
Eastern Illinois University Eastern Illinois University 

The Keep The Keep 

Undergraduate Honors Theses Honors College 

12-2011 

Degradation of Atrazine by White Rot and Soil Fungi Degradation of Atrazine by White Rot and Soil Fungi 

Gerald Presley 

Follow this and additional works at: https://thekeep.eiu.edu/honors_theses 

 Part of the Toxicology Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eastern Illinois University

https://core.ac.uk/display/346104257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://thekeep.eiu.edu/
https://thekeep.eiu.edu/honors_theses
https://thekeep.eiu.edu/honors_college
https://thekeep.eiu.edu/honors_theses?utm_source=thekeep.eiu.edu%2Fhonors_theses%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/67?utm_source=thekeep.eiu.edu%2Fhonors_theses%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages


Degradation of Atrazine by White Rot and Soil Fungi 

by 

Gerald Presley 

HONORS THESIS 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

BACHELOR OF SCIENCE IN BIOLOGICAL SCIENCES WITH HONORS 

AT EASTERN ILLINOIS UNIVERSITY 

CHARLESTON, ILLINOIS 

December 201 1 

I hereby recommend that this Honors Thesis be accepted as fulfilling this part of  the 
undergraduate degree cited above: 

Thesis Director Date 

15�./1 
Honors Program Director Date 



Table of Content 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . ii 

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . iii 

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . iv 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

Isolation of Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

Culture Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

Biomass Production and Atrazine Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 

Identification of Atrazine Metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0  

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 



Abstract 

The widespread use of atrazine in agriculture has lead to an abundance of this toxic 

chemical in the environment. Fungi that have the ability to degrade atrazine into less toxic 

products have been identified and used in the remediation of atrazine. In this study atrazine 

degradation in a defined liquid media was characterized in a diverse group of white rot 

basidiomycete and deuteromycete soil fungi. Atrazine did not have an effect on fungal growth 

although each species produced a different amount of biomass in culture. Statistical analysis 

showed that biomass production was an important factor in determining the amount of atrazine 

removed. Two of the twelve fungal species tested, Armillaria gallica and Aspergillus niger, 

removed amounts of atrazine from culture. Analysis of high pressure liquid chromatography 

chromatograms did not show the production of atrazine degradation products in fungal cultures 

that could be differentiated from control chromatograms. Gas chromatography-mass 

spectrometry analysis of organic extracts of fungal cultures also indicated that no chlorinated 

atrazine metabolites were produced in any of the cultures although unidentified compounds were 

detected in Mycena leaiana, Aspergillus jlavus, and Aspergillus niger cultures that may be 

hydroxylated atrazine metabolites. These data indicate that atrazine degradation did not occur in 

most of the fungal cultures and although it may have occurred in Mycena leaiana, Aspergillus 

jlavus, and/or Aspergillus niger, albeit at appreciable levels only in Aspergillus niger and 

Armillaria gallica. Removal of atrazine from Aspergillus niger and Armillaria gallica cultures 

might have b een due to atrazine sequestration in fungal biomass although the culture conditions 

might not have been conducive to atrazine degradation. 
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Introduction 

Atrazine is a triazine herbicide used to control weed pests in agriculture, primarily 

in the cultivation of corn. Atrazine is used in the treatment of  75% of all corn fields in the 

United S tates which accounts for the majority o f  the approximately 3 4.5 million kg 

consumed every year (USEP A 201 1 ). Atrazine kills non-resistant plants by binding to 

photosystem II (PSII) in chloroplasts and preventing electron transfer, leading to an 

accumulation of reactive oxygen species that damage lipid membranes in p lant cells and 

lead to cell death (Steinback et al 1 98 1 ;  Fedtke 1 982). Resistant plants such, as corn and 

sorghum, are not affected by atrazine because they are able to either metabolize atrazine 

before it binds to PSII or they possess a variant protein, natural or engineered, involved in 

PSII that does not allow atrazine to bind and inhibit electron transfer (Fedtke 1 982; 

Shimabukuro and Swansonl 969). 

The widespread use of atrazine has raised concerns because atrazine has been 

shown to act as an endocrine disruptor in several animals. Atrazine exposure, even at 

levels at or below 3 parts per billion (ppb ), the safe recommended limits for drinking 

water outlined by the United States Environmental Protection Agency, has been shown to 

alter sexual development, tissue maturation, and reduce survival rates in amphibians 

(Hayes et al 2006; Lenkowski et al 2008; Storrs and Kiesecker 2004; "Atrazine 

Background" 201 1 ). In addition, rainbow trout treated with atrazine show altered liver 

metabolism (Iurgi et al. 2009). These studies suggest that atrazine is a direct threat to the 

survival of wildlife and that the widespread application of atrazine has the potential to 

disrupt natural ecosystems. Mammalian systems have also shown detrimental responses 

to atrazine exposure. Rats exposed to atrazine exhibit delayed sexual development, 



hastened reproductive aging, and increased incidence of mammary tumors caused by an 

altered pattern of female hormone secretion (Cooper et al. 2007; Ashby et al. 2002). 

These studies indicate that atrazine acts as an endocrine disruptor in model animal 

systems and may act as a human endocrine disruptor. 

