
Florida Law Review Florida Law Review

Volume 71 Issue 2 Article 1

Staking the Boundaries of Software Copyrights in the Shadow of Staking the Boundaries of Software Copyrights in the Shadow of

Patents Patents

Pamela Samuelson

Follow this and additional works at: https://scholarship.law.ufl.edu/flr

 Part of the Intellectual Property Law Commons

Recommended Citation Recommended Citation
Pamela Samuelson, Staking the Boundaries of Software Copyrights in the Shadow of Patents, 71 Fla. L.
Rev. 243 ().
Available at: https://scholarship.law.ufl.edu/flr/vol71/iss2/1

This Article is brought to you for free and open access by UF Law Scholarship Repository. It has been accepted for
inclusion in Florida Law Review by an authorized editor of UF Law Scholarship Repository. For more information,
please contact kaleita@law.ufl.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Florida Levin College of Law

https://core.ac.uk/display/345996908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.law.ufl.edu/flr
https://scholarship.law.ufl.edu/flr/vol71
https://scholarship.law.ufl.edu/flr/vol71/iss2
https://scholarship.law.ufl.edu/flr/vol71/iss2/1
https://scholarship.law.ufl.edu/flr?utm_source=scholarship.law.ufl.edu%2Fflr%2Fvol71%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.law.ufl.edu%2Fflr%2Fvol71%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kaleita@law.ufl.edu

243

STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN
THE SHADOW OF PATENTS

Pamela Samuelson*

Abstract
Ever since the venerable Supreme Court opinion in Baker v. Selden,

courts and commentators have overwhelmingly endorsed the rule that
copyright and utility patent protections for intellectual creations are
mutually exclusive. That is, an intellectual creation may be eligible for
copyright or utility patent protection, but not both. Original works of
authorship are channeled to the copyright regime, while novel and
nonobvious technologies are channeled to the patent system.

The well-established mutual exclusivity rule for copyright and utility
patents was recently renounced, as applied to computer program
innovations, by the Court of Appeals for the Federal Circuit (CAFC) in
Oracle America, Inc. v. Google Inc. One of Google’s defenses against
Oracle’s charge of copyright infringement for its reuse of parts of the Java
application program interface (API) was that the API’s functionality
made it more properly patent, than copyright, subject matter. The CAFC
rejected the exclusivity argument and endorsed overlapping
copyright/patent protection for APIs.

Oracle is the latest exemplar of the vexing conceptual difficulties that
computer programs have posed for both copyright and patent laws over
the past fifty-some years. This Article provides an overview of the mutual
exclusivity rule that grew out of Baker. It also explains why the CAFC’s
Oracle decision is deeply flawed, and why courts should renew their
commitment to the mutual exclusivity rule in software copyright cases to
ensure that, consistent with long-standing limiting principles of copyright
law and Supreme Court precedents, copyright will not be construed to
give patent-like protection to program functionality.

This Article also offers concrete suggestions about how courts should
approach discerning the proper boundaries of copyright and patent in
protecting particular aspects of software. More clarity to the software
copyright caselaw can be attained if courts engage in rigorous filtration
of unprotectable nonliteral elements of software. When courts interpret

* Richard M. Sherman Distinguished Professor of Law, Berkeley Law School. I thank
Kathryn Hashimoto and Brookes Degen for outstanding research support and many colleagues
for their comments on an earlier draft entitled “The Waxing and Waning of Copyright and Patent
Protections for Software,” including Clark Asay, Shyam Balganesh, Michael Barclay, Chris
Buccafusco, Dan Burk, Michael Carrier, Julie Cohen, Kevin Collins, Charles Duan, Jim Gibson,
John Golden, Wendy Gordon, James Grimmelmann, David Hayes, Dave Jones, Mark Lemley,
Jessica Litman, Lydia Loren, Corynne McSherry, Peter Menell, Jerry Reichman, Josh Sarnoff,
Jule Sigall, Chris Sprigman, Jennifer Urban, and Molly Van Houweling.

1

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

244 FLORIDA LAW REVIEW [Vol. 71

software copyright in the shadow of patents, they are less likely to exceed
the boundaries articulated by Baker and § 102(b) of the Copyright Act of
1976.

INTRODUCTION ...245

I. SETTING THE CONTEXT FOR UPHOLDING THE MUTUAL
EXCLUSIVITY OF COPYRIGHT AND PATENT FOR
COMPUTER PROGRAM INNOVATIONS......................................250
A. Overcoming Initial Conceptual Difficulties

in Applying IP Rights to Software252
B. The Road to Whelan v. Jaslow and Concerns

About Copyright Conferring Patent-Like
Protections to Software ..257

C. Rising Concerns About Overbroad Copyrights
and Software Patents..260

II. TAKING THE UTILITARIAN NATURE OF PROGRAMS
AND AVAILABILITY OF PATENTS INTO ACCOUNT
IN SOFTWARE COPYRIGHT CASES ...264
A. Altai Narrowed Copyright Scope to Avoid

Protecting Utilitarian Elements of Programs265
B. Doctrinal Strategies for Averting Overlapping

Copyright and Patent Protections for Software267
1. The Layering Approach ..268
2. The § 102(b) Exclusion Approach270
3. The Thin Protection Approach................................274
4. The Merger Approach ...276
5. The Explanation/Use Distinction Approach278

C. The Scope of Software Copyrights in the
Post-Altai Caselaw...281

III. THE CAFC’S ERRONEOUS ENDORSEMENT OF
COPYRIGHT/PATENT OVERLAPS IN ORACLE............................283
A. Reversals of Copyright/Patent Overlap-Approving

Decisions in Software Cases ..283
B. The CAFC’s Flawed Acceptance of a Software

Copyright/Patent Overlap in Oracle285
C. The Taking-Patents-Into-Account Approach..................289

IV. RESTORING RIGOROUS FILTRATION TO AVOID
CONFERRING PATENT-LIKE PROTECTION TO
SOFTWARE THROUGH COPYRIGHT LAW.................................291

2

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 245

A. Oracle and Alice Have Created Perverse Incentives
for Developers to Use Copyright to Get
Patent-Like Protection for Nonliteral
Elements of Programs ..293

B. How to Minimize the Potential Misuse of
Copyright to Confer Patent-Like Protections
for Nonliteral Elements of Software295

CONCLUSION...301

INTRODUCTION

Ever since the venerable U.S. Supreme Court opinion in Baker v.
Selden,1 courts and commentators have overwhelmingly endorsed the
rule that copyright and utility patent protections for intellectual creations
are mutually exclusive.2 That is, an intellectual creation may be eligible
for copyright or utility patent protection, but not for both.3 Original works
of authorship have been channeled to the copyright regime, while novel
and nonobvious technologies have been channeled to the patent system.4

The well-established mutual exclusivity rule for copyright and utility
patents was recently renounced, as applied to computer program
innovations, by the Court of Appeals for the Federal Circuit (CAFC) in
Oracle America, Inc. v. Google Inc.5 Oracle charged Google with
infringing copyright by its use of 37 of the 166 Java application program
interface (API) packages in its Android platform for smartphones.6 One
of Google’s defenses against Oracle’s charge of copyright infringement
was that the functionality of the Java API made it more properly patent,

1. 101 U.S. 99 (1879).
2. For the leading cases, see infra Section I.B. The overwhelming majority of scholars

concur that copyright and patent are and should be mutually exclusive forms of intellectual
property (IP) protections. See Pamela Samuelson, Strategies for Discerning the Boundaries of
Copyright and Patent Protections, 92 NOTRE DAME L. REV. 1493, 1496 n.13 (2017) (citing
authorities).

3. This exclusivity traces back further to the U.S. Constitution, which authorizes Congress
to enact legislation “[t]o promote the Progress of Science and useful Arts, by securing for limited
Times to Authors and Inventors the exclusive Right to their respective Writings and
Discoveries[.]” U.S. CONST. art. I, § 8, cl. 8 (emphasis added).

4. See 17 U.S.C. § 102(a) (2012) (providing copyright protection for “original works of
authorship”); 35 U.S.C. § 101 (2012) (providing patent protection for novel, nonobvious, and
useful machines, manufactures, compositions of matter, and processes). This Article uses the
word “patent” to refer to utility patents. When a context calls for reference to design patents, this
Article will use that term.

5. 750 F.3d 1339, 1379–81 (Fed. Cir. 2014), cert. denied, 135 S. Ct. 2887 (2015).
6. Id. at 1350–51.

3

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

246 FLORIDA LAW REVIEW [Vol. 71

rather than copyright, subject matter.7 Google pointed to patents that
Oracle and Sun had obtained on API designs in support of this view.8
Although the trial court agreed that these patents supported Google’s
defense,9 the CAFC rejected the exclusivity argument and endorsed
overlapping copyright and patent protection for APIs.10

This Article explains why the CAFC’s endorsement of such
overlapping protection is deeply flawed and why courts should renew
their commitment to the mutual exclusivity rule in software copyright
cases to ensure that, consistent with long-standing limiting principles of
copyright law and Supreme Court precedents, copyright will not be
construed to give patent-like protection to program functionality. As
Google has once more petitioned the Supreme Court to review this case,11

there may be an opportunity for the Court to correct the CAFC’s
erroneous rulings.12

7. See, e.g., Google’s April 22, 2012 Copyright Liability Trial Brief at 1–3, Oracle Am.,

Inc. v. Google Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012) (No. 3:10-cv-03651 WHA).
8. See, e.g., Google’s 4/3/12 Copyright Liability Trial Brief at 18–19, Oracle, 872 F. Supp.

2d 974 (No. 3:10-cv-03651 WHA). Google’s main defenses were that the Java API elements it
used were unprotectable systems under 17 U.S.C. § 102(b) or under the merger doctrine. See, e.g.,
Google’s 4/5/12 Copyright Liability Trial Brief at 1, 8, Oracle, 872 F. Supp. 2d 974 (No. 3:10-
cv-03651 WHA). I discussed these defenses at length in Pamela Samuelson, Functionality and
Expression in Computer Programs: Refining the Tests for Software Copyright Infringement, 31
BERKELEY TECH. L.J. 1215, 1237–84 (2016).

9. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 996–98 (N.D. Cal. 2012), rev’d,
750 F.3d 1339, 1381 (Fed. Cir. 2014).

10. See infra Section III.B for an analysis of the CAFC’s opinion on the copyright/patent
overlap issue. After reversing the district court ruling that the parts of the Java API that Google
used were unprotectable by copyright law, Oracle, 750 F.3d at 1354–71, the CAFC remanded the
case for a retrial on Google’s fair use defense, id. at 1377. A jury in 2016 found this defense
persuasive. The CAFC, however, decided that no reasonable jury could have found fair use and
ruled in favor of Oracle’s appeal of the denial of its motion for a judgment notwithstanding the
verdict. Oracle Am., Inc. v. Google LLC, 886 F.3d 1179, 1211 (Fed. Cir. 2018). The CAFC denied
Google’s petition for rehearing, and Google has petitioned the Supreme Court to review the
CAFC’s decisions as to both copyrightability and fair use. Petition for Writ of Certiorari, Google
LLC v. Oracle Am., Inc., No. 18-956 (Jan. 24, 2019).

11. Petition for Writ of Certiorari, supra note 10; see also Alison Frankel, Google Wants
Supreme Court to Hear Oracle Copyright Case – Just Not Quite Yet, REUTERS (Oct. 22, 2018,
3:10 PM), https://www.reuters.com/article/legal-us-otc-google/google-wants-supreme-court-to-
hear-oracle-copyright-case-just-not-quite-yet-idUSKCN1MW2MM [https://perma.cc/3LZQ-
HWYE].

12. The CAFC’s copyrightability ruling has been subjected to considerable criticism, see
infra notes 274–76 and accompanying text, as has its reversal of the fair use verdict. See, e.g.,
Krista L. Cox, Oracle v. Google Is More Evidence that the Federal Circuit Has No Business
Deciding Copyright Cases, ABOVE L. (Mar. 29, 2018, 4:02 PM), https://abovethelaw.com/
2018/03/oracle-v-google-is-more-evidence-that-the-federal-circuit-has-no-business-deciding-
copyright-cases/ [https://perma.cc/2WQ2-8TUJ].

4

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 247

Oracle is the latest exemplar of the vexing conceptual difficulties that
computer programs have posed for both copyright and patent laws over
the past fifty-some years. The main reason for these difficulties is that
programs are virtual machines that just happen to have been constructed
as texts in the context of intellectual property (IP) regimes that have
historically assumed that a particular creation was either a writing or a
machine, but could not be both at the same time.13 This hybrid nature of
programs has given rise to confusion and sometimes heated debate about
the appropriate roles that copyright and patent law do and should play in
the protection of software innovations.14 While there is general consensus
that computer program code is copyrightable but not patentable,15

nonliteral elements of programs have seemed to some to be copyrightable
and to others to be patentable.16 Most commentators have agreed that
copyright and patent are and should be mutually exclusive in the

13. See, e.g., Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of

Computer Programs, 94 COLUM. L. REV. 2308, 2320–24 (1994).
14. Most of the very extensive law review literature on IP rights in computer programs from

the 1980s and early 1990s focused either on copyright or patent protection and did not attempt to
articulate what aspects of software should be protected by each of these laws. For a representative
copyright commentary, see generally Anthony L. Clapes et al., Silicon Epics and Binary Bards:
Determining the Proper Scope of Copyright Protection for Computer Programs, 34 UCLA L.
REV. 1493 (1987); Peter S. Menell, An Analysis of the Scope of Copyright Protection for
Application Programs, 41 STAN. L. REV. 1045 (1989); Arthur R. Miller, Copyright Protection for
Computer Programs, Databases, and Computer-Generated Works: Is Anything New Since
CONTU?, 106 HARV. L. REV. 977 (1993); J.H. Reichman, Computer Programs as Applied
Scientific Know-How: Implications of Copyright Protection for Commercialized University
Research, 42 VAND. L. REV. 639 (1989); Lloyd L. Weinreb, Copyright for Functional Expression,
111 HARV. L. REV. 1149 (1998). For a particularly useful compendium of pre-1998 software
copyright caselaw, see generally DAVID L. HAYES, FENWICK & WEST LLP, A COMPREHENSIVE
CURRENT ANALYSIS OF SOFTWARE “LOOK AND FEEL” PROTECTION (1998),
https://www.fenwick.com/FenwickDocuments/Look_-_Feel.pdf [https://perma.cc/AF3K-KFLX].
For a representative patent commentary, see, for example, Donald S. Chisum, The Patentability
of Algorithms, 47 U. PITT. L. REV. 959, 1019–20 (1986). Some commentators offered their
perspectives on both copyright and patent protections for software. See, e.g., Duncan M.
Davidson, Common Law, Uncommon Software, 47 U. PITT. L. REV. 1037, 1054–63 (1986);
Gregory J. Maier, Software Protection—Integrating Patent, Copyright and Trade Secret Law, 69
J. PAT. & TRADEMARK OFF. SOC’Y 151, 165 (1987); John Swinson, Copyright or Patent or Both:
An Algorithmic Approach to Computer Software Protection, 5 HARV. J.L. & TECH. 145, 212
(1991).

15. See, e.g., U.S. COPYRIGHT OFFICE & U.S. PATENT & TRADEMARK OFFICE, PATENT-
COPYRIGHT LAWS OVERLAP STUDY 11 (1991) [hereinafter OVERLAP STUDY].

16. See, e.g., Morton David Goldberg & John F. Burleigh, Copyright Protection for
Computer Programs: Is the Sky Falling?, 17 AIPLA Q.J. 294, 298 (1989) (endorsing copyright
protection for program structure); Steven W. Lundberg et al., Baker v. Selden, Computer
Programs, 17 U.S.C. Section 102(b) and Whelan Revisited, 13 HAMLINE L. REV. 221, 250 (1990)
(suggesting that program structure is patentable).

5

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

248 FLORIDA LAW REVIEW [Vol. 71

protection they provide to different aspects of programs;17 yet, a few
commentators have endorsed overlapping copyright and patent
protections for specific aspects.18

Part I of this Article begins with a review of the mutual exclusivity
rule that grew out of Baker and explains that the functionality and written
character of programs initially caused some confusion about whether
copyright or patent was an appropriate form of IP protection for
programs. After Congress decided copyright was appropriate, a few
courts in the mid-to-late 1980s decided that copyright protection could
extend to the “structure, sequence, and organization” (SSO) of programs.
These decisions were widely criticized for giving patent-like protection
to programs and raising the spectre of overprotection of software by
copyright that would have deleterious effects on competition and
innovation in the software industry. Members of Congress were
sufficiently concerned about overbroad protections that they held
hearings and commissioned studies to address the perceived
copyright/patent overlap problem.

17. See, e.g., Timothy K. Armstrong, Symbols, Systems, and Software as Intellectual

Property: Time for CONTU, Part II?, 24 MICH. TELECOMM. & TECH. L. REV. 131, 133–34 (2018);
Paul Goldstein, Infringement of Copyright in Computer Programs, 47 U. PITT. L. REV. 1119, 1130
(1986); Dennis S. Karjala, Distinguishing Patent and Copyright Subject Matter, 35 CONN. L. REV.
439, 448 (2003); Dennis S. Karjala, The Relative Roles of Patent and Copyright in the Protection
of Computer Programs, 17 J. MARSHALL J. COMP. & INFO. L. 41, 50–51 (1998) [hereinafter
Karjala, Relative Roles]; Mark A. Lemley, Convergence in the Law of Software Copyright?, 10
HIGH TECH. L.J. 1, 25–27 (1995); David G. Luettgen, Functional Usefulness vs. Communicative
Usefulness: Thin Copyright Protection for the Nonliteral Elements of Computer Programs, 4 TEX.
INTELL. PROP. L.J. 233, 273 (1996); Steven W. Lundberg et al., The Copyright/Patent Interface:
Why the Utilitarian “Look and Feel” Is Uncopyrightable Subject Matter, 6 COMPUTER LAW. 5, 5
(1989). The copyright/utility patent mutual exclusivity rule was questioned in the Nimmer treatise
from its first edition in 1963 through the 2017 revision. See MELVILLE B. NIMMER, NIMMER ON
COPYRIGHT § 38 (1963); 1 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT
§ 2A.07[A] (2017) [hereinafter NIMMER & NIMMER 2017]. This treatise has recently been revised
and now offers a more nuanced view on the mutual exclusivity rule. See 1 MELVILLE B. NIMMER
& DAVID NIMMER, NIMMER ON COPYRIGHT § 2A.07[A][3] (2018) [hereinafter NIMMER & NIMMER
2018]. It acknowledges this revision was prompted in part by Samuelson, Samuelson, supra note
2, at 1505–12, which criticized the Nimmer treatise’s copyright/patent overlap theory. See
NIMMER & NIMMER 2018, supra, § 2A.07[A][4].

18. See, e.g., David A. Einhorn, Copyright and Patent Protection for Computer Software:
Are They Mutually Exclusive?, 30 IDEA 265, 266 (1990). In the mid to late 1980s, IP lawyers were
split on the software IP exclusivity or overlap issue. See, e.g., Pamela Samuelson, Survey on the
Patent/Copyright Interface for Computer Programs, 17 AIPLA Q.J. 256, 260–66 (1989). In 1989,
a group of IP professors was unable to reach consensus about mutual exclusivity of copyright and
patent in protecting computer program innovations. See Donald S. Chisum et al., LaST Frontier
Conference Report on Copyright Protection of Computer Software, 30 JURIMETRICS J. 15, 28
(1989).

6

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 249

Part II shows that concerns about copyright and patent overlaps
subsided in the 1990s as numerous appellate court decisions recognized
that the essentially utilitarian nature of programs meant that they should
receive a relatively thin scope of copyright protection. These courts often
acknowledged that the availability of patent protection for software
innovations had some bearing on the proper scope of copyright protection
for programs. Courts adapted various limiting doctrines of copyright law
to prevent copyright/patent overlap in software IP cases and left it to
patent law to protect programs’ utilitarian elements. By interpreting the
scope of copyright in the shadow of patents and filtering out functional
design elements, courts in software copyright cases restored the balance
that Congress intended when it excluded methods and processes from the
protections afforded by copyright law.

Part III shows that the CAFC’s Oracle decision is the sole unreversed
judicial opinion to have endorsed software copyright/patent overlaps. To
support its view that copyright and patent could provide overlapping
protections for software APIs, the CAFC inappropriately invoked dicta
from the Supreme Court’s Mazer v. Stein19 decision, failing to notice that
the Court in Mazer explicitly recognized that utility patents and
copyrights are “mutually exclusive.”20 Part III also urges courts to be
more receptive to arguments that the existence of issued patents for
software innovations is evidence that those innovations should not be
protectable by copyright law, even if such patents are not conclusive
evidence that the innovations are uncopyrightable.

Part IV discusses Oracle’s destabilization of the copyright/patent
balance in software cases and offers concrete suggestions about how
courts should approach discerning the proper boundaries of copyright and
patent in protecting particular aspects of software. It argues that courts
should be warier than they have been to date of claims of copyright in
program SSO because the SSO term obscures the distinction between
copyrightable expression in programs and patentable methods of
operation that Congress intended to exclude from copyright’s protection.
More clarity in the software copyright caselaw can be attained if courts
engage in rigorous filtration of unprotectable nonliteral elements of
software and use computer-science-relevant terminology to describe
these elements. Finally, Part V concludes.

19. 347 U.S. 201 (1954).
20. Id. at 215 n.33.

