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Abstract 

 

In mammals, a complex system of regulatory signals distinguishes tissues, structures and 

functions. Combinations of transcription factors and co-factors regulate activation and repression 

of genes that result in cellular differentiation. Whole genome arrays allow the monitoring of 

genomic expression in specific tissues.  Fibroblast microarray studies have shown candidate 

genes that may be involved in fibroblast identification, including genes that express transcription 

factors Prrx1, Snai2 and Twist1.  A previous study showed that the Prrx1 and Snai2 could 

reactivate a fibroblast phenotype in hybrid cells that had lost fibroblast identity.  Furthermore, 

overexpression of these factors in liver-derived cells strongly repressed liver gene expression and 

activated fibroblast expression. Based on these observations, expression plasmids containing 

Prrx1, Snai2 and Twist1, expression cassettes were transfected independently into mouse 

Neuro2A neuronal cells using standard transfection technique, followed by the selection of 

G418-resistant clones (pool and clones).  Expression of essential fibroblast marker genes and 

neuronal genes was monitored in transfected cells and non-transfected cells using qualitative 

real-time polymerase chain reaction (RT-qPCR) on cDNA derived for isolated RNA.  Results 

showed that, surprisingly, little activation of expression occurred for any of the fibroblast genes 

tested. Rather, strong repression of several fibroblast genes was observed. However, both Snai2 

and Prrx1 did appear to strongly repress several neural genes tested, suggesting a partial 

reprograming of the Neuro2A cells away from a neural phenotype.  
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Chapter 1 

 

Introduction  

 

 

1.1 Overview of Cell Reprogramming 

            Cell reprogramming technology has expanded rapidly over recent years. Many attempts 

have been carried out to reprogram cells since the 1960s, with most experiments designed to 

establish aspects of cellular development.  Over the past decade, a large increase in research has 

occurred in this area with several significant developments (Mong et al.). Among them is the 

knowledge that pluripotent cells can be utilized to generate alternate cell lineages and that 

somatic cell programming is neither a unidirectional nor irreversible process. 

Understanding cellular reprogramming requires deep knowledge of gene regulation. All 

multicellular genomes utilize specific combinations of gene expression to produce cell-specific 

functions. Expression of key genes drives normal cellular processes, and perturbations in gene 

expression can result in cancerous growth of cells.  Gene regulation is both functional and 

structural (Schmidt and Plath). Therefore, the study of gene regulation is key when approaching 

the topic of cellular reprogramming. 

            A key finding was reversing the functionality of a fully differentiated mammalian cell 

back to a pluripotent stem cell using forced expression of some transcription factors (TFs) 

(Yamanaka). In this series of experiments, overexpression of Oct4, Sox2, Klf4, and c-Myc genes 

was able to reprogram somatic cells to an embryonic state (pluripotent stem cells) which could 

then be coaxed into becoming a variety of cell types using specific growth environments.  

Stem cells play a crucial role in experiments designed to understand the reprogramming 

processes. These cells possess two unique traits that can be exploited when conducting 
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reprogramming experiments, and much effort has gone into understanding stem cell choice 

during development (Rosa and Brivanlou). Stem cells have a pluripotent potential and can, under 

appropriate conditions, differentiate into any cell type (or even an entire organism - a clone). 

Another aspect of stem cell is their self-renewing ability through cell division while maintaining 

an undifferentiated state.  

1.2 Mechanisms controlling mammalian gene expression 

Much is known about regulation of gene expression in multicellular organisms. 

Mechanisms of gene regulation include chromatin, DNA regulatory elements, non-coding RNA, 

transcription factors and co-factors.   Chromatin (which includes DNA and histones) plays direct 

role in eukaryotic gene regulation by undergoing structural modifications that allow or limit 

access of genomic DNA to transcription machineries. Where genome access is granted, 

transcription is initiated and resulting mRNA molecule is translated into proteins which carry out 

functional roles in cellular metabolism, DNA synthesis, cell homeostasis and gene regulation 

(Narlikar et al.). Noncoding RNAs also play vital functions in splicing and translation as well as 

regulating gene expression. 

 Cis-regulatory DNA sequences and particular DNA binding domains of TFs which bind 

them lead to the transcription of genes. The TF domains are able to bind to target DNA 

regulatory sequences and participate in recruitment of the RNA polymerase complex to initiate 

transcription. Amino acids sequences of the TF binding domains are often mutated leading to 

altered ability to assist in establishment of gene transcription, which can ultimately affect cellular 

programming and cellular identity. The highest risk is gene mutation that results in incomplete 

gene activation (Mong et al.). Epigenetics also plays a critical role in gene regulation through 
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DNA methylation and through modification of histones modification by acetylation, 

phosphorylation, methylation and ubiquitination of specific amino acids.  

Cis-acting DNA regulatory elements are responsible for the control of eukaryotic gene 

expression and are therefore important determinant of cellular identity. These cis-acting elements 

are classified into four major categories: promoters, enhancers, silencers, and response elements. 

However, several other processes regulate gene expression, including DNA looping, 

transcriptional, post-transcriptional, and post-translational regulation. Those are vital for genetic 

regulatory elements to function properly since they aid in gene expression (Kim et al.).  

 1.3 Chromatin Remodeling and Histone Modifications 

            Chromatic remodeling is a genetic process that is necessary for cell reprogramming. 