The potential health risks of atrazine exposure, coupled with its persistence in the 

environment, make it a very real public health concern. Atrazine is a recalcitrant 

chemical that is relatively mobile in soils and is able to leach into surface and 

groundwater (Periera and Rostad 1 990; Ma and Selim 1 996). Atrazine has an average 

half life in soils of 60 days which can vary depending on environmental conditions 

(USDA ARS, 2008) and this allows it to readily make its way into human drinking water 

supplies. The United States Department of Agriculture reported in its 2009 Pesticide Data 

Program Summary that 88% of drinking water sampled from across the United States 

contained detectable levels of atrazine, making chronic human exposure at low levels 

unavoidable. 

The half-life of atrazine depends on a number of factors including soil pH, 

chemical composition, and microbial communities present in contaminated soil (Krutz et 

al. 2008). Microbial communities in particular have a strong effect on the removal of 

atrazine from soils. Soils that have a history of treatment with atrazine tend to harbor 

microbes that are able to degrade atrazine more efficiently than soils untreated with 

atrazine (Krutz et al. 2008). In addition, fungi acclimatized to atrazine containing 

environments degraded atrazine more quickly in synthetic media than non-acclimatized 

fungal isolates (Singh et al. 2008). This suggests that exposure to atrazine induces the 

production of atrazine degrading genes in soil microbes. 
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Several bacterial species have been identified that have at least one or more 

atrazine degrading genes present in their genome and demonstrate the ability to degrade 

atrazine. The bacterial strain Pseudomonas ADP was isolated from atrazine contaminated 

soil and shown to mineralize atrazine. Atrazine can be used as the sole source of  nitrogen 

for Pseudonmonas (Mandelbaum et al. 1 995). Since then, Psudomonas ADP has been 

used as a model organism for bacterial atrazine mineralization and metabolism. Genes 

involved in atrazine mineralization in Pseudomonas may have evolved specifically for 

the purpose of  deriving a source of nitrogen from atrazine and may have offered a 

selective advantage to Pseudomonas in agricultural fields rich in atrazine. 

Although bacteria capable of mineralizing atrazine were first isolated only two 

decades ago (Wackett et al. 2002), atrazine metabolizing genes are now widespread 

among soil microbes. Atrazine metabolizing genes may have arisen in different bacteria 

due to the widespread presence of atrazine in the environment. In addition, because 

atrazine metabolizing genes are carried on a single plasmid in some species, they could 

have easily been spread by horizontal gene transfer (Wackett et al. 2002). 

The genes involved in atrazine degradation have been described in Pseudomonas 

ADP. All of  the genes involved in atrazine metabolism are present on a single plasmid, 

pADP-1 which contains 1 04 putative genes including genes necessary for translocation, 

transcriptional regulation, and membrane transport proteins (Martinez et al. 2001 ). 

Atrazine is degraded by the hydrolysis of its chlorine atom by the atzA protein. This is 

followed by two successive N-dealkylations, the hydrolysis of the N-ethyl group carried 

out by the atzB protein, and the hydrolysis of the N-isopropyl group by the atzC protein 

to yield c yanuric acid. The triazine ring in cyanuric acid is then cleaved and further 
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degraded to C02 and urea by proteins atzD, atzE, and atzF (Sene et al. 2010). Urea can 

then be used as a nitrogen source by shuttling it through the urea cycle. The triazine ring 

is used solely as a source of nitrogen by Pseudomonas, but the hydrolyzed alkyl groups 

yield ethanol and isopropanol which can be utilized as a source of carbon. 

Fungi can also degrade atrazine, but with very different mechanisms than seen in 

bacteria. Many of the fungi that have been shown to degrade atrazine are white rot wood

degrading fungi (Bending et al. 2002). White rot fungi are characterized by their ability to 

completely remove lignin, a polyphenolic biopolymer, from woody substrates, leaving 

the wood with a white appearance due to the remaining cellulosic material. This is 

accomplished this by using a unique set of enzymes including lignin peroxidases (LiPs) 

and manganese peroxidases (MnPs). These enzymes oxidize low molecular weight 

substrates to free radicals that act as reaction mediators and oxidize the �-0-4 aryl ether 

bonds between lignin monomers (Hammel and Cullen 2008). White rot fungi have been 

extensively studied because of their potential use in commercial delignification and 

bioremediation. The non-specific free radical mechanism by which white rot fungi de

polymerize lignin allows them to oxidize a variety of xenobiotic compounds such as 

polyaromatic hydrocarbons and polychlorinated biphenyls (Novotny et al. 2004; 

Chupungars et al. 2009). Several widel y  studied white rot species have been shown to 

degrade atrazine including Phanerochaete chrysosporium Burds, Pleurotus pulmonarius 

(Fr.) Quel . ,  and Trametes versicolor (L.)Lloyd (Bastos and Magan 2009 ; Mougin et al . 

1 997; Masaphy et al. 1 993 ). A larger diversity of common soil fungi, including many 

deuterom ycetes, are also able to degrade atrazine and some were isolated from atrazine 
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contaminated soils (S ingh et al . 2008; Kaufman and Blake 1 970; Khromonygina et al. 

