
UKnowledge 

University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Kinesiology and Health Promotion Faculty 
Publications Kinesiology and Health Promotion 

5-30-2020 

Examination of Curcumin and Fenugreek Soluble Fiber Examination of Curcumin and Fenugreek Soluble Fiber 

Supplementation on Submaximal and Maximal Aerobic Supplementation on Submaximal and Maximal Aerobic 

Performance Indices Performance Indices 

Jensen Goh 
University of Kentucky, jjensengoh@gmail.com 

Walter Menke 
University of Kentucky, walter.menke@uky.edu 

Lauren P. Herrick 
University of Kentucky, lauren.herrick3@gmail.com 

Marilyn S. Campbell 
University of Kentucky, marilyn.s.campbell@gmail.com 

Mark G. Abel 
University of Kentucky, mgabel2@uky.edu 

See next page for additional authors 
Follow this and additional works at: https://uknowledge.uky.edu/khp_facpub 

 Part of the Kinesiology Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Goh, Jensen; Menke, Walter; Herrick, Lauren P.; Campbell, Marilyn S.; Abel, Mark G.; Fleenor, Bradley S.; 
and Bergstrom, Haley C., "Examination of Curcumin and Fenugreek Soluble Fiber Supplementation on 
Submaximal and Maximal Aerobic Performance Indices" (2020). Kinesiology and Health Promotion 
Faculty Publications. 19. 
https://uknowledge.uky.edu/khp_facpub/19 

This Article is brought to you for free and open access by the Kinesiology and Health Promotion at UKnowledge. It 
has been accepted for inclusion in Kinesiology and Health Promotion Faculty Publications by an authorized 
administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/346140501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/khp_facpub
https://uknowledge.uky.edu/khp_facpub
https://uknowledge.uky.edu/khp
https://uknowledge.uky.edu/khp_facpub?utm_source=uknowledge.uky.edu%2Fkhp_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/42?utm_source=uknowledge.uky.edu%2Fkhp_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/khp_facpub/19?utm_source=uknowledge.uky.edu%2Fkhp_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Authors 
Jensen Goh, Walter Menke, Lauren P. Herrick, Marilyn S. Campbell, Mark G. Abel, Bradley S. Fleenor, and 
Haley C. Bergstrom 

Examination of Curcumin and Fenugreek Soluble Fiber Supplementation on Submaximal 
and Maximal Aerobic Performance Indices 
Notes/Citation Information 
Published in Journal of Functional Morphology and Kinesiology, v. 5, no. 2, 34, p. 1-14. 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. 

This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

Digital Object Identifier (DOI) 
https://doi.org/10.3390/jfmk5020034 

This article is available at UKnowledge: https://uknowledge.uky.edu/khp_facpub/19 

http://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/khp_facpub/19


  

J. Funct. Morphol. Kinesiol. 2020, 5, 34; doi:10.3390/jfmk5020034 www.mdpi.com/journal/jfmk 

Article 
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Abstract: This study examined the effects of curcumin and fenugreek soluble fiber supplementation 
on the ventilatory threshold (VT) and peak oxygen consumption (V̇O2 peak). Methods: Forty-five 
untrained men and women were randomly assigned to one of three supplementation groups: 
placebo (PLA, n = 13), 500 mg·day−1 CurQfen® (CUR, n = 14), or 300 mg·day−1 fenugreek soluble fiber 
(FEN, n = 18). Participants completed a maximal graded exercise test on a cycle ergometer to 
determine the VT and V̇O2 peak before (PRE) and after (POST) 28 days of daily supplementation. 
Separate, one-way analyses of covariance (ANCOVAs) were used to examine the between-group 
differences for adjusted POST VT and V̇O2 peak values, covaried for the respective PRE-test values. 
Results: The adjusted POST VT V̇O2 values for the CUR (mean ± SD = 1.593 ± 0.157 L·min−1) and FEN 
(1.597 ± 0.157 L·min−1) groups were greater than (p = 0.039 and p = 0.025, respectively) the PLA (1.465 
± 0.155 L·min−1) group, but the FEN and CUR groups were not different (p = 0.943). There were no 
differences in the adjusted V̇O2 peak values (F = 0.613, p = 0.547) among groups. Conclusion: These 
findings indicated that fenugreek soluble fiber was responsible for the improvements in the 
submaximal performance index for both CUR and FEN groups. 

Keywords: curcumin; galactomannan; ventilatory threshold; nutritional intervention; performance 
 

1. Introduction 

Curcumin is a polyphenol that targets multiple signaling pathways and has been shown to 
positively influence health at the cellular level [1]. It is an active ingredient of a rhizomatous 
herbaceous perennial plant of the ginger family called turmeric and has been widely used as a spice 
and medicine in various cultures throughout history [1,2]. These uses range from colorants, 
cosmetics, teas, and taste enhancers to anti-inflammatory agents and supplements. In populations 
where curcumin (100–200 mg·day−1) is consumed, epidemiological data have indicated the incidences 
of some chronic diseases (e.g., large bowel cancer) are lower, compared with populations of non-
consumption [3,4]. Curcumin has been shown to have strong antioxidant, anti-hypertensive, anti-
inflammatory, and anti-diabetic affects as well as potential body composition benefits and positive 
mediation of various cardio-health risk markers [5–7]. There is evidence from both murine models 
and human studies that curcumin supplementation improved the vascular restructuring and 
endothelial dysfunction prevalent in diabetes, metabolic syndrome, and hypertension [2,7]. In 
addition, curcumin supplementation has been shown to upregulate the production of endogenous 
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nitric oxide (NO) production [1,2,7], which mediates endothelial-dependent vasodilation. It is 
possible that curcumin may enhance blood flow to the working cardiac and skeletal muscles and 
positively influence aerobic exercise performance. 

