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Abstract
An arithmetical structure on a graph is given by a labeling of the vertices that
satisfies certain divisibility properties. In this note, we look at several families of
graphs and attempt to give counts on the number of arithmetical structures for
graphs in these families.

1. Introduction

In this paper, we will consider the arithmetical structures on a particular family of

graphs. While arithmetical structures can be defined in several equivalent ways, we

will take an approach that is based on elementary number theory.

Definition 1. An arithmetical structure on a graph G is given by an assignment

to each vertex of a nonnegative integer so that the set of all labels is relatively

prime and so that the label of each vertex is a divisor of the sum of the label of its

neighbors, counted with multiplicity where appropriate.

This definition is equivalent to the definition given by Lorenzini in [7], in which

he sets A to be the adjacency matrix of a graph G and defines an arithmetical

structure to be a pair of vectors (d, r) ∈ (Z≥0)n × (Z>0)n so that the matrix

L(G,d) := (diag(d) − A) satisfies the equation L(G,d)r = 0, with the additional

restriction that the entries of r are chosen to have no nontrivial common factor.

We denote the set of all arithmetical structures on a graph G by Arith(G), and

one question of interest is the size of this set. Lorenzini proved in [7] that the number

of arithmetical structures on any given graph is finite, but his proof does not give a

way to count or even bound the number of such structures. Work of various authors

1The second author was supported by the Cross-Disciplinary Science Institute at Gettysburg
College (X-SIG)
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including [1, 2, 4, 5] and more are able to count the number of structures for families

of graphs such as paths, cycles, bidents, star graphs, and complete graphs. In this

paper, we consider the family of graphs consisting of a path where we double a single

edge, as illustrated in Figure 1.

Definition 2. The graph Pm,n consists of vertices {a1, . . . , am, b1, . . . , bn} where

there is a single edge between ai and ai+1 for each 1 ≤ i < m, a single edge between

bi and bi+1 for each 1 ≤ i < n, and two edges between a1 and b1.

a3 a2 a1 b1 b2 a1 b1 b2 b3 b4 b5

Figure 1: The graphs P3,2 and P1,5

For ease of notation we will refer interchangeably to the vertex ai and to the

numerical label assigned to it in a given arithmetical structure. We should also

note that when considering the doubled edge one must count the neighbors with

multiplicity; in particular, the condition for an arithmetical structure includes that

a1|(a2 + 2b1) and b1|(b2 + 2a1). Examples of arithmetical structures on these graphs

are given in Figure 2.

2 4 6 13 1 1 5 8 3 1 1

Figure 2: An example of a smooth arithmetical structure on P3,2 and a non-smooth
arithmetical structure on P1,5.

In order to help us understand the arithmetical structures on this family, we first

define a subset of those structures which we will call smooth. We will denote the set

of smooth arithmetical structures by SArith(Pm,n).

Definition 3. An arithmetical structure on Pm,n is said to be smooth if a1 > a2 >

. . . > am and b1 > b2 > . . . > bn.

We note that in the language of d-vectors from Lorenzini’s definition, this corre-

sponds to the fact that all vertices other than possibly a1 and b1 have associated

d-values greater than one. Moreover, in a smooth arithmetical structure we have

that 0 < ai < ai−1 and ai−1|ai + ai−2, from which it follows that ai must be the

least residue of −ai−2 mod ai−1. In this way, we see that knowing a1 and a2 will

determine the values of all ai in a smooth arithmetical structure and the analogous

results hold for the bi.

One goal of this note is to count the number of smooth arithmetical structures

on the graphs P1,n,P2,n, and P3,n for various values of n. In particular, we will see
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in Theorems 4, 6, and 8 that in each of these cases the number of smooth structures

on Pm,n grows on the order of a polynomial of degree m− 1 in n. This suggests the

following conjecture to the authors, which we hope to explore going forward:

Conjecture 1. The number of smooth arithmetical structures on the graph Pm,n
grows at the same rate as

(
m+n−1

n

)
.

We are interested in smooth structures because every arithmetical structure can

be reduced to a smooth structure by a pair of operations that we jointly refer to

as smoothing that we define in Section 2. If a structure (r,d) on a graph G is

obtained by a sequence of smoothing operations on structure (r′,d′) on a graph H,

we say that (G, (r,d)) is an ancestor of (H, (r′,d′)). Corollary 1 will give us a way

of counting the number of structures that are derived from the same ancestor, and

this will allow us to derive a formula for the total number of arithmetical structures

from the total number of smooth structures. Sections 3, 4, and 5 consider these

questions for the cases of m = 1, 2, 3, respectively. One consequence of our results is

the following:

Theorem 1. For large n, there are approximately 7
2Cn arithmetical structures

on P1,n, approximately 76523
57600Cn structures on P2,n, and approximately 78157

600 Cn
structures on P3,n, where Cn = 1

n+1

(
2n
n

)
is the nth Catalan number.