7

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

250 FLORIDA LAW REVIEW [Vol. 71

I. SETTING THE CONTEXT FOR UPHOLDING THE MUTUAL EXCLUSIVITY
OF COPYRIGHT AND PATENT FOR COMPUTER PROGRAM INNOVATIONS

The conception of copyright and patent as mutually exclusive forms
of IP rights derives from the Supreme Court’s 1879 decision in Baker v.
Selden.21 Selden claimed copyright not only in the books he had written,
but also in the bookkeeping system set forth in his books and embodied
in forms he devised to instantiate the system.22 Because the preface to
Selden’s book mentioned that he had sought a patent for this system,
Baker argued that Selden regarded the system as patent, not copyright,
subject matter.23 The Court agreed, holding that Selden’s copyright could
protect his explanation of the system but did not extend to the system or
the forms that instantiated that system.24 To obtain exclusive rights in
useful arts, such as a bookkeeping system, the Court said, the creator must
satisfy the more rigorous qualitative standards (that is, novelty and
nonobviousness, not merely originality) and examination process
required by the patent system.25 The Court sharply distinguished the
writings of authors, which copyright protects, from inventions in the
useful arts, which can be protected, if at all, only through the patent
system (and then for a much shorter duration after a more rigorous review
than copyright requires).26

Taylor Instrument Co. v. Fawley-Brost Co.27 confirmed the mutual
exclusivity conception of copyright and patent. In Taylor, the U.S. Court
of Appeals for the Seventh Circuit rejected claims of copyright in
temperature recording charts because although charts were statutorily
eligible for copyright protection, these particular charts were essential
parts of machines and the subject matter of expired utility patents.28 The

21. 101 U.S. 99, 102 (1879).
22. Id. at 100. Baker is fundamentally a case about the distinction between the subject

matters of copyright (writings of authors) and patent (inventions in the useful arts), not about the
abstract idea/expression distinction. See Pamela Samuelson, The Story of Baker v. Selden:
Sharpening the Distinction Between Authorship and Invention, in INTELLECTUAL PROPERTY
STORIES 159, 186–87 (Jane C. Ginsburg & Rochelle Cooper Dreyfuss eds., 2006).

23. Samuelson, supra note 22, at 174–75.
24. Baker, 101 U.S. at 104–05.
25. Id. at 102–04.
26. Samuelson, supra note 2, at 1496–1503, 1512–16 (discussing constitutional, statutory,

caselaw, and policy reasons why copyright and patent rights do not and should not overlap in the
same intellectual creations).

27. 139 F.2d 98, 99 (7th Cir. 1943); see also Brown Instrument Co. v. Warner, 161 F.2d
910, 911 (D.C. Cir. 1947) (following Taylor in upholding the Copyright Office’s refusal to
register claims of copyright in temperature recording charts).

28. Taylor, 139 F.2d at 99–101. When patents expire, the intellectual creation is dedicated
to the public domain. See id. at 100–01.

8

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 251

court conceived of copyright and patent subject matters as mutually
exclusive:

While it may be difficult to determine in which field
protection must be sought, it is plain . . . that it must be in
one [copyright] or the other [patent]; it cannot be found in
both. In other words, there is no overlapping territory, even
though the line of separation may in some instances be
difficult of exact ascertainment.29

In keeping with Baker, the court regarded the utility patent regime as
having supremacy over any claim of copyright in human creations that
were patentable subject matters.30 The Seventh Circuit thought it would
be “intolerable” to allow Taylor to use copyright to extend its monopoly
in these charts.31 The Supreme Court’s Mazer decision confirmed the
“mutual exclusiv[ity]” of copyright and patent protections, citing
favorably to Baker, Taylor, and other Baker progeny.32

Consistent with these decisions, courts should interpret the scope of
copyright protection for software narrowly to avoid providing patent-like
protection to functional aspects of software for which its creator did not
seek a patent.33 Copyright law should not serve as a gap-filler for
functional aspects of programs for which patent protection is unavailable,
either because these aspects of programs lack novelty or nonobviousness
or because they are too abstract for patenting.34 If the functional design
has been patented, it should be disqualified from copyright protection.35

Allowing otherwise would defeat an essential purpose of the patent
system, which requires claimants to meet higher qualitative standards and
undergo more rigorous review to acquire exclusive rights, and even then,

29. Id. at 99.
30. See, e.g., Christopher Buccafusco & Mark A. Lemley, Functionality Screens, 103 VA.

L. REV. 1293, 1300 (2017); Mark P. McKenna & Christopher Jon Sprigman, What’s In, What’s
Out: How IP’s Boundary Rules Shape Innovation, 30 HARV. J.L. & TECH. 491, 492 (2017)
(discussing patent preemption of other IP rules).

31. Taylor, 139 F.2d at 101.
32. Mazer v. Stein, 347 U.S. 201, 215 n.33 (1954). Mazer and the Oracle decision’s

misinterpretation of it are discussed infra Section III.B.
33. See, e.g., OFFICE OF TECH. ASSESSMENT, INTELLECTUAL PROPERTY RIGHTS IN AN AGE OF

ELECTRONICS AND INFORMATION 83 (1986) [hereinafter 1986 OTA REPORT].
34. Since the Supreme Court’s decision in Alice Corp. v. CLS Bank Int’l, 134 S. Ct. 2347,

2360 (2014), which struck down patent claims for a method and system for managing financial
settlement risks as too abstract to be patent subject matter, it is clearer than ever that some aspects
of software are too abstract to qualify for either copyright or patent protections.

35. See infra Part III for a discussion of this issue.

9

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

252 FLORIDA LAW REVIEW [Vol. 71

for a shorter duration.36 Courts should not allow software developers to
bypass those standards and procedures merely by asserting copyright in
a software SSO innovation. It is a fundamental tenet of patent law that
unpatented technological innovations are in the public domain and
available for free reuses (unless they can be maintained as trade secrets).37

Unfortunately, applying these uncontroversial propositions in
software IP cases has sometimes been difficult because the precise
contours of copyrightable expression and patentable systems and
processes in software are sometimes, to use Taylor’s words, “difficult of
exact ascertainment.”38 Structural design elements of programs, such as
the APIs and command structures at issue in Oracle, exemplify this
problem. It is nevertheless important for courts to make concerted efforts
to discern patent and copyright boundaries and to resist construing
copyright to give patent-like protections to nonliteral elements of
programs. The CAFC’s broad interpretation of copyright in Oracle, as
well as its endorsement of copyright/patent overlaps, provides fuel for
undermining these fundamental norms. Articulation of these principles
should inform our understanding of Congress’s decision to utilize
copyright as a form of protection for software and also to narrow its scope
to prevent it from becoming a substitute for patenting.

A. Overcoming Initial Conceptual Difficulties in Applying
IP Rights to Software

In the earliest days of the computer and software industries,
developers created many thousands of programs without asserting either
copyright or patent protections.39 When developers wanted to claim
proprietary rights in programs, they typically maintained source codes as

36. See, e.g., KSR Int’l Co. v. Teleflex Inc., 550 U.S. 398, 427 (2007) (“[T]he results of
ordinary innovation are not the subject of exclusive rights under the patent laws. Were it otherwise
patents might stifle, rather than promote, the progress of useful arts.”).

37. See, e.g., Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 151 (1989)
(“The novelty and nonobviousness requirements of patentability embody a congressional
understanding, implicit in the Patent Clause itself, that free exploitation of ideas will be the rule,
to which the protection of a federal patent is the exception.”).

38. Taylor Instrument Co. v. Fawley-Brost Co., 139 F.2d 98, 99 (7th Cir. 1943). Discerning
copyright/patent boundaries is sometimes difficult in non-software contexts as to puzzles, toys,
games, and architecture. See Samuelson, supra note 2, at 1516–17; see also Kevin Emerson
Collins, Patent Law’s Authorship Screen, 84 U. CHI. L. REV. 1603, 1643–44 (2017) (discussing
this difficulty for architectural works).

39. See, e.g., MARTIN CAMPBELL-KELLY, FROM AIRLINE RESERVATIONS TO SONIC THE
HEDGEHOG: A HISTORY OF THE SOFTWARE INDUSTRY 3 (2003) (discussing historical and empirical
perspectives on the development of the software industry and various business models that
supported it). Much software was “bundled” with hardware. Id. at 6. IBM’s eventual “unbundling”
of software and hardware under some pressure from antitrust authorities was an important
development that contributed to the growth of an independent software industry. Id.

10

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 253

trade secrets and licensed the use of machine-executable codes to
customers.40 Yet, trade secrecy was, by its nature, unsuited to be the sole
form of IP protection for software in the marketplace because mass-
market distribution would publish the secrets.41

Once copyright and patent officials were confronted with claims of IP
rights in programs in the mid-1960s, it became apparent that software was
an awkward fit for both regimes.42 Programs were too much of a
technology to fit comfortably in the copyright regime and too much of a
writing to fit comfortably in the patent system.

In 1965, the Register of Copyright decided, with some reluctance, to
accept registrations for computer programs as long as their authors
supplied the full texts of their source codes for deposit with the U.S.
Copyright Office and complied with copyright notice requirements.43

Those registrations were issued, however, under the Office’s “rule of
doubt.”44 One doubt was whether copyright protection could extend to
machine-executable forms of programs, which are virtual machines and
machine processes.45 A second doubt was whether machine-executable

40. Trade secrecy and licensing remain important ways for software developers to protect
their digital assets. See, e.g., 1 DAVID BENDER, COMPUTER LAW: A GUIDE TO CYBERLAW & DATA
PRIVACY LAW § 3.03 (2018) (including sections on trade secret and licensing agreements, among
others, as types of practical and effective software protection).

41. See, e.g., Videotronics, Inc. v. Bend Elecs., 564 F. Supp. 1471, 1475–78 (D. Nev. 1983)
(denying trade secrecy claim for videogame program). The court noted that copyright law would
have provided a more useful way to protect the plaintiff’s code against unlicensed copying; trade
secrecy could not, however, serve as a substitute form of IP protection after copies of the programs
had circulated in the marketplace. Id. at 1477.

42. Justice Breyer’s tenure article regarded the “case” for extending either copyright or
patent protection to computer programs to be at best “uneasy” and actually quite unpersuasive.
See Stephen Breyer, The Uneasy Case for Copyright: A Study of Copyright in Books, Photocopies,
and Computer Programs, 84 HARV. L. REV. 281, 284 (1970). Adequate incentives for the
development of computer software existed, including business models that did not depend on IP
rights. Id. at 344–50 (describing economics of software development). See generally Pamela
Samuelson, The Uneasy Case for Software Copyrights Revisited, 79 GEO. WASH. U. L. REV. 1746
(2011) for a contemporary assessment of Breyer’s analysis.

43. COPYRIGHT OFFICE CIRCULAR 31D (Jan. 1965), reprinted in Duncan M. Davidson,
Protecting Computer Software: A Comprehensive Analysis, 1983 ARIZ. ST. L.J. 611, 652 n.72
(1983).

44. Davidson, supra note 43, at 739. Copyright Office policy is to register a claim to
copyright under the “rule of doubt” if it “has reasonable doubt as to whether the material submitted
for registration constitutes copyrightable subject matter or whether the other legal and formal
requirements of the statute have been met.” U.S. COPYRIGHT OFFICE, COMPENDIUM OF U.S.
COPYRIGHT OFFICE PRACTICES § 607 (3d ed. 2017).

45. In the first copyright case based on the copying of machine-executable code, a trial court
rejected a copyright claim because the code was a “mechanical device” ineligible for copyright
protection. See Data Cash Sys., Inc. v. JS&A Grp., Inc., 480 F. Supp. 1063, 1065–69 (N.D. Ill.
1979) (noting failure to satisfy notice of copyright requirements), aff’d on other grounds, 628
F.2d 1038 (7th Cir. 1980).

11

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

254 FLORIDA LAW REVIEW [Vol. 71

code could be considered a “copy” of the source code under copyright
precedents.46 Perhaps in part because of these doubts, the Office
registered relatively few programs in the 1960s and 1970s.47

In 1967, during congressional hearings on proposed bills to overhaul
U.S. copyright law,48 one witness warned against software copyrights as
likely to confer “patentlike protection under the guise of copyright.”49

Seemingly in response to those concerns, Congress added a provision to
the copyright revision bill that, as enacted in the Copyright Act of 1976
(1976 Act),50 became § 102(b): “In no case does copyright protection for
an original work of authorship extend to any idea, procedure, process,
system, method of operation, concept, principle, or discovery, regardless
of the form in which it is . . . embodied in such work.”51 The legislative
history expressly stated that it had been added to the statute to ensure that
computer program copyrights would not be construed too broadly.52

During this same period, the U.S. Patent Office was struggling with
whether to issue patents for programs and for processes embodied in
programs. It perceived programs to be unpatentable printed matter (that

46. See White-Smith Music Publ’g Co. v. Apollo Co., 209 U.S. 1, 17–18 (1908) (stating
piano rolls are not “copies” of musical compositions, but essential parts of machines that were
unreadable by humans). The Data Cash decision analogized source code to architectural drawings
and object code to buildings constructed from those drawings. Data Cash, 480 F. Supp. at 1068
(citing Nucor Corp. v. Tenn. Forging Steel Serv., Inc., 476 F.2d 386, 391 n.8 (8th Cir. 1973)
(stating that a building is not a “copy” of drawings, but a “result” of them)). Architectural works
only became copyrightable subject matter in the U.S. in 1991. Architectural Works Copyright
Protection Act, Pub. L. No. 101-650, §§ 701–06, 104 Stat. 5133 (1990).

47. See, e.g., NAT’L COMM’N ON NEW TECH. USES OF COPYRIGHTED WORKS, FINAL REPORT
34 (1978) [hereinafter CONTU REPORT] (reporting that IBM and Burroughs accounted for more
than 80% of the 1,205 programs registered before 1977). The source code disclosure requirement
may have discouraged registrations. See, e.g., Davidson, supra note 14, at 1058. Moreover, many
software developers had adopted business models not dependent on IP rights. Breyer, supra note
42, at 344–45.

48. See Copyright Law Revision: Hearings on S. 597 Before the Subcomm. on Patents,
Trademarks, and Copyrights of the S. Comm. on the Judiciary, 90th Cong. 969–74 (1967),
reprinted in 9 OMNIBUS COPYRIGHT REVISION LEGISLATIVE HISTORY 192–97 (George S.
Grossman ed., 1976) [hereinafter 1967 Senate Hearings]; see also Armstrong, supra note 17, at
137–38 (discussing these hearings).

49. 1967 Senate Hearings, supra note 48, at 197 (testimony of Arthur Miller). Professor
Miller also believed that Congress should not allow programmers to use copyright to protect
efficient program innovations without meeting patent law’s procedural or substantive standards.
Id.

50. Pub. L. No. 94-553, 90 Stat. 2541 (codified as amended at 17 U.S.C. §§ 101–1401
(2012)).

51. 17 U.S.C. § 102(b). See generally Pamela Samuelson, Why Copyright Law Excludes
Systems and Processes from the Scope of Its Protection, 85 TEX. L. REV. 1921 (2007), for a
detailed history of this provision and the caselaw it was intended to codify. It is worth noting that
processes are among the subject matters of patents. See 35 U.S.C. § 101 (2012).

52. H.R. REP. NO. 94-1476, at 57 (1976).

12

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 255

is, writings of authors) and program processes to be unpatentable mental
processes.53 The Patent Office’s opposition to software patents stiffened
after a presidential commission in 1966 rebuffed a proposal that program
innovations be made patentable.54 The Commission expressed concern
about the Patent Office’s competence to judge the patentability of
software innovations because the Office lacked an appropriate database
of prior art and a suitable classification system.55 Substantial progress had
been made in the programming field without patents, and besides,
copyright protection was available for programs.56

Notwithstanding the Presidential Commission’s statement, some
doubts lingered about whether machine-executable forms of programs
were indeed copyright-protectable, even after passage of the 1976 Act.57

These doubts were put to rest by the National Commission on New
Technological Uses of Copyrighted Works (CONTU) in the late 1970s.58

53. Any process or system for which a computer program can be written can also be

instantiated in hardware. Patenting seems appropriate if one accepts, as one must, the equivalence
of hardware and software and recognizes that software is a virtual machine. See generally Pamela
Samuelson, Benson Revisited: The Case Against Patent Protection for Algorithms and Other
Computer Program-Related Inventions, 39 EMORY L.J. 1025 (1990), for a more extensive
treatment of the problems with software-related patents. The law review literature on software
patents is vast. See, e.g., James P. Chandler, Patent Protection of Computer Programs, 1 MINN.
INTELL. PROP. REV. 33, 36–38 n.15 (2000) (reporting that over 200 articles were written about
patenting of computer programs between 1970 and 1979, over 500 between 1980 and 1989, and
well over 1,000 between 1990 and 2000, with citations to a substantial number of them).

54. See THE PRESIDENT’S COMM’N ON THE PATENT SYS., “TO PROMOTE THE PROGRESS
OF . . . USEFUL ARTS” IN AN AGE OF EXPLODING TECHNOLOGY, S. DOC. NO. 91-5, at 21 (1st Sess.
1967) (“Uncertainty now exists as to whether the statute permits a valid patent to be granted on
programs. Direct attempts to patent programs have been rejected on the ground of nonstatutory
subject matter. Indirect attempts to obtain patents and avoid the rejection, by drafting claims as a
process, or a machine or components thereof programmed in a given manner, rather than as a
program itself, have confused the issue further and should not be permitted.”).

55. Id.
56. Id.
57. The 1976 Act initially had a placeholder provision in 17 U.S.C. § 117 preserving the

state of the law (whatever that was) as to computer software. See Pamela Samuelson, CONTU
Revisited: The Case Against Copyright Protection for Computer Programs in Machine-Readable
Form, 1984 DUKE L.J. 663, 696–98 (1984).

58. CONTU was established by Pub. L. No. 93-573, 88 Stat. 1873 (1974). See CONTU
REPORT, supra note 47, app. B. It was created to address several new technology issues that had
been holding up enactment of the revised copyright bill; namely, to what extent photocopying of
in-copyright materials was infringement, whether inputting a copyrighted work into a computer
would infringe copyright, whether databases were copyrightable, and whether computer-
generated works could be copyrighted. Id. CONTU provided guidelines about photocopying, id.
at 48–78, and concluded that inputting a copyrighted work into a computer could infringe
copyright, id. at 39–40, that databases could be copyrighted if original, id. at 38–40, and that
computer-generated works could be copyrighted if original, id. at 45. The copyrightability of
computer programs was not in its initial charter. Weinreb, supra note 14, at 1165. Perhaps because

13

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

256 FLORIDA LAW REVIEW [Vol. 71

CONTU strongly endorsed copyright protection for computer
programs,59 albeit over vigorous dissents expressing concerns about
copyright protecting highly functional works.60 CONTU concluded that
of the existing legal regimes, copyright was the most suitable form of IP
protection.61 It noted that Supreme Court decisions had cast doubt about
the patentability of program innovations.62 The uncertainty of patents
made copyright seem like a better choice.63 CONTU expressed
confidence that courts would be able to apply traditional principles of
copyright law to programs.64 Soon after CONTU issued its report,

Congress had not expected CONTU to address the software issue, none of the CONTU
Commissioners had expertise in computer or software technologies. Id. at 1166–69.

59. CONTU REPORT, supra note 47, at 12 (asserting that computer programs were already
copyrightable under the 1976 Act). There was, however, more ambiguity on this point than
CONTU acknowledged. See Samuelson, supra note 57, at 703; Armstrong, supra note 17, at 143–
44.

60. See CONTU REPORT, supra note 47, at 27–37 (dissent of John Hersey) (arguing that
programs were too functional to be copyright subject matter and failed to communicate the works’
expression to humans as other copyrighted works do); see also id. at 37–38 (dissent of Rhoda
Karpatkin).

61. See id. at 16–18 (comparing copyright with other existing IP regimes).
62. Id. at 17 (noting the Court’s doubts about the patentability of program innovations). The

Court unanimously ruled against the patentability of a program algorithm in Gottschalk v. Benson,
409 U.S. 63, 68 (1972) (holding the method for transforming binary coded decimals to pure binary
form too abstract to be patentable). While CONTU was still deliberating about software
protections, the Court issued another anti-software patent decision in Parker v. Flook, 437 U.S.
584, 594 (1978) (ruling against a claim for a software-implemented process for updating alarm
limits for catalytic conversion systems). See also Dann v. Johnston, 425 U.S. 219, 229–30 (1976)
(holding data processing claims ineligible for patenting). Not until after the 5-4 decision in
Diamond v. Diehr, 450 U.S. 175, 191–93 (1981), which upheld a patent for a rubber-curing
process that utilized a program, did patents begin to become a viable form of protection for certain
aspects of software.

63. CONTU did not consider the possibility of sui generis (of its own kind) form of IP
protection for software, although some had suggested this option. See, e.g., World Intell. Prop.
Org. [WIPO], Rep. of the Int’l Bureau on the Legal Protection of Computer Software, U.N. Doc.
LPCS/1/2, at 4 (1979); Elmer Galbi, Proposal for New Legislation to Protect Computer
Programming, 17 BULL. COPYRIGHT SOC’Y 280, 283–92 (1970); Benjamin Kaplan, An Unhurried
View of Copyright: Proposals and Prospects, 66 COLUM. L. REV. 831, 843 (1966) (“[W]e ought
to be thinking, not copyright, but patent, or perhaps a third quiddity . . . as we are told that the
programs, or some of them, can be translated, so to speak, into physical parts of the computer’s
machinery or circuitry.”). An important advantage of a copyright, rather than a sui generis, model
of IP protection for software was the existence of international treaties under which software
might be subsumed (as “literary works”), and hence protected internationally. Under a sui generis
option, a new treaty would have had to be negotiated, which might not have been as protective of
software innovations as copyright.

64. See CONTU REPORT, supra note 47, at 16. But see infra note 73 and accompanying
text.

14

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 257

Congress in 1980 amended the 1976 Act to effectuate CONTU’s
recommendations.65

B. The Road to Whelan v. Jaslow and Concerns About Copyright
Conferring Patent-Like Protections to Software

In the first four years after the 1980 amendments, courts rendered
twenty-four software copyright decisions. Virtually all of them raised
relatively straightforward issues.66 None seemed to bear out earlier
warnings about copyright giving patent-like protections to software. The
infringement claims were overwhelmingly based on copying of
audiovisual elements of videogames,67 exact copying of code,68 or both.69

However, in 1985, software copyright caselaw turned dicey. All five
of the software copyright cases decided that year involved “nonliteral”
infringement claims, that is, claims that the defendants copied structural
elements of computer programs.70 CONTU had emphasized the

65. Pub. L. No. 96-517, § 10, 94 Stat. 3015, 3028 (1980) (codified at 17 U.S.C. §§ 101, 117
(2012)) (defining “computer program” and creating a limitation enabling copying incidental to
use, backup copying, necessary adaptations, and resales of one’s copy). CONTU recommended
that “rightful possessors” have these § 117 rights. CONTU REPORT, supra note 47, at 12. As
enacted, only owners of copies of computer programs have these rights. 17 U.S.C. § 117. Software
firms have sometimes successfully used mass-market licenses to override § 117 rights to resell
software. See, e.g., Vernor v. Autodesk, Inc., 621 F.3d 1102, 1115–16 (9th Cir. 2010) (enforcing
a mass-market license restriction forbidding resale of software).