(Kanherkar et al.). Histone modification plays a key role in the chromatin remodeling through 

epigenetic regulation. The assessment of histone modification in a cell type or tissue can be 

determined through the chromatin immunoprecipitation (ChIP) assay using antibodies to 

chromatin-modifying proteins that identify bound regions of DNA. This process keeps track of 

the interactions of DNA-proteins and allows the analsis of chromatin structures that are usually 

around a particular DNA sequence (Grath and Dai ).  

The ChIP Assay is potentially able to identify histone modifications during the process of 

reprogramming. In this procedure, protein-DNA crosslinking occurs using glutaraldehyde 

(Geiman and Robertson), followed by shearing of DNA and then use of antibodies to precipitate 

proteins-DNA complexes (Fang et al.). Crosslinks are then chemically removed and the attached 

DNA sequenced. In this way, interaction of chromatin modifying proteins with DNA control 

elements of key regulatory genes can be established during cellular reprogramming. 
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During recent years, several biotechnology companies have developed procedures to 

identify histone modifications and subsequent effects on gene expression of cultured cells or 

tissues.    Each method uses algorithms to identify genome-wide data (Alvarez Palomo et al.). 

These modifications include histone deacetylation, methylation, and phosphorylation by specific 

enzymes (Wilmut et al.).   

  

1.4. Reprogramming of Cells by Targeting Candidate Gene Expression 

Typically, only a small percentage of the selected cells are converted into pluripotent 

stem cells (iPSCs) in the cell reprogramming attempts.  Long before the current methodologies 

were available, the frequency of conversion was diminishingly small (Budniatzky and Gepstein). 

However, these experiments served as the template for current methods which provide the basis 

for reprogramming of even fully differentiated cells to a pluripotent state. Some of the 

innovations utilized the overexpression of primordial cells (Masserdotti et al.).  

It is important to note that extensive epigenetics changes occur during reprogramming, 

starting from the initiation of the process.   These processes are those that primarily create the 

embryonic stem cells (ESCs) resembling iPSCs (Takahashi). The resulting product should be 

molecularly, functionally, and structurally determining factor of the procedure success. 

Many studies have shown that the frequency of reprogramming of cells by either forced 

expression specific transcription factors and/or the introduction of compounds that can drive 

cellular differentiation result in only a small percentage of cells that respond. Although many 

studies do not support the idea of this process being stochastic, clonal analysis shows that the 

reactivation of pluripotency takes place in varied and distinct periods preceding the initiation in 

the specificity.  The formation of iPSCs is not clearly understood due to the complexity of the 



  

5 

process post-initiation (Gao et al.). This complexity includes large-scale changes in gene 

expression patterns.   Therefore, the analysis of processes in single cells responsible for the 

formation of iPSCs is very difficult (Abdelalim et al.) and limited studies on this topic have 

adequately addressed the issue. 

            The understanding of gene expression profiles during formation of iPSCs is the most 

appropriate method to explain the mechanism of cell reprogramming. This technique gives an 

insight into how cells are separated into distinct cell types at each point in cell differentiation. 

Typically, marked differences in gene expression profiles are observed as cells differentiate.  

Furthermore, the method also gives the implication that the activation of certain genes does not 

mean that the cell reprogramming will be successful. Rather, it suggests that it is the activation of 

other groups of genes that leads to the successful formation of iPSCs. 

After initial steps in reprogramming, cells enter into another complex phase leading to 

further transformations. This step results in the activation of endogenous pluripotency circuitry 

that normally hinders the successful formation of iPSCs and results in often unpredictable 

percentages of iPSCs (Polo et al.). Studies aimed at understating this post-initiation phase offer 

an understanding of critical genes that are activated at key points in the process. 

Recent whole-genome fibroblast analyses identified candidate genes that can potentially 

serve as master regulators of fibroblasts identity (ref). These studies compared gene expression 

profiles of fibroblasts to that of hepatoma cells and fibroblast x hepatoma hybrid cells. Most 

notable are genes Prrx1 and Snai2, which were shown to activate several downstream fibroblast 

marker genes such as Bmp3, Twist, Shox2, C-fos, Slug, Sema3A, Sppl, and Col1a1in the cell 

hybrids which had previously turned off these genes (Ray et al.).  
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The ability of Prrx1 and Snai2 to reprogram cells was further explored by over-

expression of these genes in a rat liver-derived hepatoma cell line, Fg14.   Results showed that 

both Prrx1 and Snai2 activated expression of several fibroblast marker genes (Twist, cFos, 

Shox2a, and Bmp3 but not others (Sema3a and Spp1) in the liver-derived cells. Importantly, 

repression of several liver-specific genes was observed by overexpression of these transcription 

factors (Alzahrani).  

Moreover, suppression of either Prrx1 or Snai2 in fibroblasts using RNAi knockdown 

experiments was found to reprogram the fibroblasts to an earlier linage that could then be coaxed 

into expressing linage specific marker genes for adipocytes, chondrocytes or osteocytes. These 

findings indicate that the inhibition of a single TF gatekeeper in a cell engaged in lines is 

appropriate for the acquisition and reprogramming of cell plasticity without permanent genetic 

modification (Ray et al.). 

.  

1.5. Neuronal Cell Development 

            Neural cell formation, especially that of neurons and glial cells, during embryogenesis is 

essential for the survival of the developing embryo.  In the process of embryo formation, the 

neural system is usually the first to develop and the last to complete development (Buganim et 

al.). During the initial stages, the neural system forms a neural plate that folds, resulting in the 

formation of a neural groove and a neural tube over time. 
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1.6. Stages of the Neurogenesis 

During the development of the nervous system and neurons, four phases are involved. 

These stages include neurogenesis, cell migration, differentiation, and outgrowth (Crespo et al.). 