2003 ). 

Unlike bacteria, fungi do not produce proteins specifically for the purpose of 

atrazine degradation. Non-substrate specific enzymes produced for other purposes, such 

as lignin degradation, degrade many xenobiotics, one of which may be atrazine, although 

a role of l igninolytic enzymes in atrazine degradation has not been demonstrated. In 

addition, no fungi have been shown to mineralize the triazine ring; they onl y  modify 

atrazine by N-dealkylation, hydroxylation, and/or de-hydrogenation of  the parent 

structure. N-dealkylated atrazine metabolites, more specifically deethyl atrazine, 

deisopropyl atrazine, and deethyl deisopropyl atrazine are the most commonly produced 

compound by white rot and imperfect fungi (Kaufman and Blake 1 970; Sene et al 201 0). 

De-chlorinated metabolites such as hydroxyatrazine and its de-alkylated analogs are also 

produced in imperfect fungi and white rot fungi (S ingh et al. 2008 ; Masaphy et al. 1 996). 

Because deuteromycete fungi do not produce the LiPs and MnPs found in white 

rot fungi, they must employ some other mechanism to degrade atrazine. Cellular 

detoxification enzymes, such as fungal cytochrome P450s, may also play a role in the 

degradation of atrazine by fungi (Masaphy et al . 1 996; Mougin et al . 1 997). The 

util ization of these widely distributed enzymes in atrazine degradation would help 

explain why such a diverse group of fungi have the ability to degrade atrazine. 

The de-alkylated metabolites of atrazine have a reduced but significant 

phytotoxicity which are thought to contribute to the persistence of herbicidal effects of 

atrazine in agricultural fields (Fedke 1 982). Few studies on the toxicity of atrazine 

5 



metabolites in animal systems have been completed, but existing work shows that they 

are generally  less toxic than atrazine. Aquatic invertebrates and algae chronically exposed 

to atrazine showed lower survival rates than those exposed to its de-alkylated metabolites 

(Ralston-Hooper et al. 2009). In addition, hormonal secretion from mouse pituitary 

glands was altered in mice that were fed atrazine, while mice that were fed the de

isopropyl-de-ethyl atrazine metabolite did not show altered hormonal secretions (Fraites 

et al . 2009). 

The ability to degrade atrazine and other xenobiotics into less toxic or non-toxic 

metabolites makes fungi good candidates for use in mycoremediation, specifically the use 

of fungi in bioremediation. Fungi may be used in the mycoremediation of atrazine in 

heavily contaminated areas or as atrazine degrading biofilters in soils frequently exposed 

to atrazine spills. In order to test the hypothesis of mycoremediation of atrazine by fungi, 

fungi with the ability to modify atrazine and reduce its toxicity must be identified. This 

can be accomplished by screening fungi for the ability to degrade atrazine and 

subsequently characterize degradation products. Previous research that has identified 

atrazine degrading fungi can be used to target fungi with similar capabilities. Because 

wood decaying white rot fungi and soil inhabiting deuteromycetes are known to degrade 

atrazine, fungi with similar ecological roles and metabolic properties may also be able to 

degrade atrazine. Targeted screening of fungi and characterization of atrazine degradation 

products will provide the information needed to identify fungal species that are well 

suited for use in the mycoremediation of atrazine. 

In this study, a diverse group of soil inhabiting deuteromycete and white rot wood 

decay fungi were surveyed to identify atrazine detoxifying species that could be used in 
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mycoremediation of atrazine. The degree of atrazine removal was measured, the effects 

of atrazine on fungal growth were assessed, and atrazine metabolites produced were 

identified for each species. Fungi tested were expected to produce N-dealkylated atrazine 

metabolites, much like metabolically and ecologically similar fungi in which atrazine has 

been previously characterized. This work will help identify species of fungi that are best 

suited for use in the mycoremediation of atrazine and have the proper metabolic 

capabilities to detoxify contaminated substrates. 

Methods 

Isolation of Fungi 

Basidiomata of white rot wood decay fungi were collected and identified to 

species. Voucher specimens were dried and deposited in the cryptogamic herbarium at 

Eastern Illinois University. Wedges of fresh pileus tissue containing lamellae were 

suspended over malt extract agar (MEA) until basidiospores were deposited on the agar 

surface. Germinated basidiospores were transferred to potato dextrose agar (PDA) until 

axenic fungal cultures were isolated. Fungal cultures were maintained on PDA for use in 

bioassays. 

Culture Conditions 

Fungi were grown in synthetic liquid media modified from Kirk et al. ( 1 978)  

supplemented with 1 % glucose as a carbon source. The media contained per liter of 

autoclaved water: 0.2 g KH2P04, 0.05 g MgS04·7H20, 0.0132 g CaCb·2H20, 0.096 g 

NH4N03, 1 ml of mineral salts solution, and 0.5 ml of vitamin solution. The mineral salts 

solution contained per 50 ml of autoclaved water: 0.15 g MgS04·7H20, 0.075 g 
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nitrilotriacetate, 0.025 g MnS04·H20, 0.05 g NaCl, 0.005 g FeS04·7H20, 0. 0077 g 

CoCh·2H20, 0.0055 g CaCh·2H20, 0.0089 g ZnS04·7H20, 0.0026 g CuS04, 0.0009 g 

AlK(S04)2 · 1 2H20, 0.0005 g H3B03, and NaMo04·2H20. The vitamin solution was made 

with de-ionized water filter sterilized after it was made and stored at -20 °C. The vitamin 

solution contained per 200 ml: 0.0004 g biotin, 0.001 g thiamine HCl, 0.0004 g folic acid. 