66. But see Midway Mfg. Co. v. Artic Int’l, Inc., 704 F.2d 1009, 1014 (7th Cir. 1983)
(holding that the sale of chips to speed up play of another firm’s videogame infringed the
derivative work right); Hubco Data Prods. Corp. v. Mgmt. Assistance, Inc., 219 U.S.P.Q. (BNA)
450, 457–58 (D. Idaho 1983) (finding that altering another firm’s code to enable its customers to
access additional features infringed).

67. See, e.g., Stern Elecs., Inc. v. Kaufman, 669 F.2d 852, 856 (2d Cir. 1982) (affirming a
preliminary injunction for infringement of videogame audiovisuals); Atari, Inc. v. N. Am. Philips
Consumer Elecs. Corp., 672 F.2d 607, 619–20 (7th Cir. 1982) (affirming a preliminary injunction
due to the similarities in characters and total concept and feel of videogames), superseded by
statute, FED. R. CIV. P. 52(a), as recognized in Scandia Down Corp. v. Euroquilt, Inc., 772 F.2d
1423, 1429 (7th Cir. 1985); Atari, Inc. v. Amusement World, Inc., 547 F. Supp. 222, 229 (D. Md.
1981) (holding that a videogame copyright was not infringed).

68. See, e.g., Apple Comput., Inc. v. Formula Int’l, Inc., 725 F.2d 521, 526–27 (9th Cir.
1984) (affirming a preliminary injunction against the exact copying of Apple operating system
programs), overruled by Flexible Lifeline Sys., Inc., v. Precision Lift, Inc. 654 F.3d 989 (9th Cir.
2011); Apple Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240, 1254–55 (3d Cir. 1983)
(reversing the denial of a preliminary injunction against the exact copying of object code); GCA
Corp. v. Chance, 217 U.S.P.Q. (BNA) 718, 722–23 (N.D. Cal. 1982) (granting a preliminary
injunction against the exact copying of operating system programs).

69. See, e.g., Williams Elecs., Inc. v. Artic Int’l, Inc., 685 F.2d 870, 878 (3d Cir. 1982). In
Midway Mfg. Co. v. Strohon, 564 F. Supp. 741 (N.D. Ill. 1983), the court found infringement of
a copyright in the plaintiff’s program code, but not in its videogame graphics. Id. at 754.

70. See Q-Co. Indus., Inc. v. Hoffman, 625 F. Supp. 608, 610 (S.D.N.Y. 1985); Williams
v. Arndt, 626 F. Supp. 571, 572–73 (D. Mass. 1985); E.F. Johnson Co. v. Uniden Corp. of Am.,

15

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

258 FLORIDA LAW REVIEW [Vol. 71

importance of distinguishing copyrightable program expression and
uncopyrightable program process, but had offered no guidance about how
courts should go about doing so, saying only that the distinction did not
“shimmer with clarity.”71

None of these first nonliteral infringement cases made any effort to
assess the applicability of the § 102(b) functionality exclusions (that is,
procedure, process, system, and method of operation).72 Courts generally
sought to resolve these nonliteral software copyright infringement claims
by examining them through the lens of cases involving conventional
“literary works” and assuming that if the structure of novels and plays
could be expressive parts of those works, then the structure of programs
should also be copyright-protectable.73

The most troubling decision was Whelan Associates, Inc. v. Jaslow
Dental Laboratory, Inc.,74 which involved competing programs to
automate common functions of dental laboratories.75 Jaslow’s main

623 F. Supp. 1485, 1487 (D. Minn. 1985); SAS Inst., Inc. v. S & H Comput. Sys., Inc., 605 F.
Supp. 816, 830 (M.D. Tenn. 1985); Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 609 F. Supp.
1307, 1309 (E.D. Pa. 1985), aff’d, 797 F.2d 1222 (3d Cir. 1986). All five involved claims of
infringement for copying internal structures of software. The plaintiffs prevailed in all of these
cases except Q-Co.

71. CONTU REPORT, supra note 47, at 18. Nearly forty years later, this continues to be true.
See, e.g., Armstrong, supra note 17, at 156.

72. A § 102(b) exclusion should have been dispositive in Williams. The copyright claim
arose because Arndt developed software that implemented Williams’ method for trading in
commodities. The court upheld Williams’ claim because the two programs contained the same set
of steps (i.e., they implemented the same procedure) and produced the same results. Williams, 626
F. Supp. at 579. Arndt may have breached Williams’ confidence and been a bit of a liar, id. at
573–75, 580–81, but he wrote his own program to implement the plaintiff’s method. Under
traditional principles of copyright law, Arndt should have prevailed in the copyright case. 1986
OTA REPORT, supra note 33, at 81.

73. See, e.g., SAS, 605 F. Supp. at 829–31. The Third Circuit’s decision in Whelan Assocs.,
Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1234 (3d Cir. 1986), characterized programs as
“literary works” whose structure could be as expressive as the structure of novels and plays.

74. 609 F. Supp. 1307 (E.D. Pa. 1985), aff’d, 797 F.2d 1222 (3d Cir. 1986).
75. Id. at 1309. The district court should have analyzed the § 102(b) process exclusion

because similarities in the parties’ programs were due to both having designed them to implement
the same set of dental lab business processes. The district court characterized the copyright-
protectable expression in programs as “the manner in which the program operates, controls, and
regulates the computer in receiving, assembling, calculating, retaining, correlating, and producing
useful information either on a screen, print-out or by audio communication.” Id. at 1320. The
Third Circuit cited approvingly to this definition of program expression. Whelan, 797 F.2d at
1239. Notice that if one substitutes the word “method” for “manner” in the court’s statement, the
sentence still makes sense. These aspects of software should have been unprotectable methods
under § 102(b). The trial court thought that prospective users would perceive no differences
between the Whelan and Jaslow programs. Whelan, 609 F. Supp. at 1322. It was as if performing
the same functions in the same manner necessarily infringed. See 1986 OTA REPORT, supra note

16

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 259

defense was that copyright protected only program code, not program
structure.76 The U.S. Court of Appeals for the Third Circuit affirmed the
lower court’s finding of infringement based on similarities in the two
programs’ file structures, in the sequences of five subroutines, and in their
“overall structure.”77 The court’s decision introduced the concepts of
“structure, sequence, and organization” (SSO) and the “look and feel” of
programs as potentially eligible for copyright protection.78 The court
reasoned that a great deal of intellectual creativity had gone into the
design of the program structures and look-and-feel and that without broad
copyright protection for such program innovations there would be too
little incentive to create valuable programs.79 The court announced a test
for judging nonliteral infringement in software copyright cases under
which “the purpose or function of a utilitarian work would be the work’s
idea, and everything that is not necessary to that purpose or function
would be part of the expression of the idea.”80

Whelan precipitated numerous software copyright lawsuits involving
nonliteral infringement claims. Plaintiffs in those cases relied heavily on
Whelan’s endorsement of copyright protection for program SSO and
often applied its test for infringement.81 “Look and feel” lawsuits also
proliferated, the most prominent of which were Lotus Development Corp.

33, at 81 (suggesting that unfair competition concerns explained Whelan and other nonliteral
infringement cases).

76. Although the district court did not discuss Jaslow’s theory of the case, it is evident in
the Third Circuit’s decision. See Whelan, 797 F.2d at 1235.

77. Id. at 1233–34, 1242–48. The court rejected Jaslow’s argument that the file structures
were like the blank forms in Baker. Id. at 1242–43. The subroutines that carried out standard
business methods (for example, for close-of-day and close-of-month operations and the like), id.
at 1245, should have been excluded from copyright under § 102(b).

78. See id. at 1224, 1229, 1231. The court suggested that copyright protection should be
available for program “look and feel,” quoting an article stating that designing look-and-feel
requires considerable creativity and “often is of greater commercial value than the program code.”
Id. at 1231. “Look and feel” claims are no longer found in the software copyright caselaw.

79. Id. at 1237–38.
80. Id. at 1236.
81. See, e.g., Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1176–77

(9th Cir. 1989) (affirming the grant of a preliminary injunction based on the copying of a program
structure); Lotus Dev. Corp. v. Paperback Software Int’l, Inc., 740 F. Supp. 37, 52 (D. Mass.
1990) (holding that copying a spreadsheet program command structure constituted infringement,
citing Whelan); Pearl Sys. Inc. v. Competition Elecs. Inc., 8 U.S.P.Q.2d (BNA) 1520, 1524 (S.D.
Fla. 1988) (protecting SSO, following Whelan); Digital Commc’ns. Assocs. v. Softklone Distrib.
Corp., 659 F. Supp. 449, 454–55 (N.D. Ga. 1987) (characterizing Whelan as “[t]he leading case
addressing the extent of [copyright] protection”); Broderbund Software, Inc. v. Unison World,
Inc., 648 F. Supp. 1127, 1133 (N.D. Cal. 1986) (holding that the “overall structure, sequencing,
and arrangement” of a greeting card preparation program fell within the “ambit of copyright
protection”).

17

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

260 FLORIDA LAW REVIEW [Vol. 71

v. Paperback Software International, Inc.82 and Apple Computer Inc. v.
Microsoft Corp.83

In the mid-to-late 1980s, as the Whelan-inspired SSO and look-and-
feel cases were being litigated,84 the CAFC was taking an increasingly
broad view of the Supreme Court’s 1981 decision in Diamond v. Diehr85

as having opened the door to the patenting of software innovations.86

After Diehr, the Patent and Trademark Office (PTO) became more liberal
in its issuance of such patents.87 The upsurge in software patenting in the
mid-to-late 1980s might have been even greater but for decisions such as
Whelan, which “lessened the need to rely on patents as the primary legal
protection for software.”88

C. Rising Concerns About Overbroad Copyrights and Software Patents
By the mid-1980s, ever-growing concerns about uncertain and

overbroad software copyrights and the rise of software patents among IP
and computing professionals came to the attention of members of
Congress. These concerns prompted a request that the Office of

82. 740 F. Supp. 37 (D. Mass. 1990).
83. 35 F.3d 1435 (9th Cir. 1994), aff’g 799 F. Supp. 1006 (N.D. Cal. 1992). The day after

the Supreme Court denied certiorari in Jaslow Dental Lab., Inc. v. Whelan Assocs., Inc., 479 U.S.
1031 (1987), Lotus filed its first “look and feel” lawsuit. Complaint, Lotus Dev. Corp. v.
Paperback Software Int’l, Inc., 740 F. Supp. 37 (D. Mass. 1990) (No. 1:87CV00076). The Apple
v. Microsoft case is discussed infra Section II.B.3.

84. At least one court declined to follow the Whelan approach to judging software copyright
infringement. See, e.g., Plains Cotton Coop. Ass’n v. Goodpasture Comput. Serv., Inc., 807 F.2d
1256, 1262 (5th Cir. 1987) (affirming the denial of a preliminary injunction for copyright
infringement because many similarities between the parties’ programs were “dictated by the
externalities of the cotton market” and explaining why it declined to follow Whelan).

85. 450 U.S. 175 (1981).
86. The Diehr decision was generally viewed for some years as having opened up only a

narrow window for software-related patents. See, e.g., Samuelson, supra note 53, at 1095–96
(discussing Diehr). This was partly because the Supreme Court had split 5-4 on the patent claim,
which involved an improved rubber curing process that used a program as one element. Diehr,
450 U.S. at 176; see also Maureen A. O’Rourke, The Story of Diamond v. Diehr: Toward
Patenting Software, in INTELLECTUAL PROPERTY STORIES 212–13 (Jane C. Ginsburg & Rochelle
Cooper Dreyfuss eds., 2006) (discussing the facts of Diehr).

87. See John T. Soma & B.F. Smith, Software Trends: Who’s Getting How Many of What?
1978 to 1987, 71 J. PAT. & TRADEMARK OFF. SOC’Y 415, 419–20 (1989) (explaining that the
average number of software patents granted between 1978 and 1981 was nine per year, which
increased to thirty-four in 1984 and to sixty-six in 1987, a 470% increase over this time period);
see also OFFICE OF TECH. ASSESSMENT, FINDING A BALANCE: COMPUTER SOFTWARE,
INTELLECTUAL PROPERTY, AND THE CHALLENGE OF TECHNOLOGICAL CHANGE 55 tbl.2-1 (1992)
[hereinafter 1992 OTA REPORT] (charting increases in the patenting of software inventions).

88. O’Rourke, supra note 86, at 214.

18

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 261

Technology Assessment (OTA) study software IP issues and report about
these developments.89

In 1986, the OTA reported to Congress that “neither copyright nor
patent law ha[d] successfully accommodated works of function, such as
computer programs.”90 Copyright seemed to provide either “too much”
or “too little” protection for program innovations.91 If copyright
protection was only available to literal code, it would be easy to rewrite
the same program design in non-infringing source code, but if copyright
protection “extended to the logic, design, structure, performance or even
the output of the computer program,” this would provide too much
protection and violate the strictures of § 102(b).92 The OTA pointed to
Whelan and two other 1985 nonliteral infringement decisions as
examples of the “too much” approach.93 The OTA warned that “[o]verly
broad copyright protection would give the owner patent-like protection
over processes for a much longer duration than patent law provides,” and
that it would do so without satisfying the more rigorous procedural and
substantive requirements of the patent system.94

The OTA’s concerns were echoed in a large number of articles
published in the late 1980s that were strongly critical of Whelan.95 One
article characterized the decision as “The ‘First Ever’ Patent Based on
Copyright Relief.”96 The Whelan test for infringement “make[s]
everything ‘new’ about the program susceptible to copyright protection,
including any patentable ideas, without regard to the requirements of

89. See 1986 OTA REPORT, supra note 33, at ii.
90. Id. at 59.
91. Id. at 78. Breyer had also worried that copyright could provide too much or too little

protection to software. Breyer, supra note 42, at 347–48; see also Samuelson et al., supra note
13, at 2356–61 (expressing concern about probable cycles of over- and under-protection in
software copyright cases).

92. 1986 OTA REPORT, supra note 33, at 81.
93. Id.
94. Id. at 83.
95. See, e.g., Marjorie Hope Kaufman, Pearl Systems, Functionality, Protection for

Structure, and the Boundaries of Copyright Protection: An Ad Hoc Forum, 6 COMPUTER LAW. 1,
1–2 (1989); Menell, supra note 14, at 1074, 1082; Reichman, supra note 14, at 697, 714; D. C.
Toedt, Bonito Boats and the Primacy of the Patent System—Are There Implications for Software
Functionality Copyrights?, 6 COMPUTER LAW. 12, 12–15 (1989); Steven R. Englund, Note, Idea,
Process, or Protected Expression? Determining the Scope of Copyright Protection of the
Structure of Computer Programs, 88 MICH. L. REV. 866, 881 (1990); Peter G. Spivack, Comment,
Does Form Follow Function? The Idea/Expression Dichotomy in Copyright Protection of
Software, 35 UCLA L. REV. 723, 744 (1988).

96. John P. Sumner & Steven W. Lundberg, Patentable Computer Program Features as
Uncopyrightable Subject Matter, 17 AIPLA Q.J. 237, 239 (1989); see also Michael Gemignani,
Copyright Protection: Computer-Related Dependent Works, 15 RUTGERS COMPUTER & TECH. L.J.
383, 403–05 (1989) (criticizing Whelan for adopting a patent-like standard of infringement).

19

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

262 FLORIDA LAW REVIEW [Vol. 71

patentability.”97 In addition, granting protection to all program SSO
would risk giving programmers patent-like protection through copyright,
which could have a chilling effect on software development and ongoing
innovation.98 Whelan wrongly assumed that there was only one
unprotectable idea per program and failed to filter, during infringement
analysis, several types of unprotectable elements of programs, including
efficient designs and interfaces necessary for achieving interoperability
with hardware or software.99

Moreover, IP experts concluded that courts needed to recognize that
many programming design objectives are functional, such as
optimization of computing speed, efficient use of memory, input/output
functioning, ease of testing, maintenance and enhancement, and the need
to “achieve compatibility.”100 Whelan failed to recognize these design
constraints and to interpret the process and method of operation
exclusions required by § 102(b).101 Software should be accorded a lesser
level of copyright protection to avoid protecting its functional
elements.102 Moreover, the terms “SSO” and “look and feel” were
unhelpful in distinguishing protectable and unprotectable aspects of
programs.103

Lawyers were not the only people concerned about software IP
developments. The Computer Science and Telecommunications Board of
the National Academies of Sciences (NAS) hosted two forums to discuss
worrisome trends in software copyright and patent law that posed risks to
ongoing innovation and growth in the software industry.104 Among other
things, its report pointed out that it was not always easy to determine
which law should apply to nonliteral elements of programs:

97. Sumner & Lundberg, supra note 96, at 240; see also Lundberg et al., supra note 16, at

248 (“If a statutory utility patent claim can be written on a functional, utilitarian feature specified
by a computer program, the feature is by definition an idea to which copyright protection does not
apply.” (emphasis omitted)).

98. See, e.g., David Nimmer et al., A Structured Approach to Analyzing the Substantial
Similarity of Computer Software in Copyright Infringement Cases, 20 ARIZ. ST. L.J. 625, 630
(1988). David Nimmer is, of course, co-author (with his late father) of the Nimmer treatise.
Insights of this article were carried over into the treatise. See 4 NIMMER & NIMMER 2018, supra
note 17, § 13.03[F].

99. Nimmer et al., supra note 98, at 629–30, 639–40.
100. Chisum et al., supra note 18, at 19–22.
101. Id. at 20.
102. Id. at 18–19.
103. Id. at 20, 27.
104. See generally STEERING COMM. FOR INTELLECTUAL PROP. ISSUES IN SOFTWARE ET AL.,

INTELLECTUAL PROPERTY ISSUES IN SOFTWARE (1991) [hereinafter IP ISSUES] (discussing the
changing context of the software industry and the legal issues resulting from innovation).

20

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 263

[C]opyright attorneys can argue cogently that disputes over
the ownership of graphical displays and the sequencing of
commands—that is the look and feel of user interfaces—
should be resolved in the copyright arena because the issues
center on creative expression. Objecting to the subjectivity
of copyright concepts, such as “look and feel” and
“structure, sequence, and organization,” patent attorneys
argue just as persuasively that the issues can be addressed
more concretely by assessing the novelty and
nonobviousness of useful processes incorporated into
interfaces.105

No consensus emerged on the appropriate roles of copyright and patent
in protecting software.106

The swirling controversies about software IP issues induced the
House Subcommittee on Courts, Intellectual Property, and the
Administration of Justice to hold a set of oversight hearings about
computers and intellectual property in 1989 and 1990.107 In advance of
the hearings, the OTA prepared a document about the SSO and look-and-
feel lawsuits, stating, “[a]t stake in these decisions is the extent to which
copyright should be interpreted to give patent-like protection, albeit for a
much longer period of time and without patent’s high standards for
innovation and originality.”108

At one of the hearings, two prominent software developers expressed
concerns about overprotection of software by copyright law, as well as
about the harm that could be done to competition and ongoing innovation
in the software industry if patents came to play a more substantial role.109

After hearing this and other testimony, Representative Robert
Kastenmeier stated: “I must confess that I have difficulty comprehending
the difference between where a patent might be applied for or where it is
more appropriate to copyright, or maybe simultaneously apply to both, or
neither.”110

105. Id. at 62.
106. Id. at 62–72 (discussing different views on the patent/copyright interface, potential

benefits and harms from software patents, and compatibility and standardization issues).
107. See generally Computers and Intellectual Property: Hearings Before the Subcomm. on

Courts, Intellectual Prop. & the Admin. of Justice of the H. Comm. on the Judiciary, 102d Cong.
(1989 & 1990) [hereinafter House Hearings] (conducting an oversight hearing to address
challenges in computers and intellectual property).

108. Id. at 23. OTA posed questions that the oversight hearings should address. Id. at 24–25.
I testified at that hearing, raising concerns from IP lawyers about overlapping copyright and patent
protections for software. See id. at 92–95 (testimony of Pamela Samuelson).

109. See id. at 223–36 (testimony of Daniel S. Bricklin); id. at 238–43 (testimony of Mitchell
D. Kapor).

110. Id. at 247.

21

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

264 FLORIDA LAW REVIEW [Vol. 71

The hearings raised sufficient alarm about overlapping copyright and
patent protections for software to convince the congressional committees
tasked with overseeing IP legislation to ask the PTO and the Copyright
Office to prepare a joint study about whether patent and copyright
provided overlapping protections for software.111 In addition, the OTA
prepared a follow-up report that expressed continuing concern about the
software copyright caselaw, especially the controversies about copyright
claims for SSO and interfaces.112 The report noted that no consensus
about how to distinguish copyrightable expression and uncopyrightable
processes had yet emerged, and that some copyright cases seemed to
extend protection to program functionality, contrary to the strictures of
§ 102(b).113 Because courts were stretching copyright to protect
nonliteral aspects of programs, the OTA identified options that Congress
should consider, including further amendments to the 1976 Act and
creation of a sui generis regime for software to displace or complement
copyright.114

Interest in creating a sui generis regime for software diminished in the
1990s as courts came to conceive of programs as highly utilitarian, and
of their utilitarian elements as more suitable for patent than copyright
protections. To avoid Whelan-like overprotection, courts developed a set
of doctrinal strategies to ensure that copyright law would not confer
patent-like protections on program innovations, which warded off the
overprotection problem—at least until the CAFC’s 2014 Oracle decision.