The neurogenesis process forms the foundational basis of the neural and nervous system. It may 

be defined as the first and the initial stage of neural development. Undifferentiated cells tend to 

undergo mitosis to give rise to neuroblasts or stem cells (Gage). These will eventually be 

differentiated into different neuron types. Neuroblasts are considered to perform more work than 

stem cells in the process of embryonic development. Stem cells do not take a significant role 

until adult neural development. 

Cell migration is the second stage of   neurogenesis. In this phase, the nervous system is 

involved to perform the corresponding regulatory functions. The differentiation of actions 

becomes more identified, which is a natural step of development. Cells always move from the 

ventricular region to other systems. In other zones, they are tasked with the establishment of cell 

populations, which is a natural step of the whole structure. 

The third stage is the migration of cells into the marginal zone leading to differentiation. 

In  this phase, the nervous system cells start to be task-specific in nature (Chatterjee and Ahituv). 

Neural cells differ according to the functions they perform. This differentiation stage takes place 

concurrently with the fourth phase. The fourth phase includes formation of dendrites and axons.  

1.7 Neurological Diseases 

            Neurological disorders are complications that affect the nervous system and the puerperal 

system. They are the problems that make it impossible for the nervous system to perform its 

natural functions. The most common disorders are Alzheimer’s disease, Epilepsy, Multiple 

Sclerosis, Parkinson’s disease, and the Common Migraines (Chatterjee and Ahituv). Each 
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neurological disorder is characterized by different features in its progression. Symptoms can 

either be psychological or physical, and mood swings are the most common psychological 

symptom. Some of the main physical features of neurological disorders are partial or complete 

paralysis, seizures, unexplained pains, the loss of sensation, cognitive inabilities, and muscle 

weakness. 

1.8. Reprogramming of Neuronal Cells 

Early attempts to reprogram neuronal cells were unsuccessful, largely due to a poor 

understanding of the mechanisms of cell differentiation. However, more recent attempts have 

been successful (Gascon et al.).  Pluripotent cell-specific factors have been utilized to reprogram 

fibroblasts to neural cells directly.  Vierbuchen et al. (2010) was able to show direct conversion 

of fibroblasts to functional neurons by the introductions of a several transcription factors  (Ascl1, 

Brn2 and Myt1).  

Specific molecules, mostly neuron-specific transcription factors, have been shown to 

generate several different types of neurons. Neurog2 and Ascl1, which play a central role in 

neuronal function (see Figure 1), are the most commonly used proteins. (Masserdotti et al.).  
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Figure 1. Specific molecules, which are mostly transcription factors, can generate several different 

types of neurons. Neurog2 and Ascl1 are the most commonly used. Red lines connect Neurog2 or Ascl1 

with their downstream targets (Masserdotti et al.) 

The key question in this study was whether key fibroblast-specific transcription factors 

Snai2, Prrx1 and Twist1 have the ability to reprogram neuronal cells using mouse Neuro-2A 

cells as a model.  To that end, expression plasmids were introduced into Neuro-2A cells and a 

selection scheme used to identify cells which had uncorroborated plasmid sequences. Pooled 

transfectants and individual clones were screened for overexpression for the transgene followed 

by expression profiling for both neuron-specific and fibroblast-specific for transcription. 
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Chapter 2  

MATERIALS AND METHODS 

 

      2.1 Cell culture 

 In this study, a mouse neuronal cell line (Neuro2A) was used. This is a continuous cells 

line that grows well in culture.   Cells were maintained in a medium containing 1:1 Ham F12 / 

Dulbecco modified Eagle medium (FDV) with 10% bovine fetal serum (FBS) plus 5 ug/ml 

penicillin and streptomycin (GIBCO). All cells were incubated at 37 ° C in a moist 5 per cent 

CO2 in a humidified incubator.   Cells were split 1:5 as needed and transferred  to fresh plates.   

  

  2.2 Cell Transfection 

 Cells were transfected with candidate genes by us lipofection using commercially 

available reagents (Invitrogen). In this process, liposomes introduce DNA into the cells. The 

liposomes trap the DNA and then fuse into the cells with the target cell membrane. Expression 

vectors containing candidate genes (Pprx1, Snai2 and Twist1) purchased from Origene, Inc. were 

introduced  by lipofection into the mouse Neuro2A cells. 6-well cell culture plates were used to 

transfect candidate genes. Briefly,  0.5 ml of FDV media without antibiotics and streptomycin 

(Pen / Strep) was mixed with DNA (1 μg / μl) and the solution mixed at room temperature with 5 

μl Lipofectamine Plus reagent (Invitrogen, Inc) followed by 5 μl of Lipofectamine LTX reagent.  

The solution was gently mixed by pipetting and incubated for30 min at room temperature before 

applying to the cultured Neuro2A cells.  

The day before transfection, cells were cultured in a 6-well template at a density of 105 

/well. The media on cell plates was removed and replaced with the transfection mixture. Plates 
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were regularly rocked at 37o C in a 5 % CO2 incubator for 6-8 hours. After 6-8 hours the medium 

was replaced with FDV containing 10 % fetal bovine serum plus penicillin and streptomycin and 

incubated at 37 ° C in 5% CO2incubator for two days. For stable transfection, cells were divided 

into full medium plus 500 μg / ml G418 (typically several replicate T-25 flasks at 1:20, 1:10, and 

1:5 dilutions) and incubated for 2-3 weeks. After that, G418 resistant clones were pooled (10—

50 clones per pool) or individually picked and transferred into larger plates until the cells could 

be lysed and the RNA extracted.  