0. 001 g riboflavin, 0.001 g nicotinic acid, 0.001 g calcium panothenate, 0.001 gpara

amino benzoic acid, and 0.002 g pyroxidine. Some of the vitamins included in the media 

described in Kirk et al. (1 978) were not included because they were not available due to 

lack of funding. 

1 00 ml cultures were made with and without atrazine supplemented with 1 % 

glucose (1  g per culture). Atrazine containing cultures were made using a 3 0  ppm stock 

solution of atrazine and atrazine-free cultures were made using de-ionized water. A total 

of 9 5 ml of water or atrazine solution per culture was autoclaved. After cooling, 5 ml of 

the 20x mineral salt solution described above was added to each culture to bring each to a 

final volume of 1 00 ml. The final concentration of atrazine in cultures was 28 . 5  ppm. 

Cultures were inoculated with agar plugs 4 mm in diameter covered in mycelium taken 

from the actively growing margin of fungal cultures. Uninoculated atrazine-containing 

controls were made and incubated alongside each group of fungal cultures. All cultures 

were replicated four times. Cultures were incubated for 21 days at 25 °C without shaking 

in regular cycles of 1 2  h of light and dark. 
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Biomass Production and Atrazine Removal 

After 21 days of incubation fungal cultures were filtered using a pre-weighed 

Whatman No. 1 paper filter to remove biomass. The biomass was placed pre-weighed, 

dried glass jars and dried for two days at 60 °C. The final dry biomass was measured 

after drying. 

The extracellular media was analyzed using high pressure liquid chromatography 

(HPLC), and a Hitachi HPLC. Each run was 1 5  minutes long with a flow rate of 

1 ml/minute. The solvent system used was 50:50 water:acetonitrile and 1 0  µl of sample 

was injected per run. Solutes were detected at 222 nm. The integration of peaks 

corresponding to atrazine was used to determine the amount of atrazine removed from 

solution relative to un-inoculated controls. Any media that was not immediately analyzed 

was stored at -20 °C. 

Statistical Analysis 

Fungi tested were grouped in four different groups each with its own control culture. SAS 

was used to analyze the data using a nested ANOVA to determine if atrazine removal 

was significant within each control group. Each group of fungi with a separate control 

was analyzed as a batch. A contrast statement was performed on the batches to determine 

if they were different from one another. Because the effect of batch was not significant, 

the controls were pooled from each of the groups and compared to experimental cultures 

to determine if atrazine removal by each species was significant. The univariate 

procedure was run to identify any outliers in the data set. 
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An ANCOVA was performed using dry fungal biomass as a covariate was used to 

measure the effect of mass production on overall atrazine removal. The effect of species 

on atrazine removal was tested using ANOVA and a contrast statement was run between 

each species and the control group. 

Identification of Atrazine Metabolites 

The culture medium from atrazine cultures (�400 ml) was split into 200 ml 

fractions and each was extracted separately with 50 ml followed by 3 0  ml of 

dichloromethane. The organic fractions for each culture were pooled and evaporated 

using a rotovapor. The sol id was dissolved in a minimal portion of dichloromethane and 

diluted to 1 00-200 ppm for analysis with GC-MS. 

Results 

Total fungal biomass for atrazine-containing and atrazine-free cultures varied for 

each species at the end of 21 days (Table 1 ). An ANOV A detected no overall effect of 

atrazine on total dry biomass production (Table 2). Different species produced different 

amounts of  biomass in culture (p < 0.0001 ). Atrazine affected the growth different fungal 

species to varying degrees (p = 0.0009). However, atrazine did not have a significant 

effect on the production of fungal biomass. 

Analysis of the culture medium with HPLC did not identify any atrazine 

metabolites (Figure 1 ). Atrazine-containing cultures showed several small peaks eluting 

before atrazine in all of the species tested. However, un-inoculated controls and atrazine

free controls also contained several peaks that eluted earlier than atrazine' s retention time 

(around 8 . 5  min) and no unique peaks could be identified. Aspergillus jlavus cultures 
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displayed several large peaks of eluting before atrazine, but atrazine-free cultures showed 

the same peaks, indicating that these were normal fungal metabolites and not atrazine 

metabolites (Figure 1, D 1 and D2). HPLC analysis was not able to identify any difference 

between atrazine-containing and atrazine-free controls other than differences in the 

concentration of atrazine. 

Two outliers were identified, one in Aspergillus niger Tiegh. treatments and one 

in Armillaria gallica Marxm. and Romagn. treatments. Only two species removed 

atrazine from solution, Aspergillus niger (p=0.033  7) and Armillaria gallica (p=0.0486). 

