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ABSTRACT OF THESIS 

ASSESSING THE CLIMATE WATER BALANCE MODEL’S ABILITY TO PREDICT 
SOIL MOISTURE VARIABILITY AND SPECIES DISTRIBUTION OF A FORESTED 

WATERSHED IN THE NORTHERN CUMBERLAND PLATEAU 

Spatial patterns of moisture and tree species have been studied using environmental 

gradients, often represented by terrain attributes in GIS. With climate change, GIS terrain 

variables, which are static as long as the elevation remains unchanged, will not reflect 

alterations in temperature, water cycle, and atmospheric conditions. In this thesis, the 

commonly used terrain variables and climate water balance variables were evaluated and 

compared for their ability to explain soil moisture and tree species distributions in a 

forested watershed in the Northern Cumberland Plateau. The results suggest that GIS 

terrain variables generally perform better than climate water balance variables, however, 

the differences are not significant for soil moisture or half of the species studied. 

Topographic position, a terrain attribute not explicitly considered by climate water balance 

variables, performed well in its ability to explain both soil moisture and tree species 

distributions. This suggests that the inclusion of topographic position into or in tandem 

with future iterations of climate water balance variables could be advantageous. 
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CHAPTER 1 INTRODUCTION 

Highly variable topography creates heterogeneous microclimates, vegetation, and 

soil properties, which have been a focus of ecological studies over the past century. 

Climate change presents a force of disturbance that affects vegetation phenology (Bertin 

2008; Cleland et al. 2007; Doi and Katano 2008), productivity (Boisvenue and Running 

2006), mortality (Allen et al. 2010; McDowell and Allen 2015), and spatial distribution 

(Davis and Shaw 2001; Kelly and Goulden 2008). Dissected landscapes present unique 

systems to study how climate change will affect vegetation distributions, due in part to 

the complex range of site conditions.  

In the forests of the Eastern United States, early ecologists identified plant 

community composition within variable landscapes and identified how they changed in 

relation to aspect, topographic position, and subsequently, moisture gradients (Braun 

1950; Whittaker 1967). In Kentucky and Tennessee, the influences of aspect and 

topographic position on distributions of soil moisture and soil properties are well 

documented, in addition to their relationship with tree species distribution (Fralish et al. 

1993; Franklin et al. 1993). Ridges, upper slope positions, and southwest-facing slopes 

are typically characterized by lower soil moisture and soil nutrients compared to lower 

slope positions and northeast-facing slopes. Oaks (Quercus spp.) and hickories (Carya 

spp.) are found in the xeric, upper slope and ridge sites. American beech (Fagus 

grandifolia), sugar maple (Acer saccharum), and tulip poplar (Liriodendron tulipifera) 

are found at mesic sites, which are often northeast-facing or at lower topographic 

positions. Available water capacity, slope position, soil pH, elevation, and percent rock 
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were found to explain tree species distributions in western Kentucky and Tennessee 

(Fralish et al. 1993; Franklin et al. 1993). 

With technological advances, environmental gradients can be easily derived using 

Geographic Information Systems (GIS). While field observations are still necessary, 

terrain data that would have required field visits can now be calculated remotely at higher 

resolutions with few data inputs. Terrain variables representing patterns of aspect, 

elevation, solar radiation, soil moisture, and topographic position can be calculated for a 

given study area using GIS and a Digital Elevation Model (DEM). Although GIS-derived 

terrain variables may be able to capture or be correlated with plant relevant resources, 

they are static variables that will not change over time, a disadvantage when considering 

how changing climate will affect the spatial and temporal distributions of plant resources. 

The climate water balance (CWB) is a concept that represents the simultaneous 

availability of water and energy as experienced by plants. This allows ecologists to 

consider annual and monthly water balance at a site, instead of metrics that reflect annual 

totals such as potential evapotranspiration and precipitation. The CWB concept is 

implemented as a suite of GIS variables produced by the Water Balance Toolset 3.0.2 

(Dyer 2009). The CWB toolset equips users with the ability to calculate CWB for their 

study area using monthly climate, solar radiation, and soil data while considering how the 

topography of the area alters the spatial distribution of these elements. The integration of 

fine-scale terrain data with temporally dynamic climate data enables the toolset to capture 

differences in solar radiation, evapotranspiration, and water availability throughout a 

landscape. A dynamic GIS variable that represents the balance of water, influenced by 
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available energy and water, presents benefits when studying vegetation distribution, 

especially under changing climate conditions. 

Dyer (2009, 2019) studied the ability of this CWB toolset to explain soil moisture 

and tree species distribution in the Eastern United States. Though these studies found 

CWB toolset variables correlated with soil moisture (Dyer 2009) and corresponding with 

tree distribution (Dyer 2019), an in-depth evaluation of the toolset is needed. The current 

toolset does not take into account topographic position in the calculation of water 

availability. In dissected landscapes, topography is associated with many ecological 

patterns, including soil chemistry, vegetation composition, and forest productivity due to 

the movement of water and nutrients to lower slope positions (Fisher and Binkley 2000).  

An assessment of the CWB toolset in representing soil moisture patterns and vegetation 

distributions in the Cumberland Plateau can better inform how GIS is used to represent 

these ecological patterns. There are two overarching objectives of this thesis: 1. to assess 

the ability of the current climate water balance GIS toolset to represent soil moisture 

variability at fine spatial resolutions and 2. to assess how well tree species distributions in 

a dissected landscape are explained by the current climate water balance GIS toolset. 
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CHAPTER 2 ASSESSING THE REPRESENTATION OF SOIL MOISTURE  

INTRODUCTION 

Estimating the water available to plants is an increasingly important issue under 

changing climate scenarios. Plant water availability and microclimate influence species 

composition (Stephenson 1998), species distribution (Whittaker 1956), productivity 

(Whittaker 1966), soil formation (Jenny 1980), and forest flammability (Clark 1990; 

Miller and Urban 1999). Climate change will result in alterations of temperature, water 

cycle, atmospheric conditions, and energy budget (Collins et al. 2013). As these changes 

can influence precipitation patterns and evaporative demand, plant water availability 

should be at the forefront when considering how plants adapt to shifting climate 

circumstances (Crimmins et al. 2011; Lenoir et al. 2017; McLaughlin et al. 2017; 

VanDerWal et al. 2013). Terrain variables created using Geographic Information Systems 

(GIS) have shown to represent static patterns of soil moisture, however, under changing 

climate circumstances, the use of dynamic GIS variables that reflect site-specific 

simultaneous availability of water and energy can be advantageous (Stephenson 1990). 

An investigation into how spatial variables derived using GIS represent soil moisture 

patterns in dissected landscapes is needed. In this study, the ability of commonly used 

terrain and water balance GIS variables to represent soil moisture is investigated. 

In studying plant available water, many factors need to be considered including 

climate, soil attributes such as texture, topography, and plant specific attributes such as 

rooting zones. Estimating how much water is available to a plant during a given time is 

difficult due to the complex interaction of influential factors, however, soil moisture is 

often used as a surrogate for understanding what the patterns of moisture are in the field. 
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Topography of heterogeneous landscapes can create varied microclimate, soil properties, 

and vegetation patterns (Boerner 2006). Three topographic gradients that are used to 

study the heterogeneity of these landscapes are slope aspect, topographic position, and 

slope curvature.  

Dissected landscapes, such as in the Appalachian region of the Eastern United 

States, have been the focus of many ecological studies due to influences of the complex 

terrain on ecological patterns and processes. For example, it has been documented that 

adjacent northeast and southwest aspects in the Cumberland Plateau of the Appalachian 

region have different air temperature, soil temperature, soil moisture, relative humidity, 

soil nutrients, and vegetation (Hutchins et al. 1976). Northeast-facing slopes often have 

higher pH values, soil nutrients, soil moisture, and mesic species, while opposing 

southwest-facing slopes experience more exposure to solar radiation and support species 

adapted to xeric site conditions with lower soil pH and water holding capacity (Hutchins 

et al. 1976). Topography can affect drainage patterns (Beven and Kirkby 1979), exposure 

to solar radiation (Franzmeier et al. 1969), as well as soil properties and erosion (Moore 

et al. 1993). Valley positions, though on adjacent aspects, may experience similar levels 

of solar radiation due to the shading effects of the surrounding topography. These 

sheltering effects result in cooler air temperatures and increased moisture (Franzmeier et 

al. 1969). Hydrologic flow is mediated by topography as gravity moves water downslope 

(Beven and Kirkby 1979; Lookingbill and Urban 2004). 

The distribution of trees along topographic gradients is evident in the Eastern 

United States (Braun 1942; Whittaker 1956). In the Great Smoky Mountains, Whittaker 

(1956) described forest communities along elevation, topographic position, and moisture 
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gradients. Ridges, peaks, and open slopes were characterized as xeric sites, while coves, 

canyons, flats, ravines, and sheltered slopes were characterized as mesic (Whittaker 

1956). In the Cumberland Mountains, Braun (1942) noted species distributions along 

elevation and topographic position gradients. Day and Monk (1974) studied tree 

distributions in North Carolina with relation to elevation, aspect, distance from stream 

channel, and distance from the water divide. They noted that soil moisture was the most 

important environmental gradient corresponding with the topographic elements they 

studied (Day and Monk 1974). In western Kentucky and Tennessee, the distribution of 

species and communities along moisture gradients is evident (Fralish et al. 1993; Franklin 

et al. 1993). Xeric sites in the Kentucky and Tennessee region are associated with oak 

(Quercus spp.) and hickory (Carya spp.), while the mesic sites are associated with beech 

(Fagus grandifolia), sugar maple (Acer saccharum), magnolia (Magnolia spp.), and tulip 

poplar (Liriodendron tulipifera) (Fralish et al. 1993; Franklin et al. 1993). In southeastern 

Kentucky similar patterns are identified, including Fagus grandifolia at lower slope 

positions and Quercus prinus (= Quercus montana) and Acer rubrum at upper slope 

positions (Muller 1982). In North Carolina, similar distributions were found, with 

Quercus montana positively correlated with elevation (Day and Monk 1974).  

To capture the complex influence of terrain on the ecology of an area, GIS-

derived variables have been produced to represent ecological processes, such as the 

spatial distribution of moisture in landscapes. Two popular moisture indices include the 

topographic wetness index (TWI) and the integrative moisture index (IMI). TWI 

quantifies the control topography has on hydrologic flow by considering the upslope 

contributing area of a given point and the slope of the surrounding area (Beven and 
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Kirkby 1979). IMI accounts for solar radiation, flow accumulation, slope curvature, and 

soil total water capacity (Iverson et al. 1997). These moisture indices have been shown to 

represent patterns of soil moisture (Iverson et al. 2004a; Sørensen et al. 2006), however, 

these variables are temporally static and are relative measurements of moisture which 

cannot be compared across sites (Dyer 2009). 

As temperature and precipitation trends change throughout the year in many areas 

of the world, static moisture gradients do not fully explain the availability of water in 

terms of what is ecologically available. Furthermore, climate change presents scenarios 

where the interannual patterns of temperature and precipitation will change in both timing 

and amount. To better understand climate conditions and the influences of topography on 

the distribution of resources, such as moisture, temporally dynamic spatial variables 

should be implemented.  

Climate Water Balance  

The climate water balance (CWB), which has gained popularity in ecology, 

considers the simultaneous availability of energy and water (Stephenson 1990). CWB 

reaches beyond the traditional approach of measuring annual energy and water supply 

and addresses the need to calculate the monthly and annual balance of water as 

experienced by plants.  

CWB incorporates many aspects of the study area, including the available water 

and rates of evapotranspiration. The available water is water that the plants can uptake 

which considers the water holding capacity of the soil. The ability of soil to hold water 

varies across soil types, therefore, considering soil properties in water balance 

calculations is crucial. For calculating available energy, potential evapotranspiration 
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(PET) is used, which is the rate at which evapotranspiration would occur when water is 

not a limiting factor (Rosenberg et al. 1983). Many calculations of evapotranspiration use 

a standard crop to calculate this rate, though this rate is the same across vegetation types 

(Monteith 1965; Stephenson 1990; Thom 1975). PET is influenced by the amount of 

energy available and can be quantified by using temperature, solar radiation, humidity, 

and wind speed data (Jensen and Allen 2016). The actual evapotranspiration (AET) is the 

rate of evapotranspiration as experienced by plants, which considers the water and energy 

biologically available at the site (Major 1963; Rosenzweig 1968). When the water 

available to the plant does not meet the evaporative demand, the actual 

evapotranspiration rate is less than the potential evapotranspiration rate, causing a deficit. 

Conversely, when the available water is more than what is needed to fulfill the 

evaporative demand of potential evapotranspiration, there is a water surplus (Stephenson 

1990). 

The balance of water and energy, as well as their timing throughout the year, can 

enable ecologists to better understand and spatially represent ecological processes. Plant 

species have varying levels of water needs and deficit thresholds, therefore these CWB 

variables have been shown to differ between biomes (Stephenson 1990) and tree species 

(Lutz et al. 2010). CWB metrics have also been shown to be correlated with net primary 

production (Lieth 1975; Rosenzweig 1968), tree species richness (Currie 1991; Currie 

and Paquin 1987), and litter decomposition rates (Berg et al. 1993; Dyer et al. 1990; 

Meentemeyer 1978).  