One of the primary limitations to curcumin supplementation is its poor bioavailability. 
Curcumin has poor absorption, rapid metabolism, and rapid systemic elimination [6,8,9]. These 
characteristics result in the tendency for curcumin supplementation alone to not effectively increase 
plasma and tissue concentrations of curcumin to physiologically relevant values of 0.1 micromolar 
[10]. It has been documented [6] that, even at high doses (12 g·day−1), the plasma and tissue 
concentrations of curcumin may still be lower than the necessary threshold for physiological effects 
under short-term supplementation periods (<6 weeks). Therefore, approaches to slow digestion, 
increase absorption, and reduce systemic elimination of curcumin have been examined [9,11,12]. For 
example, curcumin has been combined with piperine, which interferes with liver glucuronidation 
[12], or fenugreek soluble fiber, which slows the release and protects curcumin from acidic 
gastrointestinal conditions [8]. Curcumin, combined with fenugreek soluble fiber (galactomannans), 
has been shown to enhance curcumin bioavailability by increasing the absorption and saturation to 
up to 20 times compared to curcumin alone [8,9]. 

The main role of fenugreek soluble fiber in combination with curcumin is to increase plasma and 
tissue concentrations of curcumin by slowing down its digestion and elimination [8,13,14]. However, 
it is important to note that the galactomannan component of fenugreek soluble fiber has potential 
physiological effects [14–16]. Previous investigators have shown significantly slower gastric 
emptying, increased plasma sensitivity, decreased plasma insulin levels, reduced hepatic cholesterol 
concentration, and enhanced plasma free fatty acid (FFA) levels in circulation after 28 days of 
fenugreek galactomannan supplementation [14,15]. These effects, particularly decreased plasma 
insulin levels and increased FFA levels, have been linked to increased rates of FFA oxidation 
[13,14,17]. Thus, in addition to increasing the absorption of curcumin from the small intestine, 
fenugreek may also have the potential to improve metabolic parameters associated with aerobic 
exercise performance. 

Several previous investigators have examined the effects of curcumin in high relative doses (100 
mg·kg−1 in mice), or in combination with bioavailability enhancing ingredients, on indices of vascular 
function and other markers of cardiovascular health [1,2,18]. The purported effects of curcumin in 
various forms on inflammatory pathways, nitric oxide production, and as an anti-oxidant [2,5,19], 
have recently lead to the examination of its potential as an ergogenic aid to delay fatigue and enhance 
recovery from exercise [19–21]. Orally optimized and high relative doses of curcumin 
supplementation have been shown to significantly decrease cytokine production in inflammatory 
pathways in mice as well as reduce various markers of exercise-induced muscular damage (EIMD) 
from repeated eccentric muscle actions in humans [20,21]. These effects have resulted in lower 
decrements in grip strength after fatiguing eccentric exercise [19] compared with placebos. There is 
also evidence that curcumin (at varying doses) may increase glycogen stores following 28 consecutive 
days of supplementation [19] and decrease the accumulation of metabolic byproducts (i.e., hydrogen 
ions, ammonia, etc.) [5], which may increase the time to fatigue and enhance recovery from long 
periods (>60 min) of exercise [19–21]. For example, Huang et al. (2015) showed curcumin 
supplementation significantly increased swim time to exhaustion in mice, dose-dependently, while 
decreasing injury markers by approximately fifty percent, when compared to the placebo. Thus, 
currently, there is evidence that curcumin in relatively high doses, or in combination with 
bioavailability boosters, may enhance endurance performance and increase time to exhaustion as 
well as improve recovery from EIMD [19–21]. 

Fatigue thresholds such as the ventilatory threshold (VT) provide a non-invasive assessment of 
metabolic responses during incremental exercise [22,23]. Theoretically, the VT demarcates the 
moderate to heavy exercise intensity domain [24,25] and provides information about the exercise 
intensity above which aerobic adenosine triphosphate (ATP) production is supplemented with 
anaerobic energy metabolism. Exercise performed above the VT (within the heavy domain) results in 
increased blood lactate concentration and hydrogen ion (H+) production [25]. The VT reflects the 
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increased ventilation (V̇E), relative to oxygen consumption (V̇O2) in response to excess carbon dioxide 
(CO2) generated from the bicarbonate buffering of the H+ [22]. The VT has been used to assess physical 
fitness in both clinical [26] and athletic populations [27] and has been shown to be sensitive to training 
and nutritional intervention [28]. 

Previous studies have indicated the potential for curcumin supplementation to increase NO 
production, decrease metabolic byproduct accumulation [5], and increase time to exhaustion (Tlim) 

[19–21]. It is possible these effects may also improve submaximal (VT) and maximal (V̇O2 peak) 
indices of aerobic endurance performance. In addition, there is evidence that the galactomannan 
component of fenugreek soluble fiber, used to enhance the bioavailability of curcumin, may also have 
potential effects on upregulating FFAs [13,14]. This may delay the reliance on anaerobic energy 
production and increase the VT. No previous studies, however, have examined the effects of 
curcumin in combination with fenugreek soluble fiber and/or fenugreek soluble fiber alone on 
submaximal and maximal endurance performance markers such as the VT and V̇O2 peak. Therefore, 
the purpose of this study was to examine the effects of curcumin + fenugreek soluble fiber and 
fenugreek soluble fiber supplementation on the VT and V̇O2 peak. We hypothesized that 28 days of 
curcumin + fenugreek and fenugreek soluble fiber supplementation would result in increases in the 
VT and V̇O2 peak compared to a placebo. 

2. Materials and Methods 

2.1. Experimental Approach 

This study used a randomized, double-blind, placebo-controlled, parallel design with two 
experimental groups and one placebo group. Forty-five participants were randomly assigned to the 
placebo group (PLA, n = 13), curcumin + fenugreek supplement, CurQfen® (CUR, n = 14), or fenugreek 
soluble fiber supplement (FEN, n = 18). The participants visited the testing center a total of six times; 
the second and sixth sessions lasted approximately two hours, and there were weekly check-in visits 
(four in total = visits three through six) during the 28-day supplementation period. During the first 
visit, each subject completed a health history questionnaire and signed an informed consent 
document. During the second visit, the participants completed a PRE-test graded exercise test (GXTpre 
prior to 28 days of supplementation) to determine the PRE-test VT and V̇O2 peak, followed by a 28-
day supplementation protocol. The participants were asked to ingest one dose in capsule form (PLA, 
CUR, or FEN) every day for 28 days and one dose 60 min prior to the POST-test (GXTpost after 28 days 
of supplementation). The GXT was used to determine the PRE-test VT and V̇O2 peak. Following 28-
days of supplementation, each subject completed a POST-test GXT to determine the POST-test VT 
and V̇O2 peak. Dietary intakes three days prior to the PRE- and POST-test days were recorded with 
food logs. In addition, supplement compliance was recorded with dosing logs. The primary outcomes 
were the VT and V̇O2 peak and a secondary outcome was the respiratory exchange ratio (RER) at the 
VT. The total kilocalories and grams of each macronutrient determined from the dietary analyses 
were measured for descriptive purposes. 