II. TAKING THE UTILITARIAN NATURE OF PROGRAMS AND AVAILABILITY
OF PATENTS INTO ACCOUNT IN SOFTWARE COPYRIGHT CASES

The tide turned against overbroad copyright decisions with the Second
Circuit’s landmark decision in Computer Associates International, Inc. v.
Altai, Inc.115 Altai recognized that the utilitarian nature of computer
programs gave rise to a need to filter out many types of unprotectable
elements before proceeding to judge copyright infringement in software
cases.116 After Altai, appellate courts in many circuits began to take into

111. See OVERLAP STUDY, supra note 15, at 1–2. This resulted in a 1991 report saying that
there was no overlapping terrain in the legal protections that copyright and patent provided to
software. It concluded that copyright protected program expression, and patent law protected
program functions. See id. at 90. For more discussion of this study, see infra notes 148–50, 175–
77 and accompanying text.

112. See 1992 OTA REPORT, supra note 87, at 16–23, 69–73.
113. Id. at 9–10, 22.
114. Id. at 29–31. There was robust interest among scholars in the sui generis option in the

late 1980s and early to mid-1990s. See Samuelson et al., supra note 13, at 2312 n.6 (citing to the
ample scholarly literature about sui generis software IP).

115. 982 F.2d 693 (2d Cir. 1992); see Samuelson et al., supra note 13, at 2359.
116. Samuelson et al., supra note 13, at 2359–61.

22

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 265

account that some nonliteral elements of programs might be patentable
as a reason for copyright law to abjure protection of them.117 Although
the doctrinal bases on which these decisions rested varied somewhat, the
conclusions they reached were consistent: Copyright law should be
construed narrowly to avoid conferring patent-like protections on
functional design elements of programs.

A. Altai Narrowed Copyright Scope to Avoid Protecting Utilitarian
Elements of Programs

Shortly after the OTA published its second report on software IP
issues, the Second Circuit rendered its decision in Altai.118 Computer
Associates claimed that Altai infringed by copying SSO designed to
allow scheduling software to be compatible with IBM operating
systems.119 The Second Circuit heavily criticized Whelan and
characterized its test for software copyright infringement as inconsistent
with traditional principles of copyright law, as resting on a flawed
understanding of computer science, and as relying too heavily on
“metaphysical distinctions,” failing to “place enough emphasis on
practical considerations.”120

Altai invoked Baker as the “doctrinal starting point” of analysis in
software and other utilitarian work cases.121 As “compared to aesthetic
works, computer programs hover even more closely to the elusive
boundary line described in § 102(b).”122 While broad copyright protection
for software might seem “attractive from a pure policy perspective,”
adopting it would have “a corrosive effect on certain fundamental tenets
of copyright doctrine.”123

117. See, e.g., Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the

Software Industry, 89 CALIF. L. REV. 1, 27 (2001) (“As patent and copyright law overlap more
and more, it becomes critical that they take account of each other.”).

118. Altai, 982 F.2d 693. One of my briefs played a small role in this case. See Pamela
Samuelson et al., Brief Amicus Curiae of Copyright Law Professors, Lotus Dev. Corp. v. Borland
Int’l, Inc., 799 F. Supp. 203 (D. Mass. 1992) (No. 1:90-CV-11662). It was appended to Altai’s
brief to the Second Circuit. See Brief of Defendant-Appellee at 13 n.3, Altai, 982 F.2d 693 (No.
91-7893).

119. Altai, 982 F.2d at 698, 701.
120. Id. at 705–06. The Second Circuit noted that Whelan had met with a “mixed reception”

in the caselaw and “ha[d] fared even more poorly in the academic community,” citing to several
articles critical of Whelan for interpreting copyright too broadly. Id. at 705.

121. Id. at 704.
122. Id.
123. Id. at 712. The court noted that the Supreme Court’s decision in Feist Publ’ns, Inc. v.

Rural Tel. Serv. Co., 499 U.S. 340 (1991), had undercut Whelan’s incentive-based argument for
broad software copyright protection. Altai, 982 F.2d at 711–12.

23

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

266 FLORIDA LAW REVIEW [Vol. 71

To be true to these tenets in software copyright cases, Altai endorsed
a three-step “abstraction, filtration, and comparison” (AFC) test for
judging nonliteral infringement of software copyrights.124 The first step
involves creation of a hierarchy of abstractions of the plaintiff’s program;
the second step filters out unprotectable elements; the third step compares
the remaining expressive elements of the plaintiff’s program with the
defendant’s program to determine if the defendant’s program is
substantially similar to expressive elements copied from the plaintiff’s
program.125 Among the unprotectables are those elements dictated by
efficiency, those constrained by external factors, such as the need to be
compatible with hardware or software, and those in the public domain.126

The court agreed with the district court that the similarities between
Altai’s and Computer Associates’ programs were constrained by external
factors, namely, the need to be compatible with IBM programs.127

By 1994, the Altai approach to analyzing the scope of software
copyrights had been endorsed by the U.S. Courts of Appeals for the Fifth,
Ninth and Tenth Circuits,128 and was well on its way to becoming the
preeminent software copyright decision,129 which it remains to this
day.130 Although the Second Circuit gave little attention to the role that
patent law did or should play in protecting software innovations, it
recognized that patents might protect some software innovations.131

Altai’s emphasis on the highly utilitarian nature of programs at least
implicitly suggests that patents might be more suitable than copyright to
protect certain nonliteral elements of programs.132

124. Altai, 982 F.2d at 706–11.
125. Id.
126. Id. at 707–10.
127. Id. at 714–15.
128. See, e.g., Apple Comput., Inc. v. Microsoft Corp., 35 F.3d 1435, 1442, 1445 (9th Cir.

1994) (endorsing “thin” protection for software and filtration of many types of unprotectable
elements, citing to Altai as “relying in part on our own approach”); Eng’g Dynamics, Inc. v.
Structural Software, Inc., 26 F.3d 1335, 1342 (5th Cir. 1994) (endorsing and applying the AFC
test); Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 841–42 (10th Cir. 1993) (citing
approvingly to Altai and applying the AFC test); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d
1510, 1524 (9th Cir. 1992) (citing approvingly to Altai and its recognition that efficiency, external
factors, and compatibility considerations constrained program design).

129. See, e.g., Lemley, supra note 17, at 14–15 (characterizing Altai as the leading case on
software copyright infringement).

130. See, e.g., Samuelson, supra note 8, at 1296. Altai is the most cited of the software
copyright cases.

131. Altai, 982 F.2d at 712 (citing Randell M. Whitmeyer, Comment, A Plea for Due
Processes: Defining the Proper Scope of Patent Protection for Computer Software, 85 NW. U. L.
REV. 1103, 1123–25 (1991)).

132. The Second Circuit in Altai wisely focused on applying traditional limiting principles
of copyright law to software rather than trying to define the boundaries of copyright protection

24

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 267

By construing the scope of copyright narrowly and insisting on
filtration of efficient and other functional elements, Altai may have
inadvertently contributed to a substantial increase in patenting of
software-related inventions.133 As courts across the country adopted the
AFC test, it became clear that copyright was going to provide a much
“thinner” scope of protection to computer programs than during the
Whelan heyday.134 This created incentives for software developers to
seek and obtain software-related patents. Under the CAFC’s 1990s
decisions in In re Alappat135 and State Street Bank & Trust Co. v.
Signature Financial Group, Inc.,136 it became easier than ever to patent
software innovations as long as the claimed inventions produced a
“useful, concrete, and tangible result.”137 Software patents thus became a
much more salient factor in the software IP landscape during the 1990s
and 2000s.138

B. Doctrinal Strategies for Averting Overlapping Copyright and Patent
Protections for Software

After Altai, appellate courts became more attentive to differentiating
the roles of copyright and patent in protecting software innovation. These
cases explicitly recognized the need to narrowly construe the scope of
copyright in programs to avoid providing patent-like protection to

for software in relation to the boundaries of patents. Courts should recognize that both laws may
have a role to play in protecting programs, but copyright and patent are not co-dependent such
that the boundaries of one shape the boundaries of the other.

133. See, e.g., Lemley, supra note 17, at 26 (“As software patents gain[ed] increasingly broad
protection, whatever reasons there once were for broad copyright protection of computer
programs [had] disappear[ed].” (footnote omitted)).

134. See, e.g., Josh Lerner & Feng Zhu, What Is the Impact of Software Patent Shifts?:
Evidence from Lotus v. Borland 26 (Nat’l Bureau of Econ. Research, Working Paper No. 11168,
2005) (presenting evidence of a surge in patenting of software innovations in the mid-1990s).
Although Lerner & Zhu attribute thin copyright protection to Borland, Altai was the more
significant precedent.

135. 33 F.3d 1526 (Fed. Cir. 1994), abrogated by In re Bilski, 545 F.3d 943.
136. 149 F.3d 1368 (Fed. Cir. 1998), abrogated by In re Bilski, 545 F.3d 943.
137. State St., 149 F.3d at 1370 (upholding patent claims for a software-implemented

financial services invention); In re Alappat, 33 F.3d at 1544–45 (upholding a patent claim for a
software machine that smoothed wave forms for oscilloscopes).

138. See, e.g., O’Rourke, supra note 86, at 216–18 (discussing the importance of Alappat
and State Street for software-related patents). Not until 2010 did patentable subject matter become
a renewed basis on which to strike down software-related patents. Bilski v. Kappos, 561 U.S. 593
(2010). In Bilski, the Supreme Court ruled that a method of hedging the risk of price fluctuations
of commodities was too abstract to be patentable. Id. at 611–12. Bilski presaged the eventual
narrowing of patent subject matter for software-related innovations, as happened in the Court’s
2014 Alice decision. See generally, e.g., Jasper L. Tran, Software Patents: A One-Year Review of
Alice v. CLS Bank, 97 J. PAT. & TRADEMARK OFF. SOC’Y 532 (2015) (discussing the impact of
Alice on the validity of many software-related patents).

25

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

268 FLORIDA LAW REVIEW [Vol. 71

program innovations through copyright.139 This Section identifies five
doctrinal strategies that courts have adopted to avoid software
copyright/patent overlaps. Each strategy is a variation on the general
theme of distinguishing copyright and patent subject matters that can be
traced back to Baker. While it is useful to identify each of these doctrinal
strands, there are fewer substantive differences than this Article’s
categorization might suggest. In numerous cases, the courts invoked more
than one of these strategies.140

1. The Layering Approach
Baker was the first decision to conceptualize copyright and patent as

having distinct roles in protecting different intellectual creations.141

Copyright could provide one layer of protection for some aspects of
original works of authorship (for example, Selden’s explanation of his
bookkeeping system), but to get exclusive rights for a different layer (for
example, the bookkeeping system embodied in Selden’s book) one must
comply with rules of the patent system which regulates functional
creativity in a different way than copyright regulates expressive or
aesthetic creativity.142 This layering approach is evident in the software
caselaw.

The CAFC was an early adopter of the concept of copyright and patent
as playing different roles in the protection of software innovations in
Atari Games Corp. v. Nintendo of America, Inc.143 In that decision, which
upheld a preliminary injunction forbidding Atari from copying more of
Nintendo programs than was necessary to achieve compatibility with the

139. Most strategies discussed herein have counterparts to those used to discern

copyright/patent boundaries in non-software cases. See Samuelson, supra note 2, at 1494. The
only strategy from the non-software cases lacking a counterpart in the software context is election
of protection. Id. at 1508. The legal and policy arguments against copyright/patent overlaps
developed in that article, id. at 1494–99, 1512–16, apply to software as well, although the
boundaries of copyright and patent to software innovations are sometimes more difficult to discern
than with non-software creations. See, e.g., 1986 OTA REPORT, supra note 33, at 59, 78–83.

140. See, e.g., Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 836–38, 849 (10th
Cir. 1993) (remanding a software copyright case so the trial court could filter out unprotectable
processes, merged elements, and scènes à faire elements).

141. Baker v. Selden, 101 U.S. 99, 102 (1879); supra notes 21–26 and accompanying text.
142. See Samuelson, supra note 2, at 1517–21 (illustrating this strategy in non-software

cases).
143. 975 F.2d 832, 835 (Fed. Cir. 1992). Nintendo sued Atari for copying a data stream

necessary to enable videogames to run on its platform. Id. at 836–37. Atari argued that this
copying was justified because the digital stream was necessary for its videogames to be
compatible with the Nintendo system. Id. at 845. The Atari program was written in a different
programming language and ran on a different processor. Id. at 836.

26

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 269

latter’s platform,144 the CAFC characterized copyright and patent laws as
protecting “distinct aspects” of software.145 The role of copyright, it said,
was to protect program expression, not methods or processes embedded
in software, which might well be patentable.146 Moreover, programmers
could not get patent-like protection for program methods and processes
simply by embodying them in unintelligible forms (that is, object code)
and then claiming copyright infringement when someone tried to
understand the code (that is, by reverse engineering it to produce an
approximation of the source code).147

The CAFC’s conclusion that copyright and patent protect distinct
aspects of software was consistent with the PTO-Copyright Office
Overlap Study’s main conclusion that there was “no overlap in subject
matter: copyright protects the authorship in a set of statements that bring
about a certain result in the operation of a computer, and patents cover

144. Id. at 845. For a critical analysis of Atari, see, for example, Julie E. Cohen, Reverse

Engineering and the Rise of Electronic Vigilantism: Intellectual Property Implications of “Lock-
Out” Programs, 68 S. CAL. L. REV. 1091, 1135, 1146 (1995). Like Professor Cohen, I have been
more sympathetic to Atari’s defense than was the CAFC. Consider its statement that “Nintendo
chose arbitrary programming instructions and arranged them in a unique sequence to create a
purely arbitrary data stream” that unlocked the Nintendo console. Atari, 975 F.2d at 840
(emphasis added). The CAFC asserted that “Nintendo may protect this creative element of the
10NES under copyright.” Id. Yet courts have denied copyright claims because arbitrary choices
do not satisfy copyright’s originality requirement. See, e.g., Toro Co. v. R & R Prods. Co., 787
F.2d 1208, 1213 (8th Cir. 1986) (holding that numbers assigned to lawnmower parts were not
copyrightable because they were arbitrary).

Atari definitely hurt its case by lying to the Copyright Office when its lawyer asked for a
copy of the registered Nintendo source code, saying it was needed to defend against an
infringement claim (There was, at the time, no pending lawsuit). Atari, 975 F.2d at 836. Atari
used the source code to discern how to make its programs run on the Nintendo machines. Id. The
CAFC ruled that Atari’s reproduction of the unauthorized copy obtained from the Copyright
Office constituted infringement. Id. at 841–42. The lie also undermined Atari’s fair use and misuse
defenses. Id. at 843–44, 847. Eventually the litigants settled this dispute. Cohen, 68 S. CAL. L.
REV. at 1104. Atari is yet another example of a software copyright case decided more on unfair
competition grounds than on traditional scope of copyright protection grounds.

145. Atari, 975 F.2d at 839; see also Incredible Techs., Inc. v. Virtual Techs., Inc., 400 F.3d
1007, 1012 (7th Cir. 2005) (asserting that while the functional features of a game console were
uncopyrightable, they might be patentable); MiTek Holdings, Inc. v. Arce Eng’g Co., 89 F.3d
1548, 1556–57 n.19 (11th Cir. 1996) (citing approvingly to Atari regarding copyright and patent
protection of “distinct aspects” of software); Comput. Assoc. Int’l Inc. v Altai, Inc., 775 F. Supp.
544, 558, 560 (E.D.N.Y. 1991) (finding that copyright protects program expression; methods and
processes are better protected by patent than copyright), aff’d, 982 F.2d 693 (2d Cir. 1992).

146. Atari, 975 F.2d at 838–39. The CAFC invoked § 102(b) in support of this proposition.
Id.

147. Id. at 842; see also Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1525–26 (9th
Cir. 1992) (finding that the use of copyrighted computer work to gain an understanding of
unprotected functional elements was fair use).

27

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

270 FLORIDA LAW REVIEW [Vol. 71

novel and nonobvious computer processes.”148 Copyright and patent were
available to protect “totally different aspects” of program innovations.149

The Study cited the Supreme Court’s Baker decision as the “bedrock
opinion for the view that patent and copyright are mutually exclusive.”150

The Study thus avoided the overlap problem by endorsing a layering
approach to keep the boundaries of each law separate in protecting
software innovations.

2. The § 102(b) Exclusion Approach
Consistent with the layering approach, and indeed often overlapping

with it, are cases in which courts have explicitly invoked § 102(b)’s
exclusion of methods and processes as a way to avoid copyright/patent
overlaps in software cases.151 Lotus Development Corp. v. Borland
International, Inc.152 is the best known of the software copyright cases in
which the § 102(b) method exclusion was outcome-determinative.153

Under this approach, Borland was free to reuse the command hierarchy
of Lotus 1-2-3 in its spreadsheet program because that hierarchy was a
constituent part of an unprotectable method of operating a spreadsheet
program.154 Borland’s briefs had highlighted § 102(b) as a mechanism for
policing the boundaries of copyright and patent in the protection of
software innovations.155 However, the U.S. Court of Appeals for the First
Circuit did not tie the rationale for the § 102(b) method exclusion to

148. Letter from Ralph Oman, Assoc. Librarian & Register of Copyrights, & Harry F.
Manbeck, Assistant Sec’y & Comm’r of Patents & Trademarks, to the Hon. William J. Hughes,
Chairmain, Subcomm. on Intellectual Prop. & Judicial Admin. of the Comm. on the Judiciary
(July 17, 1991), in OVERLAP STUDY, supra note 15 (transmitting the Overlap Study to the Chair
of the House Subcommittee). The Study reported that “[p]atent protection is not available for
computer programs per se” because they “consist of mental steps or printed matter.” OVERLAP
STUDY, supra note 15, at iii, vii. It questioned the patentability of a “mere display on a screen of
commands, menus, questions and answers, forms, or icons” because these user interface elements
are “generally considered to be merely printed matter.” Id. at 45–46. Yet, processes to generate
user interfaces might be eligible for patenting. Id. at 47. The Study discussed the possibility of
design patent protection for icons. Id. at 46–47.

149. OVERLAP STUDY, supra note 15, at 2.
150. Id. at 19 (citing Baker v. Selden, 101 U.S. 99, 107 (1879)).
151. The § 102(b) exclusion approach differs somewhat from the layering approach insofar

as courts tie its process and method exclusions directly to patentability considerations. 17 U.S.C.
§ 120(b) (2012). Lotus Dev. Corp. v. Borland Int’l, Inc., can, for instance, be conceptualized as a
layering decision, but it did not tie the exclusion to patentable subject matter. 49 F.3d 807, 818
(1st Cir. 1995), aff’d by an equally divided Court, 516 U.S. 233 (1996).

152. 49 F.3d 807 (1st Cir. 1995), aff’d by an equally divided Court, 516 U.S. 233 (1996).
153. Id. at 818.
154. Id. at 816–17.
155. See Reply Brief of Defendant/Appellant Borland Int’l, Inc. at 42–50, Borland, 49 F.3d

807 (No. 93-2214); see also Brief for Respondent at 22–46, Borland, 516 U.S. 233 (No. 94-2003)
[hereinafter Borland Brief] (making a similar argument in its Supreme Court brief).

28

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 271

concerns about copyright being construed to give patent-like protections
to functional aspects of software.156 For this reason, Borland is not the
best illustration of the § 102(b) exclusion approach to discerning the
copyright/patent boundaries.

A better example is MiTek Holdings, Inc. v. Arce Engineering Co.,157

in which the Eleventh Circuit Court of Appeals applied a § 102(b) process
exclusion, emphasizing the connection between the § 102(b) process
exclusion and the role of patents.158 MiTek and Arce were competitors in
the market for wood truss drafting software.159 Due to numerous
similarities between the two programs, especially their command
structures, MiTek sued Arce for nonliteral copyright infringement.160

The district court ruled that the MiTek program’s menu command tree
was an unprotectable process under § 102(b) because it mimicked the
steps that a draftsman would typically follow in the process of designing
trusses to support roofs for specific buildings.161 The Eleventh Circuit
affirmed, in part relying on § 102(b):162

[T]he idea of closely correlating the ACES program to the
longhand steps taken by a draftsman was the constraining
force in the design of the menu and submenu command tree
structure. The logic inherent in this step-by-step process
renders the resulting program unoriginal in that such logic
may be expressed in only a limited number of ways. More
than a minor departure from the logical sequence renders the
result unusable.163

In a long footnote, the Eleventh Circuit opined that “[w]ere we to grant
copyright protection to MiTek’s user interface, which is nothing more

156. Judge Boudin recognized that enforcing Lotus’ copyright against Borland might give

Lotus patent-like protection. Borland, 49 F.3d at 819 (Boudin, J., concurring). However, he did
not tie this concern to § 102(b).

157. 89 F.3d 1548 (11th Cir. 1996).
158. Id. at 1556.
159. Wood trusses are internal supports for the roofs of buildings. They are often designed

off-site by engineers who work with site-specifications. The trusses are then constructed off-site
and later brought to the building site for installation. Id. at 1551.

160. Id. at 1550–51.
161. Id. at 1556.
162. Id. at 1557.
163. Id. at 1558. The court relied on unoriginality and merger as well as § 102(b). Id. at 1557

n.20. The court also rejected MiTek’s theory that the command structure was a protectable
compilation. Id. The virtual identicality standard for copyright infringement of software user
interfaces was not met in MiTek. Id. at 1558–59.

29

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

272 FLORIDA LAW REVIEW [Vol. 71

than a process, we would be affording copyright protection to a process
that is the province of patent law.”164

The functionality exclusions of § 102(b) and concerns about copyright
not providing patent-like protections were also significant factors in the
Ninth Circuit’s decision in Sega Enterprises Ltd. v. Accolade, Inc.165

There, Sega sued Accolade for copyright infringement because Accolade
made copies of Sega programs in reverse-engineering them to discern
information about how to make its games successfully interoperate with
the then-popular Genesis platform.166 Accolade then rewrote its
videogames so that they too would run on that platform.167

Sega did not claim infringement based on Accolade’s
reimplementation of the Sega interface in independently written
software.168 The Ninth Circuit’s Accolade decision nonetheless ruled that
the Sega interface was an unprotectable procedure under § 102(b).169 The
§ 102(b) exclusion was relevant to Accolade’s fair use defense because it
reinforced Accolade’s argument that its purpose in making the reverse-
engineering copies was “to study the functional requirements for Genesis
compatibility so that it could modify existing games and make them

164. Id. at 1556 n.19. Under the Supreme Court’s Alice decision, discussed infra notes 309–

12 and accompanying text, computerizing a wood truss drafting process would probably be
ineligible for patenting. See Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1541 n.21 (11th Cir.
1996) (“It is particularly important to exclude methods of operation and processes from the scope
of copyright in computer programs because much of the contents of computer programs is
patentable. Were we to permit an author to claim copyright protection for those elements of the
work that should be the province of patent law, we would be undermining the competitive
principles that are fundamental to the patent system.”).