Another analysis was run without the outliers and the p values changed to 0.0494 for 

Aspergillus niger and 0.0710 for Armilliaria gallica (Table 2). The separation of the 

variation due to mass in the ANCOV A increased the p values for Aspergillus niger and 

Armillaria gallica made their responses similar to other species tested (Table 2). 

Organic extracts of the extracellular medium of atrazine-containing cultures were 

analyzed with GC-MS . No chlorinated atrazine metabolites were identified in any of the 

gas chromatograms and atrazine was the only chlorinated compound found in the mass 

spectra. Metabolites of unknown identity were detected in Mycena leaiana 

(Berk. )Sacc.(3 ), Asper gill us jlavus Link.(11 ), and Aspergillus niger (1) cultures (Figure 

2. A, B, and C). Only two metabolites in Mycena leaiana cultures, biphenyl and benzene 

propanal , were identified and these had no apparent structural relationship to atrazine. 

Analysis with GC-MS did not support the production of chlorinated atrazine metabolites 

by any of the fungi tested and it was not clear if the unidentified metabolites detected 

were de-chlorinated metabolites from atrazine metabolism. 
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Discussion 

Atrazine had no effect on fungal growth under the culture conditions tested. The 

methods utilized tested fungal growth in cultures containing 28 . 5  ppm atrazine, four 

orders of  magnitude greater than concentrations that have been shown to produce an 

endocrine disrupting effect in amphibians and the highest level of  atrazine that is legally 

allowed in drinking water in the United States (Hayes et al. 2006). It is not clear if 

atrazine had any effects at the cellular level in these fungi because this study only 

measured the total dry biomass produced (Table 1 ) .  The levels of atrazine tested in this 

study may have been too high to have an effect on fungal growth. If atrazine only affects 

fungal growth at lower concentrations, (Hayes et al . 2006) then any negative impacts of 

atrazine might not be seen with this experimental design. Therefore, the results of this 

study cannot be used to make predictions about the effect of atrazine on fungi at field 

concentrations. 

The different fungal species produced different amounts of dry biomass in the 

same time period. This is not unexpected considering the diversity of organisms tested. 

For example, the deuteromycetes tested grew much faster than the white rot 

basidiomycetes (Table 1 ). 

Removal of atrazine was observed relative to controls in fungal cultures of 

Armillaria gallica and Aspergillus niger, two of the twelve fungi tested. Armillaria 

gallica is a white rot wood-degrading basidiomycete and Aspergillus niger is a soil 

dwelling, saprobic deuteromycete that is commonly isolated from air and soil samples. 

S imilar kinds of fungi have been shown to degrade atrazine previously (Singh et al. 2008; 
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Masaphy et al. 1 993 ; Bending et al. 2002). After analyzing the data set without the 

outliers, p values generated from contrasts between each species and its control did not 

change drastically. The p value for Armillaria gallica increased from 0.0486 to 0.0710 

(Table 2 ), not significant at 95% confidence interval, but low enough to say that 

Armillaria gallica did have an effect on the level of atrazine in solution. For Aspergillus 

niger p increased from 0.0337  to 0.0494, still significant with a 95% confidence interval 

(Table 2). Either way both species were able to remove atrazine from solution. 

Separation of the variation due to mass from the analysis made the previously 

significantly different levels of atrazine removal non-significant, indicating. The amount 

of mass produced by the fungus was important in determining how much atrazine was 

removed from cultures. This suggests that the fungi may be bioaccumulating atrazine in 

their hyphae rather than degrading it in this experiment. Benoit et al. ( 1 998) showed that 

atrazine was adsorbed onto the walls of the fungal hyphae of two species of fungi isolated 

from straw compost grown in potato dextrose broth. The concentration of atrazine in 

solution dropped quickly in the first few days of incubation. Biosorbtion was responsible 

for the removal of all of the atrazine that was removed from solution and no degradation 

took place. Biosorbtion might have been responsible for the removal of atrazine from 

fungal cultures in this experiment because mass production had an effect on the removal 

of atrazine. If biosorbtion was the route of  atrazine removal, a greater biomass production 

would have created a greater surface area on the fungal hyphae for atrazine to adsorb and 

allowed cultures with more biomass to remove more atrazine. 

There was no correlation however between atrazine removal and biomass 

production. For example, Trichoderma spp. did not significantly remove atrazine from 
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culture, but it produced a greater amount of dry fungal biomass than Aspergillus niger or 

Armillaria gallica, the only two species that significantly removed atrazine from culture 

(Table 1 ). 

If atrazine was removed via biosorption to fungal hyphae, and the total mass of 

hyphae produced was the only factor involved in determining the amount of atrazine 

removed, then species that produced a greater mass of hyphae should remove the most 

atrazine. This is not the case and thus other factors may play a role. For example, 

different species of fungi could secrete variable polysaccharide coatings which may vary 

in their ability to bind atrazine. Alternatively, the difference in atrazine removal from 

culture may have been a randomly generated difference among the different species 

tested and is not dependent on any of the species' characteristics. 

Although HPLC analysis of the culture medium showed the production of 

metabolites that eluted earlier and later than atrazine, without direct examination using 

l iquid chromatography-mass spectrometry (LCMS) there was no way to determine their 

identity. Peaks with similar retention times were present in atrazine-free controls and 

uninoculated controls, although it is not possible to determine if they represented the 

same compounds. The detection method used in this experiment was designed to detect 

the triazine ring in atrazine and metabolites visible in HPLC chromatograms (Figure 1 ) . 