 

9 

  

GIS Climate Water Balance  

As technology and spatial data become more readily available, conceptual models 

such as CWB can utilize GIS to approximate CWB metrics using climate, soil, and 

terrain data. The progression of technology has made fine resolution terrain data available 

for many locations, such as Light Detection and Ranging (LiDAR)-derived digital 

elevation models (DEMs). Dyer (2009) developed an ArcGIS toolset that allows users to 

calculated CWB metrics for their study area with few user inputs. The CWB toolset 

incorporates both the simultaneous availability of water and energy, as well as how the 

topography modifies the distribution of these climate variables. The toolset produces 

many output rasters for the given study area including monthly and annual PET, AET, 

deficit, moisture storage, and moisture surplus (Dyer 2009). 

To run the CWB toolset in ArcGIS, data inputs including a DEM of the study 

area, soil available water capacity (AWC), monthly precipitation, temperature, and solar 

radiation are needed (Dyer 2009). The user can either supply this data or download it 

from publicly available databases, which can be automated by the toolset. National 

Resources Conservation Service (NRCS 2019) and PRISM Climate data (PRISM Climate 

Group 2019) provide soil and climate data for the United States. With this input data, this 

toolset uses the Thornwaite approach (Mather 1978) to calculate components of the 

hydrologic cycle and the Turc equation to calculate PET (Turc 1961). The Turc equation 

incorporates both air temperature and solar radiation when calculating PET, which allows 

this toolset to reflect the role of topography in modifying energy available to a site (Dyer 

2019).  

The ability of the CWB toolset to represent moisture demand and moisture 

availability at fine scales, such as within a landscape, can be impacted by its ability to 
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capture the landform processes. Dyer (2009) studied the capacity of the model to account 

for variability in soil moisture by using soil moisture sensors at two study areas, one of 

steep relief in North Carolina and one with moderate relief in Ohio. Though this study 

validated the toolset’s ability to differentiate between aspects and general topographic 

positions, the ability of the current CWB toolset to characterize the spatial variability of 

soil moisture at fine spatial resolutions was not addressed. Chiefly, terrain modifies 

hydrologic and erosion processes (Moore et al. 1993), including runoff, soil water 

content, and sedimentation, which are not fully considered by the GIS CWB toolset.  

The distribution of moisture throughout a landscape is subject to many processes, 

which makes it difficult to capture spatial patterns with one variable. Understanding the 

role that topography plays in mediating soil moisture in landscapes permits a better 

synthesis for quantifying plant available water. Additionally, investigating the ability of 

commonly used GIS terrain variables and variables produced by the CWB toolset to 

represent soil moisture variability will inform decisions on how GIS is used to represent 

ecological processes and patterns. Representing the spatial variability of soil moisture 

will be crucial in determining how water availability and deficit are considered in models 

that inform plant distribution patterns. The overarching objective of this study was to 

assess the current CWB model’s ability to represent soil moisture variability at fine 

spatial resolutions in a highly dissected landscape of central Appalachia. There are three 

objectives: 1. to quantify the relative role of terrain attributes, including slope aspect, 

topographic position, and slope curvature, in regulating soil moisture variability, 2. to 

assess and compare the explanatory power of commonly used GIS terrain and CWB 

variables in explaining soil moisture, and 3. to evaluate the performance of models with 
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terrain variables, CWB variables, and the combination of terrain and CWB variables in 

representing field measured soil moisture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

  

METHODS 

Study Area  

The study area is Little Millseat watershed in the Cumberland Plateau and the 

Appalachian Coalfields of southeastern Kentucky. Little Millseat watershed, a 

subwatershed of Clemons Fork watershed, is situated in the University of Kentucky’s 

Robinson Forest, a temperature deciduous broadleaf forest spanning 6,000 hectares. 

Robinson Forest is characterized by steep slopes and soils developed through residuum or 

colluvium (Hutchins et al. 1976; Williamson et al. 2015). The underlying parent material 

is from the Breathitt Formation of Pennsylvanian age and consists of sandstone, shale, 

and siltstone (Hutchins et al. 1976; Hinrichs 1978; McDowell 1985). The 0 to 45-degree 

slopes of Little Millseat watershed are predominantly northeast and southwest-facing. 

Due to the dissected nature of this study area, the differences in soil and vegetation 

between adjacent slopes in Robinson Forest have been studied previously (Abnee et al. 

2004; Cremeans 1992; Hutchins et al. 1976; Kalisz 1986). 

 In the 1800s, some of the dissected slopes in what is now Robinson Forest were 

cleared for agriculture, later succeeding back to forest. Known as “old fields”, slopes that 

were used for growing crops have noticeable differences in soil characteristics, such as 

increased rock material (Kalisz 1986). Little Millseat watershed does not have evidence 

of old fields which would influence the spatial patterns of soil properties.  

Experiment Design 

Plot locations were determined using a three-way factorial design, with factors 

including aspect, topographic position, and slope curvature (Figure 2.1). Two aspects 

(northeast and southwest), five topographic positions (ridge, upper slope, middle slope, 
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lower slope, and valley), and two slope curvatures (convex and concave) were 

considered. These strata were chosen due to their role in influencing soil moisture and 

soil attributes. With this sampling design, there are 20 unique combinations, which were 

replicated five times, resulting in 100 study plots.  

GIS was used to derive the locations of the plots before going into the field. The 

middle section of Little Millseat watershed has predominantly northeast and southwest-

facing slopes. Slope curvature was determined by viewing Topographic Wetness Index 

(TWI) and hillshade maps which were derived from a 1.5-meter LiDAR-derived DEM. 

The topographic position classes were determined using the Topography Toolbox for 

ArcGIS (Dilts 2015). A circular neighborhood with a 100-cell search radius was used to 

create the Topographic Position Index (TPI) raster, which was then displayed as five 

topographic positions (ridge, upper slope, middle slope, lower slope, and valley). The 

100-cell radius search radius was selected after other search radii of equal or less value 

produced with less spatially contiguous class distinctions.  

After reviewing TWI and hillshade maps for the study area, transects were created 

in ArcMap along the concave and convex features, with five convex/five concave 

transects on the northeast-facing slope and five convex/five concave transects on the 

southwest-facing slope. The TPI output was then imported into ArcMap with the overlaid 

transects. Five plot centers were then placed along each transect, one per topographic 

position. For the ridge class, plots were placed at the uppermost part of the ridge, while 

the remaining classes were placed systematically in the center of the TPI range for that 

class. Plots were moved in ArcMap if they were within 11 meters of any forest access 

road, as to avoid the effects the roads may have on hydrology or disturbance history. This 
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provided the largest plots approximately three meters of space between the outermost 

edge of the plot and the road. These changes were done to reduce the impacts of the road 

from disturbance and drainage perspectives. Coordinates derived from these maps were 

then exported to Avenza Maps and used to navigate during fieldwork (Avenza Systems, 

Inc. Toronto, ON, Canada). 

The plots were established in early May 2019, the plot centers were marked using 

fiberglass stakes, flagging, and metal numbered tags. For plots on ridge top positions, 

disturbance effects from mining or forestry operations in the adjacent watersheds 

(increased stem density and invasive species) prompted the relocation of some plots to 

about nine meters downslope (while remaining in the ridge TPI class). The coordinates of 

the established plot centers were recorded using a SXBlue II GNSS GPS receiver (Geneq, 

Inc., Montreal, QC, Canada). XY accuracy for 99% of the plots was under two meters, 

one plot had three-meter accuracy. The coordinates were imported into ArcGIS in the 

WGS 1984 (G1150) coordinate system, then projected to NAD 1983 StatePlane 

Kentucky FIPS 1600 Feet.  

Soil Sampling 

Soil samples were collected over the course of four trips in July 2019. One 

composite soil sample was collected from each of the 100 plots by taking three soil 

samples collected using a Sharpshooter shovel and mixing them in a plastic bucket. The 

depth of the O horizon of each soil sample was recorded and the discarded, as the O 

horizon was not included in the composite sample. Samples were approximately ten 

centimeters in depth, not including the O horizon. The samples were randomly distributed 
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within 1.8 meters of the plot center. The bucket used in the mixing process was then 

brushed out between each composite sample to reduce contamination.   

Each composite soil sample was placed in a resealable plastic bag and double 

bagged to reduce moisture loss during transport since Gravimetric Water Content (GWC) 

measurements were taken. Soil samples were transported to the lab, transferred into paper 

bags, and air-dried. Regulatory Services at the University of Kentucky processed the 

samples. A routine soil test was performed including: 1 M KCl soil pH, Sikora II Buffer 

pH, Mehlich III calcium (Ca), magnesium (Mg), zinc (Zn), phosphorus (P), and 

potassium (K). Additional tests were performed including texture class via micropipette 

method (Burt et al. 1993; Miller and Miller 1987), total carbon, total nitrogen, and water 

holding potential (percent water at field capacity, percent water at the wilting point, 

percent plant available water held between field capacity and the wilting point) (Topp et 

al. 1993). 

Soil Moisture Sampling 

Onset’s 10HS Soil Moisture Smart Sensors and HOBO Micro Station Data 

Loggers were used to monitor temporal dynamics of soil moisture (Onset Computer 

Corporation, Bourne, MA, USA); 20 of the 100 plots had these continuous monitoring 

systems installed. A random number generator was used to select a transect to represent 

each of the four combinations (northeast concave, northeast convex, southwest concave, 

southwest convex). The selected transects then had five stations installed, one at each of 

the five topographic positions studied (ridge, upper slope, middle slope, lower slope, and 

valley).  
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The Micro Station systems were installed in late May/early June 2019 at the 

center of each of the 20 selected plots. Per instructions provided by Onset, to install the 

10HS Soil Moisture Smart Sensors a small hole was dug to ten centimeters. A soil knife 

was then used to make a pilot hole, as rocks and other objects risk harming the sensor. 

The sensor was then inserted vertically into the pilot hole. The HOBO Micro Station Data 

Loggers were secured to T posts and the sensor wire was fed through a PVC pipe to 

protect against damage. A lateral space of .3 meters or more on the ground was created 

between the sensor and the T post to prevent the presence of metal altering the sensor’s 

reading. Each Micro Station deployed to record the volumetric water content every ten 

minutes from early June to November 2019.  

For all 100 plots, volumetric water content was measured instantaneously using 

Spectrum Technologies, Inc.’s FieldScout TDR 300 Soil Moisture Meter with 20-

centimeter rods (Spectrum Technologies Inc., Aurora, IL, USA). Five readings were 

randomly taken per plot, within an eight-meter radius of the plot center. The random 

nature was due to the occurrence of trees and rocks which prevented a systematic 

sampling design. The time domain reflectometry (TDR) readings for each plot were taken 

throughout July and the first week of August. The sampling of all 100 plots did not occur 

during a continuous sampling period, therefore differences in precipitation amounts and 

weather experienced among the five collections trips should be noted. At the time the 

TDR measurements were taken, GWC samples were collected for each plot, except for 

eight plots due to a malfunction with the TDR instrument, which were collected at a later 

date.  
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GWC measurements were calculated using a subsample from the composite soil 

samples. Within the same day of soil collection, each sample was double bagged to 

reduce moisture loss. The samples were then processed within two days of returning from 

the collection trip and within three days of collecting the sample in the field. Once in the 

lab, 50 grams of wet soil was weighed out and placed in pre-weighed aluminum foil 

boats. The samples were placed in the oven at 110°C for 24 hours. Each sample was then 

placed in a desiccator for 15 minutes while the soil cooled to room temperature. Each 

sample’s dry weight was recorded. Using the weights of the wet soil, dry soil, and tin, the 

GWC was calculated for each composite soil sample.  

Predictor Variables 

Two GIS software programs, ESRI ArcGIS for Desktop 10.6 (ESRI 2011) and 

SAGA GIS (Conrad et al. 2015), were used to calculate the predictor variable rasters, all 

of which were derived from a 1.5-m LiDAR-derived DEM. Slope steepness and solar 

radiation were calculated with ArcGIS for Desktop, topographic wetness index (TWI), 

relative slope position (RSP), aspect (used to calculate southwestness), and plan 

curvature were calculated with SAGA GIS. CWB metrics, including storage, surplus, 

PET, and deficit, were calculated using the Water Balance Toolset version 3.0.2 (Dyer 

2009) in ArcGIS for Desktop 10.6. For each of the rasters used in this study, the values 

for each of the 100 plots were extracted with no focal mean. The boundary of Little 

Millseat was delineated in ArcGIS and used in clipping the study area rasters, however, a 

buffer was created around the watershed’s boundary so that the ridges are fully visible in 

Figure 2.2 and Figure 2.3, where the predictor variable rasters are depicted.  
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Planform curvature (also called plan curvature), calculated in SAGA GIS, 

describes the curvature perpendicular to the slope. In this study area, the values ranged 

from -.08 to .06 radians, where negative values are concave and positive values are 

convex. RSP values for the plots in this study area range from 0 to 1, with 0 indicating a 

low slope position and 1 indicating a ridge slope position. Slope, in degrees, ranged from 

0 to 45-degree slopes. Solar radiation was calculated in ArcGIS from day 91 to 305 in the 

Julian calendar. Southwestness was used in place of aspect, which was calculated by 

cosine ((aspect – 225)/180 * pi), where aspect is measured in degrees. The values in this 

study area range from -1 to 1. A value of 1 indicates that the site is southwest-facing, 

while a value of -1 indicates that the site is northeast-facing. TWI was calculated using 

the d-infinity algorithm used (Tarboton 1997). For this study area, the TWI values range 

from 1 to 21, where 1 indicates the driest site and 21 would indicate a site with the most 

moisture. 