165. 977 F.2d 1510, 1518, 1530 (9th Cir. 1992).
166. Id. at 1514–16.
167. Id. at 1515.
168. See, e.g., Secure Servs. Tech., Inc. v. Time & Space Processing, Inc., 722 F. Supp. 1354,

1361 (E.D. Va. 1989) (suggesting that compatibility defenses might succeed as long as the second-
comer had written its own implementation of a program interface); NEC Corp. v. Intel Corp., No.
C-84-20799-WPG, 1989 WL 67434, at *2 (N.D. Cal. Feb. 6, 1989). The goal of Sega’s lawsuit
was to stop Accolade (and others) from reverse-engineering its programs. See, e.g., IP ISSUES,
supra note 104, at 77–78 (objecting to software reverse-engineering because it could be used to
disguise infringement); Davidson, supra note 14, at 1093–99 (arguing that reverse-engineer
copying was copyright infringement).

169. Accolade, 977 F.2d at 1522–23. The Ninth Circuit noted that “the functional
requirements for compatibility with the Genesis console” were unprotectable by copyright, citing
§ 102(b). Id. at 1522. These were the “interface procedures” for the Sega console that Accolade
had used when it “wrote its own procedures based on what it had learned through disassembly.”
Id. The court thus conceived of the Sega interface as an unprotectable procedure under § 102(b).
Id. at 1522–23.

30

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 273

usable with the Genesis console.”170 The court perceived there to be no
other way for Accolade to get this information.171

The Ninth Circuit recognized that ruling in favor of Sega’s claim that
disassembly of its programs constituted infringement would, in effect,
grant Sega a “de facto monopoly over the functional aspects of [its]
work—aspects that were expressly denied copyright protection by
Congress,” citing to § 102(b).172 The only way that Sega could obtain
exclusive rights over an interface necessary for interoperability would be
by “satisfy[ing] the more stringent standards imposed by the patent
laws.”173 The Ninth Circuit considered Accolade’s reverse-engineering
to have resulted in a public benefit because there were now more
independently written programs available to owners of Genesis
platforms.174

The MiTek and Accolade (Sega) holdings were consistent with the
Overlap Study, which observed that underlying the debate over the proper
scope of copyright in software was “the question of protection of
functionality.”175 The Study opined that it would be contrary to the
statutory exclusions set forth in 17 U.S.C. § 102(b) for copyright to
protect program functionality.176 Protection of functionality “is assigned
to patents where a much more rigorous test must be undergone and the
barriers to entry, in terms of time, cost, and complexity, are higher.”177

The Study also adhered to the Supreme Court’s pronouncements in Baker
and Mazer that copyright and patent were mutually exclusive.178

170. Id. “Research” is one of the statutorily favored fair use purposes. 17 U.S.C. § 107

(2012). Accolade’s research purpose supported its fair use defense. Accolade, 977 F.2d at 1521–
22.

171. Accolade, 977 F.2d at 1522–23. Accolade could have licensed the interface information
from Sega, but decided against doing so because taking the license would have foreclosed
Accolade’s development of videogames for other platforms. Id. at 1514.

172. Id. at 1526 (citing 17 U.S.C. § 102(b)).
173. Id. The court cited to the Supreme Court’s decision in Bonito Boats, Inc. v. Thunder

Craft Boats, Inc., 489 U.S. 141, 159–64 (1989), in support of this proposition and noted that Sega
did not have a patent on the Genesis console. Accolade, 977 F.2d at 1526.

174. Id. at 1523. Sega was a large Japan-based information technology (IT) company, and
Accolade was a U.S.-based startup. See, e.g., Andrew Pollack, “Fifth Generation” Became
Japan’s Lost Generation, N.Y. TIMES (June 5, 1992), http://www.nytimes.com/1992/06/05/
business/fifth-generation-became-japan-s-lost-generation.html [https://perma.cc/RDY7-A2HF]
(describing the U.S.’s considerable anxiety in the 1980s and early 1990s that Japanese companies
would dominate the world IT industry). Accolade’s victory enabled American startups to compete
in the videogame market.

175. OVERLAP STUDY, supra note 15, at 87.
176. Id.
177. Id. at 88.
178. See id. at iii.

31

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

274 FLORIDA LAW REVIEW [Vol. 71

3. The Thin Protection Approach
Consistent with the layering and § 102(b) strategies, but different in

emphasis, have been those decisions that adopted a “thin” copyright
approach to judging infringement in software copyright cases as a way to
ensure that copyright would not protect functional aspects of software.
The first appellate court decision to adopt this approach was the Ninth
Circuit in Apple Computer, Inc. v. Microsoft Corp.179 Apple claimed that
Microsoft infringed Apple’s copyright in its graphical user interface
(GUI) because the Windows GUI was substantially similar to the creative
“look and feel” of the Apple GUI.180 The Ninth Circuit agreed with the
district court that the Apple GUI was entitled to only “thin” protection.181

Under the thin protection doctrine, infringement could be found only if
the Microsoft GUI was virtually identical to Apple’s.182

The district court explained that a “thin” protection approach was
appropriate because many aspects of the Apple GUI were functional:

Purely functional items or an arrangement of them for
functional purposes are wholly beyond the realm of
copyright as are other common examples of user interfaces
or arrangements of their individual elements—the dials,
knobs, and remote control devices of a television or VCR, or
the buttons and clocks of an oven or stove.183

179. Apple Comput., Inc. v. Microsoft Corp., 35 F.3d 1435, 1446–47 (9th Cir. 1994), aff’g

799 F. Supp. 1006 (N.D. Cal. 1992). The Ninth Circuit drew upon earlier caselaw holding that
certain audiovisual elements of videogames should be subject to “thin” protection and a test of
“virtually identical” copying. See, e.g., Frybarger v. Int’l Bus. Mach. Corp., 812 F.2d 525, 530
(9th Cir. 1987) (“[I]ndispensable expression . . . based on the technical requirements of the
videogame medium, may be protected only against virtually identical copying.” (emphasis
omitted)); Atari, Inc. v. N. Am. Philips Consumer Elecs. Corp., 672 F.2d 607, 617 (7th Cir. 1982),
superseded by statute, FED. R. CIV. P. 52(a), as recognized in Scandia Down Corp. v. Euroquilt,
Inc., 772 F.2d 1423, 1429 (7th Cir. 1985) (finding that some expressive elements of the PAC-
MAN videogame were scènes à faire and only infringed by virtually identical copying); see also
Telemktg. Res. v. Symantec Corp., 12 U.S.P.Q.2d 1991, 1994–96 (N.D. Cal. 1989), aff’d in part
sub nom. Brown Bag Software v. Symantec Corp., 960 F.2d 1465 (9th Cir. 1992) (applying
analytic dissection and virtually identical standard to find defendant’s program not similar, citing
Frybarger). The thin protection approach to managing copyright/patent boundaries has also been
used in non-software contexts. Samuelson, supra note 2, at 1533–35.

180. Microsoft, 35 F.3d at 1442. Apple argued that Microsoft’s GUI “virtually mimicked the
composition, organization, arrangement and dynamics of the Macintosh interface, as shown by
striking similarities in the animation of overlapping windows and the design, layout and animation
of icons.” Id.

181. Id. at 1439.
182. Id. at 1439–40. The Ninth Circuit affirmed the trial court’s grant of summary judgment

to Microsoft because Apple was unwilling to go to trial under such a test. Id.
183. Apple Comput., Inc. v. Microsoft Corp., 799 F. Supp. 1006, 1023 (N.D. Cal. 1992),

aff’d, 35 F.3d 1435; see also Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 817 (1st Cir.

32

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 275

The user interface of a computer program was no less functional than
those user interfaces.184 Similarities in functional elements of user
interfaces or arrangements of them, said the district court, “does not
suggest unlawful copying, but standardization across competing products
for functional considerations.”185

The Ninth Circuit concurred in this “thin” protection approach and
held that the district court had rightly applied “limiting doctrines of
originality, functionality, standardization, scenes a faire, and merger” to
each allegedly infringing element of the Apple GUI.186 Apple had, for
example, designed its GUI so a cursor could be used to move a document
icon to a trash can icon instead of using the delete key to dispose of
unwanted items.187 The Ninth Circuit thought that this “exemplifie[d] an
essentially functional process, indispensable to the idea of manipulating
icons by a mouse.”188 It further observed that “Apple cannot get patent-
like protection for the idea of a graphical user interface.”189 Numerous
courts have followed the Microsoft “thin” protection approach to judging
the scope of software copyrights, in part to ensure that software
copyrights would not be construed to provide patent-like protection.190

1995) (analogizing the Lotus command hierarchy to the buttons on a VCR), aff’d by an equally
divided Court, 516 U.S. 233 (1996).

184. Microsoft, 799 F. Supp. at 1023. The Ninth Circuit approved of the district court’s
recognition of “the functional aspects of graphical user interfaces.” Microsoft, 35 F.3d at 1442
n.10.

185. Microsoft, 799 F. Supp. at 1023. Many elements of the Apple GUI had been adopted by
other software developers. Id. at 1024; see also Microsoft, 35 F.3d at 1438 (approving
standardization as a ground for limiting the scope of copyright in the Apple GUI).

186. Microsoft, 35 F.3d at 1438.
187. Id. at 1444.
188. Id. Notice the use of both § 102(b) (“process”) and merger (“indispensable”)

terminology. Id.
189. Id. at 1443. GUI designers face various types of design constraints, including the power

and speed of the computer, hardware display operations, and ergonomic factors. Id. at 1445.
190. See, e.g., Incredible Techs., Inc. v. Virtual Techs., Inc., 400 F.3d 1007, 1012–14 (7th

Cir. 2005) (applying the virtual identity standard of copyright infringement to a golf game
interface and concluding that functional features can only be protected by patents); MiTek
Holdings, Inc. v. Arce Eng’g Co., 89 F.3d 1548, 1558–59 (11th Cir. 1996) (invoking Microsoft
and applying the “virtual identicality” standard to software copyright infringement); see also
Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 705 (2d Cir. 1992) (stating that in view
of the “highly functional, utilitarian” nature of programs, “it may well be that the Copyright Act
serves as a relatively weak barrier against public access to the theoretical interstices behind a
program’s source and object codes”). By directing courts to filter out an extensive list of program
elements before comparing the works at issue to determine if infringement occurred, Altai, 982
F.2d at 706–11, Altai was a precursor to the thin protection approach to software copyrights
endorsed in Microsoft.

33

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

276 FLORIDA LAW REVIEW [Vol. 71

4. The Merger Approach
A more distinctive judicial strategy for managing copyright and patent

boundaries in software relies on the merger doctrine.191 When an idea or
function can, as a practical matter, be expressed in only a very limited
number of ways, copyright protection should be withheld from the
merged idea/function and its expression.192 The CAFC’s Atari decision
was the first appellate court opinion to acknowledge the potential
applicability of a process/expression merger doctrine in software cases.193

The CAFC concluded that “if the patentable process [in a program] and
its expression are indistinguishable or inextricably intertwined, then ‘the
process merges with the expression and precludes copyright
protection.’”194 Had Atari copied only so much of the Nintendo data
stream as was necessary to achieve compatibility with the then-current
version of the Nintendo platform, the CAFC would have ruled in Atari’s
favor on merger grounds.195 However, because Atari copied more than
was necessary, its merger defense failed.196 Atari would have left the role
of protecting such a process to patent law.

Atari’s process/expression merger doctrine was influential in Lexmark
International, Inc. v. Static Control Components, Inc.197 This lawsuit
challenged Static’s copying of a small program installed in Lexmark
cartridges so that Static’s chip customers could make their printer

191. Courts often trace the merger doctrine to Baker. See, e.g., Arica Inst., Inc. v. Palmer,

970 F.2d 1067, 1076 (2d Cir. 1992).
192. See, e.g., Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 741–42 (9th Cir.

1971) (holding that the expression in a jeweled bee pin was inseparable from its idea).
193. See Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 839–40 (Fed. Cir. 1992).
194. PRG-Schultz Int’l, Inc. v. Kirix Corp., No. 03C1867, 2003 WL 22232771, at *4 (N.D.

Ill. Sept. 22, 2003) (quoting Atari, 975 F.2d at 839–40). Other software cases have recognized
this type of merger as well. See, e.g., id. (auditing program expression merged with a process);
see also CONTU REPORT, supra note 47, at 50 (“[W]hen specific instructions, even though
previously copyrighted, are the only and essential means of accomplishing a given task, their later
use by another will not amount to an infringement.” (emphasis added)). The merger approach has
also been used to manage copyright/patent boundaries in non-software cases. See Samuelson,
supra note 2, at 1524–28.

195. Atari, 975 F.2d at 839–40; see also Harbor Software, Inc. v. Applied Sys., Inc., 925 F.
Supp. 1042, 1048–49 (S.D.N.Y. 1996) (finding that process and expression for some nonliteral
elements of software had merged); NEC Corp. v. Intel Corp., No. C-84-20799-WPG, 1989 WL
67434, at *15 (N.D. Cal. Feb. 6, 1989) (noting that Intel’s patented hardware limited NEC’s
choices in creating microcode).

196. Professor Cohen disagreed: “The ‘surplus’ functions in the 10NES program did not
become expression by virtue of their surplusage. They were designed to perform particular
functions at the interface between the console and cartridge” Cohen, supra note 144, at 1146.

197. 387 F.3d 522, 535 (6th Cir. 2004).

34

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 277

cartridges interoperate with Lexmark printers.198 The Lexmark cartridge
program performed a digital handshake with the Lexmark printer
software to authenticate the cartridge so it would work in Lexmark
printers.199 Lexmark claimed that Static’s copying infringed copyright.
Static defended by challenging the validity of Lexmark’s copyright and
asserting a fair use defense.200

Static appealed the district court’s issuance of a preliminary
injunction.201 The U.S. Court of Appeals for the Sixth Circuit
characterized the Lexmark cartridge program as a “lock-out” code which
“fall[s] on the functional-idea rather than the original-expression side of
the copyright line.”202 It recognized that many device makers had
employed similar software security systems to thwart interconnections
with unlicensed complementary products.203 The court decided that “[t]o
the extent compatibility requires that a particular code sequence be
included in the component device to permit its use, the merger and scènes
à faire doctrines generally preclude the code sequence from obtaining
copyright protection.”204

The Sixth Circuit invoked Baker and Altai, among other cases, as
differentiating the roles of copyright and patent in the protection of
functional works such as software.205 In keeping with Atari, the court
recognized that patentable processes and program instructions could
merge, which would preclude copyright protection for the merged
materials.206

Lexmark’s expert testified that Static could have developed
compatible software written somewhat differently from Lexmark’s
code.207 However, the Sixth Circuit decided that, as a practical matter, the

198. Id. at 529. Lexmark customers could purchase refillable Lexmark cartridges, or, for a

lower price, non-refillable cartridges subject to a license requirement enforced by installed
software. Id. at 529–30. Static’s chips undermined this strategy, enabling Lexmark competitors to
sell their cartridges to Lexmark customers. Id.

199. Id. at 530. The Lexmark Toner Loading Program’s code consisted of a relatively small
number of commands, which varied somewhat for each printer. Id. at 529–30. The printer-side
software was more substantial. Id.

200. Id. at 530–32. Lexmark also claimed that Static violated the anti-circumvention rules,
17 U.S.C. § 1201(a)(1)(A), (a)(2) (2012), because Static’s chips bypassed the software security
code embedded in Lexmark’s printers and cartridges. Lexmark, 387 F.3d at 546–50. The Sixth
Circuit rejected this claim. Id.

201. Id. at 529.
202. Id. at 536.
203. Id.
204. Id. The court cited approvingly to Accolade and Atari. Id.
205. Id. at 534–35.
206. Id. at 535.
207. Id. at 539.

35

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

278 FLORIDA LAW REVIEW [Vol. 71

expressive choices available to Static were very limited.208 It
consequently ruled that insofar as the Lexmark code was necessary to
enable non-Lexmark cartridges to work in Lexmark printers, Static’s
copying of that code did not infringe.209 The main justification that stands
out in Lexmark is the merger rationale.210 In the background, though, as
in Atari, was a concern that copyright protection for programs not be
interpreted to give patent-like protection to functional aspects of
programs.

5. The Explanation/Use Distinction Approach
The explanation/use distinction, like several other doctrines of U.S.

copyright law,211 traces back to the Supreme Court’s Baker decision. The
Court cryptically stated that:

The description of the [useful] art in a book, though entitled
to the benefit of copyright, lays no foundation for an
exclusive claim to the art itself. The object of the one is
explanation; the object of the other is use. The former may
be secured by copyright. The latter can be secured, if it can
be secured at all, by letters-patent.212

The explanation/use distinction was significant in Baker because
Selden’s widow had announced her intent to sue Baker’s customers for
using the allegedly infringing forms to keep their books once she
prevailed in her lawsuit against Baker.213 Had Selden obtained the patent
he once sought, that patent would have given him an exclusive right to
control uses of that system, not just making and selling forms embodying
his invention.214

208. Id. at 539–41 (explaining that efficiency and functionality precluded material changes

to the Lexmark code and that proposed alternatives were trivial and inefficient, not expressive).
209. Id. at 542–44.
210. Id. at 542 (“[I]f any single byte of the Toner Loading Program is altered, the printer will

not function.”); see also id. at 551 (Merritt, J., concurring) (stating that the Lexmark Toner
Loading Program is uncopyrightable under the merger and scènes à faire doctrines).

211. At least eight major doctrines of U.S. copyright law owe their origins to Baker. See
Samuelson, supra note 22, at 180–92.

212. Baker v. Selden, 101 U.S. 99, 105 (1879); see Samuelson, supra note 2, at 1529–31
(discussing the Office’s refusal to register a claim in a DNA sequence because its elements were
selected and arranged to produce a functional result in a biological organism, not for expressive
purposes).

213. Samuelson, supra note 22, at 167–68.
214. 35 U.S.C. § 271 (2012). Baker’s forms were somewhat different from Selden’s forms

and an improvement over them. See Samuelson, supra note 22, at 161–62, 193 (stating that the
principal difference between the forms was in how they treated accounts as well as how Baker’s
forms had several key advantages over Selden’s, such as their ease of use). Hence, Baker’s forms
might not have infringed a Selden patent on his system.

36

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 279

The explanation/use distinction has occasionally played a role in the
subsequent caselaw.215 It largely fell out of favor after Mazer’s
infelicitous reliance on it in his challenge to Stein’s copyright in a
statuette intended for use as the base of Stein’s lamps.216 Because Baker
recognized the viability of copyrights in aesthetic creations as well as in
explanatory works,217 Mazer’s reliance on Baker’s explanation/use
distinction was an especially weak part of his argument. Treatise author
Melville B. Nimmer’s longstanding criticism of this distinction may
explain why it has had relatively little currency until quite recently.218

The First Circuit’s Borland decision invoked this distinction when
deciding that the Lotus 1-2-3 command hierarchy was an uncopyrightable
method of operation.219 A “means by which a person operates something,
whether it be a car, a food processor, or a computer” was within the
§ 102(b) exclusion.220 A description of such a method would not confer
exclusive rights over “the method of operation itself.”221 And “[i]f
specific words are essential to operating something, then they are part of
a ‘method of operation’ and, as such, are unprotectable.”222 In Borland,
Lotus had chosen the command words and structured them not for
explanatory purposes, but rather as a means for accomplishing functional
tasks: “[U]sers operate Lotus 1-2-3 by using the Lotus menu command
hierarchy” because “the entire Lotus menu command hierarchy is
essential to operating Lotus 1-2-3.”223

215. The Seventh Circuit invoked the distinction in Taylor Instrument Cos. v. Fawley-Brost

Co., 139 F.2d 98, 100 (7th Cir. 1943).
216. Mazer v. Stein, 347 U.S. 201, 212–17 (1954). That is, Mazer argued that Stein had

created the statuette intending to use it as the base of a lamp, not as a work of art. See infra text
accompanying notes 255–58 (discussing Mazer).

217. Baker, 101 U.S. at 103–04 (recognizing a copyright in “ornamental designs, or pictorial
illustrations addressed to the taste”). The statuette in Mazer was ornamental.

218. NIMMER, supra note 17, § 37.3. Subsequent versions of the Nimmer treatise remained
critical of the explanation/use distinction. See, e.g., 1 MELVILLE B. NIMMER & DAVID NIMMER,
NIMMER ON COPYRIGHT § 2.18[D][1] (2015), reprinted in 11 NIMMER & NIMMER 2018, supra note
17, app. 67C. However, the recently revised version is more receptive to this doctrine. See
NIMMER & NIMMER 2018, supra note 17, § 2A.07[D][2][a][ii].

219. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815–16 (1st Cir. 1995), aff’d by
an equally divided Court, 516 U.S. 233 (1996). For an excellent discussion of Borland, see
generally Weinreb, supra note 14. While concurring with the First Circuit’s ruling, Weinreb found
its § 102(b) analysis unsatisfactory. Id. at 1207–08.