2.2. Participants 

The sample size was determined from the sample size previously reported in a study (35) that 
examined the effects of a nutritional supplement intervention of the same dependent variables used 
in this study. In total, 67 participants were screened and enrolled in the study (Figure 1). Three of the 
participants withdrew due to scheduling conflicts, two of the participants were excluded due to 
equipment malfunctions, and one subject was excluded due to inability to complete PRE/POST-test 
measures as a result of illness. Four of the participants were excluded because they did not exhibit 
landmarks for threshold calculation, and two were excluded due to inability to complete minimal 
stage requirements needed for this test. The participants were untrained in aerobic exercise and 
engaged in no more than four hours of recreational activity per week. To account for variations in 
low- and high- fitness levels, participants were excluded if they fell below (very poor) or above 
(superior) the 10th percentile of cardiorespiratory fitness based on age and sex, according to the 
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American College of Sports Medicine [29]. Five of the participants had a V̇O2 peak that was below, 
and five of the participants had a V̇O2 peak that was above the 10th percentile for cardiorespiratory 
fitness and were excluded from the analyses. Thus, 45 men (n = 24) and women (n = 21) (age: 21.2 ± 
2.4 years; height: 174.4 ± 8.2 cm; body mass: 73.1 ± 13.4 kg; and body mass index (BMI): 24.0 ± 3.5 
kg⋅m−2) completed this study (PLA = 13, FEN = 18, CUR = 14). All of the participants completed a 
health history questionnaire and met the following criteria: (a) no history of medical or surgical 
events that could significantly affect experimental results or increase the participants risk of injury, 
including cardiovascular, metabolic, renal, or hepatic disease as well as musculoskeletal disorders; 
(b) were not taking any medication that could significantly affect experimental results (e.g., 
vasodilators/vasoconstrictors); (c) were not currently using any nutritional supplements that could 
significantly affect experimental results; and (d) were not presently participating in another clinical 
trial or consuming another investigational product. The participants were instructed to not consume 
any caffeine on the testing day and avoid alcohol consumption for 24 h prior to testing. The study 
was approved by the Institutional Review Board for Human Participants at the University of 
Kentucky (IRB # 45965), and all participants signed a written informed consent document before 
testing. 

 
Figure 1. Flow chart demonstrating the process for inclusion of participants in the placebo (PLA, n = 
13), fenugreek soluble fiber (FEN, n = 18), and curcumin+fenugreek soluble fiber (CUR, n = 14) groups. 
See participants section within the Methods for further descriptions of each of the criteria indicated 
in the flow chart. Note: cardiorespiratory fitness (CRF). 

2.3. Supplementation 

A limitation to curcumin supplementation is its low bioavailability. The supplement CurQfen® 
combines curcumin and fenugreek soluble fiber to significantly increase plasma concentrations of 
curcumin [8]. Galactomannan soluble dietary fiber from fenugreek seeds slows the digestion and 
rapid elimination of curcumin to allow better absorption into the bloodstream, improving absorption 
by 15.8 times of the curcumin standalone [8,9]. The 500-mg CurQfen® capsule (Akay Group, Ltd., 
Dubai, UAE) contained 190 mg of total curcuminoids (curcumin—81%, demethoxycurcumin—15.7% 
and bisdemethoxycurcumin—2.6%). The 300-mg FenuMAT capsule (Akay Group, Ltd., Dubai, UAE) 
contained de-bitterized fenugreek dietary fiber, containing 75% to 80% galactomannans with 2–4% 
moisture. The fenugreek soluble fiber only group was included to account for any extraneous effects 
of fenugreek soluble fiber and the capsule contained 300 mg. The placebo capsule contained only 
microcrystalline cellulose. To maintain the double-blind nature of the study, the participants received 
the capsules in an opaque bottle and were not made aware of the appearance of the capsules of the 
other conditions. The participants consumed one dose daily and received the capsules on a weekly 
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basis according to their randomly assigned group of PLA, CUR, or FEN. The capsules were ingested 
with 16 oz. of water every morning before eating for 28 days. The participants completed a dosing 
log and checked in weekly with their supplement bottles to ensure adherence to proper dosing 
procedures and to receive the following week’s supplements. The dosing log was used to check 
compliance (compliance = (# of doses taken/total # of doses provided) × 100). A compliance rate of 
>80% was required for inclusion in the data analyses. In addition, during supplementation, the 
participants were instructed to keep a three-day food log prior to each testing session and were asked 
not to change their diet and activity level during the study. The three-day food logs prior to each 
testing day were further analyzed to ensure dietary consistency. A total of 38 of the 45 participants 
(PLA = 11, FEN = 15, CUR = 12) completed and returned food logs that were used for subsequent 
analyses. 