The CWB metrics were calculated using a 1.5-meter LiDAR-derived DEM. Soil 

water-holding capacity for the study area was procured from the Natural Resource 

Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO) (NRCS 

2019). These soil properties are average estimates of the top 100 cm of soil, with a 

resolution of 1:12,000 to 1:63,360. Climate data for each month of summer of 2019, 

including precipitation totals, average temperature, total solar radiation, and average 

relative humidity, were downloaded from the Kentucky Mesonet Quicksand weather 

station, approximately 16 km away from the study area (Kentucky Mesonet 2019). The 

solar radiation was converted from MJ/m², the unit of the monthly Kentucky Mesonet 

solar radiation data, to Wh/ m², the unit required by the CWB toolset, using (MJ/ m² * 
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277.778). The relative humidity recorded by Kentucky Mesonet reflects maximum and 

minimum values for each month, the mean value was calculated to represent the monthly 

temperature. The soil moisture data (GWC and TDR) were collected throughout July 

2019, therefore the CWB outputs from July 2019 were used for analysis.  

Statistical Analysis 

 R version 3.5.1 (R Core Team 2018) and a significance level of 0.05 was used for 

all statistical analysis. To quantify the relative influence of three terrain factors, slope 

aspect, topographic position, and slope curvature, on soil moisture variability three-way 

ANOVAs were calculated for GWC and TDR. Type III ANOVA models were examined 

to determine factor significance using the Anova function in the car package (Fox and 

Weisburg 2011). The lrtest function from the lmtest package (Zeileis and Hothorn 2002) 

was used to calculate the log-likelihood ratio test of the full model with all interactions 

including the three-way interaction and the model with main effects and two-way 

interactions. Tukey pairwise comparisons of estimated marginal means were calculated 

using functions in the emmeans package (Lenth 2019). In addition to the soil moisture 

data, means and standard errors for the soil properties were calculated for each sampling 

strata (slope aspect, slope curvature, and topographic position). 

To assess and compare the explanation power and model performance of 

commonly used GIS terrain and CWB variables in explaining soil moisture model 

averaging and stepwise AIC approaches were used. Linear models were created using the 

lm function in the stats R package (R Core Team 2018). There were three model 

categories in the analysis framework: terrain, CWB, and the combination of variables in 

terrain and CWB categories. The terrain model category includes RSP, SW, slope 
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steepness, TWI, plan curvature, and solar radiation (Figure 2.2). The CWB model 

category includes PET, storage, and surplus (Figure 2.3). There was not a deficit in July 

of 2019, therefore, deficit was not used in the modeling framework. The third model 

category is a combination of the variables from the previous two categories (terrain and 

CWB). Two metrics of soil moisture were used including GWC and TDR. 

A model averaging approach was used to identify the importance of each variable 

in the three model categories for each soil moisture metric. The dredge function in the 

MuMIn package (Barton 2019) was used to rank the variables in each model category by 

their sum of weights. Delta AICc < 4 was used to define the subset of models, therefore, 

each variable’s sum of weight was calculated for this subset of models. 

To compare the performance of CWB variables to easily derived GIS variables, 

stepwise AIC identified the combination of variables from each model category that best 

explains the soil moisture metric. The stepAIC function in the MASS package (Venables 

and Ripley 2002) was used to identify these top models for each soil moisture metric 

within each model category. Fit statistics for these top models were then recorded, 

including f-statistics and multiple R². To formally compare the performance of each of 

these top models to one another, the vuongtest function in the nonnest2 package was used 

(Merkle and You 2018) to execute the non-nested likelihood ratio test for each of top 

models selected in the stepwise AIC approach. The vuongtest function tests the 

distinguishability of two models and subsequently indicates whether one model fits 

significantly better than the other. 
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RESULTS 

 The Pearson correlation coefficients of the in-field soil moisture measurements 

(Table 2.1) indicate that all methods of measurement were strongly correlated with 

correlation coefficients greater than 0.58. The 20 Micro Stations that recorded continuous 

measurements throughout the growing season were not used in statistical analysis as they 

represented a subsample of the 100 plots. Therefore, the data from the 100 plots was used 

in the model comparison. Both the GWC and TDR readings had high correlations and 

positive relationships with the Micro Station readings for the corresponding times (Figure 

2.4). 

Soil Moisture Analysis of Variance  

 The means and standard errors of TDR and GWC measurements by each factor 

level are found in Table 2.2. The volumetric water content readings from the TDR and 

the readings from GWC show a decreasing amount of soil moisture moving upslope, 

however, the driest slope position among the TDR readings is the upper slope, while the 

ridge is the driest slope position among the GWC readings. The soil moisture reading 

trends between slope aspects are not the same between TDR and GWC, as the TDR 

shows the southwest-facing slope being slightly wetter than the northeast-facing slope. 

This trend is reversed in the GWC measurements where the northeast-facing slope has a 

higher GWC mean value compared to the southwest-facing slope. For both soil moisture 

measurements, the concave sites have greater soil moisture than the convex sites. 

 The results of the three-way ANOVA for TDR indicated that there is not a 

significant three-way interaction. The log-likelihood ratio test was implemented to 

determine whether there was a significant difference between the full model with all 
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interactions (two-way and three-way) and the reduced model (the three-way interaction 

was dropped, but the main effects and two-way interactions were kept). The results of the 

log-likelihood ratio test indicated that there is a significant difference (p = 0.02) between 

the full model and reduced model. Therefore, the full model was used in the post-hoc 

analysis. There is a significant interaction between topographic position and curvature in 

the full model, but the other two-way interactions were not significant. The Tukey 

pairwise comparison of topographic position and curvature reveals significantly higher 

moisture content on valley concave slope positions compared to concave ridge positions 

(Table 2.3). The differences within convex transects are more nuanced than that of 

concave transects, with the valley position having significantly greater moisture 

compared to the other slope positions, but the upper slope position, instead of the ridge, is 

the driest. Additionally, the lower slope is significantly drier than the valley slope 

position. When comparing the soil moisture of different curvatures within topographic 

positions, only the upper slope position has a statistically significant difference between 

the concave and convex sites (Table 2.3). There was not a significant interaction between 

topographic position and aspect for the TDR measurements, however, to compare spatial 

trends for TDR to GWC, Table 2.4 illustrates mean and standard error for TDR 

measurements between aspect and topographic position. The TDR measurements reflect 

that moisture increases downslope on the northeast-facing slope. The southwest-facing 

slope follows a similar pattern, however, the driest topographic position on the 

southwest-facing slope is the upper slope and not the ridge. There are not large 

differences between the corresponding topographic positions on the opposing slope 

aspects.  
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 The three-way ANOVA for GWC did not indicate a significant three-way 

interaction. The log-likelihood ratio test was implemented to determine whether there 

was a significant difference between the full model with all interactions, including the 

three-way interaction, and the reduced model (in which the three-way interaction was 

dropped, but the main effects and two-way interactions kept). A log-likelihood ratio test 

was performed for the full and reduced model (with main effects and two-way 

interactions) and found that there was not a significant difference (p = 0.17), therefore, 

the reduced model was used in subsequent analysis. The ANOVA of the reduced GWC 

model indicated that there are significant interactions between aspect and slope curvature 

(p = 0.02) and aspect and topographic position (p = 0.02), however, the interaction 

between topographic position and curvature is not significant. The Tukey pairwise 

comparisons for these significant interactions indicate that among concave sites, the 

northeast-facing aspect has significantly more moisture than the southwest-facing slope, 

but there are not significant differences between aspects in convex sites (Table 2.5). 

Within the northeast-facing slope, there is a significant difference between concave and 

convex sites. The Tukey pairwise comparison between aspect and topographic position 

indicates within the northeast-facing aspect the ridge topographic position is significantly 

drier than the other topographic positions (Table 2.6). Additionally, within the 

topographic positions, valley and lower slope sites have significantly greater moisture on 

the northeast-facing slope compared to the southwest-facing slope (Table 2.6). 

Soil Properties 

 The descriptive statistics of soil properties by sampling strata can be found in 

Tables 2.7 through 2.9. The northeast slope has higher values of pH, total nitrogen, total 
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carbon, and greater concentrations of soil nutrients including Ca, Mg, Zn, P, and K 

(Table 2.7). The sand concentration is greater on the northeast-facing slope, while silt and 

clay are higher on the southwest-facing slope. The mean and standard error of soil 

properties by curvature are in Table 2.8. Soil moisture, represented by both GWC and 

TDR, is higher on concave sites. Concave sites have higher pH values, as well as higher 

total nitrogen, total carbon, and nutrient concentrations including Ca, Mg, Zn, P, and K. 

Concentrations of sand are greater on convex sites, while silt and clay concentration are 

greater on concave sites. Means and standard error of soil properties for the five 

topographic positions used in the sampling strata are in Table 2.9. Lower slope positions 

(valley, lower slope, and middle slope) have higher pH values compared to the upper 

slope and ridge positions. Ca and Mg concentrations are greatest in the lower slope 

positions (valley and lower slope) and decreased with increasing topographic positions. 

Sand concentrations were highest in the valley and decreased moving upslope. Silt and 

clay concentrations were generally highest in ridge positions and decreased moving 

downslope. 

Model Averaging 

 The results of model averaging (Table 2.10) indicate the ranking of variables 

based on their sum of weights in models with delta AICc < 4. For each soil moisture 

metric, RSP has high importance. RSP was the top variable for each soil moisture metric 

in the GIS terrain category and within the top two variables in the combination category. 

For GWC, RSP was followed by southwestness in both the terrain and combination 

categories. In the CWB model category, our results suggest that storage is the top-

performing CWB variable for each of the soil moisture metrics, followed by PET and 
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surplus. Both GWC and TDR have storage as a top-ranking variable in the combination 

category, it ranks third for GWC and first for TDR. 

Model Comparison 

 The results of the stepwise AIC approach, which identifies the combination of 

variables that best explains each soil moisture, are found in Table 2.11. The top-

performing models for each model category and the corresponding F-statistic and R² are 

also in Table 2.11. While the R² values indicate the strength of the relationship between 

the predictor variables and the response variable, the F-statistic indicates whether the 

linear regression model is better fit to the data compared to the null model. The F-statistic 

is influenced by the degrees of freedom, which should be noted as each of the models 

within and among the metrics have different numbers of predictor variables. 

 Among the top terrain models for each soil moisture metric, RSP is the top-

ranking variable and has a negative relationship with soil moisture, indicating that as RSP 

increases, soil moisture decreases. For TDR, slope was the second variable in the terrain 

top model. The top CWB model for each soil moisture metric solely contains storage and 

the relationship between soil moisture and storage is positive. For the combination model, 

the ordering of variable significance is different for each soil moisture metric, however, 

there is overlap in variables. For GWC the variables include RSP, solar, PET, storage, 

and plan curvature, while for TDR the variables include slope, storage, RSP, solar, and 

PET. 

 In general, the terrain top models have greater R² values than the corresponding 

CWB top models for each of the soil moisture metrics. Additionally, the top combination 

models have greater R² values than both the corresponding terrain and CWB models. The 
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results of the formal comparison of the top models for each moisture metric, using the 

non-nested likelihood ratio test, are in Table 2.12. For both GWC and TDR 

measurements, the fit of the top terrain and CWB models are not statistically different, 

while the combination model fit significantly better than the corresponding CWB model. 

In general, the combination model fits better than the terrain model for all soil moisture 

metrics, as the R² values are greater for the combination models (Table 2.11), however, 

these differences are not significant per the non-nested likelihood ratio test (Table 2.12). 
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DISCUSSION 

 Our results suggest that models with solely CWB variables do not perform better 

than models with easily derived GIS terrain variables in explaining soil moisture, 

however, the differences between these models are not substantial. Additionally, the 

inclusion terrain variables with CWB variables in the combination model significantly 

improves model performance in explaining soil moisture variability when compared to 

CWB variables alone. Among the CWB variables used in the model averaging and 

stepwise AIC framework, storage is a top-performing variable in comparison with PET 

and surplus for explaining soil moisture. RSP is a top-performing variable among the 

terrain variables.  

Patterns of Soil Properties  

 As many ecologists have studied, the topography of dissected landscapes can play 

an important role in hydrological and erosional processes, including mineral weathering, 

leaching, sedimentation, and soil erosion (Moore et al. 1993). Terrain features, 

specifically, slope aspect, slope curvature, and upslope area have been studied for their 

effects on soil moisture and flow patterns (Seibert et al. 2007). The patterns of soil 

moisture as documented by TDR and GWC measurements differ slightly from one 

another, which is reflected by the ANOVA and Tukey pairwise comparison results. The 

results for TDR suggest that slope curvature and topographic position significantly 

influence soil moisture patterns. Concave sites had a significant difference between ridge 

and valley positions, while the convex sites had more nuanced differences. The general 

pattern among topographic positions is similar for both convex and concave sites with 

significant differences between the valley and all other slope positions. 
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 The GWC measurements highlight the effects of topographic position, slope 

aspect, and slope curvature on soil moisture. Two differences lie within the northeast-

facing slope sites, where the ridge positions were significantly drier than valley positions 

and concave sites were significantly more moist than convex sites. Additionally, concave 

sites were significantly moister on the northeast-facing slope compared to the southwest-

facing slope. Lastly, there was significantly greater moisture within the valley and lower 

slope positions on the northeast-facing slope compared to the southwest-facing slope.  

 There are slight variations between the two methods of soil moisture 

measurement. For example, the TDR measurements do not reflect a significant difference 

in moisture between slope aspects, whereas the GWC measurements reflect this 

difference. These differences are illustrated in Table 2.4 and Table 2.6. In general, both 

soil moisture metrics, TDR and GWC, reflect that moisture is greater on the northeast 

slope, except for the ridge positions where the northeast ridge is drier than the southwest 

ridge for both TDR and GWC. However, these moisture differences between slope 

aspects are not as pronounced in the TDR measurements, explaining why slope aspect 

was not included in significant interactions for TDR.  