   To monitor transfection efficiency, the cells were transfected with a Green Fluorescent 

Protein (GFP) plasmid.   Normally, a 4-6% transfection efficiency was noted by counting the 

number of positive GFP cells 48 hours post-transfection. Also, a no-DNA control plate was used 

to ensure that no G418-resistant cells were present in the transfecting cell line.  

 

 2.3 RNA Isolation 

 RNA was extracted from 70-80 percent confluent monolayers (approximately 107 cells) 

using a Qiagen RNeasy Mini Kit (Cat # 74104) following the manufacturer's DNAse I (Cat # 

79254) digestion step as per protocol. Briefly, the nutritional medium was extracted from the 

crop dish, and cells were lysed by treated by 350 ul strongly denaturing guanidine isothiocyanate 

(GITC) containing RLT buffer and beta-mercaptoethanol and mixed by rocking the pan, then 

scraped and transferred in a 2 ml collection tube to a Qiashredder column. For homogenization, 

samples were centrifuged for 2 minutes at 15,000 rpm. By pipetting, the flow-through was 

combined with 70 percent ethanol, the mixtures were transferred in collection tubes to RNeasy 

columns and centrifuged for 15 seconds at 10,000 rpm and the flow through discarded.  
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RW1 buffer was then used to wash the resin and centrifuged 10,000 rpm for 15 secs, followed by 

digestion with DNase I in the RDD buffer (Qiagen Cat # 79254) at room temperature for 15 

minutes. To prepare DNaseI, it connected 10 ul of DNAseI to 70ul RDD (supplied with DNaseI 

kit). RW1 buffer was then added to the RNeasy column and for 15 seconds centrifuged at 

10,000rpm. The RNeasy column was moved to a new 2 ml collection tube, and after each wash 

the RNeasy column was washed twice with 500ul RPE, and centrifuged. Finally, the RNeasy 

column was transferred to a 1.5 ml tube, and the RNA was elucidated by adding 40 μl RNase 

free water into the column and centrifuging for one minute at 14,000 rpm. The RNA samples 

were collected in tubes with microfuge and deposited at 70°C. The final concentration of the 

RNA was calculated using a Bio line spectrophotometer with a nanodrop plate reader.  

Figure 2.  A flow chart showing RNA Isolation:  
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2.4 Synthesis cDNA  

 To produce cDNA from RNA, the MasterAmp Higher Fidelity RT-PCR package 

(Applied Biosystems, part#4368814) was used. Reactions mixtures included   RT buffer, 25uM 

dNTP blend, 10uM RT random primers, MultiScribe, and sterile nuclease-free water and 1.8 g 

RNA in a final 20ul volume. A Bio-rad Thermal Cycler was used to synthesize cDNA using 25 ° 

C for 10 min, followed by 37 ° C for 2 hours, 85 ° C for 5 min, then 4 ° C before storing  at -20 ° 

C. The  cDNAs were diluted 1:40 for use in the RT-qPCR. 

 

2.5 Primer Design  

 Primer design was performed using NCBI software. This program was optimized to 

identify primers that hybridize at temperature levels around 55 and 65 ° C to specific gene 

objectives and produce short amplicons when using qPCR. Usually, primers' melting temperature 

can be determined using closest adjacent thermodynamic measurements. Primers accuracy can 

be enhanced by ensuring the 3 'ends are not quite sticky. Intermolecular homology inside the 

primers should be avoided to minimize the chances of snapping back formation that interferes 

with the annealing (Thoo and Brown).  

 The primer pairs were purchased via Integrated DNA Technologies Inc. Three primers 

were designed to be evaluated for each gene, and the primer set that produced optimal 

amplification with the lowest background signal for both parental neuronal cells and fibroblast 

were used for further experiments. We controlled the expression of several genes in hepatic and 

fibroblast function. Tables 2 and 3 show primary pairs used in this analysis and estimated melt 

and annealing temperature. 
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Table 1. Neuronal gene primer sets used in this study 

 

 

 

 

 

Primer  Sequence  TM °C 

 

Annealing temperature °C  

Zfp593 Set 4 GGC AGG AAG AAG GGT ATA AGA TG 

CAG TGA GGC GAG AAG GAT TG 

54.89 

55.52 

70.2 

 

Zfp593 Set 5 CAG GCG TCG AAA TCT CAT AGT 

CTA TGC TCT GGT GTC CAC TTC 

54.53 

55.06 

70.1 

 

Foxd1 Set 3 GCT AAG AAT CCG CTG GTG AA 

CTG CTG ATG AAC TCG CAG AT 

55.01 

55 

70.8 

 

Foxd1 Set 4 CTT CGG ATT CTT GGA CCA GAC 

AAG TCA GGG TTG CAG CAT AG 

55.28 

55.06 

70.7 

 

Dkk1 Set 1 GGA GAA ATG GAA TAG TCG GTG ATA G 

AGG GAG AGA GAG AGA GAG AGA A 

54.76 

55.45 

69.8 

 

Dkk1 Set 2 CTG AGA TGT GCT CTC TGC TTA G 

GTG TGT GAG AGA GAG AGA GAG A 

54.84 

54.84 

70.1 

 

Syt6 Set 3 CTG CAT ACC TCG TGT CTT ACT C 

GTT AGG GCA GCA GAG AAA CT 

54.77 

54.73 

70.0 

 

Syt6 Set 4 CTA CAA CGA GGC CAT CAT CTT 

TCG TTG TGG CCA ACT CTA TC 

54.61 

54.68 

70.3 

 