2.4. Graded Exercise Test 

Each subject performed an incremental cycle test to exhaustion on an electronically braked cycle 
ergometer (Lode Corival, Groningen, The Netherlands) to determine the VT and 𝑉̇O2 peak. The 
participants were familiarized with the equipment before proceeding with the GXT. The ergometer 
seat height was adjusted so that the subject’s legs reach near full extension at the bottom of the pedal 
revolution. Toe clips were used to maintain pedal contact throughout the test and all participants 
were equipped with a nose clip and a two-way valve mouthpiece to collect all expired air. A 
calibrated metabolic cart (TrueMax 2400, ParvoMedics, Sandy, UT, USA) was used to collect and 
analyze the expired gas samples. The gas analyzers were calibrated with room air and gases of known 
concentration prior to all testing sessions. The O2, CO2, and ventilatory parameters were expressed 
as 30 s averages. In addition, the heart rate was recorded with a Polar Heart Rate Monitor (Polar 
Electro Inc., Lake Success, NY, USA) that was synchronized with the metabolic cart. The Borg Rating 
6–20 of Perceived Exertion (RPE) scale was used to quantify the subjective effort of the participant at 
the end of each minute during the test [30]. Following a one-minute warm up at 0 W, the resistance 
was increased to 50 W, and was then increased by 30 W every 2 min until the participants were unable 
to maintain 70 rev·min−1, or until volitional fatigue. This protocol was consistent with the study 
protocol previously used to assess V̇O2 peak, gas exchange and ventilatory thresholds, as well as the 
electromyographic fatigue threshold in college-aged males [31]. The V̇O2 peak was defined as the 
highest V̇O2 value in the last 30 s of the test that met two of the following three criteria: 1) ≥ 90% of 
age-predicted heart rate; 2) respiratory exchange ratio (RER) ≥ 1.1; and 3) a plateau in oxygen uptake 
(less than 150 mL·min−1 in V̇O2 over the last 30 s of the test). 

2.5. Determination of the Ventilatory Threshold 

The VT was determined by using the V-slope method [22]. Specifically, the VT was determined 
from the V̇E versus V̇O2 relationship. The VT was defined as the V̇O2 value that corresponded with 
the point of non-linear increase in V̇E relative to V̇O [22] (Figure 2). In addition, the RER at the VT 
was recorded. 
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Figure 2. The method used for determining the ventilatory threshold (VT). The VT was defined as the 
oxygen consumption (V̇O2) value corresponding to the intersection of two linear regression lines 
derived separately from data points below (orange line) and above (blue line) the breakpoint in the 
minute ventilation (V̇E) relative to V̇O2 relationship [22]. 

2.6. Statistical Analyses 

Separate, one-way analyses of variance (ANOVA) were used to determine if there were any 
significant differences among the PLA, FEN, and CUR groups for age, height, body mass, ventilatory 
threshold (VTV̇̇ O2), or V̇O2 peak prior to supplementation. The PRE- and POST-test values for the PLA 
group (n = 13) were used for the calculation of test-retest reliability of the VTV̇O2 and V̇O2 peak, which 
consisted of the intraclass correlation coefficient model 2,1 (ICC2,1), the standard error of the 
measurement (SEM), and the minimal difference needed to be considered real (MD) for each 
dependent variable (VT𝑉̇O2 and 𝑉̇O2 peak) [32]. The SEM was calculated as the SD × √1 െ 𝐼𝐶𝐶 and 
the MD was calculated as the SEM × 1.96 × √2 [32]. In addition, three separate paired sample t-test 
were used to determine if there were any significant changes in the dependent variable for the PLA 
group from PRE- to POST-test. Separate 2 (Time: PRE and POST) × 3 (Group: PL, CUR, FEN) mixed 
factorial ANOVAs were performed for the total kilocalories and grams for each macronutrient 
(carbohydrates, fats, and proteins) as well as for body mass and BMI. Three separate, one-way 
analyses of covariance (ANCOVA) (VT, RER at the VT, and 𝑉̇O2 peak) were used to determine if 
there were any differences between adjusted POST-test values (VT𝑉̇O2, RER at the VT, and 𝑉̇O2 
peak), covaried for the respective PRE-test values [33]. Post-hoc analyses consisted of independent 
samples t-tests. Measures of effect size (Partial eta squared (௣ଶ) and Cohen’s d) were calculated for al 
ANOVAs and paired sample t-tests, respectively. (The analyses were conducted using the Statistical 
Package for the Social Sciences software (v. 24.0 IMB SPSS Inc., Chicago, IL, USA). An alpha level of 
p ≤ 0.05 was considered statistically significant for all analyses. 

3. Results 

3.1. PRE- and POST- Test Descriptive Statistics, Supplement Compliance, and Dietary Recall 

The data are presented as mean (SD) with 95% confidence intervals (CI), unless otherwise noted. 
The results of the one-way ANOVAs comparing PRE-test values indicated that there were no 
significant mean group differences for the VTV̇O2 (PLA = 1.507 ± 0.325, FEN = 1.480 ± 0.328, CUR = 
1.514 ± 0.440 L⋅min−1; F = 0.039, p = 0.961, ௣ଶ  = 0.002) or V̇O2 peak (PLA = 39.06 ± 6.12, FEN = 37.70 ± 
5.23, CUR = 40.214 ± 4.91 mL⋅kg−1⋅min−1; F = 0.068 p = 0.934, ௣ ଶ = 0.003) determined from the GXT, as 
well as for age (F = 1.753, p= 0.186, ௣ଶ = 0.077), height (F = 0.241, p = 0.787, ௣ ଶ  = 0.011), or body mass 
(F = 1.001, p = 0.376, ௣ଶ  = 0.046) values (Table 1). The POST-test values for the PLA, FEN, and CUR 
groups for the VTV̇O2 were 1.473 ± 0.372, 1.579 ± 0.371, and 1.608 ± 0.426 L⋅min−1, respectively. The 
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POST-test values for the PLA, FEN, and CUR groups for V̇O2 peak were 39.57 ± 7.56, 37.50 ± 6.08, 
40.59 ± 5.78 mL⋅kg−1⋅min−1, respectively. There were no effects of sex on the changes in VTV̇O2 (p = 
0.646) or the V̇O2 peak (p = 0.064). 

Supplement compliance was recorded with dosing logs and demonstrated a mean (±SD) 
compliance rate of 98.6% ± 2.6%. Additionally, the 3 × 2 mixed factorial ANOVAs resulted in no 
significant group × time interactions (F = 0.222–0.866, p = 0.430–0.802, ௣ଶ = 0.013–0.047), main effects 
for group (F = 0.434–1.572, p = 0.222–0.652, ௣ଶ = 0.024–0.082), or main effects for time (F = 0.027–0.956, 
p = 0.335–0.870, ௣ଶ = 0.001–0.027) for the total kilocalories or macronutrients consumed. The reported 
average caloric intake per day (over 6 days) across all three groups was 1639 ± 775 kilocalories⋅d−1 
and the total grams consumed per day for carbohydrates, protein, and fat were 186 ± 80 g⋅d−1, 79 ± 40 
g⋅d−1, and 64 ± 38 g⋅d−1, respectively. Furthermore, there was no significant group × time interaction 
(F = 0.799, p = 0.457, ௣ ଶ  = 0.037), main effect for group (F = 0.980, p = 0.384, ௣ଶ  = 0.045), or main effect 
for time (F = 2.458, p = 0.124, ௣ଶ  = 0.055) for body mass (Table 1). 