The absence of clearly unique signals in atrazine cultures suggests that no atrazine 

metabolites were produced. Without a method to directly detect each compound eluting 

from the column, an identity cannot be assigned to the compounds detected in HPLC 

chromatograms and they might be normal fungal metabolites. 
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GC-MS analysis of organic extracts of fungal cultures also showed that no 

chlorinated atrazine metabolites were present in the fungal cultures. Atrazine was the 

only chlorinated compound detected (Figure 3 .  E). Chlorinated compounds display a 

unique M+2 peak two units heavier and about one-third the intensity of the molecular ion 

peak for that compound. No patterns indicative of chlorination were detected in mass 

spectra indicating that no chlorinated metabolites were produced. Two of the metabolites 

produced in Mycena leaiana were identified, one was biphenyl ,  an aromatic compound 

consisting of two phenyl rings separated by a covalent bond, and the other was identified 

as benzene propanal, a compound consisting of benzene with a single propanal functional 

group. These metabolites are structurally unrelated to atrazine metabolism and are 

probably a normal fungal metabolite. The other metabolite could not be identified beyond 

the fact that it did not contain chlorine. 

Cultures of Mycena leaiana turned a dull orange color after the incubation period 

indicating the presence of some kind of pigmented compound in the media. This orange 

p igment was transferred to organic extracts and analyzed with GC-MS. Benzene propanal 

is a fragrant, clear to slightly yellow liquid at room temperature and may have imparted 

some of the pigmentation in Mycena leaiana cultures. Another unknown compound 

detected in gas chromatograms of Mycena leaiana culture extracts may have also been 

involved in the pigmentation of the culture medium. The unknown compound was in low 

abundance relative to atrazine. Because atrazine was not removed from Mycena leaiana 

cultures, any atrazine metabolite produced would have to be produced in very small 

quantities. The unknown compound may have been a de-chlorinated atrazine metabolite 
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produced in trace amounts that did not lead to statistically significant removal of atrazine 

in Mycena leaiana cultures. 

Extracts of Aspergillus.flavus cultures contained eleven unknown metabolites 

(Figure 2. A). Five of these showed a high abundance relative to atrazine and were likel y 

not atrazine degradation products since atrazine was not removed from these cultures and 

production of atrazine metabolites would have reduced the amount of atrazine in solution. 

The other six metabolites in lower abundance may have been de-chlorinated metabolites 

such as hydroxyatrazine, but this cannot be confirmed because molecular standards for 

these compounds were not available. None of the compounds found in Aspergillus .flavus 

cultures had a molecular weight that was identical to any of the possible hydroxylated/de

alkylated atrazine metabolites that may be produced in fungal atrazine metabolism. 

HPLC analysis of Aspergillus .flavus cultures show the presence of several high 

abundance compounds eluting before atrazine in atrazine-containing and atrazine-free 

controls (Figure 1 .  D 1 and D2). These compounds must be normal fungal metabolites not 

related to atrazine because they are produced in atrazine-free control cultures as well. 

They l ikely account for some, if not all ,  of the metabolites seen in GC-MS. 

Cultures of Aspergillus niger contained one unidentified metabolite in high 

abundance relative to atrazine (Figure 2.B). Atrazine was removed from Aspergillus 

niger cultures so this unknown metabolite may represent some de-chlorinated 

degradation product. On the other hand it might not associated with atrazine. The 

molecular ion peak for this metabolite was not clearly identifiable. It could have been at 

m/z= 1 96, 1 78 ,  or 1 68 .  A possible de-chlorinated atrazine metabolite, deethyl 

hydroxyatrazine, has a molecular weight of 1 69, close to one of the possible molecular 
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ion peaks for this compound. Without molecular standards, the identity of this metabolite 

cannot be confirmed. GC-MS analysis of Armillaria gallica cultures showed no 

metabolites. In this case, the removal of atrazine seen in Armillaria gallica cultures could 

be attributed to the previous biosorbtion explanation; none of the atrazine was degraded 

and instead it was adsorbed onto the fungal hyphae. 

Curiously, atrazine removal or the production of atrazine metabolites was not 

detected in Trametes versicolor cultures even though previous studies have shown its 

ability to degrade atrazine (Bastos and Magan 2009) . Protein synthesis is a tightly 

regulated process influenced by many exogenous and endogenous signals. Both 

endogenous and exogenous signals allow cells to regulate protein expression in order to 

prevent futile production of proteins. Production of proteins that may be involved in the 

degradation of atrazine, such as LiPs and MnPs, are tightly regulated in white rot fungi 

by nutrient availability. The culture conditions tested in this study may not have 

promoted the production of atrazine degrading enzymes in the fungi tested. This could be 

why no degradation of atrazine by Trametes versicolor was observed and why other fungi 

tested may be able to degrade atrazine under the proper conditions. 