 Despite this difference in spatial trends between TDR and GWC, the effects of 

terrain on soil moisture patterns are evident. Differences among topographic positions are 

apparent in both the TDR and GWC measurements, namely soil moisture is greater at 

lower slope positions compared to upper slope positions. As noted by others, lower slope 

soils experience less evaporative demand (Aandahl 1949; Bates 1923) and cooler 

temperatures (Franzmeier et al. 1969). Topography modifies the distribution of materials 

downslope, including leaching of nutrients and solid materials, leading to higher pH 
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(Giesler et al. 1998; Kalisz 1986), and more organic matter (Aandahl 1949), as well as 

thicker sola and soil horizons (Cooper 1960) at lower slope positions. Seibert et al. (2007) 

noted that the correlations between soil chemistry and topography were higher for the O 

horizon, citing the control of topography was greater since the organic layer is exposed. 

These results may also indicate that the soil chemistry is influenced by vegetation in 

addition to topography (Seibert et al. 2007). For example, Kalisz (1986) noted that 

exchangeable calcium concentrations were greater where Liriodendron tulipifera was 

found due in part to the higher level of Ca levels in the foliage. Through leaching and 

litterfall, the concentrations of Ca were higher in the surrounding surface soil, noting that 

the chemical properties of the A horizon are reflecting species composition rather than 

controlling it (Kalisz 1986). The combined effects of microclimate and movement of 

materials downslope favor the ability of lower slope positions to accumulate and retain 

soil moisture. Topographic position influences many ecological processes, which is 

reflected by both the patterns of soil moisture and soil properties in this Appalachian 

watershed. 

Variable Performance and Comparison  

 Comparison of the top models from stepwise AIC suggests that the CWB models 

do not explain soil moisture variability better than easily derived GIS terrain variables, 

however, the non-nested likelihood ratio test indicates that these differences are not 

significant. The inclusion of terrain variables with CWB variables significantly improves 

model fit when compared to CWB variables alone. The model averaging results, which 

indicate the ranking of variables, emphasize the importance of solar radiation and 

topographic position in controlling patterns of soil moisture. As reflected by the ANOVA 



 

30 

  

and Tukey pairwise comparison results for TDR and GWC, the processes most important 

in explaining soil moisture patterns for these two different moisture metrics differ 

slightly. RSP is the top variable in the terrain category for TDR and GWC, and among 

the top variables in the combination category for both soil moisture metrics. Other 

variables that performed well in the model averaging and model selection framework 

include CWB storage, southwestness, slope steepness, and plan curvature.   

 Of the CWB variables, storage was the top variable for TDR and GWC. Dyer 

(2009) investigated the ability of CWB storage to explain soil moisture patterns in North 

Carolina and Ohio reported correlation coefficients between CWB storage and a 

relativized soil moisture metric from 0.92 to 0.97. The correlation coefficient between 

CWB storage and the soil moisture measured in this study are lower, with TDR having a 

Pearson correlation coefficient of 0.46 and GWC having a coefficient of 0.52. The 

sampling sizes, sampling patterns, and methods did differ between these two studies. Our 

study had 100 plots, while the North Carolina study area had nine plots and the Ohio site 

had 19 from Dyer (2009). Additionally, the depth at which measured soil moisture and 

soil properties were measured in this study differed from Dyer (2009). In the North 

Carolina sites, the soil moisture was measured at 30-60 cm and 50 cm at the Ohio sites 

(Dyer 2009), while the depth at which soil properties and soil moisture were measured 

was approximately 10 cm for this study. Previous studies have shown that the influences 

of topography on soil moisture decrease with soil depth (Florinsky et al. 2002; 

Lookingbill and Urban 2004; Yeakley et al. 1998), which could be a possible reason that 

topographic position did not seem to influence patterns of soil moisture in Dyer (2009).   
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 Topographic position (represented by RSP in this study) is not currently 

integrated into the current CWB toolset’s calculation of available water, which appears to 

explain some soil moisture variability in the forested watershed from this study. Without 

using topographic position in the calculation of CWB metrics, the influences of 

topographic position on drainage and other ecological processes influencing the 

accumulation and retention of moisture could be underrepresented by the CWB toolset. 

The spatial pattern of the CWB storage may roughly mimic the spatial pattern and effects 

of topographic position. The NRCS SSURGO database AWC data, used in calculating 

CWB storage, has a coarse resolution. For this watershed, there are three AWC values 

spatially divided by ridge, north-facing aspect, and south-facing aspect. Though user-

provided soil data would likely provide higher resolution data, many users will not be 

able to feasibly provide soil data for their study area. Moore et al. (1993) noted that soil 

survey maps and databases generally have resolutions lower than that needed for detailed 

environmental modeling, which is reflected by our results. However, as Moore et al. 

(1993) concluded, the integration of terrain attributes with soil survey maps and 

databases, by using DEMs, may be more beneficial for landscape-scale modeling. 

 The importance of topographic position in explaining patterns of soil moisture 

may be seasonal and site-specific. The spatial organization of soil moisture and the 

processes controlling these factors are expected to change throughout the year. In 

Australia, Western et al. (1999) found during wet periods, the spatial pattern of soil 

moisture reflected topographic controls and a strong degree of spatial organization. When 

moisture availability is low, however, this spatial pattern is less evident and soil moisture 

patterns reflected differences in evapotranspiration, represented by a potential radiation 
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index in the Western et al. (1999) study. A combination of variables, including ln(a), 

where a is the upslope area, or ln(a/tan(β)), where β is the surface slope, and the potential 

solar radiation index explained 61% of the variation in soil moisture in the wet season 

and 22% during the dry periods. During dry periods, the potential radiation index showed 

the strongest relationship with soil moisture. For Australia, the winter months were 

characterized as being wet, while the summers were characterized as the dry periods with 

little spatial organization attributed to topography.  

 The control of surface topography on the spatial variability of flow dynamics in 

wet periods, compared to negligible effects during dry periods, has been reported by 

other studies (Chirico et al. 2003). During seasons where deficit does occur, a single peak 

in the hydrograph can denote that no subsurface lateral flow is occurring (Burt and 

Butcher 1985). These findings may vary, however, as Famiglietti et al. (1998) reported 

the influence of topography on soil moisture variability increased as the soil dries.  

 Given the inherent differences among study areas, the current and future regional 

climate should be considered when assessing the applicability of this model in 

representing soil moisture patterns. The seasonality of temperatures and precipitation will 

influence the patterns of soil moisture and the processes causing these patterns. In 

Kentucky, there is often adequate precipitation during much of the growing season, 

increasing the likelihood that soil moisture is at or above field capacity. This was the case 

for July 2019, in which our soil moisture data was collected, however, it is possible to 

have years with growing season deficit. In regions that experience, or will experience, 

less precipitation during the growing season, the effects of topographic position on 

drainage may not be as pronounced, given the soils could be below field capacity. 
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Limitations and Future Work 

 There are many opportunities to expand and improve upon this work. The first 

consideration is that the soil moisture measurements used in this study, GWC and TDR, 

reflect one-time measurements throughout July 2019 as data collection occurred over 

several trips. Future studies could test the accuracy of CWB metrics throughout the year 

using long term sampling. Though time series data was recorded over five months in this 

watershed, it was not used in statistical analysis as the 20 plots were unique combinations 

from the factorial design. Additionally, this study focused on how GIS-derived variables, 

including CWB and terrain variables, could be used to explain soil moisture, not plant 

available water. Soil moisture alone does not reflect what water is available to plants and 

the depth at which soil moisture was measured in this study does not capture all the 

moisture available at rooting depth. Lastly, climate, parent material, and landform will 

greatly influence many of the processes and patterns discussed, therefore, the 

applicability of terrain and CWB variables in explaining moisture patterns in other study 

areas will vary. 
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CONCLUSION 

 Our results reiterate that patterns of soil moisture in this Cumberland Plateau 

watershed are influenced by topographic position, as well as slope aspect and slope 

curvature. RSP, a variable representing topographic position, performed well among the 

GIS-derived terrain variables in explaining soil moisture distribution. Storage performed 

well among the CWB variables, though the coarse spatial distribution of storage should 

be noted. The performance of terrain and CWB models individually are not significantly 

different in explaining soil moisture, however, the inclusion of terrain variables with 

CWB variables does significantly improve model performance compared to CWB 

variables alone. The inclusion of a topographic position variable in future iterations of a 

GIS CWB toolset may improve its ability to explain soil moisture variability. In highly 

dissected landscapes where steep slopes influence drainage and reflect other ecological 

patterns important to water availability, topographic position should be included to 

properly represent patterns of soil moisture.  

 The CWB toolset variables do present a major advantage over traditional GIS-

derived terrain variables. CWB variables reflect temporally dynamic patterns of 

evaporative demand and available water through the incorporation of coarse climate data 

and fine-scale terrain data. Under changing climate conditions, dynamic variables, such 

as CWB, will become increasingly important as the spatial and temporal patterns of 

precipitation and temperature change.  
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Table 2.1 Pearson correlation coefficient between measured soil moisture methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: GWC and TDR measurements were taken at the same time, except TDR readings 

of 8 plots due to equipment malfunction. The Combined TDR measurements (n = 100) 

include the 8 plots recorded at a later date and the Combined Micro Station readings 

reflect the same time stamps as the Combined TDR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

GWC 

(n = 100)  

Combined TDR 

(n= 100) 

TDR (n = 92) 0.58***   

Micro Station (n = 20) 0.58**   

Combined TDR (n = 100) 0.59***   

Combined Micro Station (n= 20)       0.60**  

Computed correlation used pearson-method with pairwise-deletion. 
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Table 2.2 Volumetric Water Content from TDR and Gravimetric Water Content (%; 

mean ± SE) by each factor including topographic position (TP), slope aspect, and 

curvature. 

Factor Levels Volumetric Water Content Gravimetric Water Content 

TP 

Valley 23.01 ± 0.83 31.65 ± 1.13 

Lower Slope 18.98 ± 0.90 30.95 ± 1.39 

Middle Slope 18.07 ± 0.76 29.32 ± 0.91 

Upper Slope 14.92 ± 1.28 27.50 ± 1.27 

Ridge  15.31 ± 1.49 24.07 ± 1.39 

Aspect 
Northeast-facing 17.95 ± 0.92 30.41 ± 1.03 

Southwest-facing  18.16 ± 0.64 26.99 ± 0.54 

Curvature 
Concave 19.49 ± 0.63 30.30 ± 0.80 

Convex 16.62 ± 0.89 27.10 ± 0.86 
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Table 2.3 Volumetric Water Content (%) from TDR, mean ± SE, across topographic 

positions (TP) and slope curvature. 

TP Concave Convex 

Valley 22.70 Aa ±1.17 23.31 Aa ± 1.24 

Lower Slope 20.34 ABa ± 1.14 17.61 Ba ± 1.29 

Middle Slope 19.87 ABa ± 0.68 16.26 BCa ± 1.10 

Upper Slope 18.21 ABa ± 1.62 11.63 Cb ± 1.35 

Ridge 16.30 Ba ± 1.55 14.33 BCa ± 2.59 

Note: Upper-case letters indicate significant differences between topographic positions 

within curvature classes. Lower-case letters indicate significant differences between 

curvature within topographic positions. Differences were determined by Type III 

ANOVA and post-hoc Tukey Pairwise comparisons. 
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Table 2.4 Volumetric Water Content (%) from TDR, mean ± SE, across topographic 

positions (TP) and slope aspects. 

TP Northeast-facing Southwest-facing  

Valley 23.85 ± 0.92 22.16 ± 1.39 

Lower Slope 19.68 ± 1.48 18.27 ± 1.04 

Middle Slope 18.18 ± 1.34 17.95 ± 0.78 

Upper Slope 15.38 ± 2.22 14.45 ± 1.38 

Ridge 12.68 ± 2.35 17.95 ± 1.50 
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Table 2.5 Gravimetric Water Content (%; mean ± SE) across slope aspects and slope 

curvature. 

Aspect Concave Convex 

Northeast-facing 33.12 Aa ± 1.22 27.71 Ab ± 1.51 

Southwest-facing  27.48 Ba ± 0.67 26.49 Aa ± 0.85 

Note: Upper-case letters indicate significant differences between aspects within curvature 

classes. Lower-case letters indicate significant differences between curvature within 

aspects. Differences were determined by Type III ANOVA and post-hoc Tukey Pairwise 

comparisons. 
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Table 2.6 Gravimetric Water Content (%; mean ± SE) across topographic positions (TP) 

and slope aspects. 

TP Northeast-facing Southwest-facing  

Valley 35.07 Aa ± 1.34 28.22 Ab ± 1.00 

Lower Slope 34.15 Aa ± 2.17 27.75 Ab ± 1.10 

Middle Slope 30.23 Aa ± 1.55 28.40 Aa ± 0.97 

Upper Slope 29.57 Aa ± 1.92 25.43 Aa ± 1.49 

Ridge 23.02 Ba ± 2.54 25.11 Aa ± 1.23 

Note: Upper-case letters indicate significant differences between topographic positions 

within aspects. Lower-case letters indicate significant differences between aspects within 

topographic positions. Differences were determined by Type III ANOVA and post-hoc 

Tukey Pairwise comparisons. 
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Table 2.7 Soil properties by slope aspect (mean ± SE). 