Table 1. Demographic information (mean ± SD) for age, height and pre-test as well as body mass and 
BMI before (PRE) and after (POST) test. 

 PLA FEN CUR 
 PRE POST PRE POST PRE POST 

Age (years) 20.5 ± 1.5  20.9 ± 1.4  22.1 ± 3.8  
Height (cm)  175.3 ± 7.6  173.5 ± 7.9  173.7 ± 9.1  

Body Mass (kg) 71.3 ± 11.0 71.5 ± 11.2 76.7 ± 13.0 76.7 ± 12.8 70.3 ± 16.0 70.8 ± 16.5 
BMI (kg⋅m−2) 23.1 ± 2.6 23.1 ± 2.6 25.5 ± 3.9 25.5 ± 3.8 23.1 ± 3.0 23.3 ± 3.1 

Placebo (PLA) (n = 13), Fenugreek (FEN) (n = 18), CurQfen® (CUR) (n = 14), body mass index (BMI) 

3.2. Reliability 

There were no significant mean differences between PRE- and POST-test for the VTV̇O2 (t = 1.224, 
p = 0.244, d = 0.20) or V̇O2 peak (t = -0.293, p = 0.775, d = 0.10) for the PLA group. The ICC values for 
the VTV̇O2 and V̇O2 peak were 0.959 and 0.971, respectively. The SEM and MD values for the VTV̇O2 

and V̇O2 peak are presented in Table 2. 

Table 2. Results of the reliability analyses for the placebo group using PRE-test and POST-test values 
for the ventilatory threshold (VTV̇̇ O2) and V̇O2 peak in L⋅min−1. 

Subject PRE-𝐕̇̇ O2 Peak POST-𝐕̇̇ O2 Peak PRE-VT𝐕̇̇ O2 POST-VT𝐕̇̇ O2 
1 3.782 3.826 1.500 1.520 
2 2.876 3.164 2.118 2.287 
3 2.413 2.282 1.310 1.220 
4 3.537 3.245 1.860 1.730 
5 2.065 1.921 1.170 0.980 * 
6 3.423 3.509 1.971 1.890 
7 2.472 2.289 1.400 1.300 
8 3.614 3.715 1.430 1.484 
9 2.890 3.127 1.390 1.500 
10 1.578 1.403 0.990 0.925 
11 2.565 2.609 1.626 1.592 
12 2.057 2.219 1.224 1.162 
13 3.308 3.464 1.599 1.561 

Mean ± SD 2.814 ± 0.691 2.829 ± 0.758 1.507 ± 0.325 1.473 ± 0.372 
ICC 0.971 0.959 
SEM 0.119 0.066 
MD 0.330 0.183 

Intraclass correlation coefficient (ICC); standard error of the measurement (SEM); minimal difference 
(MD) to be considered a real change. An increase or decrease from PRE-test to POST-test that 
exceeded the MD (*).Bolded: to differentiate the values from the individual responses above. 

3.3. Fatigue Thresholds and Maximal Testing Parameters 
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The one-way ANCOVA for the VTV̇O2 values indicated there were significant differences among 
the groups (F = 3.224, p = 0.050, ௣ଶ  = 0.136). The pairwise comparisons indicated a significant 
difference between the CUR and PLA groups (p = 0.039, d = 0.82) and between the FEN and PLA 
groups (p= 0.025, d = 0.85), but no differences between FEN and CUR groups (p = 0.943, d = 0.025). The 
adjusted VTV̇O2 mean (±SD) for the PLA, FEN, and CUR were 1.465 ± 0.155 L·min−1 (95% CI = 1.378, 
1.552 L·min−1), 1.597 ± 0.157 L·min−1 (95% CI = 1.522, 1.671 L·min−1), and 1.593 ± 0.157 L·min−1 (95% CI 
= 1.509, 1.677 L·min−1), respectively (Figure 3a). The one-way ANCOVA for V̇O2 peak (F = 0.613, p = 
0.547, ௣ଶ  = 0.029) indicated there were no significant differences among groups (Figure 3b). The 
adjusted V̇O2 peak mean (±SD) for the PLA, FEN, and CUR were 2.872± 0.184 L·min−1 (95% CI = 2.758, 
2.975 L·min−1), 2.831 ± 0.187 L·min−1 (95% CI = 2.743, 2.919 L·min−1), and 2.903 ± 0.183 L·min−1 (95% CI 
= 2.803, 3.003 L·min−1), respectively (Figure 3b). Additionally, the one-way ANCOVA for RER at the 
VT (F = 0.622, p = 0.542, ௣ଶ  = 0.029) indicated there were no significant differences among groups. 
The adjusted RER mean (± SD) for the PLA, FEN, and CUR were 0.970 ± 0.058 (95% CI = 0.938, 1.002), 
0.948 ± 0.059 (95% CI = 0.920, 0.976), and 0.965 ± 0.060 (95% CI = 0.934, 0.997), respectively. 

(a) (b) 

Figure 3. (a) Adjusted POST-test ventilatory threshold (VT) V̇̇ O2 (mean ± SD) values (covaried for 
PRE-test VTV̇̇ O2 scores) for placebo (PLA), fenugreek (FEN), and the CurQfen® (CUR) groups. 
*Significantly (p < 0.05) greater than placebo; (b) adjusted POST-test V̇̇ O2 peak (mean ± SD) values 
(covaried for PRE-test V̇̇ O2 Peak scores) PLA, FEN, and the CUR groups. 