Phox2a Set 3 CCT TCT GGA CCT GGC ATT ATC 

TAG GGA TCA GAC ACT GGG TAG 

55.26 

55.07 

70.7 

 

Phox2a Set 5 GCC CTG AAG ACA AAC CTC TT 

CCG GGA TAG GGA GGG ATA AT 

54.99 

55.37 

70.9 

 



  

15 

Table 2.  Fibroblast gene primer sets used in this study 

 

 

 

Primer  Sequence  TM °C 

 

Annealing temperature °C  

Col1a1Set 4 AGA CCT GTG TGT TCC CTA CT 

GAA TCC ATC GGT CAT GCT CTC 

55 

55.42 

70.8 

Bmp3 Set 1 GGT GGG AAA TGA CAG CAA TAA C 

GGC AAG ACA CCT AGT GAG AAA 

54.31 

54.47 

69.8 

 

Bmp3 Set 3 AAC TGT GTC CTA GCC ATT CTT AC 

GTC TGT CTG TCT GTC TCT CTC T 

54.49 

55.09 

70.8 

 

Spp1 Set 1 CTT TCA CTC CAA TCG TCC CTA C 

CAG AAA CCT GGA AAC TCC TAG AC 

55.07 

54.8 

70.1 

 

Spp1 Set 5 AGA CCG TCA CTG CTA GTA CA 

CAG TCC ATA AGC CAA GCT ATC A 

55.01 

54.53 

70.2 

 

Sema3a Set 4 GAA AGC AAC GCC GAC AAA G 

GGT CCT CCT GTT TCT ACC TTT C 

55.11 

54.85 

70.2 

 

Sema3a Set 5 CAC GGA TTC ATG CAA ACT CTT C 

GCC ATC TCC ATC GTC ATC TTT A 

54.43 

54.51 

69.9 

 

m c-Fos Set 4 GAG CTG GTG CAT TAC AGA GA 

GTG TGT TTC ACG AAC AGG TAA G 

54.47 

53.99 

69.4 

 

c-Fos Set 5 ACC TGA GAG CTG GTA GTT AGT 

TCC AGC ACC AGG TTA ATT CC 

54.70 

54.83 

70.6 

 

Shox2 Set 4 CTG GGT TGG GAG GAA TCA AA 

GTC AAA GTC AGG CCC ATA TCA 

54.85 

54.67 

70.5 

 

Shox2 Set 5 GAA GAG CAA GAA GAG GGA AGA C 

GGA ATC ACT GTC TGT GGT ATC G 

55.06 

55.07 

70.3 
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2.6   Quantitative-Polymerase Chain Reaction (RT-qPCR) 

 RT-qPCR assays were performed in triplicate for each gene tested All the cDNA samples 

were diluted and concentration (5 ng/µl) was standardized among the samples. A final volume of 

20 µl of reaction mixture contained 2 µl of specific cell line cDNA template (5 ng/µl), 2 μl of 

both forward and reverse gene-specific primers (0.5 μM) (IDTDNA), 6 μl of sterile nuclease free 

water, and 10 μl of Fast SYPR© Green Master Mix (Applied Biosystems), with the total volume 

of the reaction mixture at 20 ul. The list of primers used for genes and their Tm are described in 

Tables 1 and 2. An Applied Biosystems StepOne qPCR machine was used to amplify cDNA. 

Typical reactions included 40 cycles, with the first step at 95° C for 3 min, followed by second 

step at 5° C above melting temperature (Tm) for the primers 30 min for extension/ annealing, 

and an extension step at 60° C for 60 min. Also, the control used in the RTqPCR experiments 

contained 2 μl of gene specific primer (0.5 uM) (IDTDNA), 8 μl of sterile nuclease free water, 

and 10 μl of Fast SYPR© Green Master Mix (Applied Biosystems), but were without target 

cDNA.  
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Chapter 3 

RESULTS 

 The purpose of these experiments was to determine whether fibroblast transcription 

factors have the ability to reprogram neuronal cells into a fibroblast phenotype. These fibroblast-

specific transcription factors were identified due to their being highly expressed in fibroblasts, 

poorly expressed in hepatoma cells and repressed in fibroblast x hepatoma cell hybrids (termed 

FR cells).  This analysis used genome-wide  expression profiling using whole-genome 

microarrays to compare parental and FR cell gene expression. Using a criterion of at least 5-fold 

repression in the hybrids compared to the fibroblast cells, 566 fibroblast-specific genes were 

identified. We further applied a criterion of the gene encoding a product that served as a 

transcription factor or played a role in a signal transduction pathway.  Several genes were 

identified, including   fibroblast lineage-specific transcription factors Prrx1, Shox2, Snai2, c-Fos, 

and Twist.   Based on results from other studies, we focused on three fibroblast-specific genes 

Prrx1, Snai2 and Twist1. 

  Plasmids containing mouse Prrx1, Snai2 and Twist1 expression cassettes were purchased 

from Origene and introduced via lipofection into the neuronal cell line Neuro2A. Transfected 

cells were selected using G418 to select for the neuro gene expressed from the same plasmids.  

Each transfection resulted in 30 to 100 G418 resistant clones.  These clones were either pooled 

(>30 clones per pool) or picked individually and expanded in cell culture until harvesting of total 

RNA. We first determined the reliability of the RNA extraction in generating reproducible levels 

of RNA. To his end, we quantified each RNA sample, generated cDNA using 1.8ug of RNA, 

then diluted samples and compared GAPDH expression levels using RT-qPCR.  Results show 
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that the Ct values for GAPDH levels were consistently between 18 and 22 cycles for Neuro2A 

cells pooled transfectants and clones (Figure 3). Therefore, the protocol used resulted in 

reasonably consistent reproduction of RNA, and subsequent generation of cDNA.  