Soil Property  Northeast-facing Southwest-facing  

pH (Soil Water) 5.07 ± 0.07 4.62 ± 0.02 

Total N (%) 0.18 ± 0.01 0.09 ± 0.003 

Sand (%) 50.02 ± 2.17 44.4 ± 2.40 

Silt (%) 36.39 ± 1.74 41.34 ± 1.96 

Clay (%) 13.59 ± 0.52 14.25 ± 0.55 

Total C (%) 2.26 ± 0.08 1.86 ± 0.06 

Field Capacity (%) 33.51 ± 0.93 32.38 ± 0.73 

Wilting Point (%) 15.29 ± 0.60 13.15 ± 0.51 

Plant Available Water (%) 18.23 ± 0.47 19.23 ± 0.52 

Ca (mg/kg) 440.87 ± 48.13 107.43 ± 14.83 

Mg (mg/kg) 101.46 ± 8.69 45.29 ± 4.80 

Zn (mg/kg) 2.258 ± 0.16 1.33 ± 0.07 

P (mg/kg) 5.91 ± 0.38 3.17 ± 0.15 

K (mg/kg) 95.59 ± 5.20 64.6 ± 2.41 
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Table 2.8 Soil properties by slope curvature (mean ± SE). 

Soil Property Concave Convex 

pH (Soil Water)  4.88 ± 0.07 4.81 ± 0.05 

Total N (%) 0.15 ± 0.01 0.12 ± 0.01 

Sand (%) 41.81 ± 1.99 52.61 ± 2.40 

Silt (%) 43.61 ± 1.66 34.13 ± 1.86 

Clay (%) 14.58 ± 0.48 13.26 ± 0.60 

Total C (%) 2.16 ± 0.08 1.96 ± 0.07 

Field Capacity (%) 35.11 ± 0.75 30.78 ± 0.81 

Wilting Point (%) 15.5 ± 0.55 12.94 ± 0.55 

Plant Available Water (%) 19.61 ± 0.48 17.85 ± 0.49 

Ca (mg/kg) 297.41 ± 46.26 250.89 ± 38.84 

Mg (mg/kg) 85.21 ± 9.46 61.54 ± 5.95 

Zn (mg/kg) 1.87 ± 0.13 1.71 ± 0.14 

P (mg/kg) 4.65 ± 0.39 4.43 ± 0.31 

K (mg/kg) 83.6 ± 5.03 76.59 ± 4.10 
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Table 2.9 Soil properties by topographic position (mean ± SE). 

 

Soil Property Valley Lower  Middle  Upper  Ridge 

pH (Soil Water) 4.94 ± 0.08 4.97 ± 0.10 4.92 ± 0.10 4.83 ± 0.11 4.55 ± 0.03 

Total N (%) 0.14 ± 0.01 0.15 ± 0.02 0.14 ± 0.02 0.14 ± 0.02 0.11 ± 0.01 

Sand (%) 55.03 ± 1.89 50.41 ± 2.67 46.03 ± 2.38 45.60 ± 4.01 38.98 ± 5.45 

Silt (%) 31.77 ± 1.50 36.25 ± 2.23 40.65 ± 2.11 41.00 ± 3.35 44.67 ± 4.23 

Clay (%) 13.2 ± 0.56 13.34 ± 0.60 13.32 ± 0.49 13.39 ± 0.77 16.35 ± 1.35 

Total C (%) 1.75 ± 0.08 2.13 ± 0.12 2.00 ± 0.10 2.25 ± 0.16 2.15 ± 0.09 

Field Capacity (%) 30.03 ± 1.06 32.12 ± 1.05 33.87 ± 0.88 33.93 ± 1.39 34.76 ± 1.85 

Wilting Point (%) 13.57 ± 0.57 14.23 ± 0.77 14.01 ± 0.74 13.91 ± 0.94 15.37 ± 1.37 

Plant Available Water (%) 16.47 ± 0.70 17.89 ± 0.67 19.86 ± 0.62 20.02 ± 0.87 19.39 ± 0.81 

Ca (mg/kg) 350.45 ± 60.35 377.5 ± 80.06 302.3 ± 73.34 257.60 ± 72.66 82.9 ± 10.14 

Mg (mg/kg) 94.95 ± 10.13 88.98 ± 13.52 84.40 ± 14.39 62.85 ± 14.58 35.7 ± 3.61 

Zn (mg/kg) 1.76 ± 0.16 2.06 ± 0.30 1.76 ± 0.20 1.84 ± 0.27 1.56 ± 0.09 

P (mg/kg) 4.68 ± 0.26 5.40 ± 0.62 4.48 ± 0.55 4.13 ± 0.63 4.03 ± 0.62 

K (mg/kg) 84.00 ± 5.49 91.38 ± 9.34 82.58 ± 5.84 79.4 ± 9.27 63.13 ± 3.80 
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Table 2.10 Ranking of predictor variables by sum of weights for each soil moisture metric. 

Metric Model Ranking* Sum of Weights 

GWC Terrain RSP SW PC Slope Solar TWI 1.00   0.94   0.58   0.30   0.25   0.22   

 CWB Storage PET Surplus 1.00   0.45   0.23 

 Combination RSP SW Storage PC PET Solar  1.00   0.79   0.75   0.56   0.36   0.32    
       

TDR Terrain RSP Slope PC TWI Solar SW 1.00   0.56   0.39   0.19   0.17   0.16 

 CWB Storage PET Surplus 1.00   0.39   0.20 

 Combination Storage RSP Slope Solar PET PC 0.95   0.86   0.78   0.58   0.51   0.35 

    *Only the top six variables in the Combination model are shown. The variables are listed in order of importance, also indicated by the 

Sum of Weights. Abbreviated variable names are as follows: relative slope position (RSP), southwestness (SW), plan curvature (PC), 

slope steepness (Slope), solar radiation (Solar), topographic wetness index (TWI), CWB storage (Storage), potential 

evapotranspiration (PET), CWB surplus (Surplus). 
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Table 2.11 Top models selected using stepwise AIC, within three GIS variable 

categories: Terrain, Climate Water Balance (CWB), and Combination, for each soil 

moisture metric. 

* Variables are listed in order of increasing p-value. Underlined variables have a negative 

relationship with the soil moisture metric. Abbreviated variable names are as follows: 

relative slope position (RSP), southwestness (SW), plan curvature (PC), slope steepness 

(Slope), solar radiation (Solar), topographic wetness index (TWI), CWB storage 

(Storage), potential evapotranspiration (PET), CWB surplus (Surplus). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metric Model Top Stepwise Model* F Statistic R² 

GWC Terrain  RSP + SW + PC 17.48 0.35 

  CWB Storage  35.97 0.27 

 Combination RSP + Solar + PET + Storage + PC  11.19 0.37 

     

TDR Terrain RSP + Slope 15.15 0.24 

 CWB Storage  26.39 0.21 

 Combination Slope + Storage + RSP + Solar + PET 8.65 0.32 
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Table 2.12 Non-nested likelihood ratio test results for top models selected by stepwise 

AIC in the three GIS variable categories: Terrain, Climate Water Balance (CWB), and 

Combination. 

Metric  Non-nested Likelihood Ratio Test  

GWC Terrain fits better than CWB p = 0.098 

 Combination fits better than CWB  p = 0.014 

 Combination fits better than Terrain  p = 0.241 

   

TDR Terrain fits better than CWB p = 0.344 

 Combination fits better than CWB p = 0.028 

 Combination fits better than Terrain p = 0.057 
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Figure 2.1 Plot locations in Little Millseat watershed located in Kentucky, USA. 
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Figure 2.2 GIS terrain variables used in the terrain category, from left to right, top to 

bottom: Slope, Southwestness, Relative Slope Position, Plan Curvature, Solar, and 

Topographic Wetness Index (TWI). 
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Figure 2.3 GIS Climate Water Balance (CWB) variables used in the CWB category, from 

left to right, top to bottom: PET, Storage, and Surplus. CWB variables reflect calculations 

for July 2019.  
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Figure 2.4 A scatterplot matrix of the soil moisture measurements collected for this study. 

Note: GWC and TDR measurements were taken at the same time, except TDR readings 

of 8 plots due to equipment malfunction. The Combined TDR measurements (n = 100) 

include the 8 plots recorded at a later date and the Combined Micro Station readings 

reflect the same time stamps as the Combined TDR. 
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CHAPTER 3 SPECIES DISTRIBUTION PATTERNS 

INTRODUCTION 

Climate Change and Shifting Vegetation Distributions  

 Changes in climate influence the phenology (Bertin 2008; Cleland et al. 2007; 

Doi and Katano 2008), productivity (Boisvenue and Running 2006), mortality (Allen et 

al. 2010; McDowell and Allen 2015), and spatial distribution of plants (Davis and Shaw 

2001; Kelly and Goulden 2008). These are consequences of alterations in global 

atmospheric carbon dioxide concentrations, temperature, energy budget, atmospheric 

circulation, and water cycle (Collins et al. 2013). With different magnitudes of these 

alterations around the world, the ability of plants to adapt will vary. Additionally, climate 

change will influence the frequency, severity, and patterns of forest disturbances, 

including fires and invasion of native and nonnative pests, presenting more mechanisms 

of change in forest ecosystems (Seidl et al. 2017). Reduction in resistance and resilience 

of plants from these collective changes, at the individual, population, and community 

levels, can impact the surrounding ecology of the area through reduced diversity, 

alterations of community structure, and extinction (Jump and Penuelas 2005).  

Shifts in species and population distribution in response to changing climate have 

been documented in recent decades from the regional scale to the landscape scale. 

Climate change presents a scenario where populations will need to adapt or track ideal 

climate envelopes under changing conditions, at a faster rate. Population movement 

occurs when populations are establishing beyond their current range, such as seed 

dispersal or assisted migration (Corlett and Westcott 2013). In the Eastern United States, 

climate change is projected to result in range contraction if current sites become 
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unsuitable and recruitment at the leading edge is slower than the collapse of the 

population in the range core (Zhu et al. 2012). The abundance of species near the 

boundary of the range is important in determining the success of migration, which places 

rare species at a disadvantage (Iverson et al. 2004b). Within landscapes, tree species may 

shift to different topographic positions to track suitable microclimate conditions 

(Crimmins et al. 2011; Hannah et al. 2014; Keppel et al. 2012). It was predicted that plant 

species would move uphill to track the changes in optimal thermal conditions in the 

context of climate change (Chen et al. 2011; Gottfried et al. 2012). In locations where 

water availability increases and exceeds the evaporative demand rate, species could be 

expected to shift their distributions downhill (Crimmins et al. 2011). Observed shifts 

within the landscape in the Crimmins et al. study (2011) were a result of trees following 

water availability downslope, rather than solely tracking changes in temperature. 

Additionally, several studies in California have recorded the density of younger trees at 

lower elevations increasing in the last century (Crimmins et al. 2011; Eckert and Eckert 

2007; Millar et al. 2004). Changes in climate and the subsequent effects on plants 

requires an investigation of what factors drive species distributions (Lenoir and Svenning 

2015).  

Gradient Analysis and Tree Species Distribution  

 Interpreting and predicting current and future species distributions in complex 

landscapes can be difficult. General plant community patterns have been recognized 

within regions or landscapes (Braun 1942; Whittaker 1956), however, the compound 

influences of terrain and microclimate on species distributions are not as easily parsed. 

Mountainous landscapes experience changes in gradients over small areas because of 
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high relief topography. North and south-facing slopes may have similar elevation, 

latitude, and macroclimate conditions, but the effects of topography on solar radiation, 

soil moisture, soil properties, and temperature can result in different plant communities 

on each slope (Bailey 2009). For example, in the Appalachian region, Oak-Hickory 

communities can be found on south-facing, drier slopes, and Beech-Maple communities 

on north-facing, mesic slopes (Hutchins et al. 1976).  

Many studies have highlighted the importance of soil nutrients and topographic 

variables in influencing vegetation distributions (Franklin et al. 1993; Whittaker 1967). In 

western Kentucky and Tennessee, key environmental variables explaining tree species 

distributions along a forest continuum model include available water capacity, slope 

position, soil pH, elevation, and percent rock (Fralish et al. 1993; Franklin et al. 2002). 

Soil pH increases from xeric to mesic sites and nutrient availability is often greater on 

mesic sites compared to xeric sites (Muller and McComb 1986). Higher nutrient 

availability on mesic sites is attributed to higher rates of litter turnover compared to that 

of xeric species like Quercus spp. (Muller and McComb 1986; Peterson and Rolfe 1982).  

In order to better understand the effects of changing climate on these ecosystems, 

environmental gradients that capture the dynamic conditions of changing climate and the 

intricate terrain of mountainous areas are needed. Gradient analysis has been a long-

standing approach to understanding the ecology of a place. The distribution of resources 

throughout space influences the distribution of organisms, populations, communities, and 

ecosystems (Whittaker 1967). The role of topography in controlling species distribution, 

microclimates, and plant resources has been a focus of ecology since early gradient 

analysis. Vegetation surveys along transects can reveal how major plant communities 
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change with gradients such as elevation, slope, aspect, and topographic position 

(Whittaker 1967). Elevation and aspect, two commonly used and easily derived gradients, 

have been used to study vegetation distribution, however, the disadvantage of these 

variables is that they are not directly associated with the physiological responses or needs 

of plants. Under projected climate changes, these variables would not change. 

Physiologically pertinent variables, such as solar radiation, water availability, and 

temperature, covary with topographic gradients like aspect and elevation, but could be 

better suited when studying species distributions under changing climate (Lookingbill 

and Urban 2004; Stephenson 1990).  