3.4. Individual Responses for Ventilatory Threshold (𝑉𝑇𝑉̇O2) and 𝑉̇O2 Peak 

One of the 13 participants in the PLA group showed a decrease greater than MD for the VTV̇O2 
(Figure 4a). Four of the 18 participants in the FEN group (Figure 4b) and two of the 14 participants 
from the CUR group (Figure 4c) showed an increase greater than MD for the VTV̇O2. None of the 13 
participants in the PLA group showed a change in V̇O2 peak greater than the MD (Figure 4d). Two 
of the 18 participants in the FEN group (Figure 4e) showed a decrease greater than the MD and one 
of the 14 participants in the CUR Figure 4f) showed an increase greater than the MD. 
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(a) 

 

(b) 

(c) 
(d) 

(e) (f) 

Figure 4. (a) Individual responses for the VTV̇̇ O2 from PRE- to POST-test for the placebo (PLA) 
supplement group; (b) individual responses for the VTV̇̇ O2 from PRE- to POST-test for the fenugreek 
(FEN) supplement group; (c) individual responses for the VTV̇̇ O2 from PRE- to POST-test for the 
CurQfen® (CUR) supplement group; (d) individual responses for the V̇̇ O2Peak from PRE- to POST-
test for the placebo (PLA) supplement group; (e) individual responses for the V̇̇ O2Peak from PRE- to 
POST-test for the fenugreek (FEN) supplement group; (f) individual responses for the V̇̇ O2Peak from 
PRE- to POST-test for the CurQfen® (CUR) supplement group. Dashed lines indicate a positive slope 
and the dotted lines indicate a negative slope from PRE- to POST-test. Solid double lines indicate an 
increase or decrease greater than the minimal difference. The black line indicates the mean response. 
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4. Discussion 

The purpose of this study was to examine the effects of a 28-day dosing period of curcumin and 
fenugreek soluble fiber on submaximal and maximal endurance performance. The primary findings 
were that the VT was greater for the CUR and FEN compared to the PLA at POST-test, but there were 
no differences in the V̇O2 peak values among the groups. In this study, the VT increased 6.2% 
(increase = 0.094 L·min−1) and 6.7% (increase = 0.099 L·min−1) from PRE- to POST-test for the CUR and 
FEN, respectively, but was not improved for the PLA (−2.2%, decrease = 0.034 L·min−1). These mean 
responses, however, reflected increases above the MD for only 4 of the 18 participants in the FEN 
group and 2 of the 14 participants in the CUR group. To our knowledge, no previous studies have 
examined the effects of curcumin and fenugreek on submaximal fatigue thresholds; however, the 
relative changes (6.2%–6.7%) in the VT in this study were consistent with the 4.1% to 5.4% increases 
previously reported for the gas exchange threshold (GET) after 28 days of arginine supplementation 
[34]. Interestingly, these increases in the GET were also not accompanied by changes in V̇O2peak. 
Thus, the results of the present study showed increases one the submaximal fatigue threshold (VT) 
for both CUR and FEN, without changes in maximal endurance performance indices, that were 
consistent with previously reported [34] changes in a similar threshold after a nutritional 
intervention. Furthermore, the similar responses for CUR and FEN groups indicated that it is likely 
that the fenugreek soluble fiber was responsible for the observed effects. 

4.1. Supplementation Effects on a Submaximal Endurance Performance Threshold 

Although there is conflicting evidence regarding the true underlying mechanism(s) for the 
breakpoints in the V̇E versus V̇̇ O2 and V̇̇ CO2 versus V̇̇ O2 relationships that define the VT and GET, 
respectively, these thresholds have been demonstrated across multiple studies [22,25,35] and are 
likely related to the accumulation of metabolic byproducts (i.e., H+, inorganic phosphate, ammonia, 
and potassium) of muscular contractions. The VT and GET demarcate the moderate to heavy exercise 
intensity domains and reflect the point of increased reliance on anaerobic ATP production, as the 
aerobic system can no longer fully support the energy demands of the exercise intensity [36]. 
Previously, it was hypothesized that increases in the GET after arginine supplementation were 
related to the essential role of the amino acid in the synthesis of NO production and the subsequent 
vasodilatory response to enhance metabolic byproduct clearance [34,35]. One of curcumin’s 
purported physiological benefits is the upregulation of enzymes involved in NO production and 
enhanced acetylcholine-induced vasodilation [2,7]. Nitric oxide bolsters tissue respiration and 
endothelium-dependent vasodilation by relaxing smooth muscle cells in the vasculature [37,38]. In 
addition, curcumin supplementation has been shown to reduce the accumulation of metabolic 
byproducts (lactate and ammonia) of muscular contraction in rodents and humans [19–21]. It is 
possible the reduction in these metabolites after curcumin supplementation were a result of increased 
NO production and enhanced endothelium-dependent vasodilation [2]. In the current study, 
however, the VT for the CUR group was not increased above that of the FEN group alone. Thus, the 
changes in the VT in this study were likely not related to increased metabolic byproduct clearance 
from NO-induced vasodilation, but rather, were likely driven by the effects of fenugreek soluble fiber. 

Fenugreek soluble fiber, also known as galactomannan, was added to curcumin (CurQfen®) to 
increase the bioavailability of the supplement [7]. Theoretically, galactomannans slow digestion, 
especially in the small intestine, resulting in a greater absorption of curcumin and greater plasma 
curcumin concentrations [8]. However, galactomannans from fenugreek have also been shown to 
have physiological effects after 28 days of supplementation. Two of the purported benefits of chronic 
galactomannan supplementation are an increased plasma FFA concentration in circulation and 
decreased plasma insulin levels [13,14]. It has been shown [17] that FFA oxidation rates are increased 
by greater concentrations of FFAs in circulation. During exercise in the moderate domain (i.e., below 
the VT), FFAs are the primary energy substrate for aerobic ATP production. Thus, greater plasma 
FFAs in circulation may increase the rate of FFA utilization, potentially delaying the reliance on 
anaerobic glycolytic metabolism and attenuating metabolic byproduct accumulation. Furthermore, 
the supplementation of galactomannans from fenugreek has been shown to increase plasma insulin 
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sensitivity, decrease plasma insulin levels, and decrease blood glucose levels in mice models, and has 
been replicated in human models for both fasting and post-oral glucose tests [13]. Insulin suppresses 
lipolysis by directly inhibiting the transcription of lipase via the mTOR pathway [39,40]. Increased 
insulin sensitivity and subsequent decreases in insulin levels would, theoretically, increase lipolysis 
and favor fat mobilization. Indeed, previous investigators have reported a significant, positive 
relationship between insulin sensitivity and oxidative capacity [14,41]. Thus, it is possible the VT was 
improved in the FEN and CUR groups from increased FFA oxidation that delayed reliance on 
anaerobic glycolysis and attenuated the accumulation of metabolic byproducts. Future studies 
should further examine the effects of fenugreek, particularly the galactomannan component, on FFA 
concentrations and insulin sensitivity to determine its relationship with submaximal exercise 
performance indices. 