220. Borland, 49 F.3d at 815.
221. Id. The court was sympathetic to Lotus’ customers who had become accustomed to

using the Lotus command structure and macro system. Id. at 817–18.
222. Id. at 816.
223. Id. David Hayes contends that courts should differentiate the explanation/use distinction

and a copying-for-use/copying-for-explanation distinction. He considers the former a subject
matter eligibility doctrine, while the latter is relevant to infringement analysis (i.e., copying the
Lotus command hierarchy for use purposes, as Borland did, would not infringe, but copying it for

37

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

280 FLORIDA LAW REVIEW [Vol. 71

The First Circuit quoted Baker on the explanation/use distinction in
support of its method of operation analysis.224 Judge Michael Boudin’s
concurrence characterized the Lotus program as “a means for causing
something to happen; it has a mechanical utility, an instrumental role, in
accomplishing the world’s work.”225 To enforce Lotus’ copyright against
Borland would, he said, have “some of the consequences of patent
protection in limiting other people’s ability to perform a task in the most
efficient manner.”226

The explanation/use distinction has recently garnered renewed
support from courts and copyright scholars.227 Professor Wendy Gordon,
has criticized the CAFC’s Oracle decision for failing to appreciate the
utility of the Java API declarations as tools for creating new works of
authorship.228 Professor Gordon argues that “a copyright owner should
have no prima facie rights over copying behavior where (1) the goals of
the copying are ‘use’ (behavior in the realm of utility patent) and (2) the
copying is done solely for goals unrelated to the expressiveness of the
plaintiff’s work of authorship.”229

Gordon perceives the explanation/use distinction as “implement[ing]
the deference that, pursuant to Congressional command and Supreme
Court precedent, U.S. copyright law must give to patent law.”230 This
distinction “operates by limiting the scope of the exclusive rights a

explanatory purposes would more likely infringe). Telephone Interview with David L. Hayes,
Partner, Fenwick & West LLP (Nov. 9, 2017).

224. Borland, 49 F.3d at 816–17 (quoting Baker v. Selden, 101 U.S. 99, 104–05 (1879)).
225. Id. at 819 (Boudin, J., concurring).
226. Id.
227. See Bikram’s Yoga Coll. of India, L.P. v. Evolation Yoga, LLC, 803 F.3d 1032, 1040–

41 (9th Cir. 2015) (invoking the explanation/use distinction); see also ABRAHAM DRASSINOWER,
WHAT’S WRONG WITH COPYING? 13 (2015) (“[In Baker,] [t]he defendant used the forms as a tool
but not as a work, and was therefore not liable in copyright. . . . Baker thus turns on a crucial
distinction between the work as a communicative act and its material form as its physical
embodiment. Use of the physical embodiment for noncommunicative purposes does not give rise
to liability.”); see also Cohen, supra note 144, at 1145 (discussing interoperability-related routines
as methods of operation relying on the use/expression distinction).

228. For this criticism, see generally Wendy J. Gordon, How Oracle Erred: The
Use/Explanation Distinction and the Future of Computer Copyright, in COPYRIGHT LAW IN AN
AGE OF LIMITATIONS AND EXCEPTIONS 375 (Ruth Okediji ed., 2017).

229. Id. at 376. The explanation/use distinction resembles the rule that a copyright in a
drawing of a useful article does not confer copyright protection over the useful article depicted
therein. See, e.g., Fulmer v. United States, 103 F. Supp. 1021, 1021–22 (Ct. Cl. 1952) (holding
that a copyright in plaintiff’s drawing did not give it exclusive rights to control the manufacture
of parachutes embodying that design; invoking Baker, such exclusive rights can only be obtained
through a patent). This rule is now codified at 17 U.S.C. § 113(b) (2012).

230. Gordon, supra note 228, at 376; see also McKenna & Sprigman, supra note 30, at 543
(discussing the notion of patent supremacy over other forms of IP).

38

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 281

copyright owner might otherwise possess, not by targeting the
copyrightability of what plaintiff produced.”231

Gordon offers this non-software example to illustrate the distinction:

[I]t is an expressive use when the publisher of a how-to book
on home repair copies someone else’s copyrighted passage
explaining how to rewire a lamp instead of writing his own
instructions. It is a nonexpressive use when a homeowner
applies the same copyrighted passage to the task of actually
rewiring lighting fixtures. Copying text to convey an
explanation or to serve other expressive goals belongs to the
realm of copyright; copying to build a functional invention
instead belongs to the realm of patent.232

In Gordon’s view, Google made non-expressive uses of the Java
method headers to enable programmers trained in the Java programming
language to create new programs or adapt old ones to run on the Android
platform.233 The declarations were tools for creating programs because
they identified particular functions to be performed, just as the Lotus
command hierarchy provided tools for user-constructed macros.234

Gordon might, although she did not, have added that many books set
forth the Java API, including many thousands of its declarations, in order
to explain these functions and how to use the declarations to create
programs.235 These books arguably publish elements of the Java API for
explanatory purposes. Oracle has not objected to these uses of the Java
API, but only Google’s use of them as tools for its Android platform.236

C. The Scope of Software Copyrights in the Post-Altai Caselaw
Each of the judicial strategies for avoiding overlap of copyright and

patent protections in software has merit within its doctrinal framing. The
“thin” protection strategy, with its endorsement of filtration of numerous
categories of software elements and of a virtual identity standard to
support an infringement finding, may be the surest way for courts to

231. Gordon, supra note 228, at 376.
232. Id. at 380.
233. Id. at 381–82.
234. Id. at 427. Gordon did not address whether she believed the Java declarations were

patentable.
235. See, e.g., Oracle Am., Inc. v. Google Inc., No. C 10-03561 WHA, 2016 WL 3181206,

at *5 (N.D. Cal. June 8, 2016) (mentioning books setting forth and explaining the Java API),
rev’d, 886 F.3d 1179 (Fed. Cir. 2018).

236. The command hierarchies in Borland were readily visible to users of the software. The
command structure of the Java declarations was not visible to users of Android. Programmers
learn Java commands and their structures by studying the Java Standard Edition text that sets forth
the Java API or reading books that teach programmers how to use this API. Id.

39

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

282 FLORIDA LAW REVIEW [Vol. 71

ensure that copyright is not being used to confer patent-like protection to
software innovations.237 Yet, courts also averted overlap problems when
relying on the conception of copyright and patent protecting different
aspects of programs, on the § 102(b) exclusions, and on the merger
doctrine. The cases have achieved comparable outcomes while
contributing to a more refined jurisprudence about copyright-protectable
and unprotectable structures.

Considering these developments, it can be said with reasonable
assurance that concerns about the overbroad scope of software copyrights
expressed in the late 1980s and 1990s subsided considerably once the
Altai decision garnered progeny. The software copyright caselaw since
then has generally followed the lead of Altai and its progeny in engaging
in rigorous filtration of unprotectable elements and focusing infringement
analysis on software design elements that have some expressive
character.238

Yet, the software copyright cases since 2000, although generally
following Altai and other similar cases, rarely mention the potential
patentability of software innovations when judging copyright
infringement claims. Perhaps as a consequence, the issue of whether
copyright and patent can provide overlapping protections or are mutually
exclusive has rarely surfaced in the post-Altai cases. However, in the few
cases to which this Article now turns, it has.

237. The Ninth Circuit in Microsoft regarded thin protection as the necessary result of

applying numerous limiting doctrines to those parts of the Apple GUI claimed to infringe. See
supra Section II.B.3.

238. Most software copyright cases since Altai have engaged in highly dissective analyses
of software copyright claims. See, e.g., R.C. Olmstead, Inc. v. CU Interface, LLC, 606 F.3d 262,
275–76 (6th Cir. 2010) (affirming summary judgment for defendant because plaintiff failed to
specify which elements of its credit union processing software were original expressions and to
filter out unprotectable elements); Real View, LLC v. 20-20 Techs., Inc., 683 F. Supp. 2d 147,
157, 162 (D. Mass. 2010) (finding that screen displays and GUI were not infringed because too
many elements were unprotectable under § 102(b) and the doctrines of merger and scènes à faire);
Comput. Access Tech. Corp. v. Catalyst Enters., Inc., No. C-00-4852-DLJ, 2001 WL 34118030,
at *14–17 (N.D. Cal. June 13, 2001) (holding that many aspects of the plaintiff’s GUI were
unprotectable as industry standards, efficient designs, or as dictated by function; sufficient
differences in the GUIs precluded the relief that CATC sought).

There have been, however, a few problematic post-Altai cases ruling that the defendants’ use
of the same methods infringed. See, e.g., Aspen Tech., Inc. v. M3 Tech., Inc., 569 F. App’x 259,
270 (5th Cir. 2014) (finding infringement based on the use of the same steps, parsing methods,
and power function device in chemical refinery programs); see also Oracle Am., Inc. v. Google
Inc., 750 F.3d 1339, 1356–57 (Fed. Cir. 2014) (opining that copyright protection is available to
protect program methods). Some courts have extended protection to command languages. See,
e.g., McEnroe v. Mantissa Corp., No. 14-cv-12320-LTS, 2016 WL 7799636, at *13 (D. Mass.
Feb. 29, 2016) (holding that a command language was copyrightable).

40

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 283

III. THE CAFC’S ERRONEOUS ENDORSEMENT OF COPYRIGHT/PATENT
OVERLAPS IN ORACLE

The CAFC’s Oracle decision is the only precedent to have endorsed
overlapping copyright and patent protections for nonliteral elements of
software such as APIs.239 The issue came up in two other cases, but
appellate courts had different views. Oracle was deeply flawed in its
treatment of the overlap issue and its endorsement of overlap should be
given no weight in future cases. Courts should be more receptive to well-
drawn arguments that the patentability of some nonliteral elements of
programs is evidence that copyright protection should be withheld.

A. Reversals of Copyright/Patent Overlap-Approving Decisions in
Software Cases

Except for Oracle, courts have generally been unreceptive to
arguments that copyright and patent can provide overlapping protections
for the same aspects of software. Two lower court decisions accepting
this possibility were reversed on appeal.

One was the district court decision in Gates Rubber Co. v. Bando
America, Inc.240 Bando argued that its use of some of the same algorithms
as the Gates program was non-infringing because algorithms were patent,
not copyright, subject matter.241 The trial court rejected this argument,
saying that “[s]uch a holding would tend to fragment further the rather
tenuous continuity found in copyright law concerning computer
programs.”242

The Tenth Circuit reversed, stating that program processes, such as
algorithms, were unprotectable by copyright law under § 102(b), even

239. Two litigants unsuccessfully argued that computer programs were uncopyrightable

because they were patentable. See Aharonian v. Gonzales, No. C 04-5190 MHP, 2006 WL 13067,
at *7 (N.D. Cal. Jan. 3, 2006) (denying a declaratory judgment that computer programs could not
be copyrighted because they consisted of patentable algorithms and data structures); Apple
Comput., Inc. v. Franklin Comput. Corp., 545 F. Supp. 812, 8125 (E.D. Pa. 1982) (denying a
motion for a preliminary injunction because copyright law only protects communicative
authorship, not utilitarian works such as software, the latter being protectable only by patents),
rev’d, 714 F.2d 1240, 1250–53 (3d Cir. 1983) (ordering a preliminary injunction because the exact
copying of Apple operating system programs was copyright infringement).

240. 798 F. Supp. 1499 (D. Colo. 1992), aff’d in part, vacated in part sub nom. Gates Rubber
Co. v. Bando Chem. Indus. Ltd., 9 F.3d 823 (10th Cir. 1993). Gates’ program enabled its sales
staff to input certain variables and perform calculations needed to assess which of Gates’
industrial belts would work best for customers’ machines. Id. at 1503. Bando developed a program
that performed the same types of calculations. Id. Gates charged nonliteral infringement. Id. at
1518.

241. Id.
242. Id.

41

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

284 FLORIDA LAW REVIEW [Vol. 71

though they might be eligible for patenting.243 It recognized that
programs designed to perform complex calculations would necessarily
embody numerous methods and processes that copyright could not
protect.244 The exclusion of processes from the scope of copyright in
software was “one of the most important” of the utilitarian elements
Congress meant to make unprotectable by copyright.245 The court quoted
from the legislative history:

Some concern has been expressed lest copyright in computer
programs should extend protection to the methodology or
processes adopted by the programmer, rather than merely to
the “writing” expressing his ideas. Section 102(b) is
intended, among other things, to make clear that the
expression adopted by the programmer is the copyrightable
element in a computer program, and that the actual processes
or methods embodied in the program are not within the scope
of the copyright law.246

Consistent with Altai, the Tenth Circuit in Gates recognized that such
processes should be filtered out before assessing the infringement
claim.247

A second copyright/patent overlap-approving decision was the district
court’s first opinion in Borland.248 The court observed that “[t]he mere
fact that patent law allows a means of legal protection for a
process . . . does not establish that there is not also some protection in
copyright”249 In its view, copyright and patent provided rights that
were perhaps “not coextensive, but it is equally clear that there is no
particular reason to believe there should never be any area of overlap.”250

The court cited to the copyright/(design)patent overlap-endorsing dicta in

243. See Gates Rubber Co., 9 F.3d at 836–37. The Tenth Circuit reaffirmed the exclusivity

of copyright and patent protections in protecting software innovations. Id.
244. Id. at 830, 836. The district court’s infringement ruling was based on similarities in

mathematical constants, algorithms, menus, sorting criteria, fundamental tasks, install files, and
overall data and control flows. Id. at 842.

245. Id. at 836.
246. Id. at 836–37 (quoting H.R. REP. NO. 94-1476, at 57 (1976)). This is the language from

the legislative history that the Oracle decision neglected to cite. See infra note 269.
247. Gates Rubber Co., 9 F.3d. at 842, 845. The Tenth Circuit remanded the case for

clarification of Gates’ copyright claims based on similarities in menus, sorting criteria, data flow
and control flow. Id. at 844–46.

248. For this decision, see generally Lotus Dev. Corp. v. Borland Int’l, Inc. 788 F. Supp. 78
(D. Mass. 1992), rev’d, 49 F.3d 807 (1st Cir. 1995).

249. Id. at 91.
250. Id.

42

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 285

Mazer, asserting that this “precedent recognizes some overlap.”251 It
perceived no reason why patent and copyright protection could not be
available for such things as program command structures.252

Although the First Circuit did not explicitly repudiate the district
court’s dicta on copyright/patent overlaps, it held that Borland’s copying
of the Lotus command hierarchy did not infringe copyright.253 In view of
its invocation of § 102(b)’s method of operation exclusion, that court’s
decision is more consistent with the many other precedents that have
sought to maintain separate domains for copyright and patent in the
protection of program innovations than with the district court’s overlap
endorsement.254

B. The CAFC’s Flawed Acceptance of a Software Copyright/Patent
Overlap in Oracle

To support its view that copyright and patent could provide
overlapping protections for software APIs, the Oracle court invoked the
Supreme Court’s rejection of an IP exclusivity argument in Mazer v.
Stein.255 Mazer had argued that Stein’s claim of copyright in a statuette
of a Balinese dancer was invalid because Stein should have obtained a
design patent for exclusive rights to manufacture the statuette as an
ornamental design for an article of manufacture (that is, as the base of a
lamp).256 Under Mazer’s conception of Baker, the unpatented lamp base
design was in the public domain and available for unrestricted copying.257

The Court disagreed, observing that “[n]either the Copyright Statute nor
any other says that because a thing is patentable it may not be
copyrighted.”258 This is the dictum with which the CAFC fended off
Google’s mutual exclusivity argument in Oracle.259 This was the only
judicial precedent to which the CAFC adverted in that part of its
opinion.260

The CAFC did not address Google’s patent-not-copyright-subject-
matter defense until the very end of its opinion, characterizing it as a

251. Id. (citing Mazer v. Stein, 347 U.S. 201, 217 (1954)); see infra text accompanying notes
266–68 (explaining why Mazer does not support the district court’s assertion).

252. Borland, 788 F. Supp. at 91. The court did not opine whether it thought the Lotus
command structure and macro system were both patentable and copyrightable.

253. Borland, 49 F.3d at 818; see supra text accompanying note 228.
254. See supra text accompanying notes 153–56, 219–26 (discussing Borland).
255. See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1380 (Fed. Cir. 2014) (quoting

Mazer, 347 U.S. at 217).
256. See Mazer, 347 U.S. at 215–16.
257. Id. at 217.
258. Id.
259. Oracle, 750 F.3d at 1380.
260. See id. at 1377–81.

43

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

286 FLORIDA LAW REVIEW [Vol. 71

“policy-based argument” that attacked the very existence of copyright
protection for programs, as if Google was claiming that only patents
could protect program innovations.261 Until Congress or the Supreme
Court repudiated software copyrights, the CAFC felt dutybound to
uphold the copyrightability of software.262

The CAFC’s response to Google’s exclusivity argument is
unpersuasive for at least four reasons. First, the court misconstrued
Google’s argument. Google was not contending that original programs
could not be protected by copyright law and were only protectable by
patent law.263 Such an argument would have been specious, and as a
major developer of software itself, Google had every reason to want
original software to be copyrightable. Rather, Google’s argument was
that the scope of the valid copyright in the Java Standard Edition
document, which sets forth elements of the Java API, did not extend to
the declarations it used in Android because they were the names of
functions that programmers needed to use to write programs in Java.264

Second and most significantly, the CAFC failed to recognize that the
Supreme Court in Mazer actually supported Google’s exclusivity
defense. The dictum quoted by the CAFC arose in the context of a real,
albeit partial, overlap in the subject matters protectable by copyright and
design patent law.265 Stein’s statuette in Mazer qualified as a work of art
under U.S. copyright law, although when used as the base of a lamp, the
statuette was also eligible for design patent protection as an ornamental
design of an article of manufacture.266 The CAFC overlooked the
unequivocal statement in Mazer that “the Mechanical Patent Law and
Copyright Laws are mutually exclusive,”267 as well as Mazer’s approving
citation to Taylor and three other Baker progeny, all of which upheld
exclusivity of copyright and patent protections.268

261. See id. at 1379–81. The CAFC seemingly thought that Google was making the same

flawed arguments as Franklin and Aharonian had done in earlier cases. See supra text
accompanying note 239.

262. See Oracle, 750 F.3d at 1381.
263. See Brief of Appellee & Cross-Appellant Google Inc. at 29–33, Oracle, 750 F.3d 1339

(Nos. 2013-1021, -1022) [hereinafter Google Brief].
264. Id. at 15. Google relied more heavily on its § 102(b) defense than the copyright/patent

exclusivity defense. Id. at 31–40, 57–65.
265. See Oracle, 750 F.3d at 1380.
266. See Mazer v. Stein, 347 U.S. 201, 215–17 (1954). Well before Mazer, the Court had

recognized that design patents and copyrights had overlapping subject matters. See, e.g., DeJonge
& Co. v. Breuker & Kessler Co., 235 U.S. 33, 36 (1914) (noting the lower court’s opinion that a
pictorial design was eligible for copyright and a design patent).

267. Mazer, 347 U.S. at 215 n.33 (emphasis added).
268. See id. at 217 n.39 (citing additional Baker progeny); see also NIMMER & NIMMER 2018,

supra note 17, § 2A.07[D][4] (characterizing the CAFC’s Oracle opinion as a “misconstru[al of]
Mazer”).

44

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 287

Third, the CAFC’s recitation of the legislative history of § 102(b)
omitted reference to the most relevant part, which expressed the intent
for § 102(b) to limit the scope of software copyrights: “[s]ection 102(b)
is intended, among other things, to make clear that the expression adopted
by the programmer is the copyrightable element in a computer program,
and that the actual processes or methods embodied in the program are not
within the scope of the copyright law.”269 This was supposed to allay
concerns that software copyrights would be construed to extend
protections to methods and processes. By its earlier statements endorsing
copyright protection for methods,270 the CAFC’s decision is directly
contrary to the text of § 102(b) and the pro-competitive policies it was
intended to embody.

Fourth, the CAFC ignored that its endorsement of the copyright/patent
overlap in Oracle was inconsistent with several appellate court decisions
in software IP cases,271 including its Atari decision, which averred that
“patent and copyright laws protect distinct aspects of a computer
program.”272 Although the Oracle court cited approvingly to that
decision,273 it did not explain why it was deviating from its previous
“distinct aspects” perspective.

The overwhelming majority of scholarly commentary on the CAFC’s
Oracle decision has, moreover, strongly criticized it,274 including its

269. H.R. REP. NO. 94-1476, at 57 (1976).
270. See Oracle, 750 F.3d at 1356–57.
271. See supra Section II.B. The Ninth Circuit interpretation of § 102(b) in Bikram’s Yoga

Coll. of India, L.P. v. Evolation Yoga, LLC, 803 F.3d 1032 (9th Cir. 2015), further undermines
the Oracle decision. See, e.g., Brief of Amicus Curiae Elec. Frontier Found. in Support of
Defendant-Appellee at 4–6, Cisco Sys., Inc. v. Arista Networks, Inc., No. 2017-2145 (Fed. Cir.
Dec. 26, 2017) (explaining why Bikram Yoga calls into question the copyrightability analysis in
Oracle).

272. Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 839 (Fed. Cir. 1992)
(emphasis added) (citing Baker v. Selden, 101 U.S. 99, 103 (1879)); see also Hutchins v. Zoll
Med. Corp., 492 F.3d 1377, 1384 (Fed. Cir. 2007) (citing Lotus Dev. Corp. v. Borland Int’l, Inc.,
49 F.3d 807 (1st Cir. 1995)) (upholding a trial court ruling against plaintiff’s copyright claim on
the ground that the technological process embodied in the defendant’s program was not
protectable expression).

