they
may be useful in T-ALL as well.

Materials and methods
Antibodies, DNA plasmids, and other reagents
Antibodies used in this study, including their manu-

facturer, catalog number, lot number, blocking buffer
used, and dilution factor are listed in Supplemental Table
4. The specificity of antibodies against PRL-1, 2, and 3
were validated against purified protein (Supplemental Fig.
8). The PRL inhibitor JMS-053 was kindly provided by Dr.
John S. Lazo, Elizabeth Sharlow, and Peter Wipf (Uni-
versity of Virginia, Charlottesville, VA, USA), and the Src
inhibitor, SU6656, was purchased from Sigma-Aldrich
(S9692, St. Louis, MO, USA).
Lentiviral packaging plasmids psPAX2 (Addgene 12260,

Watertown, MA, USA) and pMD2.G (Addgene 12259)
were from Didier Trono. pLenti PGK Puro DEST (w529-2)
(hereafter referred to as PGK) (Addgene 19068) and
pLenti PGK GFP Puro (w509-5) (Addgene 19070) were
from Eric Campeau & Paul Kaufman. Non-targeting
control pLKO shRNA lentivirus plasmid (MISSION,
SHC002, Sigma-Aldrich) was kindly provided by Tianyan
Gao and pLKO shRNAs targeting PRL-3 were purchased
from Sigma-Aldrich; target sequences are listed in Sup-
plemental Table 5.
pENTR:PRL-3 (human) and pENTR:prl-3 (zebrafish)

Gateway Entry constructs were made by PCR amplifying
PRL-3 and prl-3 from cDNA generated from human
T-ALL cells and 24 h post-fertilization zebrafish embryos,
respectively. The PCR products were subcloned into the
pENTR-d-TOPO cloning vector (ThermoFisher K2400-

20, Waltham, MA, USA). The Gateway compatible zeb-
rafish rag2 vector and generation of the rag2:Myc and
rag2:mCherry construct has been previously described34.
The PGK:PRL-3 and rag2:prl-3 constructs were generated
using the PGK destination vector and pENTR:PRL-3 or
the rag2 destination vector and pENTR:prl-3 along with
Gateway LR Clonase II enzyme mix, according to man-
ufacturer’s protocol (ThermoFisher 11791020).

T-ALL cell lines and cell culture
All the human T-ALL cell lines used in the study were

authenticated by short tandem repeat (STR) DNA pro-
filing and tested for mycoplasma contamination prior to
experimentation. Cells were grown in RPMI1640 (Ther-
moFisher 11875119) supplemented with 10% heat-
inactivated fetal bovine serum (Atlanta Biologicals,
S11150H, Lot M17161, Flowery Branch, GA, USA). Cells
were cultured at 37 °C in a humidified atmosphere with
5% CO2.

Western blot
Western blot analysis was performed using a stain-free

technology developed by BioRad, which allows use of total
protein as the loading control50,51. For all figures shown,
the bands of total protein ~50 kD in size are used to
represent the lane of total protein. An example of the
entire lane that is used in the normalization calculations is
shown in Supplemental Fig. 9.

Co-immunoprecipitation
Cells (~50 million) were lysed in Pierce IP lysis buffer

(Thermo 87788) supplemented with 1% Protease Inhi-
bitor Cocktail (Sigma P8465). Total protein was incubated
with 80 μL Anti-Flag M2 magnetic beads (Sigma m8823)
on an orbital shaker overnight. After removing super-
natant and washing the beads with PBS, the magnetic
beads were boiled with 50 μL SDS containing buffer to
elute the immunoprecipitants from the beads. Total cell
lysates and immunoprecipitants were used for western
blot analysis.

Primary human samples
Frozen isolated PBMCs from de-identified T-ALL

patients were kindly provided by Dr. Michelle Kelliher
(University of Massachusetts Medical School, Worcester,
MA, USA). PBMCs from healthy donors were purchased
from Precision for Medicine (Bethesda, MD, USA).

Microarray data analysis
The primary patient microarray datasets were accessed

through the Gene Expression Ominbus (GEO) at NCBI
(https://www.ncbi.nlm.nih.gov/geo), including GSE1315952,53

and GSE1461554,55. GSEA was done using GSEA 4.0.0. PRL-
3 expression levels, corresponding to Affymetrix probes
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209695_at and 206574_at were used for phenotypic labeling.
Enrichment was calculated using MSigDB collection C6,
oncogenic gene sets. Gene set enrichment was considered
significant if it had a nominal p-value < 0.05.

Lentivirus packaging and T-ALL cells infection
For PRL-3 knock-down, lentivirus was produced in

293T cells using TransIT-LT1 (Mirus Bio MR2300,
Madison, WI, USA), according to the manufacturer’s
instructions using scrambled or shPRL-3 plasmids. For
T-ALL cell infection, 2.5 mL virus with 10 μg/mL poly-
brene (Thermo Fisher Scientific TR-1003-G) was added to
5 × 105 cells and centrifuged at 2250 rpm for 90min.
Virus was washed out with PBS after 24 h, and cells were
selected in culture media with 5 μg/mL puromycin for
48 h before experiments.
To generate PRL-3-ovexpressing cell lines, 293T cells

were transfected with PGK:GFP with or without PGK:
PRL-3 or PGK:3xFLAG-PRL-3 as described above. T-ALL
cells were selected in medium with 5 μg/mL puromycin
(Jurkat) or 1 μg/mL puromycin (HBP-ALL) for one week
to produce stably expressing cell lines, then maintained in
media with puromycin thereafter.