4.2. Synergistic Effects of Curcumin and Galactomannan Soluble Fiber 

It is likely the purported effects of fenugreek were responsible for the increases in VT for the 
CUR group (CurQfen® = curcumin + fenugreek: 300 mg). Due to the poor bioavailability of curcumin, 
it is difficult to achieve plasma curcumin levels of physiological effect without a bioavailability 
booster such as fenugreek or piperine [7,8]. Therefore, we could not isolate the individual effects of 
curcumin in this study. Based on the purported effects of curcumin and fenugreek, it would seem 
logical that the combination of both would exhibit synergistic effects to improve performance. 
Unexpectedly, both the CUR and FEN group demonstrated a greater VT at POST-test compared to 
the placebo, but the VT was not different between the CUR and FEN. In this study, the 500 mg dose 
of CurQfen® contained 190 mg of curcuminoids and 300 mg of fenugreek soluble fiber (75–80% 
galactomannans). It is possible at this relative dosage that any differences between the 
supplementation groups (CUR and FEN) were too small to detect. Therefore, the results of the present 
study indicated that fenugreek soluble fiber (galactomannan), and not curcumin, was responsible for 
the observed changes in the submaximal aerobic performance index (VT). Future studies should 
examine the effects of supplementation with various doses of curcuminoids, without additional 
fenugreek fiber, to determine if there are any differences between curcumin and fenugreek 
supplementation on the VT. In addition, future studies should examine the effects of 
supplementation of fenugreek fiber alone and curcumin in combination with other ingredients (to 
increase absorption), such as piperine, to determine if there are similar changes in submaximal 
endurance performance indices. 

4.3. Supplementation Effects on Maximal Endurance Measurement (𝑉̇O2peak) 

Curcumin and fenugreek soluble fiber supplementation had no effect on V̇O2peak in this study. 
The VT and GET may be more sensitive to interventions affecting aerobic adaptations such as oxygen 
supply and substrate availability, while the V̇O2peak may be more sensitive to changes affecting 
anaerobic metabolic system buffering capacities [22,25,42]. Thus, it is possible that NO-mediated 
vasodilation and increased FFA concentrations as a result of curcumin and fenugreek 
supplementation, respectively, were effective in improving aerobic metabolic efficiency and the VT, 
but did not alter the cellular and blood buffering capacities (e.g., carnosine and sodium bicarbonate, 
respectively) that would increase maximal endurance. Furthermore, the lack of change in V̇O2peak 
after curcumin or fenugreek supplementation may also be related to the mechanisms of action of the 
supplements and the mode of testing. Specifically, the previous literature has demonstrated that 
increased local vasodilation did not equate to a higher local and systemic V̇O2peak during maximal 
incremental studies [43]. Thus, the potential NO mediated vasodilation and increased metabolic 
byproduct clearance as a result of curcumin supplementation would likely not alter V̇O2peak. In 
addition, curcumin supplementation has been reported to increase glycogen stores by 1.39- to 1.49- 
fold in mice [19]. Because our incremental test was designed to encourage failure and V̇O2peak within 
12 to 15 min, it is unlikely that the muscle or liver glycogen stores were depleted and, therefore, 
would not limit this parameter (V̇O2peak). The primary action of galactomannans to slow digestion, 
increase insulin sensitivity, and decrease blood glucose to promote FFA oxidation appeared to be 
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ineffective at altering measures of maximal performance after 28 days of supplementation in this 
study. These findings are supported by the previous literature that reported no effects on V̇O2max 
after eight weeks of FEN supplementation [44]. Thus, in healthy, untrained participants, it seems that 
chronic, non-stimulant spice-related nutritional supplementation affects submaximal thresholds that 
demarcate the moderate to heavy domains but are not effective for higher thresholds or maximal 
performance indices ( V̇ O2peak). Future studies should examine the effects of curcumin and/or 
fenugreek on V̇O2peak at a submaximal intensity, such as the VT, to examine potential effects in order 
to improve the sustainability of aerobic exercise. 

4.4. Individual Responses 

Typically, overall conclusions regarding the effectiveness of an intervention are drawn from 
mean responses; however, the MD analyses in this study indicated there was a small percentage of 
participants that demonstrated a real change in the VT in the CUR and FEN supplementation groups. 
In this study, although there were significant effects of supplementation on the mean VT responses 
at POST-test for the FEN and CUR groups (Figure 3b,c) compared to PLA (Figure 3a), and the mean 
responses of the groups were similar (CUR = 6.2%, FEN = 6.7%), only four of the 18 participants (22%) 
exceeded the MD to be considered a real increase in the FEN group, and two of the 14 participants 
(14%) exceeded the MD in the CUR group. Conversely, no participants in the PLA group 
demonstrated an increase in the VT that exceeded the MD, but one of the 13 participants (7.7%) 
exceeded the MD to be considered a real decrease. The MD is defined as “the difference needed 
between separate measures on a subject for the difference in the measures to be considered real” [32] 
and speaks to the sensitivity of the test in distinguishing a “real” change from variation or error in 
measurement. A greater number of participants in the FEN group exceeded the MD compared to the 
CUR group, and 71.4% of the participants in the CUR-supplemented group demonstrated a positive 
slope coefficient from PRE- to POST-test, compared to 66.6% of the participants in the FEN group, 
while only 30.7% demonstrated a positive slope coefficient for the PLA group. The inherent limitation 
of simplifying results to the mean response is the assumption that all individuals have the same 
metabolic structure and capacities, where biological variability and biological noise such as circadian 
rhythm, nutritional intake, and motivation are not accounted for [45,46]. Thus, the mean responses 
for the CUR and FEN groups reflected a small percentage (14–22%) of participants that demonstrated 
a real change and a larger percentage (67–72%) of participants that demonstrated small increases that 
would not be considered real changes. 