273. See Oracle, 750 F.3d at 1357.
274. See, e.g., Armstrong, supra note 17, at 154–55; Clark D. Asay, Copyright’s

Technological Interdependencies, 18 STAN. TECH. L. REV. 189, 235 (2015); Gordon, supra note
228, at 326, 329–30; Joseph Gratz & Mark A. Lemley, Platforms and Interoperability in Oracle
v. Google, 31 HARV. J.L. & TECH. 603, 605–06 (2018); Sean Hogle, Software Copyright and
Innovation after Oracle v. Google, 40 NEW MATTER 1, 2 (2015); Peter S. Menell, Rise of the API
Copyright Dead?: An Updated Epitaph for Copyright Protection of Network and Functional
Features of Computer Software, 31 HARV. J.L. & TECH. 305, 307 (2018); Samuelson, supra note
8, at 1256; Pamela Samuelson, Three Fundamental Flaws in CAFC’s Oracle v. Google Decision,
37 EUR. INTELL. PROP. REV. 702, 702–08 (2015); Fred von Lohmann, The New Wave: Copyright
and Software Interfaces in the Wake of Oracle v. Google, 31 HARV. J.L. & TECH. 517, 519 (2018);

45

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

288 FLORIDA LAW REVIEW [Vol. 71

endorsement of overlapping copyright and patent protection for software
innovations.275 Although the Nimmer treatise once offered some support
for Oracle’s copyright/patent overlap ruling, the latest version of the
treatise now criticizes this aspect of the CAFC’s ruling.276

The weaknesses of the CAFC Oracle decision’s treatment of the
copyright/patent overlap issue and the Mazer-Baker exclusivity
statements notwithstanding, the Supreme Court has sometimes been
unreceptive to categorical exclusivity arguments in IP cases.277 Some IP
scholars and lawyers, moreover, have hesitated to endorse a categorical
exclusivity approach to managing the copyright/patent boundary as to
software innovations.278 Although many strongly support exclusivity and
regard the patentability of nonliteral elements of software as a reason to
construe copyright as providing a narrow scope of protection,279 others
view copyright and patent as providing software developers with a choice
about which type of IP protection to pursue as a business strategy.280

Jonathan Band, The Protectability of Application Program Interfaces: Oracle America v. Google
1–2 (Aug. 14, 2015) (unpublished manuscript), https://papers.ssrn.com/sol3/papers.cfm?Abstract
_id=2186628 [https://perma.cc/QYJ8-BGNZ]. But see Jonathan Ambrose, Oracle America, Inc.
v. Google, Inc.: The Only Nonliteral Aspects of Java APIs Protected Under Copyright Law Are
the Ones Nobody Wants to Copy, 14 N.C. J.L. & TECH. ON. 1, 5 (2012) (endorsing the district
court’s copyrightability ruling).

275. See Samuelson, supra note 8, at 1289–91.
276. Compare NIMMER & NIMMER 2017, supra note 17, § 2A.07[A], with NIMMER &

NIMMER 2018, supra note 17, § 2A.07[D][4]. The Goldstein treatise obliquely criticizes the
CAFC’s Oracle decision. See 1 PAUL GOLDSTEIN, GOLDSTEIN ON COPYRIGHT § 2.15.2.1, at 2:198
n.87.1 (3d ed. 2005 & 2015 Supp.) (stating that CAFC in Oracle “purportedly” followed Ninth
Circuit precedents).

277. See, e.g., J.E.M. Ag Supply, Inc. v. Pioneer Hi-Bred Int’l, Inc., 534 U.S. 124, 127 (2001)
(rejecting the argument that novel plants were unpatentable because Congress intended for them
to be protected only under the Plant Variety Protection Act); TrafFix Devices, Inc. v. Mktg.
Displays, Inc., 532 U.S. 23, 34–35 (2001) (declining to address whether a product configuration
would be categorically ineligible for trade dress protection if patented); Mazer v. Stein, 347 U.S.
201, 217 (1954) (rejecting the argument that a lamp base statuette could be protected only by
design patent law). The Court was unconvinced by Borland’s categorical exclusivity argument as
well. See Lotus Dev. Corp. v. Borland Int’l, Inc., 516 U.S. 233, 233 (1996) (affirming the First
Circuit’s ruling by a 4-4 vote). Borland’s brief to the Supreme Court relied heavily on its
categorical exclusivity argument. See Borland Brief, supra note 155, at 22–44.

278. See Chisum et al., supra note 18, at 17–18 (stating that there is no consensus among IP
scholars regarding whether the patentability of program innovations is relevant to the scope of
copyright protection for SSO). See generally Samuelson, supra note 18 (reporting on a survey of
IP lawyers about copyright and patent protection for specific aspects of programs).

279. See, e.g., Karjala, Relative Roles, supra note 17, at 49–50; Lundberg et al., supra note
16, at 252; see also supra note 17 (listing more sources that take this view).

280. See, e.g., House Hearings, supra note 107, at 95 (testimony of Pamela Samuelson)
(reporting that IP lawyers would characterize nonliteral software structures as methods when they
wanted to patent them and as SSO when asserting copyright); Samuelson, supra note 18, at 270–
71.

46

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 289

That being said, no court has ever actually held that any nonliteral
element of software was both copyright and patent protectable.281 Nor has
any judicial opinion endorsed the notion that software developers could
claim copyright protection for nonliteral elements of software for which
utility patents could have issued but had not been obtained, or as to which
a utility patent had issued, but then expired. Nor has any commentator
forthrightly asserted that copyright should serve as a gap-filler for
software designs that fall within the patent domain, but whose creator
failed either to seek or to get a patent.

Yet, the potential for copyright and patent to provide overlapping or
substitutive protection for program innovations is real, in no small part
due to the lack of clarity in both the copyright and patent caselaw about
exactly which elements of software fall within the scope of each law.282

As Judge Boudin observed in Borland, some aspects of programs, such
as user interface command structures that are visible to users, “look
hauntingly like the familiar stuff of copyright,” although “the ‘substance’
probably has more to do with problems presented in patent law.”283 There
may, however, be a more nuanced way to raise exclusivity defenses in
software copyright cases.

C. The Taking-Patents-Into-Account Approach
Google may have made a strategic mistake when raising its

copyright/patent exclusivity defense. Instead of arguing that the existence
of some patents on command structures or APIs was dispositive evidence
that these types of nonliteral elements of software were patent and not
copyright subject matter, Google should have argued that such patents
are strong evidence that command structures or APIs were unprotectable
under § 102(b).284 This kind of taking-patents-into-account approach285

281. Nor has any court ever upheld overlapping copyright and patent protection for the same

aspects of non-software creations. See Samuelson, supra note 2, at 1537.
282. See, e.g., McKenna & Sprigman, supra note 30, at 543–44 (expressing concern about

the indistinctness of patent subject matter boundaries as an impediment to effective channeling
rules for other IP regimes). Part IV of the McKenna and Sprigman article discusses how the
copyright/patent boundary ambiguity might be reduced. Id. at 540–45.

283. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 820 (1st Cir. 1995) (Boudin, J.,
concurring), aff’d by an equally divided Court, 516 U.S. 233 (1996).

284. The PTO might have issued those patents in error. Or the patents may have been granted
at a different level of abstraction than the command structures or APIs at issue in the Borland and
Oracle cases.

285. This taking-patents-into-account has been a viable strategy in some non-software
copyright cases. See, e.g., Samuelson, supra note 2, at 1531–33.

47

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

290 FLORIDA LAW REVIEW [Vol. 71

is consistent with the Supreme Court’s decision in TrafFix Devices, Inc.
v. Marketing Displays, Inc.,286 as well as with Baker287 and Taylor.288

TrafFix is, of course, a trade dress, not a copyright, case, but the
principle enunciated in that case has application beyond the trade dress
domain.289 The Court in TrafFix did not regard the existence of an expired
patent as conclusive evidence that the design could not be protected as
trade dress.290 But an expired patent’s description of a design’s
functionality, such as MDI’s dual-spring design for roadside signs, was
strong evidence that the design was too functional to be protectable trade
dress.291 Because functionality can disqualify designs from copyright as
well as trade dress protections,292 courts should examine software-related
patents for descriptions of the patented design’s functional advantages
that may disqualify it from copyright protection.293

The exclusivity argument in TrafFix was particularly strong because
MDI had actually patented the very same dual-spring design in which it
was claiming trade dress rights.294 That design’s functionality was plainly
described in that patent, and the patent had expired.295 It took some
chutzpah for MDI to contend that this dual-spring design was non-
functional in hopes of extending MDI’s exclusive control over the
design.296 Allowing MDI to claim trade dress protection would defeat the
well-established patent policy that when a patent has expired, the design
is in the public domain and available for unrestricted copying.297

286. 532 U.S. 23, 30–31 (2001).
287. Baker v. Selden, 101 U.S. 99, 102–03 (1880) (commenting that useful arts that could

not be protected by copyright might be protected by patent).
288. Taylor Instrument Cos. v. Fawley-Brost Co., 139 F.2d 98, 99–101 (7th Cir. 1943)

(concluding that there is no overlap between copyright and patent protection and observing that
though material is no longer patented, it cannot be protected by copyright).

289. See, e.g., Viva R. Moffat, The Copyright/Patent Boundary, 48 U. RICH. L. REV. 611,
652–56 (2014); Samuelson, supra note 8, at 1292.

290. TrafFix, 532 U.S. at 35.
291. Id. at 29–30.
292. See, e.g., Nat’l Med. Care, Inc. v. Espiritu, 284 F. Supp. 2d 424, 437 (S.D.W. Va. 2003)

(holding that a cabinet for a dialysis center was too utilitarian to be protectable by copyright law).
293. See, e.g., OddzOn Prods., Inc. v. Oman, 924 F.2d 346, 348 (D.C. Cir. 1991) (upholding

the denial of copyright registration to a patented KOOSH ball on the grounds that it was a useful
article that lacked separable expression). OddzOn is discussed in Samuelson, supra note 2, at
1524–26.

294. TrafFix, 532 U.S. at 29–30. The Solicitor General supported TrafFix’s appeal. Id. at 25.
John G. Roberts, Jr., now Chief Justice of the Supreme Court, was TrafFix’s lawyer. Id.

295. Id. at 25–26.
296. The Sixth Circuit held that MDI’s design was eligible for trade dress protection because

it was not dictated by function. Mktg. Displays, Inc. v. TrafFix Devices, Inc., 200 F.3d 929, 942
(6th Cir. 1999), rev’d, 532 U.S. 23 (2001).

297. See, e.g., Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 151 (1989)
(holding that Florida’s anti-plug mold statute was preempted by federal patent policy).

48

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 291

The Oracle298 case presented less compelling facts for a
copyright/patent exclusivity defense than did TrafFix.299 In Oracle, the
district court mentioned patents on program interfaces, including some
owned by Oracle, as suggestive that APIs were patent, not copyright
subject matter.300 But the court did not closely analyze those patents or
compare their claims with the Java API declarations in which Oracle
claimed copyright.

While the taking-patents-into-account approach has not yet
succeeded, that does not mean that the approach can never be successful.
When raised in the future, it should be applied with more analytic rigor
and attention to detail. With the right set of facts (for instance, a patent
on a data structure that described its functional advantages over the state
of the prior art), this approach may meet with more success when a
copyright claim is made for the same or a very similar software design
feature.301 Because tens, if not hundreds, of thousands of patents have
been issued for nonliteral elements of programs in the past three
decades,302 the risk of copyright/patent overlaps as to nonliteral elements
of software is far from hypothetical.

IV. RESTORING RIGOROUS FILTRATION TO AVOID CONFERRING PATENT-
LIKE PROTECTION TO SOFTWARE THROUGH COPYRIGHT LAW

For more than two decades after Altai, the state of software IP law was
quite stable in both the copyright and patent domains. Copyright
protection for software was understood to be “thin” because courts
recognized that programs embodied a relatively high quantum of
unprotectable elements that had to be filtered out before assessing

298. 872 F. Supp. 2d 974 (N.D. Cal. 2012), rev’d, 750 F.3d 1339 (Fed. Cir. 2014).
299. The exclusivity defense was also weak in Franklin. Apple Comput., Inc. v. Franklin

Comput. Corp., 545 F. Supp. 812 (E.D. Pa. 1982), rev’d, 714 F.2d 1240 (3d Cir. 1983). The
district court characterized a ROM chip as firmware, id. at 824, when the ROM was merely a
medium in which the Apple programs were stored. Id. at 819–20. It cited Diamond v. Bradley,
450 U.S. 381 (1981), as having upheld the patentability of firmware. Franklin, 545 F. Supp. at
824. However, Bradley merely affirmed the patentability of a data structure (and then only by an
equally divided vote). 450 U.S. at 381.

300. Oracle, 872 F. Supp. 2d at 996.
301. Software patent cases, by contrast, almost never refer to software copyrights. A rare

exception was the Supreme Court’s decision in Gottschalk v. Benson, 409 U.S. 63, 72 (1972)
(quoting from a Presidential Commission report opposing patent protection for software in part
because of the availability of copyright protection). See supra notes 54–56 and accompanying
text.

302. See, e.g., Armstrong, supra note 17, at 159–60 (reporting the issuance of 16,000
software patents in 2004, 25,000 in 2009, and nearly 55,000 in 2014).

49

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

292 FLORIDA LAW REVIEW [Vol. 71

copyright infringement claims, and patents were understood to be readily
available for a wide array of software methods and systems.303

In 2014, two important developments—one on the copyright side and
one on the patent side—upset this equilibrium. The copyright-side
development was the CAFC’s Oracle decision, which upheld a claim of
copyright in parts of the Java API.304 Although purporting to follow
Altai,305 Oracle was much closer to Whelan in its conception of
copyright’s scope.306 It construed § 102(b) as excluding from copyright’s
scope only abstract ideas and merged elements; it endorsed copyright
protection for program methods; it upheld the copyrightability of the Java
API because Sun/Oracle had made creative choices in designing it; and it
accepted copyright/patent overlaps for nonliteral elements of software,
such as APIs and command structures.307 Like Whelan before it, the
overbroad software copyright ruling in Oracle has emboldened several
incumbent firms to initiate similar SSO lawsuits against upstart
developers of compatible products.308 There is a risk that courts after
Oracle will, even if inadvertently, extend patent-like protection to
software through copyright law. Because software developers can easily
add a patent claim to their copyright complaints, they can take advantage
of the CAFC’s exclusive jurisdiction, even if the patent claim falls out of
the case at an early stage.

The patent-side development was the Supreme Court’s decision in
Alice Corp. v. CLS Bank International,309 which struck down a patent for
a software-implemented method and system of settling financial
transaction risks. Alice significantly limited the extent to which software

303. See generally Samuelson, supra note 8, at 1243 (“[T]he scope of copyright protection

in computer programs is generally much thinner than the scope of copyright in conventional
literary works . . . because programs embody many functional design elements that lie outside the
scope of copyright protection under § 102(b).”).

304. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1381 (Fed. Cir. 2014).
305. Id. at 1355–58.
306. Oracle gave a very narrow interpretation to § 102(b) exclusions, even opining that

program methods might be copyrightable. Id. at 1356–57. The similarity between Whelan and
Oracle is discussed in Armstrong, supra note 17, at 152–56, and Samuelson, supra note 8, at
1222, 1237–67.

307. Oracle, 750 F.3d at 1359–72, 1379–81. The CAFC takes a comparably narrow view of
functionality as a disqualifier from design patent protection. See, e.g., Ethicon Endo-Surgery, Inc.
v. Covidien, Inc., 796 F.3d 1312, 1329–30 (Fed. Cir. 2015) (commenting that determining
whether a design is primarily functional or ornamental requires looking at the design as a whole).
Only if a design is dictated by function does the CAFC consider it to be too functional to be
eligible for patenting. Id.

308. See generally von Lohmann, supra note 274, at 519–27 (discussing cases since Oracle).
309. 573 U.S. 208 (2014).

50

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 293

innovations can qualify for patenting.310 By re-endorsing Benson and
Flook, and emphasizing the abstractness of many software
innovations,311 the Court cast a new shadow on the tens of thousands of
software patents issued in the heyday of the Alappat and State Street
everything-under-the-sun-is-patentable decisions. Indeed, many software
patents have been invalidated since Alice.312

A. Oracle and Alice Have Created Perverse Incentives for Developers
to Use Copyright to Get Patent-Like Protection for

Nonliteral Elements of Programs
Even before Oracle and Alice, there were several reasons why it was

tempting for software developers to assert copyright protection for
nonliteral elements of programs that were functional enough to be
patentable, but that remained unpatented. Copyright has several
advantages over patents for nonliteral elements of software. First,
copyright provides automatic protection, rendering unnecessary the high
expenditures of time, money, and effort required to obtain patent
protection.313 Second, copyright requires only a modest amount of
originality to qualify for protection, not novelty and nonobviousness, as
patent does; and the Copyright Office examination is much less rigorous
than the PTO’s.314 Third, with copyright, protection lasts much longer
and is much less vulnerable to invalidation than with patents.315 Fourth,
copyright law does not require disclosure of one’s creation or specific
claiming to acquire the right as patent law does.316 An SSO copyright
claim would bypass patent law’s disclosure and claiming requirements.
Fifth, the copyright standard for infringement, which assesses the
substantial similarity in expression (which courts may not require
plaintiffs to define) of the works at issue, is much less precise and
demanding than the element-by-element analysis of patent infringement

310. Alice may alleviate concerns about non-practicing entities (often known as “patent

trolls”), who, after buying software patents, often from failed startups, make demands for high
licensing fees that some consider extortionate or bring lawsuits for patent infringement. See, e.g.,
James Bessen, The Patent Troll Crisis Is Really a Software Patent Crisis, WASH. POST (Sept. 3,
2013), https://www.washingtonpost.com/news/the-switch/wp/2013/09/03/the-patent-troll-crisis-
is-really-a-software-patent-crisis/ [https://perma.cc/A9MA-92RA] (discussing rise in software
patent litigation). See generally Colleen V. Chien, Startups and Patent Trolls, 17 STAN. TECH. L.
REV. 461 (2014) (studying the distributional impacts of the demands of patent trolls).

311. Alice, 573 U.S. at 226–27 (2014) (discussing the Court’s other recent patent subject
matter cases, as well as Benson and Flook).

312. See, e.g., Tran, supra note 138, at 533–34.
313. Samuelson, supra note 2, at 1497.
314. Id. at 1497–99.
315. Id. at 1497.
316. Id. at 1498.

51

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

294 FLORIDA LAW REVIEW [Vol. 71

claims.317 Sixth, copyright remedies are more attractive for plaintiffs than
patent remedies.318 Disgorgement of a defendant’s profits is recoverable
in copyright, along with any lost profits (such as a license fee).319 Patent
law does not allow profit disgorgement at all, and because lost profits
from infringement of a patent on a component of a larger manufacture
may be difficult to prove, reasonable royalties are the most common
patent infringement remedy.320

After Alice, many nonliteral elements of programs may be too abstract
to qualify for patent protection. A copyright SSO claim may be plausible,
though, as long as there is more than one way to structure those
elements.321 After Alice, issued patents on program SSO may be of
questionable validity, so shifting one’s claim to copyright as SSO would
be a way to obtain exclusive rights. After all, every method or system that
was patent subject matter under State Street would have some structure
that could be renamed program SSO.322 Software developers generally
prefer to treat internal SSO as trade secrets instead of seeking patents.323

But if competitors somehow manage to get access to that SSO, developers
may well assert SSO copyright claims to stop its use in competing
products. The temptation to assert copyright to fill in gaps in IP
protections for software exists and is strong.324

Oracle provides strong incentives for software copyright plaintiffs to
add a patent claim to their copyright complaints, for even if the patent
claim is dismissed at an early stage of the case, any appeal of the
copyright ruling will go to the CAFC, not to the regional circuits that
would ordinarily hear appeals in copyright cases. Unless the Supreme
Court decides to hear Google’s latest appeal, the CAFC’s Oracle decision
may well enable aggressive software copyright plaintiffs to avoid
application of the rigorous filtration tests previously adopted in Altai and

317. Id. at 1498–99.
318. Id. at 1499.
319. Id.; 17 U.S.C. § 504(a)–(b) (2012).
320. 35 U.S.C. § 284 (2012).
321. Proponents of broad software copyrights tend to ignore the role that patents play in the

protection of software innovations. See, e.g., Clapes et al., supra note 14, at 1558–60.
322. See, e.g., Karjala, Relative Roles, supra note 17, at 66–68 (arguing that program SSO is

patentable); Lemley, supra note 17 (asserting that the nonliteral elements of programs are
patentable); John P. Sumner, The Copyright/Patent Interface: Patent Protection for the Structure
of Program Code, 30 JURIMETRICS J. 107, 113–14 (1989) (stating that program SSO is patentable).

323. See generally David W. Carstens, Legal Protection of Computer Software: Patents,
Copyrights, and Trade Secrets, 20 J. CONTEMP. L. 13 (1994) (discussing different forms of IP
protection for software).

324. On December 14, 2016, at a Copyright Society of the U.S.A. debate in San Francisco
on the Oracle v. Google case, Annette Hurst, who represented Oracle in that case, stated that IP
lawyers are talking about the need for copyright to expand to make up for the lessened availability
of patents. This is a bad idea. See, e.g., Lemley, supra note 17, at 25–26 (arguing against expansive
interpretations of copyright to fill gap if patents are unavailable).

52

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 295

its progeny, as well as to get exclusive rights in unpatentable methods and
processes by claiming them as SSO.

But let us imagine what the future for software copyright law could
look like if the Court does take Google’s appeal and decides that Altai
and its progeny were right: that copyright law should not be construed to
confer patent-like protection to programs, that § 102(b)’s exclusions of
methods and processes should be respected, and that it is for patent law
to protect program functionality.

B. How to Minimize the Potential Misuse of Copyright to Confer
Patent-Like Protections for Nonliteral Elements of Software

The first step toward minimizing the potential misuse of software
copyright law is recognizing the risks to competition and innovation if
the Oracle decision, in effect, resurrects Whelan and the patent-like
protections it would enable simply by characterizing nonliteral elements
as program SSO. The second step is for courts to do a better job of
conceptualizing copyright protectable and unprotectable aspects of
programs in keeping with the long-standing fundamental principle that
copyright law should not provide patent-like protections to software or
other functional innovations embodied in copyrighted works.

Over the past several decades, the only easily resolved software
copyright cases have been those in which plaintiffs proved that
defendants literally infringed source or object code or copied videogame
audiovisuals or other expressive screen displays generated by
programs.325 Copyright provides very meaningful protection to these
elements of programs. Thus, the resolution of these types of infringement
claims has generated little or no controversy.

Nonliteral infringement claims have proven much more difficult for
courts to resolve for several reasons. First, judges and juries typically lack
the technical training necessary to comprehend programs’ complex
technological character.326 Second, software is not a “literary work” in
either the conventional sense of the term (for example, a novel) or the
conventional copyright sense of the term (for example, a compilation of

325. See e.g., Cadence Design Sys., Inc. v. Avant! Corp., 125 F.3d 824, 829 (9th Cir. 1997)

(involving source code copying); Engenium Sols., Inc. v. Symphonic Techs., Inc., 924 F. Supp.
2d 757, 778–80 (S.D. Tex. 2013) (involving verbatim copying of code); Spry Fox LLC v.
LOLApps Inc., No. 2:12-cv-00147-RAJ, 2012 WL 5290158, at *1, *8 (W.D. Wash. Sept. 18,
2012) (stating that there were enough similarities in videogame graphics to deny a defense motion
to dismiss). Software copyrights might also be infringed by some nonliteral copying, as when a
competitor recompiles another’s code, directly translates the program from one programming
language to another, or makes minor alterations (e.g., changing variable names) to disguise
infringement.