Climate Water Balance Concept  

 The concept of plant relevant gradients has been incorporated into spatially 

explicit metrics, using Geographic Information Systems (GIS), to capture ecologically 

pertinent patterns such as moisture distribution and drainage in landscapes. Two of the 

common GIS-derived moisture metrics are the topographic wetness index (TWI) (Beven 

and Kirkby 1979) and integrated moisture index (IMI) (Iverson et al. 1997). TWI is a 

relative moisture gradient that is calculated using the upslope contributing area and slope 

steepness of the site. IMI uses solar radiation potential, flow accumulation of water 

downslope, the curvature of the landscape, and the soil’s total available water capacity. 

Though patterns of soil moisture have been shown to correlate with TWI (Beven and 

Kirkby 1979) and IMI (Iverson et al. 2004a), they do not physically quantify moisture 

amount (Dyer 2009). Additionally, TWI and IMI could not be used as a comparative 

metric for sites in different landscapes and remain static variables across time. These 

metrics have been helpful in capturing the pattern of water movement and moisture 
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gradients throughout a landscape, but the use of temporally dynamic variables is needed 

to fully capture the water availability at a site.  

 To address the need for plant relevant and temporally dynamic variables, many 

ecologists used climate metrics such as annual energy supply and annual water supply or 

the ratio of the two (Budyko et al. 1974; Holdridge 1967; Lieth 1975; Mather and 

Yoshioka 1968; Stephenson 1990; Whittaker and Likens 1975). These annual metrics are 

not as informative as the simultaneous availability of energy and water in a given time of 

the year. Additionally, locations can have similar annual energy and water supply, but 

different timing of these resources. As Stephenson (1990) noted, without energy the 

available water is not utilized; likewise, without water energy cannot be used for growth.  

 The climate water balance (CWB) concept accounts for the simultaneous 

availability of energy and water to plants (Stephenson 1990). Available water is water 

that the plants can utilize, which incorporates the water holding capacity of the soil. Not 

all water that enters the system through precipitation is held, as the ability of different soil 

types to hold water varies. Potential evapotranspiration (PET) is the rate at which 

evapotranspiration would occur when water is not a limiting factor. Many calculations of 

evapotranspiration use a standard crop to calculate this rate, though this rate is not static 

across plant types (Monteith 1965; Stephenson 1990; Thom 1975). PET is influenced by 

the amount of energy available and is quantified by using temperature, solar radiation, 

humidity, and wind speed data (Jensen and Allen 2016). Considering the available water 

and the amount of energy informs actual evapotranspiration (AET). When the water 

available to the plant does not meet the evaporative demand, AET is less than PET, there 

is a climate water deficit. Conversely, when the available water is more than what is 
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needed to fulfill the evaporative demand of PET, there is a water surplus (Stephenson 

1990).  

 CWB metrics have been shown to represent several ecological patterns. AET is 

correlated with tree species richness (Currie 1991; Currie and Paquin 1987), net primary 

production (Lieth 1975; Rosenzweig 1968), and litter decomposition rates (Berg et al. 

1993; Dyer et al. 1990; Meentemeyer 1978). Vegetation biomes can be differentiated by 

mean AET and mean deficit at the global scale (Frank and Inouye 1994) and in North 

America (Stephenson 1990). Likewise, AET in conjunction with deficit differs between 

tree species (Lutz et al. 2010). 

GIS Climate Water Balance 

 With technological advances, CWB metrics can be calculated for large areas with 

fine spatial resolution. Extensive climate, soil, and terrain data have become pervasive 

and open to the public, creating opportunities to use technology and readily available data 

to calculate these topographic and climate properties that scientists in the 20th century 

were unable to use with such ease. Light Detection and Ranging (LiDAR)-derived digital 

elevation models (DEMs) with fine resolution allows scientists to access detailed spatial 

information for large spatial scales. Many terrain indices can be derived from a DEM 

using GIS software such as ArcGIS and SAGA GIS including moisture indices 

(topographic wetness index, climate water balance, relative slope position, topographic 

position index), solar radiation indices (aspect, solar radiation, southwestness), and 

terrain (slope curvature, slope steepness). 

 Dyer (2009) developed an ArcGIS toolset that implements the CWB concept with 

the ability to consider a given area’s topography. This GIS toolset allows for the 
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calculation of the CWB from input data including a DEM of the study area, soil available 

water capacity (AWC), monthly temperature, monthly precipitation, and solar radiation 

(Dyer 2009). The toolset allows for data inputs to be user-provided or downloaded 

through agencies such as the National Resources Conservation Service (NRCS 2019) and 

PRISM Climate data (PRISM Climate Group 2019). This toolset uses the Thornthwaite 

approach (Mather 1978) for calculating components of the hydrologic cycle. For 

calculation of PET, this toolset uses the Turc equation (Turc 1961) which considers air 

temperature and solar radiation. A radiation-based method was chosen as this toolset 

aimed to investigate how topography influences moisture demand (Dyer 2019). 

 The CWB toolset produces many rasters including monthly and annual PET, 

AET, storage, deficit, and surplus. These rasters highlight how slope and aspect influence 

spatial patterns of solar radiation and PET. In validating the application of this CWB 

toolset for tree species distribution, Dyer (2019) found deficit values higher on ridges and 

side slopes in central Indiana, while mesic aspects had smaller deficits. In the ≥ 30 cm 

size class of trees, Quercus alba, Quercus montana, Quercus velutina, and Carya glabra 

occurred on sites with higher deficit values, while Acer rubrum, Acer saccharum, Fagus 

grandifolia, Liriodendron tulipifera, Nyssa sylvatica, and Quercus rubra were found on 

sites with lower deficits (Dyer 2019).  

 The current GIS CWB toolset does not, however, consider the influences of 

topographic position on water movement and drainage when calculating water available 

to the site. The effects of topography on drainage were thought to be minimal during the 

growing season (Dyer 2009, 2019). In highly dissected landscapes the dismissal of 

drainage effects on available water may influence how CWB is estimated. Mountainous 
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and variable landscapes experience movement of water and development of soil 

properties that may influence the water available to a site. A thorough examination of the 

current CWB toolset’s ability to explain tree species distributions within dissected, 

heterogeneous landscapes is lacking. Therefore, the overarching objective was to assess 

the current GIS CWB model’s ability to explain tree species distributions in a 

heterogeneous landscape of central Appalachia. In order to address this objective, there 

are three specific objectives: 1. to assess and compare the explanatory power of 

commonly used terrain and CWB variables derived using GIS in modeling tree species 

distributions, 2. to evaluate the modeling performance of the models using GIS terrain 

variables alone, GIS CWB metrics alone, and the combination of terrain and CWB 

variables in predicting species presence, and 3. to compare the spatial patterns of species 

predicted by each of the models.  
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METHODS 

Study Area  

 A forested watershed, Little Millseat, located in the Cumberland Plateau and the 

Appalachian Coalfields of southeastern Kentucky, USA is a dissected landscape 

conducive to studying the high variability of environmental gradients and the subsequent 

tree species distributions (Kalisz 1986). Little Millseat watershed is a subwatershed of 

Clemons Fork watershed found in the University of Kentucky’s Robinson Forest, a 

deciduous broadleaf forest spanning 6,000 hectares. Prior to the procurement of the land 

by the University of Kentucky, extensive cutting of the forest occurred between 1908 and 

1923 (Overstreet 1984). Additionally, some slopes were cleared of trees and used for 

agriculture in the 1800s, a practice that influenced the soils and subsequent tree species 

after these “old fields” succeeded back to forest (Kalisz 1986). Little Millseat watershed 

does not appear to have evidence of any old fields.  

 The landscape is characterized by steep slopes and soils developed through 

residuum or colluvium (Hutchins et al. 1976; Williamson et al. 2015). The underlying 

parent material is from the Breathitt Formation of Pennsylvanian age and consists of 

sandstone, shale, and siltstone (Hutchins et al. 1976; Hinrichs 1978; McDowell 1985). 

The 0 to 45-degrees slopes of Little Millseat watershed are predominantly northeast and 

southwest-facing aspects. The complex interaction between climate and topography 

impacts on microclimates, soil properties, and vegetation is evident in this study area 

(Abnee et al. 2004; Cremeans 1992; Hutchins et al. 1976; Kalisz 1986). 
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Experiment Design 

 Plot locations were determined using a three-way factorial design, with factors 

including aspect, topographic position, and slope curvature (Figure 3.1). Two aspects 

(northeast and southwest), five topographic positions (ridge, upper slope, middle slope, 

lower slope, and valley), and two slope curvatures (convex and concave) were 

considered. These strata were chosen due to their role in influencing soil moisture and 

soil attributes. With this sampling design, there are 20 unique combinations, which were 

replicated five times, resulting in 100 study plots.  

 ESRI ArcGIS for Desktop 10.6 (ESRI 2011) was used to derive the locations of 

the plots before going into the field. The middle section of Little Millseat watershed has 

predominantly northeast and southwest-facing slopes. Slope curvature was determined by 

viewing Topographic Wetness Index and hillshade maps which were derived from a 1.5-

meter LiDAR-derived DEM. The topographic position classes were determined using the 

Topography Toolbox for ArcGIS (Dilts 2015). A circular neighborhood with a 100-cell 

search radius was used in this tool for computing the TPI. The TPI raster was then used to 

create five topographic positions (ridge, upper slope, middle slope, lower slope, and 

valley). The 100-cell radius search radius was selected after other search radii of equal or 

less value produced less spatially contiguous class distinctions. 

 Transects were created in ArcMap along the concave and convex features, with 

five convex/ five concave transects on the northeast-facing slope and five convex/five 

concave transects on the southwest-facing slope. The TPI output was then imported into 

ArcMap with the overlaid transects. Five plots were then placed along each transect, one 

per topographic position. For the ridge class, plots were placed at the uppermost part of 

the ridge, while the remaining classes were placed systematically in the center of the TPI 
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range for that class. Plots were moved in ArcMap if they were within 11 meters of any 

forest access road, to avoid the effects the roads may have on hydrology or disturbance 

history. Plots that were moved were done so in ArcGIS to retain a buffer greater than 11 

meters from the road. Coordinates derived from these maps were then exported to 

Avenza Maps and used to navigate during fieldwork (Avenza Systems, Inc. Toronto, ON, 

Canada). 

 The plots were established in early May 2019, the plot centers were marked using 

fiberglass stakes, flagging, and metal numbered tags. For plots on ridge top positions, 

disturbance effects from mining or forestry operations in the adjacent watersheds 

(increased stem density and invasive species) prompted the relocation of some plots 

approximately nine meters downslope (while remaining in the ridge TPI class). The 

coordinates of the established plot centers were recorded using a SXBlue II GNSS GPS 

receiver (Geneq, Inc., Montreal, QC, Canada). XY accuracy for 99% of the plots was 

under two meters, one plot had a three-meter accuracy. The coordinates were imported 

into ArcGIS in the WGS 1984 (G1150) coordinate system and projected to NAD 1983 

StatePlane Kentucky FIPS 1600 Feet.  

Vegetation Sampling 

 A fixed area plot design was used with 1/50-hectare area, an approximate radius 

of 8 meters, though a Nikon Forestry Pro rangefinder was used for slope correction. Trees 

within the 100 plots with diameters at breast height (DBH) at or greater than 12.7 

centimeters were identified to species and their DBH and canopy class determined. 
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Predictor Variables  

 Two GIS software programs, ArcGIS for Desktop 10.6 (ESRI 2011) and SAGA 

GIS (Conrad et al. 2015), were used to calculate the predictor variable rasters, all of 

which were derived from a 1.5-meter LiDAR-derived DEM. Slope steepness and solar 

radiation were calculated with ArcGIS for Desktop, topographic wetness index (TWI), 

relative slope position (RSP), aspect (used to calculate southwestness), and plan 

curvature were calculated with SAGA GIS. CWB metrics were calculated using the 

Water Balance Toolset version 3.0.2 (Dyer 2009) in ArcGIS for Desktop 10.6. Focal 

means were calculated for each of the rasters, using a 9 by 9 cell focal mean, as the radius 

of the plot was approximately 8 meters and the rasters’ cell dimensions are 1.5 x 1.5 

meters. The boundary of Little Millseat was delineated in ArcGIS and used in clipping 

the study area rasters. A buffer was created around the watershed’s boundary to 

accommodate the focal mean area of ridge positions and to make the ridge positions more 

evident, as shown in the predictor variable rasters in Figure 3.2 and Figure 3.3.  

 Planform curvature (PC) describes the curvature perpendicular to the slope. In this 

study area, the plan curvature values range from -.08 to .06 radians, where negative 

values are concave and positive values are convex. The RSP values for this study area 

range from 0 to 1, with 0 indicating the lowest slope position and 1 indicating a ridge 

slope position. Slope steepness in this study area ranged from 0 to 45-degree slopes. Solar 

radiation in this study represents solar radiation from day 91 to 305 in the Julian calendar, 

which is April 1 to November 1, where greater values indicate more solar radiation. 

Southwestness (SW), which was used in place of aspect, calculated by cosine ((aspect – 

225)/180 * pi), where aspect is in degrees. Southwestness values for this study area range 

from -1 to 1. A SW value of 1 indicates that the site is southwest-facing, while a value of 
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-1 indicates that the site is northeast-facing. TWI was calculated using the d-infinity 

algorithm (Tarboton 1997). For this study area, the TWI values range from 1 to 21, where 

1 indicates the driest site and 21 would indicate a site with the most moisture.  