A further understanding of the underlying mechanisms related to the relatively small 
percentage of participants who demonstrated a real change would likely require the measurement of 
additional biomarkers. We did not measure any physiological markers outside of resting blood 
pressure, heart rate, and patient self-reported medical history to confirm that the participants were 
healthy and asymptomatic of any metabolic, cardiovascular, renal, or pulmonary diseases. However, 
baseline measurement of other markers such as arterial stiffness, lipid profiles, total cholesterol, 
fasting glucose level, and plasma insulin may have better informed the likelihood of demonstrating 
responses to an intervention. Based on previous evidence [2,5,13,14], it appears participants with 
above average arterial stiffness, hypertension, endothelial dysfunction, and insulin resistance may be 
more sensitive to the effects of curcumin and fenugreek soluble fiber interventions. It is possible that 
the participants who exceed the MD in this study might have had biological differences affecting 
sensitivity to the nutritional interventions. In addition, the responsiveness to an intervention is also 
likely related to an individual’s genotype. For example, genetic predisposition has been shown to 
influence differences in low and high responders regarding hypertrophic changes specific to 
resistance exercise [47]. Participants that were homozygous for a specific genotype or allele 
expression were observed to experience greater or lower degrees of hypertrophy [47]. These 
observations were centered on hypertrophy responsiveness; however, it is possible that genetic 
variances may make an individual more receptive to the effects of nutritional interventions and/or 
aerobic exercise interventions. Based on the current findings, we recommend that interventions be 
examined not only based on the mean response, but also on an individual-by-individual basis to 
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provide further information on the sensitivity of the interventions (e.g., CurQfen® and/or 
galactomannans supplementation) to affect performance outcomes. Furthermore, baseline 
measurement of arterial stiffness, lipid profiles, total cholesterol, fasting glucose levels, and plasma 
insulin, in addition to individual responses, should be considered to further examine the proportion 
of the population that may demonstrate a real change. 

Factors related to study design might also help explain the individual variability in response to 
CurQfen® and/or galactomannans supplementation. Specifically, the low percentage (four out of 18 
= 22% and two out of 14 = 14%) of participants that exceeded the MD in this study may be related to 
the duration of the supplementation period, the relative dosage of supplementation, and/or the 
exclusion of an exercise intervention. It is possible that a longer supplementation period and/or a 
higher relative dosage are necessary for the effects of curcumin and/or galactomannan to fully 
manifest, as previous investigators have indicated a dose dependency [2,11,15,19]. Furthermore, this 
study did not include an exercise intervention or examine the benefits of curcumin on recovery or 
inflammation. Previous studies that have examined curcumin supplementation in conjunction with 
exercise have demonstrated a greater magnitude of change compared to PLA when the two 
interventions were combined [19–21]. These effects have been attributed to curcumin’s anti-
inflammatory effects and enhanced recovery [2,19,20]. Thus, future studies should examine longer 
supplementation periods (>6 weeks) of curcumin and galactomannan at higher relative doses (>500 
mg·day−1) in conjunction with an exercise training protocol to determine if the effects on the VT in 
this study for a few participants (14–22%) are extended to a larger portion of the sample. 

4.5. Limitations 

This study examined participants who were approximately 20–22 years of age. Therefore, these 
findings cannot be generalized to older individuals. Furthermore, we excluded participants who fell 
below fitness strata defined as “very poor” and “high fitness.” Thus, we cannot generalize our 
findings to individuals falling within those fitness categories, and further research is needed to 
ascertain the effectiveness of CUR and FEN in those individuals. Additionally, one of the primary 
limitations of the current study was the dependence on subject compliance. The participants were 
not confined to the laboratory throughout the supplementation and testing periods; therefore, sleep 
and dietary intake outside of the three days prior to PRE- and POST-testing were not accounted for. 
However, there were no differences in the macronutrient and total energy intakes from the self-
reported three-day food logs at PRE- and POST-test. Measuring the physical activity and diet in the 
months prior to testing would have provided a baseline to determine if these habits changed during 
the intervention period. In addition, many of our participants were college-aged and it is possible the 
academic calendar and social stressors might have influenced their PRE- to POST-test responses. 
Furthermore, the laboratory availability for testing was limited and the time of day for PRE- to POST-
test was kept consistent as much as possible but was not always identical. To control for these 
limitations as much as possible, we accounted for any prior supplementation through the health 
history review, as well as encouraged participants not to change exercise or dietary habits during 
enrollment. 

5. Conclusions 

The current findings indicated that fenugreek soluble fiber was responsible for the 
improvements in one submaximal threshold (VT), but did not alter V̇̇ O2peak after 28 days of CUR 
and FEN supplementation. The changes in the VT are most likely related to the increased FFA 
availability from fenugreek soluble fiber [2,13–15,17,19,20]. Previous investigators have indicated that 
curcumin had a small effect on V̇̇ O2peak in mice, and these effects may be amplified with the addition 
of an exercise intervention [19,20]. Thus, the lack of change in the V̇̇ O2peak in this study may be 
related to the inclusion of only a supplementation intervention without exercise. Potentially 
examining these same markers with an exercise intervention group might yield significant results 
that were not demonstrated with supplementation alone. The primary implications of the current 
study are that curcumin + fenugreek soluble fiber and fenugreek soluble fiber demonstrated equal 
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effects on a submaximal exercise intensity. These findings demonstrate the potential for fenugreek 
soluble fiber to delay fatigue and improve aerobic performance in healthy, asymptomatic individuals. 
It is important for researchers and practitioners to note, however, that the mean responses for the 
CUR and FEN group reflected a change greater than the MD for 14% (two out of 14) and 22% (four 
out of 18) of participants, respectively. Based on these findings, we recommend that, in addition to 
mean responses, researchers and practitioners examine nutritional interventions on a participant-by-
participant basis. 
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