326. See, e.g., Nimmer et al., supra note 98, at 625–26.

53

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

296 FLORIDA LAW REVIEW [Vol. 71

data). It is a virtual machine that happens to have been constructed in
text.327 Copyright doctrines developed to assess infringement of novels
and dramatic plays are ill-suited to informing judgments about software
nonliteral infringements.328 Third, while it is easy to say that copyright
law protects only program expression and not program function,
separating expression and function has, in practice, been maddeningly
difficult.329 Functional considerations pervade the design of virtually
every aspect of software. Finally, courts have been surprisingly reluctant
to construe and apply the § 102(b) method exclusions in software
copyright cases or to recognize that the design of software largely lies in
assembling functional compilations of applied knowhow.330

There are sound ways to address each of these problems. The Federal
Judicial Center has organized training sessions to teach judges about
software, other advanced technologies, and IP law.331 Judges with
experience in technology cases are now more frequently assigned to hear
them.332 Additionally, expert witnesses can provide important expertise
to aid the trier of fact in complex technology cases, as the Second Circuit
recognized in Altai.333

To overcome the misleading metaphor of software as a “literary
work,” courts should follow Altai’s lead in acknowledging that the
essentially utilitarian nature of software means that programs have only

327. Samuelson et al., supra note 13.
328. See, e.g., Weinreb, supra note 14, at 1151–53.
329. See, e.g., Samuelson, supra note 8, at 1284–85.
330. Altai’s failure to direct filtering out processes and methods from the scope of copyright

was likely due to the influence of the Nimmer treatise that, until recently, had an unduly narrow
interpretation of § 102(b). Id. at 1235–37.

331. The Berkeley Center for Law & Technology, for instance, hosts an annual program for
federal judges on intellectual property and technology law topics. See Berkeley Center for Law &
Technology, RES. UC BERKELEY, http://vcresearch.berkeley.edu/research-unit/berkeley-center-
law-and-technology [https://perma.cc/6SME-WLGV] (describing its annual judicial training
sessions).

332. See, e.g., MARGARET S. WILLIAMS ET AL., PATENT PILOT PORGRAM: FIVE-YEAR REPORT
v (2016), https://www.fjc.gov/sites/default/files/2016/Patent%20Pilot%20Program%20Five-
Year%20Report%20(2016).pdf [https://perma.cc/6897-U6E5].

333. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712–13 (2d Cir. 1992) (noting
that “the highly complicated and technical subject matter at the heart of these claims” make them
“somewhat impenetrable by lay observers” so expert testimony may aid resolution of the
infringement issue). The Ninth Circuit has taken a more restrictive approach to expert testimony
in software cases. See Antonick v. Elec. Arts, Inc., 841 F.3d 1062, 1067 (9th Cir. 2016). The Ninth
Circuit was correct in ruling against Antonick because he claimed that Electronic Arts had copied
his source code but produced no evidence of this. See id. at 1069. But the court’s unwillingness
to allow expert testimony in software cases except on the issue of probative similarities is
questionable. See, e.g., Brief of Amici Curiae Intellectual Prop. Law Professors in Support of
Petitioner at 2, Antonick, 841 F.3d 1062 (No. 17-168).

54

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 297

a narrow scope of copyright protection.334 Courts should also engage in
rigorous filtering out of unprotectable elements before the comparison
stage of infringement analysis, as Altai and its progeny direct.335

Altai offered important guidance about how to distinguish program
expression and program function. By characterizing efficient designs as
lying outside of copyright bounds under the merger doctrine and
identifying several types of external factors that may constrain
programmer design choices,336 Altai offered useful tools with which to
assess nonliteral infringement claims and filter out functional elements.
This is similar to the process of claim construction that courts routinely
employ in patent cases.337 Just as those claiming trade dress protections
for product configurations must prove their designs are nonfunctional,338

plaintiffs asserting nonliteral infringement claims should have to prove
that nonliteral elements of software alleged to infringe are neither
efficient nor scènes à faire, nor otherwise constrained by external
factors.339 The existence of alternative ways to accomplish the function
should not be dispositive of non-functionality.340

Unfortunately, Altai did not offer any guidance about how to filter out
§ 102(b) methods in software copyright cases. This is surprising given
the explicit statement in the legislative history that § 102(b)
method/process exclusions should ensure that software copyrights would
not be construed too broadly.341 Numerous cases have, however, adapted

334. Altai, 982 F.2d at 704.
335. Id. at 707.
336. Id. at 707–08.
337. See, e.g., Mark A. Lemley & Mark P. McKenna, Scope, 57 WM. & MARY L. REV. 2197,

2202–03 (2016) (recommending that courts determine the scope of litigated IP rights in a manner
akin to claim construction of patents).

338. See TrafFix Devices, Inc. v. Mktg. Displays, Inc., 532 U.S. 23, 29 (2001). It is currently
unclear whether the plaintiff or defendant bears a burden of proof about non-functionality or
whether particular elements of software are protectable expression or unprotectable methods.
Some courts have put the burden of proof about unprotectables on defendants. See, e.g., Bateman
v. Mnemonics, Inc., 79 F.3d 1532, 1541 (11th Cir. 1996). Especially when dealing with a highly
functional work such as software, plaintiffs should have to prove what aspects of their programs
are expressive enough to qualify for copyright protection. After all, plaintiffs bear the burden of
proof that defendants improperly appropriated original expression from their works. See, e.g., 3
GOLDSTEIN, supra note 276, § 9.3.2.2, at 9:46 (“The abstraction-filtration-comparison test places
a special burden on the copyright owner to highlight the original and expressive elements that it
claims are infringed.”).

339. See, e.g., Bikram’s Yoga Coll. of Ind., L.P. v. Evolation Yoga, LLC, 803 F.3d 1032,
1040–41 (9th Cir. 2015); Altai, 982 F.2d at 709–10.

340. As Weinreb once observed, “if the rubric [of other possible design choices] is so used,
copyright effectively absorbs the whole of patent.” Weinreb, supra note 14, at 1170. The CAFC
in Oracle concluded that the Java API was original expression because Sun/Oracle made choices
among alternatives. Oracle Am., v. Google Inc., 750 F.3d 1339, 1356 (Fed. Cir. 2014).

341. See supra notes 52, 246 and accompanying text.

55

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

298 FLORIDA LAW REVIEW [Vol. 71

the AFC test to filter out § 102(b) methods in software copyright cases.342

Commentators have also offered guidance about how to discern § 102(b)
method exclusions by focusing on particular aspects of programs and
using pertinent computer science terminology instead of vague terms
such as “SSO.”343

Among the aspects of programs that courts have excluded as
unprotectable § 102(b) methods are the functional behavior of
programs,344 algorithms,345 data structures,346 command structures,347

computer languages,348 methods of calculation,349 computational
processes,350 interfaces necessary to interoperability,351 and formulae.352

The Copyright Office Compendium has identified numerous aspects of
programs that it regards as unprotectable by copyright, including
algorithms, languages, interfaces, formulae, logic, system design, and
formats.353

Since Altai, courts have generally required software plaintiffs to
particularize the elements of computer programs on which they base their
nonliteral infringement claims.354 Courts also typically engage in

342. See, e.g., Bateman, 79 F.3d at 1541 n.21; Gates Rubber Co. v. Bando Chem. Indus., 9
F.3d 823, 842–43 (10th Cir. 1993) (excluding algorithms from software copyright scope).
Patented elements should also be filtered out. See, e.g., Lemley, supra note 17, at 32.

343. See, e.g., Marci A. Hamilton & Ted Sabety, Computer Science Concepts in Copyright
Cases: The Path to a Coherent Law, 10 HARV. J.L. & TECH. 239, 240 (1997); see also Randall
Davis, The Nature of Software and Its Consequences for Establishing and Evaluating Similarity,
5 SOFTWARE L.J. 299, 301–09 (1992) (computer scientist’s explanation of program components).

344. See, e.g., O.P. Sols., Inc. v. Intellectual Prop. Network Ltd., No. 96 Civ. 7952 (LAP),
1999 WL 47191, at *16–19 (S.D.N.Y. Feb. 2, 1999).

345. See, e.g., Torah Soft Ltd. v. Drosnin, 136 F. Supp. 2d 276, 291 (S.D.N.Y. 2001).
346. See, e.g., Baystate Techs., Inc. v. Bentley Sys., Inc., 946 F. Supp. 1079, 1088–89 (D.

Mass. 1996); see also Hamilton & Sabety, supra note 343, at 259–64 (observing that a
programmer’s choice of algorithms may constrain data structure choices).

347. See, e.g., MiTek Holdings, Inc. v. Arce Eng’g. Co., 89 F.3d 1548, 1556–57 (11th Cir.
1996); Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st Cir. 1995), aff’d by an equally
divided Court, 516 U.S. 233 (1996). But see Oracle Am., Inc. v. Google Inc., 750 F.3d 1339,
1356–59 (Fed. Cir. 2014). Some cases deny similar copyright claims on other grounds. See, e.g.,
Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1373–76 (10th Cir. 1997) (concluding Mitel’s command
codes were unprotectable on scènes à faire and unoriginality grounds).

348. See, e.g., SAS Inst. Inc., v. World Programming Ltd., 64 F. Supp. 3d 755, 776 (E.D.N.C.
2014), aff’d in part, vacated in part, 874 F.3d 370 (4th Cir. 2017).

349. See, e.g., Harbor Software, Inc. v. Applied Sys., Inc., 925 F. Supp. 1042, 1052
(S.D.N.Y. 1996).

350. See, e.g., Wyatt Tech. Corp. v. Malvern Instruments, Inc., No. CV 07-08298 DDP
(manX), 2009 WL 2365647, at *6 (C.D. Cal. July 29, 2009).

351. See, e.g., Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522–23 (9th Cir. 1992).
352. See, e.g., Woods v. Resnick, 725 F. Supp. 2d 809, 820 (W.D. Wisc. 2010).
353. U.S. COPYRIGHT OFFICE, supra note 44, § 721.7.
354. See MiTek Holdings, Inc. v. Arce Eng’g. Co., 89 F.3d 1548, 1555 (11th Cir. 1996)

(limiting the infringement analysis to eighteen specific similarities).

56

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 299

element-by-element analysis to determine whether the nonliteral
elements allegedly infringed are copyright-protectable or
unprotectable.355 Plaintiffs’ failure to particularize elements alleged to be
infringed and trial courts’ failure to filter out unprotectables have resulted
in some summary judgments for defendants and some reversals of
plaintiff victories.356

Plaintiffs in software copyright cases may prefer to employ vague
terms such as SSO to describe the nonliteral elements alleged to infringe
because such terms obscure, rather than illuminate, which program
structures are expressive enough to be copyright-protectable and which
are not.357 Courts should consequently be much more skeptical about
SSO claims than they have been to date. All procedures, processes,
systems and methods of operation are, by their nature, parts of program
SSO. Section 102(b) directs that these elements be excluded from the
scope of copyright.358 Moreover, as Altai pointed out, the term SSO
“demonstrate[s] a flawed understanding of a computer program’s method
of operation” and rests on a “somewhat outdated appreciation of
computer science.”359 Plaintiffs should be required to prove the
expressiveness of structural elements they allege as the basis of nonliteral
infringement claims. Courts should also recognize the benefits of
standardization in software copyright nonliteral infringement cases.360

Defenses that rely on issued patents on program methods/systems
should be treated as evidence that these elements are uncopyrightable
under § 102(b).361 Although fewer software-related patents may have
been issued since Alice, hundreds of thousands of software patents still

355. See, e.g., id.
356. See Automated Sols. Corp. v. Paragon Data Sys., 756 F.3d 504, 520–21 (6th Cir. 2014)

(affirming summary judgment because plaintiff failed to specify elements alleged to infringe); see
also Paycom Payroll, LLC v. Richison, 758 F.3d 1198, 1207–08 (10th Cir. 2014) (vacating a
ruling for plaintiff due to failure to filter out unprotectable elements).

357. See, e.g., Chisum et al., supra note 18, at 20–21.
358. 17 U.S.C. § 102(b) (2012).
359. Computer Assocs. Int’l v. Altai, Inc., 982 F.2d 693, 706 (2d Cir. 1992); see also

Hamilton & Sabety, supra note 343 (stating that SSO does not “accurately reflect[] computer
science reality”).

360. See, e.g., Joseph Farrell, Standardization and Intellectual Property, 30 JURIMETRICS J.
35, 42–43, 47, 49 (1989); Weinreb, supra note 14, at 1204 (discussing standardization in relation
to Borland).

361. See supra Section III.C; see also NIMMER & NIMMER 2018, supra note 17,
§ 2A.07[D][4][c][iii] (“[A] court adjudicating a case presenting the utility patent/copyright
overlap must calibrate copyright protection with reference to Section 102(b). . . . [I]f the court
concludes that plaintiff can vault the Section 102(b) hurdle, then the existence of patent protection
should cause the court to re-evaluate its conclusion about Section 102(b).”).

57

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

300 FLORIDA LAW REVIEW [Vol. 71

exist.362 Because Alice may undermine the enforceability of such patents,
developers may claim them as program SSO instead. Copyright law
should not be used as a substitute or gap-filler for programmers’ failure
to get or to seek a patent for functional design elements of programs or
for patents of dubious validity.363

Courts should further be skeptical about compilation claims in
software cases.364 The “industrial compilation[s] of applied know-how”
in programs should generally be ineligible for copyright protection.365

Microsoft rightly held that the selection and arrangement of unprotectable
elements of the Apple GUI were too functional to be copyright-
protectable.366 Only when software elements have been selected and
arranged in an expressive way should copyright protection be available
to a compilation of them.367 The existence of alternative ways to organize
the elements may be a factor in assessing whether the creativity required

362. See Raymond Millien, Alice Who? Over Half the U.S. Utility Patents Issued Annually

are Software Related!, IPWATCHDOG (May 21, 2017), https://www.ipwatchdog.com/2017/05/21/
alice-over-half-u-s-utility-patents-issued-annually-software/id=83367/ [https://perma.cc/A743-
QFBR].

363. If a plaintiff received a patent on a software design (e.g., a data structure) and then
claimed copyright in it, relying on the overlap dicta in Oracle, a court should decide that the
plaintiff’s election of patent protection precludes copyright in it. See, e.g., Korzybski v.
Underwood & Underwood, Inc., 36 F.2d 727, 729 (2d Cir. 1929) (finding that a patent on an
anthropometer design precluded a claim of copyright infringement); see also Michael J. Kline,
Requiring an Election of Protection for Patentable/Copyrightable Computer Programs, 6
COMPUTER L.J. 607, 609 (1986) (suggesting that a programmer should be required to choose either
patent protection or copyright protection when a program qualifies for both).

364. Cisco v. Arista illustrates the misuse of compilation theory. Cisco claimed that 508
command-line interface terms Arista used from as many as twenty-six Cisco programs was a
compilation whose copyright Arista infringed. Cisco Sys., Inc. v. Arista Networks, Inc., No. 14-
cv-05344-BLF, 2016 WL 4440239, at *4 (N.D. Cal. Aug. 23, 2016). This so-called compilation
apparently didn’t exist before Cisco filed suit. Id. at *3–4. At trial, Arista’s scènes à faire defense
succeeded. Order Denying Motions for Judgment as a Matter of Law & Motion for a New Trial,
Cisco Sys., Inc. v. Arista Networks, Inc., Case No. 14-cv-05344-BLF, 2016 WL 4440239 (N.D.
Cal. May 10, 2017); see also eScholar LLC v. Otis Educ. Sys. Inc., 76 U.S.P.Q.2d (BNA) 1880,
1898 (S.D.N.Y. 2005) (relying on compilation theory to extend protection to program methods).

365. Samuelson et al., supra note 13, at 2355.
366. Apple Comput., Inc. v. Microsoft Corp., 799 F. Supp. 1006, 1023 (N.D. Cal. 1992); see

supra note 183 and accompanying text; see also MiTek Holdings, Inc. v. Arce Eng’g. Co., 89
F.3d 1548, 1558–59 (11th Cir. 1996) (adopting the “bodily appropriation of expression” or
“virtual identicality” standard used in Microsoft). Many non-software compilations have been
denied copyright protection because they were too functional to be copyrightable. See Pamela
Samuelson, Functional Compilations, 54 HOUS. L. REV. 321, 323–54 (2016) (identifying several
types of functional compilations held unprotectable by copyright law).

367. 17 U.S.C. § 101 (2012) (definition of compilation); see also Feist Publ’ns, Inc. v. Rural
Tel. Serv. Co., 499 U.S. 340, 362 (1991) (discussing the quantum of originality required for
compilations to qualify for copyright).

58

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

2019] STAKING THE BOUNDARIES OF SOFTWARE COPYRIGHTS IN THE SHADOW OF PATENTS 301

to select and arrange the elements is of the sort that copyright law was
intended to protect, but it should not be dispositive.

Nonliteral infringement software copyright cases could be much
easier if courts decided that copyright protection extends only to program
code and expressive screen displays, as Rand Jaslow argued many years
ago in Whelan.368 However, the proposition that software copyrights can
be nonliterally infringed is now so well established that it seems unlikely
courts will shift in that direction, however persuasive the arguments
supporting that approach may be.369

Courts can and should be very rigorous in their infringement analyses
in software copyright cases so that plaintiffs cannot get patent-like
protection for functional structures of programs or protection for other
unprotectable elements. Competition and ongoing innovation policy, as
well as the progress of knowledge, will be fostered if programmers can
draw upon uncopyrightable components of programs in constructing new
software.370

CONCLUSION

Congress was warned as early as 1967 that copyright protection for
computer programs might result in conferring patent-like protection to
functional aspects of programs, such as the methods and processes they
embody. Congress did the right thing in responding to this concern by
adding § 102(b) to the 1976 Act hoping to ensure that “in no case” would
copyright protection extend to any “procedure, process, system, [or]
method of operation” of programs.371 The House and Senate reports
plainly reflect the intention that these exclusions would stop program
copyrights from being construed too broadly.

The § 102(b) functionality exclusions were ignored in Whelan and its
progeny in the mid-1980s to early 1990s, which led to a storm of criticism
from IP lawyers and academics, as well as to some alarm by computing
professionals. Responding to these concerns, Congress once again did the
right thing in the late 1980s and early 1990s by holding hearings and

368. See Whelan Assocs., Inc. v. Jaslow Dental Labs., Inc., 797 F.2d 1222, 1235 (3d Cir.
1986).

369. See Karjala, Relative Roles, supra note 17, at 52–53; see also Weinreb, supra note 14,
at 1249–50 (arguing against nonliteral infringement); Goldstein, supra note 17, at 1125 (stating
copyright provides “very thin” protection to programs).

370. See, e.g., Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 156–57 (1989)
(“Both the novelty and the nonobviousness requirements . . . provide the baseline of free
competition upon which the patent system’s incentive to creative effort depends. A . . . law that
substantially interferes with the enjoyment of an unpatented utilitarian or design conception which
has been freely disclosed by its author to the public at large impermissibly contravenes the
ultimate goal of public disclosure and use which is the centerpiece of federal patent policy.”).

371. 17 U.S.C. § 102(b).

59

Samuelson: Staking the Boundaries of Software Copyrights in the Shadow of Pa

Published by UF Law Scholarship Repository,

302 FLORIDA LAW REVIEW [Vol. 71

commissioning reports to investigate the state of software copyright and
patent protection for programs and what Congress might do about it.

The turning point away from Whelan-like overprotection was the
Second Circuit’s Altai decision, which recognized the highly utilitarian
nature of programs and directed courts to engage in rigorous filtration to
prevent copyright protection from extending to program functionality. As
a result of this decision and others that followed its lead, the risks of harm
to competition and innovation in the software industry from overbroad
copyright protections subsided.

For more than twenty years, courts following Altai’s lead were
mindful that copyright and patent have different roles to play in
protecting software, and the § 102(b) exclusions of methods and
processes, the merger doctrine, and the explanation/use distinction have
served as useful tools with which to maintain proper boundaries between
these two forms of exclusive rights. As long as courts have kept in mind
the highly utilitarian nature of software and recognized that protecting
functionality is the appropriate role of patents, they have generally done
a good job steering a course through the Scylla of underprotection and
the Charybdis of overprotection. When courts interpret software
copyright in the shadow of patents, they are less likely to exceed the
boundaries that Congress intended to establish by enacting § 102(b).

By misconstruing Mazer, Altai, and § 102(b), the Oracle decision has
reignited concerns about copyright law being construed to provide patent-
like protections to programs. The decision has already precipitated a new
round of software copyright cases seeking Whelan-like protection of
nonliteral elements as SSO. The CAFC’s endorsement of copyright and
patent overlaps is inconsistent with its own and many other precedents,
as well as with longstanding limiting principles of copyright law. How
tempting it is now for software developers to claim SSO copyright
protection for unpatented functionality. And how tempting to add a patent
claim to a software copyright complaint to ensure that any appeal will go
to the CAFC where they can rely on its Oracle precedent, thereby
avoiding the regional circuits that would have followed the Altai-plus
rigorous filtration precedents. Congress is too busy with other matters to
save the day, and not even the Second or Ninth Circuits can fix the
problem that the Oracle decision has created. If the Supreme Court
decides to hear Google’s appeal of the CAFC’s Oracle decision, courts
may get the guidance they need to construe the scope of copyright
protection for software in the manner Congress intended back in the
1980s.

60

Florida Law Review, Vol. 71, Iss. 2 [], Art. 1

https://scholarship.law.ufl.edu/flr/vol71/iss2/1

	Staking the Boundaries of Software Copyrights in the Shadow of Patents
	Recommended Citation

	329793 FL Law Re 71-2 Text r1.pdf