Lignin metabolism in white rot fungi is mediated by LiPs and MnPs and lignin 

metabolism in Phanerochaete chrysosporium is regulated by a number of factors the 

most important of which is nitrogen limitation. Lignin degradation was increased in 

"low" concentration (2.4 mM) nitrogen cultures of P. chrysosporium versus "high" 

concentration (24 mM) nitrogen cultures (Kirk et al. 1978). Thiamine was the only 

vitamin that was necessary for lignin metabolism in P. chrysosporium and it was included 

in the salts medium utilized in this study. Fungal cultures in this experiment used the 
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lower concentration of nitrogen, 2.4 mM nitrogen (NH4N03), found by Kirk et al. (1993) 

to maximize LiP and MnP production. Despite the efforts to stimulate LiP and MnP 

production, no atrazine metabolism was detected. It is possible that a further reduction in 

nitrogen concentration would have aided atrazine metabolism by stimulating further 

production of lignin degrading enzymes. 

Nitrogen limitation is an important factor in determining the rates of atrazine 

biodegradation in the environment. Soil microbial communities respond to nitrogen 

limitation with an increased level of atrazine biodegradation. Sims et al. (2006) found 

that soils that had been farmed without nitrogen fertilization for 1 30 years harbored 

microbial communities that were able to mineralize a higher percentage of atrazine than 

microbial communities from soil that was regularly treated with nitrogen supplements. 

Soil  fungi contributing to the degradation of atrazine in these microbial communities 

must have been conditioned by nitrogen limitation to more efficiently degrade atrazine. 

Mn concentration was also shown to affect the transformation of atrazine by 

Pleurotus pulmonarius, another white rot fungus. The production of N-dealkylated 

atrazine metabolites was maximized in cultures containing 3 00 µM of Mn, showing a 

265% increase in the production of N-dealkylated metabolites relative to the un

supplemented control containing 0.8 µM Mn (Masaphy et al. 1 996). The media used in 

this study contained 3 .3 1  µM Mn, two orders of magnitude lower than the concentration 

that yielded the maximum production ofN-dealkylated atrazine metabolites by 

P.pulmonarius. This may have contributed to the failure to reduce atrazine concentrations 

in fungal cultures. 
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The stimulation of lignin degrading enzymes is important for the decomposition 

of many xenobiotics. However, the same enzymes may not be responsible for the 

degradation of atrazine by fungi. The degradation of atrazine by soil deuteromycetes 

cannot involve the action of LiPs and MnPs because they are only produced by white rot 

wood degraders. Several deuteromycetes have been shown to degrade atrazine into N

dealkylated and hydroxylated metabolites which suggests that different pathways are 

used in these fungi to degrade atrazine (Singh et al. 2008; Kaufman and Blake 1 970). 

C ytochrome p450s (p450s) are detoxification enzymes that catalyze the oxidation of a 

wide variety of substrates that are conserved in all classifications of living organisms 

(Van den Brink et al. 1 998). Fungal p450s help deuteromycetes adapt to and degrade 

different substrates encountered in their environment. Some evidence suggests that fungi 

such as Pleurotus pulmonarius and Phanerochaete chrysosporium may metabolize 

atrazine using p450s (Mougin et al. 1 997; Masaphy et al. 1 996) . 

The use of p450s in atrazine degradation would explain why techniques used to 

increase lignin degradation, such as nitrogen reduction, did not result in the degradation 

of atrazine. The expression of p450s in Phanerochaete chrysosporium is  not drastically 

affected by nitrogen levels or the type of carbon source that is given. The primary 

inductive agent of p450s appears to be xenobiotic substrates of the enzyme (Doddapenei 

et al. 2005) .  Therefore, nutrient limitation would not affect the amount of atrazine 

removed from solution if p450s catalyze its degradation. This would also explain why 

deuteromycetes are able to degrade atrazine without the production of lignin degrading 

enzymes. 
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Atrazine degradation was not observed in most of the fungal cultures utilized in 

this study including Trametes versicolor, a species that had previously been shown to 

degrade atrazine. The detection methods used in this study might have been inadequate to 

identify low concentration atrazine metabolites. While HPLC allows for the detection 

atrazine in the part per billion range and low abundance metabolites would have been 

detectable, there was no way to identify peaks separated from atrazine directly. Direct 

identification of metabolite peaks using LCMS would have assigned identities to each of 

the peaks seen in HPLC chromatograms. GC-MS allowed for the identification 

compounds from organic extracts of fungal cultures and no chlorinated atrazine 

metabolites were observed, but the identity of other metabolites detected in GC-MS could 

not be confirmed. As such, it is  unlikely that the compounds were below detection limits. 

Analyses indicate that total biomass production was important in determining 

atrazine removal. If p450s catalyze the degradation of atrazine, then nitrogen limitation 

may have actually worked against the degradation of atrazine by limiting fungal growth 

and decreasing the amount of detoxifying biomass in culture. It is possible that the 

incubation period might have been too short to produce enough fungal growth to remove 

atrazine from solution using the culture conditions tested and the fungal strains isolated. 