In vitro cell-based assays
The CellTiter-Glo Luminescent Cell Viability Assay

(Promega, G7570, Madison, WI, USA) was used to measure
cell survival according to the manufacturer’s instructions. A
Synergy LX BioTek (Winooski, VT, USA) multi-mode plate
reader was used to read luminescent signal.
Migration assays were performed as previously descri-

bed56. In experiments using JMS-053 or SU6656, cells
were pre-treated with JMS-053, SU6656, or DMSO con-
trol for 2 h before plating into the upper chamber. The
cells that migrated into the lower chamber were quanti-
fied by CellTiter-Glo Luminescent Cell Viability Assay.
Cell cycle was analyzed by quantifying 5′-ethynyl-2′-

deoxyuridine (EdU) uptake using ClickIT EdU Alexa
Fluor 647 (Thermo Fisher Scientific, C10424) according
to the manufacturer’s protocol. DAPI (0.1 μg/ml) (Ther-
moFisher 62248) was used to stain the DNA.
Apoptosis was quantified by staining cells with Annexin V

APC (ThermoFisher 88-8007-74) according to the manu-
facturers protocol, in the presence of DAPI (0.05 μg/ml)

RPPA assay and data processing
Reverse Phase Protein Array (RPPA) and data analysis

were performed by the RPPA Core Facility at MD
Anderson Cancer Center (Houston, TX, USA) as pre-
viously described57.

Zebrafish T-ALL models
Use of zebrafish was approved by the University of Ken-

tucky’s Institutional Animal Care and Use Committee

(IACUC), protocol 2015–2225. Microinjections of 15 ng/μL
rag2:Myc+ 45 ng/μL rag2:mCherry or 15 ng/μL rag2:Myc+
15 ng/μL rag2:prl-3+ 30 ng/μL rag2:mCherry were used to
generate zebrafish T-ALL in CG1 strain zebrafish as pre-
viously described, and number of animals used in each group
were chosen based on previous experiments35,58. Zebrafish
were monitored for leukemia onset and progression starting
at 21 days post-fertilization (dpf) and every 3 days onwards
by analyzing percent of the body expressing mCherry-
positive leukemia cells using a Nikon fluorescence-equipped
SMZ25 microscope. Circulating mCherry-positive T-ALL
was noted by examining the vessels within the tail vascu-
lature. Animals were monitored until 90 dpf or until they had
to be sacrificed due to leukemia burden. Animals that died
before the end of the monitoring period without leukemia
progression outside the thymus were excluded.
Zebrafish leukemias were harvested and May-Grunwald

Giemsa staining were performed as previously described
before imaging on a BioTek Lionheart FX micro-
scope34,35. To assess gene expression, RNA was isolated
from the cells using Zymo Research Quick-RNA kit
(R1054, Irvine, CA, USA). Total RNA was reverse tran-
scribed (BioRad iSCRIPT, 1708891) and real time PCR
performed using iTaq Universal SYBR Green Supermix
(Biorad, 1725120) with primer sequences available in
Supplemental Table 6. Data were normalized to ef1a
expression and fold change was calculated using the
2-ΔΔCq method.

Xenograft models in immune-compromised mice
Use of mice was approved by the University of Ken-

tucky’s IACUC, protocol 2017–2754. Eight-week old
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were
obtained from Jackson Laboratory (Bar Harbor, ME,
USA). Eight mice per group were used for experiments
based on pilot studies that utilized three mice per group.
The mice were randomized by placing into groups such
that the difference between average group weight is not
greater than 10%. Jurkat cells were infected with Scram-
bled shRNA or PRL-3 shRNA as described above. Two
days after virus infection, Jurkat cells were selected using
5 μg/ml puromycin for two days, stained with trypan blue,
and viable cells were FACS isolated. 106 live cells in
100 μL PBS were injected intravenously. Peripheral blood
samples (100–150 μL) were collected by submandibular
bleeding at 4, 6, and 8 weeks post-transplantation and
stained with human CD45 antibody according to Biole-
gend’s protocol and analyzed by flow cytometry.

Statistical analysis
Results are shown as mean ± standard deviation. Sample

sizes and number of replicates were chosen based on pilot
experiments utilizing three samples per group, and
experiments were done unblinded. At least three
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biological replicates were performed in each experiment.
Statistical analyses were performed using GraphPad Prism
7 (San Diego, CA, USA), combining data from all samples
across all replicates. Two-tailed t-tests were performed to
compare two groups with similar distribution, and Ana-
lysis of Variance (ANOVA) with Tukey’s multiple com-
parisons was used to compare more than two groups.
Human microarray data were analyzed using two-sample
t-test and Wilcoxon rank sum tests, and survival curves
were analyzed using Log-rank tests. All bar graphs shown
are data pooled from ≥3 experiments.
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