3.1. Regulation of Neuro2A gene expression by Prrx1   

We asked whether the introduced Prrx1 gene was overexpressed in the transfected cells. 

Using mouse Prrx1 specific primers, results show that the pooled N2A-prrx1 transfectants 

overexpressed the Prrx1 gene by over one 1000-fold in the pooled cells and between 10 and 40-

fold in the two clones analyzed (Figure 4).  Therefore, overexpression of the Prrx1 gene in 

Neuro2A cells was successfully established.   

Analysis of fibroblast and neuronal gene expression was carried out.  To determine if 

fibroblast- specific genes were activated in the N2A-pprx1 transfectants, a panel of fibroblast- 

specific genes (Col1a1, Bmp3, Ssp1, Sema3a, c-Fos and Shox) were chosen.  RT-qPCR results 

were normalized to Gapdh levels for each sample and compared to expression levels in the non-

transfected Neuro2A cells, and most surprisingly showed a >2-fold repression (Figure 5).  In 

contrast, the N2A-pprx clone 3 showed strong (>50 fold) activation of two genes, Col1a1 and 

Bmp3 (Figure 5).  

We next asked if overexpression of Prrx1 could repress neuron -specific gene expression.  

A panel of genes to be tested were chosen based on a literature search and applying the criteria of 

moderate to high expression and neuron specificity in expression. The genes chosen included 

Syt6, Phox2a, Foxd, Dkk1 and Zpf593. Primers were designed to amplify each cDNA, and in 

some cases two primer sites for the same gene applied to account for differential splicing 

reported for several of the genes.  
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Figure 3: Gapdh level comparisons between cell lines.   Comparative Gapdh levels are shown 

from the indicated cells lines using the cDNA prepared from total RNA.   
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Figure 4: Over-expression of Prrx1 in Neuro2A cells. Prrx1-transfectd Neuro2A cells (pooled 

and individual clones) were tested for prrx1 expression using qPCR of cDNA derived from the 

cells. The fold activation was normalized to Gapdh levels using the ΔΔCT method for each cell 

line. The experiments were repeated at least 2 times, with triplicate reactions set for each trial.  
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Figure 5. Effect of Prrx1 over-expression on fibroblast gene expression in Neuro2A cells. 

Prrx1-oversexpressing Neuro2A cells (pooled and individual clones) were tested for fibroblast 

gene expression using qPCR of cDNA derived from the cells. The fold activation was 

normalized to Gapdh levels using the ΔΔCT method for each cell line. The experiments were 

repeated at least 2 times, with triplicate reactions set for each trial. 
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Results from the pooled transfectants show that expression of some genes (Zfp593, Dkk1, 

Foxd) was only modestly affected while others (Syt6, Phox2a) were repressed ~ 5-fold (Figure 

6). However, the two clones analyzed showed strikingly results, with all five neuronal gene 

tested being repressed between 5 and 50-fold in both clones (Figure 6).  These results suggest 

that Prrx1 overexpression can strongly repress neuronal gene expression.      

 

3.2 Regulation of Neuro2A gene expression by Snai2  

We asked whether the introduced Snai2 gene was overexpressed in the transfected cells. 

Using mouse Snai2-specific primers, results show that the pooled N2A-snai2 transfectants 

overexpressed the Snai2 gene by over one 400-fold in the pooled cells and ~25-fold in the N2A-

snai2 clone chosen (Figure 7).   

Analysis of fibroblast and neuronal gene expression was then carried out.  To determine 

if fibroblast- specific genes were activated in the N2A-snai2 transfectants, we tested the same 

panel fibroblast- specific genes (Col1a1, Bmp3, Spp1, Sema3a, c-Fos and Shox) as used in the 

prrx1 experiments described above. As described previously, RT-qPCR results were normalized 

to Gapdh levels for each sample and compared to expression levels in the non-transfected 

Neuro2A cells. Surprisingly, results showed repression rather than activation of most fibroblast 

genes, with most displaying 2 to 20-fold repression in both the pooled transfectants as well as in 

the clone (Figure 8).   
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Figure 6. Effect of Prrx1 over-expression on neuronal gene expression.  

Prrx1-oversexpressing N2A cells (pooled and individual clones) were tested for neuronal gene 

expression using qPCR of cDNA derived from the cells. The fold activation was normalized to 

Gapdh levels using the ΔΔCT method for each cell line. The experiments were repeated at least 2 

times, with triplicate reactions set for each trial.  
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Figure 7. Snai2 over-expression in N2A cells.  Snai2-transfected N2A cells (pooled and 

individual clones) were tested for Snai2 expression using qPCR of cDNA derived from the cells. 

The fold activation was normalized to Gapdh levels using the ΔΔCT method for each cell line. 

The experiments were repeated at least 2 times, with triplicate reactions set for each trial. 
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Figure 8. Effect of Snai2 over-expression on fibroblast gene expression.  Snai2-

oversexpressing Neuro2A cells (pooled and individual clones) were tested for fibroblast gene 

expression using qPCR of cDNA derived from the cells. The fold activation was normalized to 

Gapdh levels using the ΔΔCT method for each cell line. The experiments were repeated at least 2 

times, with triplicate reactions set for each trial. 
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We next asked if overexpression of Snai2 affected neuron -specific gene expression using 

the same gene panel as used on the Prrx1 experiments described above.  Results from the pooled 

transfectants were highly variable, with expression of two genes, Zpf593 and Dkk1, unaffected  

and two genes, Syt6 and Doxd, showing modest effect or strong activation, depending on the 

primer sets used (Figure 9). However, as with the Prrx1 results, the N2A-snai2 clone showed 

strong (repression for each neuronal gene tested (with the  exception of the Dkk1 gene using 

primer set #1 (Figure 9). These results suggest that  Snai2 overexpression, like Prrx1,  can 

strongly repress neuronal gene expression.   