Although none of the twelve species tested in this study were proven to degrade atrazine, 

further testing using different culture conditions may yield different results and identify 

fungal species with the ability to degrade atrazine. 
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Figure 1 .  HPLC chromatograms from culture media of fungal cultures. Armillaria gallica 

atrazine-free (Al) and atrazine-containing (A2)Trametes versicolor atrazine-free (Bl) 

and atrazine-containing (B2) Mycena leaiana atrazine-free (Cl) and atrazine-containing 

(C2) Aspergillus flavus atrazine-free (D 1 )  and atrazine-containing (D2) Aspergillus niger 

atrazine-free (E 1 )  and atrazine-containing cultures (E2) and an atrazine-containing, 

uninoculated control (F). 
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Figure 2.  GC chromatograms for dichloromethane extracts. Aspergillus jl.avus (A) 

Aspergillus niger (B) Mycena leaiana (C) Armillaria gallica (D) and atrazine-containing 

un-inoculated control cultures (E) . 

29 



Abundance 

7000 

6000 

5000 

4000 

llOO 

2000 

1000 

mh·->020 

Abundance 

60000 

50000 

40000 

300ll 

20000 

100ll 

A l  

30 

B 

60 

39 

40 

Scan 565 (7259 min�J.D 
55 

67 

50 60 70 80 90 

Scan 8991 lo887 nm� AN.D 

98 
' 

95 
125 1 53 1�78 196 

1 25 tfori:hoce 

1!IDJ 
1600) 
1400) 
12000 
10000 

97 OCIJ() 
6000 

1 1 1  4000 
1 05 2000 

100 1 10  1 20  130 miz.·:·O 

Abundance 

OOll 
7500 
7000 
6500 
6000 
5500 
5000 
4�UU 
4000 
3500 
3000 
2500 
2000 
1500 
1 UUU 

281 500 
80 100 120 140 160 180 200 220 240 260 280 m!z.->O 

43 Scan 861 (9.591 nmf. AF.D 
1 24 

A2 

SS 

lB6 

1[110 126 
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

Scan 1 1 71 !1 1 0�0 min): ML_2.D 

c 

77 

l .  21 0 

I 
194 21 1 1 1 5  1 31 1 78 

40 60 80 100 1 20 140 160 180 200 

Abundance Scan 1 098 [1 1 . 446 min): ML_2.D 200 

50000 D 
45000 
40000 
35000 
30000 21 5 

25000 58 
20000 68 
1 5000 43 1 73 

1 0000 21 7 

5000 30 1 87 
mln0;2o 40 60 80 1 00 1 20 1 40 1 60 1 80 200 220 

Figure 3 .  Mass spectra from compounds found in dichloromethane extracts. Aspergillus 

flavus (AI and A2) Aspergillus niger (B) and Mycena leaiana (C) with a mass spectrum 

of atrazine showing a prominent M+ 2 peak at m/z=2 1 7  and, two mass units higher than 

the molecular ion peak at m/z=2 1 5  (D) . 
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Table 1 .  Average dry fungal biomass produced in liquid culture after 2 1  days of 

incubation. 

S2ecies Atrazine Average Mass (g) 

Armillaria gallica y 0.0447 
Armillaria gallica N 0.0368 
Megacollybia rodmani y 0.0 1 67 
Megacollybia rodmani N 0.0 1 8 1  
Trametes versicolor y 0.0576 
Trametes versicolor N 0.022 1 
Cyathus striatus y 0 .01 1 1  
Cyathus striatus N 0.0 1 28 
Mycena leaiana y 0.0 1 45 
Mycena leaiana N 0.0332 
Xeromphalina kaujfmanii y 0.0299 
Xeromphalina kaujfmanii N 0.0328 
Auricularia auricular y 0.0043 

Auricularia auricular N 0.0055 

Crucibulum laeva y 0.020 1 

Crucibulum laeva N 0.0247 

Alternaria alternate y 0. 1 050  

Alternaria alternate N 0. 1 250  

Aspergillus flavus y 0.0835  
Aspergillus flavus N 0.0807 
Aspergillus niger y 0. 1 054 
Aspergillus niger N 0. 1 097 

Trichoderma sp. y 0. 1 2 1 2  

Trichoderma sp. N 0. 1 43 1  
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Table 2 .  P values from ANOV A and ANCOV A analyses. Contrasts between control 

group and different species determined if atrazine removal was significant. 

ANOVA No Outliers ANCOVA 

Control v Aspergillus flavus 0.5988 0.4866 0.9432 
Control v Armillaria gallica 0.0486 0.07 1 0 . 1 8 14  
Control v Aspergillus niger 0.03 3 7  0.0494 0 .5366 
Control v Alternaria alternate 0.6905 0 .5978 0 .8536 
Control v Auricularia auricula 0. 8992 0 .8664 0 .8535 
Control v Crucibulum laeva 0.7668 0 .694 0.8706 
Control v Cyathus striatus 0.9896 0.9862 0.9096 
Control v Mycena leaiana 0.8 1 64 0 .7579 0 .7058 
Control v Megacollybia rodmani 0.3902 0.2592 0.437 1  

Control v Trichoderma sp. 0 .79 1 9  0.7262 0.795 1 

Control v Trametes versicolor 0.2096 0. 1 036  0 .5804 

Control v Xeromphalina kauflmanii 0.7202 0.6348 0 .9 1 1 8  
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