 For calculating CWB metrics, the only user input provided in this study was a 1.5-

meter LiDAR-derived DEM. Other data used in the model were from online sources or 

calculated by the model. Soil water-holding capacity was procured from the Natural 

Resource Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO) 

(NRCS 2019). These soil properties are average estimates of the top 100 cm of soil, with 

a resolution of 1:12,000 to 1:63,360. The monthly precipitation and temperature rasters, 

which have 4-kilometer resolution, were downloaded from PRISM Climate Group 

(2019). Monthly solar radiation was calculated using the input DEM and the Solar 

Radiation toolset from ArcGIS which approximates the solar load based on terrain, 

latitude, and time of the year. 

 To evaluate the ability of CWB metrics to explain tree species distribution, 

cumulative CWB values from the growing season were used in the modeling framework. 

For trees in the Eastern United States, the summer months are the most critical for tree 

growth and, dually, water availability. Summer drought has been linked to patterns of 

mortality in certain species and recruitment (Berdanier and Clark 2016; Jackson et al. 

2009). Additionally, summer drought is the climate variable most correlated with tree 

growth (Maxwell et al. 2015). Dyer (2019) used the cumulative deficit from June, July, 

and August from 2012 to investigate the relationship between tree species and summer 

deficit. CWB metrics were calculated for the study area from the past two decades (2000-

2019) and determined 2007 had the largest summer season deficit (183 mm) for this 
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landscape. Then the Raster Calculator in ArcGIS to calculate cumulative summer CWB 

metrics for this year.  

Statistical Analysis  

 Generalized linear modeling using logistic regression was used to assess the 

ability CWB metrics to explain the presence of tree species. The glm function in the stats 

R package was used to create the models (R Core Team 2018). The fitted parameter for 

each corresponding CWB metric and overall modeling performance in explaining species 

distribution were compared to commonly used GIS terrain variables. In the analysis 

framework, there are three model categories: terrain, CWB, and a combination of all the 

variables from the terrain and CWB categories. The GIS terrain model category includes 

RSP, SW, solar radiation, slope steepness, TWI, and PC (Figure 3.2). The GIS CWB 

model category includes PET, AET, deficit, storage, and surplus (Figure 3.3). The third 

model category is a combination of the variables used in the previous two categories 

(terrain and CWB). All statistical analyses were done in R version 3.5.1 (R Core Team 

2018). 

 To identify the importance of each variable within each of the three model 

categories, a model averaging approach was implemented. The dredge function in the 

MuMIn R package (Barton 2019) was used to identify the ranking of variables based on 

the sum of weights for each species (in all three model categories). The sum of weights 

for each variable was calculated considering the subset of models with delta AICc < 4.  

 In addition to the model averaging approach, stepwise AIC was used to identify 

the top model within each model category for each species. The stepAIC function in the 

MASS R package (Venables and Ripley 2002) was used, with forward and backward 
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selection, to identify a top model within each of the categories mentioned above (terrain, 

CWB, and combination) for each of the species. Fit statistics for these top models were 

calculated, including pseudo R² (McFadden value) and area under the receiver operating 

characteristic curve (AUC). The pseudo R² values were calculated using the nagelkerke 

function in the rcompanion R package (Mangiafico 2020). The AUC values were 

calculated using the rocplot function in the Deducer R package (Fellows 2012). The 

vuongtest function in the nonnest2 R package (Merkle and You 2018) was used to 

formally compare each species’ top models selected using StepAIC (from each category: 

terrain, CWB, and combination) to one another using a non-nested likelihood ratio test. 

The vuongtest function tests the distinguishability of the two models and if one of the two 

models fit significantly better than the other. 

 The spatial patterns of predicted distribution maps for each species were created 

using predictive mapping derived from the three top models (selected from stepwise 

AIC). A grid of points was created at an interval of 1.5 meters, which was used to extract 

values from the previously mentioned rasters (with a 9 x 9 cell focal mean). The predict 

function in the stats R package (R Core Team 2018) was used to calculate prediction 

values for each species using the equations of the top models selected (terrain, CWB, and 

combination).  
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RESULTS 

 Acer rubrum, Quercus alba, Liriodendron tulipifera, Quercus montana, Fagus 

grandifolia, and Quercus velutina were the most prevalent species in the 12.5 cm and 

above DBH size class. Therefore, these six species were used in the modeling framework. 

For the model averaging approach, the ranking of variables by sum of weights from each 

model category can be found in Table 3.1. In the terrain model for all six species, RSP 

appears as the top first or second variable. Solar radiation (either solar or SW) is ranked 

as the first or second variable for four species in the terrain model. The ranking of 

variables in the CWB model varies among all species. For the combination model, RSP 

appears as the first or second variable for all species except for Quercus velutina. Storage 

appears as the first or second variable in the combination model in four species. 

 Each of the six species studied has different combinations of variables in the top 

model selected by stepwise AIC. The top models for each species, selected by stepwise 

AIC, and their corresponding AUC and pseudo R2 can be found in Table 3.2. All six 

species have RSP in their top terrain model (Table 3.2). Deficit and PET are the top CWB 

model using stepwise AIC for Fagus grandifolia and Quercus montana, while Acer 

rubrum has PET and AET. Liriodendron tulipifera’s top CWB model consists of deficit, 

PET, and storage. Quercus alba has PET as its top CWB model, while Quercus velutina 

has storage.  

 The direction of the relationship between the variables and species is also 

indicated in Table 3.2. Acer rubrum, Quercus montana, and Quercus velutina have a 

positive relationship with RSP values. These larger values of RSP indicate that they are 

found on ridge positions that are generally exposed to xeric conditions with higher solar 

energy indicated by a positive relationship with SW, solar, PET and lower water 
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availability shown by the negative relationship with storage (Quercus montana and 

Quercus velutina) and the positive relationship with deficit (Quercus montana). The more 

mesic species, including Fagus grandifolia, Liriodendron tulipifera, and Quercus alba, 

had a negative relationship with RSP, indicating that they are found at lower topographic 

positions.  

 The AUC and pseudo R2 for each species’ top terrain model is higher than that of 

the corresponding CWB model (Table 3.2). The AUC values for each terrain model range 

from .75 to .95, while the CWB models have AUC values ranging from .65 to .86. The 

top stepwise combination model for each species has AUC and pseudo R2 values greater 

than or equal to the corresponding terrain model and greater than the corresponding CWB 

model. The AUC scores for the combination model range from .79 to .95.  

 The non-nested likelihood ratio test formally compares the model performance of 

the top models for each species (Table 3.3). For Acer rubrum, there are no significant 

differences in fit among the three models. Fagus grandifolia has significant results (p < 

0.05) for each comparison, with the terrain model fitting better than the CWB model and 

the combination model fitting better than both the terrain and CWB models. Liriodendron 

tulipifera has significant results (p < 0.01) for the combination model fitting better than 

the CWB model, though the terrain model and the combination model were not 

significantly different. For Quercus alba, the terrain model and combination model fit 

better than the CWB model (p < 0.05), however, there is not a significant difference 

between the terrain model and the combination model. The top terrain and combination 

models for Quercus montana fit better than the CWB model (p < 0.01), but there are no 
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significant differences in fit between the terrain and combination model. Quercus 

velutina does not have significant differences in fit between any of the models.  

  Prediction maps (Figures 3.2 through 3.7) for the top models of each species’ 

three models (Table 3.2) reveal differences in spatial patterns between the terrain and 

CWB models. The prediction values indicate the presence probability of the species 

within a 1/50th hectare area. Although there are similarities between the three maps for 

each species, the terrain and combination maps are more similar for most species, 

particularly Fagus grandifolia, Quercus alba, and Quercus montana. The CWB models 

have distinct patterns of aspect differences, while the patterns produced by the terrain 

models produced more nuanced effects such as differences between topographic positions 

or combined effects of aspect and topographic position. In general, the prediction values 

of the terrain and combination maps have higher maximum values, compared to the CWB 

maps. 
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DISCUSSION  

 The results suggest that models with CWB variables alone have weaker fitting 

power than models with terrain variables in half of the species studied, however, the 

differences are not substantial. Including CWB variables with terrain variables in the 

model can improve model performance for some species, but this improvement was 

significant in only one species studied. In most cases, the terrain variables alone were 

comparable to the combination model. When using CWB variables, the use of more than 

one variable is preferred for most species. Additionally, among the terrain variables, RSP 

is a top-performing variable. Although the model performance between the terrain and 

CWB variables is not substantial, the spatial prediction patterns produced by the terrain 

and CWB models differ considerably. 

Modeling Tree Species in Dissected Landscapes  

 Previous studies in similar dissected landscapes have shown the importance of 

slope aspect in differentiating species distributions and community compositions 

(Fekedulegn et al. 2003; Hutchins et al. 1976). The results of this study indicate 

differences in solar radiation, as modified by slope aspect, do differentiate and control 

species distributions. Variables representing slope aspect or solar radiation were in the 

top models for most species, however, topographic position seems to have higher 

importance. Among the GIS terrain variables, RSP ranked as the first or second variable 

in the model averaging framework for all species and was also included in the top 

stepwise model of all species. When considering all variables, RSP ranked as the first or 

second variable for all species except for Quercus velutina. 
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 The results suggest that RSP is representing patterns of tree species distribution in 

this forested watershed. The relationship between topographic position and patterns of 

microclimate and soil properties may explain why species distributions are partially 

represented by RSP. Some of these patterns include lower slopes being characterized by 

cooler temperatures (Franzmeier et al. 1969) and less evaporative demand (Aandahl 

1949; Bates 1923), as well as increased soil nutrients and soil moisture, higher pH 

(Giesler et al. 1998; Kalisz 1986), thicker soil horizons (Cooper 1960), and more organic 

matter (Aandahl 1949) when compared to higher slope positions.  

 Although the influences of topographic position on many factors of a landscape’s 

ecology are acknowledged, the way that topographic position is represented in the 

modeling framework should be considered. Previous studies in the Appalachian region 

have noted the importance of elevation in capturing species distributions (Day and Monk 

1974; Muller 1982; Whittaker 1967). Additionally, Muller (1982) cited the strong 

relationship between elevation and soil fertility and moisture. How slope position is 

represented in gradient analysis studies may influence the results, as variables such as 

elevation or the Topographic Position Index are not comparable across landscapes or in 

landscapes with variable slope lengths. In these cases, a relativized topographic index 

could be more appropriate, such as Relative Slope Position used in this study.  

 With respect to the trends in CWB variables, the top model from the CWB 

category for most species included two or three CWB variables. Using a single CWB 

metrics, such as deficit, alone does not appear to explain the most amount of species 

distribution. Other studies have shown similar approaches, often reporting pairs of CWB 

metrics, such as AET and deficit, to be useful in differentiating between biomes 
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(Stephenson 1990) and species (Lutz et al. 2010). The combination of CWB metrics that 

best describes species distributions will vary among species and locations (Stephenson 

1998). Additionally, the distribution of the six species studied in this analysis follows 

similar patterns of distribution with respect to summer deficit as Dyer (2019) found.  

Spatial Patterns of Species Prediction 

 While the model performance of terrain and CWB variables were not 

substantially different for all species, the spatial patterns produced by the top model 

(identified using stepwise AIC) for each model and each species reveal varied prediction 

patterns (Figures 3.4 through 3.9). The terrain and combination maps (terrain + CWB) 

generally have higher maximum prediction values for all species, compared to the CWB 

variables alone. For Fagus grandifolia, Quercus alba, and Quercus montana the 

combination and terrain models fit significantly better than the CWB model (as reported 

by the non-nested likelihood ratio test), which is reflected in the spatial patterns of 

prediction values. The patterns of prediction for the terrain and combination maps are 

more nuanced when compared to CWB. Many of maps, especially those produced by the 

terrain and combination models, reflect patterns of species distribution described by other 

studies in this region (Braun 1942; Fralish et al. 1993; Muller 1982).  

The six tree species included in the analysis represent varied distributions within 

this watershed, as well as varied specificities for site type, as reflected by the prediction 

maps. Acer rubrum (Figure 3.4) has high prediction values for much of the study area, 

especially on ridges and the southwest-facing aspect. Other studies found similar patterns 

of distribution, noting that Acer rubrum, which is present in the most plots for the size 
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class studied, can thrive on a wider range of soil textures, pH, moisture, and elevation 

compared to other tree species (Iverson et al. 1997).  

Fagus grandifolia (Figure 3.5) has the highest prediction values in valley slope 

positions, northeast-facing aspect, and sheltered locations, which is a similar distribution 

pattern of that described by Fralish et al. (1993) and Muller (1982). The terrain and 

combination maps reflect these distributions, but the CWB prediction map does not show 

these nuanced patterns, rather it reflects lower to moderate prediction values on the 

northeast-facing slope (Figure 3.5). Liriodendron tulipifera (Figure 3.6) has higher 

prediction values across mesic sites, like Fagus grandifolia, but with a wider topographic 

position range. The patterns created by the terrain and combination models show more 

nuanced patterns, especially favoring the northeast-facing slope and cove positions. 

Though the CWB map illustrates similar patterns, the prediction power is lower than that 

of the other two maps. 

The prediction patterns of Quercus alba (Figure 3.7) show a preference for 

middle to lower slope positions on most aspects except for the northeast/north-facing 

aspects. Fralish et al. (1993) found Quercus alba to be on west, southwest, and southeast 

slopes, primarily at middle slope elevations, which is illustrated in the prediction maps. 

Although the slope differences are reflected by all three model categories, the prediction 

differences between slope positions are more evident in the terrain and combination 

maps. Quercus montana (Figure 3.8) has high prediction values for ridge slope positions 

in all three maps, reflecting the patterns of RSP and TWI which were selected in the top 

model, with higher prediction values in the terrain and combination models. Day and 

Monk (1974) noted the only species positively correlated with elevation was Quercus 



 

73 

 

montana (= Quercus prinus), which found at the extremes of the elevation gradient. 