      

3.3   Regulation of Neuro2A gene expression by Twist1 

We asked whether the introduced twists gene was overexpressed in the transfected cells. 

Using mouse Twist1-specific primers, results show that the pooled N2A-twist pooled 

transfectants failed to overexpress the Twist1 gene despite multiple trials (Figure 10).   

Despite a lack of observing overexpression of the introduced twist gene in the transfected 

Neuro2A cells, analysis of fibroblast and neuronal gene expression was carried out.  To 

determine if fibroblast- specific genes were activated in the N2A-twist1 transfectants, we tested 

the same panel fibroblast- specific genes (Col1a1, Bmp3, Spp1, Sema3a, c-Fos and Shox) as 

used in the Prrx1 and Snai2 experiments described above. As described previously, RT-qPCR 

results were normalized to Gapdh levels for each sample and compared to expression levels in 

the non-transfected Neuro2A cells. Surprisingly, result showed repression rather than activation 

of most fibroblast genes, with most displaying 2 to 5-fold repression in both the pooled 

transfectants. Therefore, activation of fibroblast genes was not observed by overexpression of 

Twist1 (Figure 11).     
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Figure 9.  Effect of Snai2 over-expression on neuronal gene expression. Snai2-

oversexpressing Neuro2A cells (pooled and individual clones) were tested for neuronal gene 

expression using qPCR of cDNA derived from the cells. The fold activation was normalized to 

Gapdh levels using the ΔΔCT method for each cell line. The experiments were repeated at least 2 

times, with triplicate reactions set for each trial. 
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Figure 10: Over expression Twist in N2A cells.   Twist1-transfectd Neuro2A cells (pooled and 

individual clones) were tested for mouse twist1 expression using qPCR of cDNA derived from 

the cells. The fold activation was normalized to Gapdhl evels using the ΔΔCT method for each 

cell line. The experiments were repeated at least 2 times, with triplicate reactions set for each 

trial. 
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Figure 11.  Effect of Twist1 over-expression on fibroblast gene.  Twist1-transected N2A cells 

(pooled and individual clones) were tested for fibroblast gene expression using qPCR of cDNA 

derived from the cells. The fold activation was normalized to Gapdh levels using the ΔΔCT 

method for each cell line. The experiments were repeated at least 2 times, with triplicate 

reactions set for each trial. and some (Cola1 and Shox1, with undetectable expression.   
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We asked if the N2A-twist cells exhibited repression of neuron -specific gene expression 

using the same gene panel as used on the Prrx1 and Snai2 experiments described above. Results 

from the pooled transfectants were highly variable, with expression of some genes (Dkk1, Foxd, 

and perhaps Syt6 and Phox2, depending on the primer set used) actually activated instead to 

repressed expression. Of those genes that were repressed, the level of repression was modest 

(Figure 12). Unlike the experiments with overexpression of Snai2 and Prrx1, clones were not 

tested, making it unlikely that strong repression effects would be observed  
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Figure 12. Effect of Twist1 over-expression on neuronal gene expression.  Twist1-transected 

Neuro2A cells (pooled and individual clones) were tested for neuronal gene expression using 

qPCR of cDNA derived from the cells. The fold activation was normalized to Gapdh levels using 

the ΔΔCT method for each cell line. The experiments were repeated at least 2 times, with 

triplicate reactions set for each trial. 
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Chapter 4 

Discussion  

In the past two decades, much progress has been made in our understanding of 

mammalian cell reprogramming.  Most of these studies have dealt with reprogramming cells to 

an earlier developmental cell type and then coaxing them down specific lineages used cocktails 

of chemicals. For example, Marius Wernig and colleagues at Stanford University (Palo Alto,CA) 

described experiments showing that a cocktail of transcription factors (ascl1, brn2 and myt1) can 

convert mouse and human fibroblasts into functional neurons (Pang et al.; Vierbuchen et al.), and 

other transcription factors convert hepatocytes into neurons (Marroet al.). Importantly, the cells 

were found to retain their newly acquired phenotype even when the exogenous factors were 

inactivated suggesting that they were stably reprogrammed. These results show that it is possible 

to drive changes in cell states across germ layer barriers (mesoderm-ectoderm and endoderm-

ectoderm).  

 In the current study, we asked whether certain transcription factors could reprogram cells 

into an alternate linage by the simple overexpression of single issue-specific transcription 

factors. The transcription factors chosen were those identified in our laboratory using a genome-

wide screen for tissue specific transcription factors that were highly expressed in fibroblasts, 

poorly in hepatoma cells, and repressed in fibroblast x hepatoma somatic cell hybrids. Previous 

studies in our lab showed that overexpression of either of two of these genes, Snai2 and Prrx1, 

were found to be able to reprogram cell hybrids to a fibroblast phenotype. Furthermore, 

repression of these genes in fibroblasts followed by exposure to differentiation factors was found 

to reprogram these cells into other cell types, including chondrocytes and osteoblasts (Ray et al,).  

Subsequent studies in our laboratory showed that overexpression of these genes in a rat 
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hepatoma cell line led to repression of the hepatic phenotype and activation of the fibroblast 

phenotype based on gene expression analysis (Alzahrani) . 