Quercus velutina (Figure 3.9) has generally lower prediction values overall, with higher 

prediction values on ridges as well.   

Topography modifies the distribution of plant relevant resources and influences 

tree species distribution which is evident in the model selection process and, 

subsequently, reflected by the pattern of species distribution in our study and previous 

studies (Braun 1950; Day and Monk 1974; Fralish et al. 1993; Hutchins et al. 1976; 

Whittaker 1956). The prediction maps produced by the CWB models reflect the dominant 

influence of solar radiation and aspect, however, the influences of topographic position 

on water availability patterns are less evident. CWB variables, especially storage and 

other variables that implement available water capacity data from the NRCS database, 

show strong patterns of the northeast and southwest-facing aspects, and the ridge 

topographic position. The coarseness of the NRCS SSURGO data results in a spatial 

pattern of CWB variables, such as storage, that can be categorical in. Using soil data that 

is fine-scale and more representative of the study area would likely result in different 

spatial patterns, however, if ease of use is of interest for the user of this CWB toolset, 

relying on user-supplied fine-scale soil data may not be the best solution. Moore et al. 

(1993) noted that the resolution of soil maps is often too coarse for the use in detailed 

environmental modeling, but the integration of terrain variables with this soil data may 

mitigate this issue. In comparison to the spatial patterns produced by the CWB models, 

patterns of topographic position are evident in most of the terrain and combination 

(terrain + CWB) maps.  
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Limitations and Future Work 

The GIS-derived terrain variables used in this study were highly effective at 

explaining the distribution of species in this watershed. These terrain variables are, 

however, static variables that will not reflect climate changes throughout time. Therefore, 

when studying climate change and how species, populations, and even communities will 

shift under evolving conditions, the use of temporally dynamic climate variables that 

reflect these changes is important. The integration of more terrain variables, such as RSP 

and slope steepness, into how available water is calculated in the GIS CWB toolset can 

potentially increase its applicability in dissected landscapes.    

In this study cumulative 2007 summer season values from the CWB toolset output 

were used to investigate the toolset’s explanatory and predictive power. The trees used as 

response variables in this study were greater than or equal to 12.5 cm in DBH, meaning 

that many trees were established prior to the timeframe investigated. Though they were 

established under different conditions from the dry season of 2007, the CWB toolset 

likely produces similar spatial patterns of deficit/PET/storage despite the exact climatic 

conditions. Different CWB metrics, either monthly or cumulative, could be investigated 

to see if the same trends are detected. The vegetation data used is another factor that can 

be changed, such as different size classes of trees and herbaceous plants, which are 

representative of more recent climate conditions. 

Future studies can investigate the landscape scale spatial distribution patterns of 

predicted CWB metrics and the associated tree species distributions in other dissected 

landscapes. Different ecology, land-use history, terrain, and influential factors will 

control species distribution, and the results from this watershed may not apply to other 

locations. Future work that compares CWB prediction power in different landscape 
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settings is warranted to enhance our understanding of the strengths and weaknesses of 

this approach in different areas.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

76 

 

CONCLUSION 

 The results suggest that the model performance of terrain and CWB variables in 

predicting tree species distribution in this central Appalachian watershed are significantly 

different for some species. Conversely, including CWB variables in models with terrain 

variables can be advantageous. In respect to CWB variable performance, the distribution 

of species in our study area is best explained by at least two CWB variables, rather than 

solely deficit. Aspect and topographic position, which are widely recognized as two 

factors controlling species distribution, were well represented by the variables included in 

this analysis. RSP, representing the topographic position, performed well across most 

species, while the variables best representing aspect/solar radiation varied.  

 CWB addresses the need to move toward dynamic plant relevant variables in the 

future as climate change progresses and plant distributions change. The current GIS 

iteration of the CWB does not, however, perform better than GIS-derived terrain 

variables in predicting tree species presence. When using CWB variables to study tree 

species distributions, the inclusion of terrain variables such as topographic position may 

increase the explanation power of the model as the effects of topographic position are not 

currently included in the CWB toolset.   
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Table 3.1 Ranking of predictor variables by sum of weights for each species within terrain, Climate Water Balance (CWB), and 

Combination (Terrain and CWB) variable categories. 

Species Model  Ranking* Sum of Weights 
 

Acer rubrum Terrain RSP   SW   Solar   TWI   PC   Slope  1.00   0.76   0.38   0.29   0.27   0.19    

  CWB Storage   Deficit   PET   AET 0.55   0.47   0.43   0.43  

  Combination RSP   SW   Solar   PC   TWI   Deficit    1.00   0.58   0.23   0.23   0.21   0.20     

        

Fagus grandifolia Terrain RSP   Solar   SW   PC   Slope   TWI 1.00   0.62   0.49   0.34   0.24   0.20  

  CWB AET   PET   Deficit   Storage 0.72   0.62   0.62   0.32     

  Combination RSP   Storage   AET   Deficit   PET   SW    1.00   1.00   0.66   0.65   0.60   0.33     

         

Liriodendron tulipifera Terrain  Slope   RSP   SW   TWI   Solar   PC 1.00   0.78   0.67   0.54   0.41   0.22    

  CWB Deficit   PET   AET   Storage   0.71   0.63   0.60   0.52   

  Combination Storage   RSP   Slope   Solar   PET   Deficit    0.89   0.85   0.79   0.62   0.50   0.49     

         

Quercus alba Terrain Solar   RSP   TWI   SW   Slope   PC 0.96   0.70   0.69   0.31   0.25   0.22   

  CWB PET   Deficit   AET   Storage 0.57   0.49   0.48   0.38  

  Combination RSP   Storage   TWI   Deficit   PET   Solar    0.97   0.62   0.42   0.31   0.19   0.17                

         

Quercus montana Terrain RSP   TWI   SW   PC   Solar   Slope 1.00   0.75   0.54   0.46   0.33   0.21   

  CWB AET   PET   Deficit   Storage 0.76   0.53   0.53   0.48  

  Combination RSP   TWI   SW   PC   AET   Storage    1.00   0.79   0.45   0.42   0.34   0.31                

         

Quercus velutina  Terrain Solar   RSP   SW   PC   Slope   TWI 1.00   0.51   0.47   0.41   0.39   0.35  

  CWB Storage   Deficit   PET   AET  1.00   0.33   0.33   0.32    

 Combination Storage   Slope   SW   Solar   Deficit   PC    0.84   0.54   0.45   0.35   0.34   0.28     
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Table 3.1 (continued) 

* Abbreviated variable names are as follows: relative slope position (RSP), southwestness (SW), plan curvature (PC), slope steepness 

(Slope), solar radiation (Solar), topographic wetness index (TWI), CWB storage (Storage), potential evapotranspiration (PET), actual 

evapotranspiration (AET), CWB deficit (Deficit). Only the top six variables are shown in the Combination category. 
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Table 3.2 Terrain, Climate Water Balance (CWB), and Combination (Terrain and CWB variables) models selected using stepwise 

AIC for each tree species. 

Species  Model  Top Stepwise Model*  AUC Pseudo R² 

Acer rubrum Terrain  RSP + SW 0.78 0.17 

  CWB PET + AET  0.74 0.12 

  Combination RSP + SW + PC + Deficit + PET + AET + TWI  0.79 0.21 

      
  

Fagus grandifolia Terrain RSP + SW 0.85 0.34 

  CWB Deficit + PET  0.70 0.24 

  Combination RSP + PET + AET + Storage  0.90 0.43 

      
  

Liriodendron tulipifera Terrain Slope + RSP + SW 0.82 0.26 

  CWB PET + AET + Storage  0.76 0.19 

  Combination Slope + Solar + Storage + RSP + AET  0.85 0.32 

      
  

Quercus alba Terrain Solar + TWI + RSP 0.75 0.15 

  CWB PET  0.65 0.06 

  Combination PET + RSP + TWI 0.75 0.15 

      
  

Quercus montana Terrain RSP + TWI + SW 0.95 0.58 

  CWB Deficit + PET  0.86 0.32 

  Combination RSP + TWI + Storage  0.95 0.58 

      
  

Quercus velutina  Terrain Solar + RSP + Slope + SW 0.81 0.22 

  CWB Storage  0.78 0.20 

  Combination Storage + Slope + PC 0.82 0.23 
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Table 3.2 (continued) 

* Abbreviated variable names are as follows: relative slope position (RSP), southwestness (SW), plan curvature (PC), slope steepness 

(Slope), solar radiation (Solar), topographic wetness index (TWI), CWB storage (Storage), potential evapotranspiration (PET), actual 

evapotranspiration (AET), CWB deficit (Deficit). Variables are listed in order of increasing p-values. Variables that are underlined 

have a negative relationship with the species’ presence. The pseudo R² values reported are the McFadden pseudo R² values
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Table 3.3 Non-nested likelihood ratio test results for top models selected by stepwise AIC 

in three GIS variable categories: Terrain, Climate Water Balance (CWB), and 

Combination. 

Species  Non-nested Likelihood Ratio Test   

Acer rubrum Terrain fits better than CWB p = 0.112 

  Combination fits better than CWB  p = 0.061 

  Combination fits better than Terrain p = 0.205 

     

Fagus grandifolia Terrain fits better than CWB p = 0.038 

  Combination fits better than CWB p < 0.001 

  Combination fits better than Terrain p = 0.030 

     

Liriodendron tulipifera Terrain fits better than CWB p = 0.101 

  Combination fits better than CWB p = 0.009 

  Combination fits better than Terrain p = 0.061 

     

Quercus alba Terrain fits better than CWB p = 0.036 

  Combination fits better than CWB p = 0.030 

  Combination fits better than Terrain p = 0.367 

     

Quercus montana Terrain fits better than CWB p = 0.002 

  Combination fits better than CWB p = 0.001 

  Terrain fits better than Combination p = 0.476 

     

Quercus velutina  Terrain fits better than CWB p = 0.285 

  Combination fits better than CWB p = 0.131 

 Combination fits better than Terrain p = 0.389 
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Figure 3.1 Plot locations in Little Millseat watershed located in Kentucky, USA 
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Figure 3.2 GIS terrain variables used in the terrain category, from left to right, top to 

bottom: Slope, Southwestness, Relative Slope Position, Plan Curvature, Solar, and 

Topographic Wetness Index (TWI). 
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Figure 3.3 GIS Climate Water Balance (CWB) variables used in the CWB category, from 

left to right, top to bottom: PET, Storage, AET, and Deficit. CWB variables reflect 

cumulative calculations for June, July, and August of 2007. 
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Figure 3.4 Acer rubrum prediction maps for each top model selected by stepwise AIC. 
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Figure 3.5 Fagus grandifolia prediction maps for each top model selected by stepwise 

AIC. 
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Figure 3.6 Liriodendron tulipifera prediction maps for each top model selected by 

stepwise AIC. 
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Figure 3.7 Quercus alba prediction maps for each top model selected by stepwise AIC. 

 



 

89 

 

 
Figure 3.8 Quercus montana prediction maps for each top model selected by stepwise 

AIC. 
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Figure 3.9 Quercus velutina prediction maps for each top model selected by stepwise 

AIC. 
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CHAPTER 4 CONCLUSION  

The results from this thesis suggest the current CWB toolset variables alone do 

not perform better than GIS-derived terrain variables in explaining soil moisture and tree 

species distribution in a dissected watershed in the Cumberland Plateau. However, the 

differences in model performance between the terrain and CWB models in explaining soil 

moisture and half of the tree species studied are not significant. The other species did 

show a significant difference between the performance of terrain and CWB models, with 

the terrain models better fitting the data. For both soil moisture and species distributions, 

the results suggest that the inclusion of terrain variables with CWB variables improves 

performance in comparison to CWB variables alone. Conversely, in most cases, the 

model performance of the terrain variables alone is comparable to that of the combined 

model. In assessing the spatial patterns produced by terrain and CWB models, the results 

suggest that the tree species prediction patterns produced by of terrain and CWB 

variables to differ substantially. 

 The long-understood concept that terrain, including slope aspect and topographic 

position, shapes the ecology of a landscape is supported by the results of this study. For 

soil moisture, CWB storage is the top CWB variable, while among the terrain variables, 

relative slope position (RSP), slope steepness, and a measure of solar radiation 

(southwestness (SW) or solar) are important variables. In explaining tree species 

distribution, the top CWB variables for each species varies, however, most of the species 

studied include two or three variables to describe the species’ distribution. As found with 

soil moisture, among the GIS-derived terrain variables, RSP is an important variable in 

explaining tree species distribution, along with measures of solar radiation (SW or solar).  
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As the effects of topographic position are not currently included in how the CWB 

toolset calculates water available to the site, the results indicate that RSP captures 

ecological processes not represented by the CWB toolset variables. In dissected 

landscapes, topographic position is associated with many ecological patterns including 

soil properties, drainage, site exposure to solar radiation, and vegetation distribution. The 

inclusion of topographic position into the CWB toolset, such as by using the terrain 

variable RSP, may capture the influences of topography on patterns of soil moisture and 

tree species distribution. The easily derived terrain variables used in this study capture 

fine-scale terrain patterns of ecological processes across a landscape, however, they do 

not capture the temporal dynamics of resources pertinent to plants. Temporally dynamic 

variables, such as CWB, present monthly and annual patterns of available moisture in a 

way that will reflect changes in climate. Integrating topographic position into the current 

CWB toolset, or in tandem with CWB metrics, may prove to capture spatial distributions 

of both moisture availability and tree species. 
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