Here we asked whether these two genes, Snai2 and Prrx1, in addition to another 

candidate gene, Twist1, identified in the same genome-wide study, could reprogram neuronal 

cells.   To that end, we introduced plasmids containing expression cassettes for these genes and 

monitored expression of a panel of both neuron- and fibroblast-specific genes in mouse Neuro2A 

neuronal.  With Prrx1 and Snai2 experiments, both pooled transfectants and clones were 

monitored. For the N2A-twist cells, only a pool was analyzed due to technical difficulties.  

Our results from the prrx1- transfected N2A cells (termed N2A-Prrx1) suggested that 

very little activation of fibroblast genes was detected. Of the six fibroblast-specific genes tested, 

only two (Cola1and Bmp3) genes were activated (albeit strongly, with >50-fold activation).  The 

other genes tested actually showed a slightly reduced level of expression compared to the 

Neuro2A parental cells. Furthermore, this activation of Cola1and Bmp3 was noted in the N2A-

Prrx1 clone analyzed but not in the pooled transfectants. Although this discrepancy could be due 

to the likely possibility that the pool contains clones with expression of the introduced Prrx1 

expression plasmid ranging from high to undetectable, this seems unlikely since an average of 

high and low expressers should still result in a moderate level of average activation. It was also 

noted that the strong activation of the Bmp3 gene in the N2A-prrx1 clone was seen with one 

primer set but not the other. This may be due to known differential splicing of the Bmp3 gene 

such that the target sequences for primer set 3 were not in the final RNA product.  

 

In contrast to the modest effects on fibroblast gene expression, neuronal gene expression 

was dramatically repressed. Each of the five genes tested were strongly repressed in the two 
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N2A-prrx1clones analyzed. Our results were very different depending on whether the clones or 

the pooled transfectants were examined.  The N2A-prrx1 pooled cells showed modest activation 

or repression of a subset of the neuronal genes tested. In contrast, the two N2A-prrx1 clones 

analyzed showed strong repression of each of the neuronal genes.    

The discrepancy in the above results comparing the pooled transfectants to the individual 

clones can be explained by the fact that we are observing gene repression rather than activation.  

In the latter case (activation), only a subset of clones needs to be expressing the transgenes to 

observe an average rise of target gene activation in pooled transfectants. However, in the case of 

gene repression, if even 50% the cells are overexpressing the transgene then the average level of 

target gene expression would be reduced by a maximum of 50% (or two-fold).   

It was also noted that the N2A-prrx1 pooled cells had much higher levels of Prrx1 

expression than that observed in the clones. This is may be due to the fact that the pooled cells 

had undergone many fewer cell division prior to harvesting. It is well known phenomenon that 

expression transgenes tend to decrease over cell passaging,  

Similar results were found with the snai2- transfected Neuro2A cells (N2A-Snai2), 

showing, in the pooled transfectants,  most fibroblast genes  tested (Bmp3, Spp1, Sem3a) were 

repressed 4-8-fold and other genes tested (cFos and Shox) were repressed >50-fold.  In the N2A-

Snai2 clone tested (clone 2), all genes but Bmp3 were repressed, sometimes by as much as 50-

fold. Therefore, rather than the expected activation of fibroblast genes, repression was the norm.  

Analysis of neuronal gene expression in the N2A-Snai2 reflected those found in the 

N2A-prrx1 transfectants. The pooled clones showed activation of a few genes. However, the 

clone showed strong repression of most neuronal genes tested. This has led us to suggest that 

overexpression of Snai2, as with Prrx1, significantly depresses neural gene expression. 
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The results from Twist1 transfected Neuro2A cell (called N2A-twist) suggested that 

fibroblast-specific genes are only modestly affected, although c-Fos and Shox were repressed 5-

45-fold. We found that reductions for c-Fos and Shox2 with each of the three transfected genes, 

which was not a general effect of overall gene expression caused by the introduction of a plasmid 

or the neo gene's presence as expression other genes were not affected or only modestly affected. 

The fact that a clonal cell was not tested prevents us from determining if Twist1 can suppress 

neuronal gene function.   

Taken together, the above results suggest that overexpression of individual fibroblast –

specific transcription factors is unable to activate fibroblast genes in the Neuro2A neuronal cells 

with some exceptions (such a Prrx1 activation of Bmp3 and Col1a1).  In fact, a general trend of 

repressing expression of what is already low expression of these genes was observed.  

However, both Prrx1 and Snai2 overexpression were both found to strongly repress neuronal 

gene expression.   

The question remains as to whether the observations made here suggest what could be 

considered reprogramming of cells. The loss of neuronal genes expression suggests that this 

might be the case.  It would be worthwhile to conduct whole genome expression studies on N2A-

pprx1 and N2A- snai2 transfectants to determine the extent of cellular reprogramming.  It would 

also be important to conduct differentiation studies, as the Neuro2A cells are known to alter 

phenotype dramatically when serum starved and produce neurite outgrowth.  It is predicted that 

neurite outgrowth would be truncated in the N2A-prrx1 and N2A-snai2 transfectants.  

The importance of these findings comes from what has been accomplished to date. Previous 

studies have suggested that a reprogramming of fully differentiated mammalian cells required 

overexpression of a set of transcription factors. The results presented herein suggest that a single 
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factor can drive cellular identity.  Such a phenomenon was observed by the ability of myoD to 

transform hepatoma cells to muscle lineage, although the phenotype was transient (Davis et al.). 
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