We conclude this introduction by noting that often when one considers arithmetical

structures one is also interested in the Critical Group associated to the structure,

which can be defined explicitly as the cokernel of the map from Zm+n → Zm+n

defined by x 7→ L(G,d)x. It follows as an immediate consequence of [7, Cor 2.3]

that the order of the critical group associated to an arithmetical structure on Pm,n
is given by 2

ambn
. In particular, this shows that for any arithmetical structure we

either have am = bn = 1, in which case the associated critical group is Z/2Z, or

exactly one of these numbers is equal to 2, in which case the critical group is trivial.

We will prove this condition on am and bn directly in Theorem 3, but Lorenzini’s

result allows us to explicitly determine the critical group for all structures.

2. Background on Smooth Structures

We begin this section by defining two smoothing operations on arithmetical structures.

While we will define these operations on the graphs Pm,n, the definitions are more

general and are essentially the same as definitions given in [1] and [2]. In particular,

one can think of these operations as essentially removing vertices of degree one or

two where the d-vector has value 1.

Definition 4. The following two operations, along with the analogous operations

on the ai, are jointly referred to as smoothing a vertex:
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1 5 8 3 1 1

1 5 8 3 1

1 5 3 1

Figure 3: A structure on P1,5 and the results of two smoothing operations leading
to the unique smooth ancestor

• If we are given an arithmetical structure on a graph Pm,n so that bn = bn−1
then we obtain a new arithmetical structure on Pm,n−1 by removing the vertex

bn and leaving the other values of ai, bi the same.

• If we are given an arithmetical structure on a graph Pm,n so that bi = bi−1+bi+1

then we obtain a new arithmetical structure on Pm,n−1 by setting a′j = aj for

all j, b′j = bj for j < i and b′j = bj+1 for j ≥ i.

If there are no vertices satisfying either of these cases then we refer to the structure

as smooth. We will say that a structure on Pm′,n′ is an ancestor of a structure on

Pm,n if it is obtained from a series of smoothing operations.

Given an arithmetical structure, it is clear that one can obtain a smooth arith-

metical structure after some sequence of smoothing operations. Moreover, one

can see that the smooth structure one gets will consist precisely of the maximal

decreasing subsequences of the {ai} and {bi}, and in particular each structure will

have a unique smooth ancestor. In order to count the number of arithmetical

structures on Pm,n that have the same smooth ancestor, we will first define a func-

tion C(n, k) = k
n

(
2n−k−1
n−1

)
. We note that this is equal to B(n − 1, n − k), where

B(s, t) = s−t+1
s+1

(
s+t
s

)
denotes the ballot numbers, a generalization of the Catalan

numbers that were first studied by Carlitz [3] and are defined for all s ≥ t ≥ 0.

The ballot numbers and Catalan numbers are ubiquitous in combinatorics and have

many interpretations. The proofs of [2, Theorem 9] and [1, Lemma 2.9] can easily

be adapted to show that B(s, t) counts the number of arithmetical structures on a

path of length s that are descendents of a given structure on a path of length s− t.
From this, we obtain the following result.

Theorem 2. Any arithmetical structure on Pm,n has a unique ancestor that is a

smooth arithmetical structure on some Pm′,n′ . Moreover, for each smooth arithmeti-

cal structure on Pm′,n′ there are C(m,m′)C(n, n′) arithmetical structures on Pm,n
having it as an ancestor.

The following corollary, which is an immediate consequence, allows us to count

the number of arithmetical structures on a given graph Pm,n from the number of
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smooth structures on each smaller Pm′,n′ . Note that when we define these sets we

are specifying the two ‘sides’ of the path, so for example on the graph P1,1 we are

counting the structure where a1 = 2, b1 = 1 as different from the structure where

a1 = 1, b1 = 2. When m = n it might be more natural to divide all of the counts by

two to account for the inherent symmetry in the graphs.

Corollary 1. The number of arithmetical structures on Pm,n can be derived from

the number of smooth structures by the formula

|Arith(Pm,n)| =
m∑

m′=1

n∑
n′=1

C(m,m′) · C(n, n′) · | SArith(Pm′,n′)|.

To use this corollary throughout the paper, we will find the following results on

the function C(n, k) useful to have so we state them here.

Lemma 1. The function C(n, k) = k
n

(
2n−k−1
n−1

)
satisfies the following properties:

(a) C(n, n) = 1;

(b) C(n, n− 1) = n− 1;

(c) C(n, 1) = C(n, 2) = 1
n

(
2n−2
n−1

)
= Cn−1, the Catalan number;

(d) C(n, 3) = Cn−1 − Cn−2 and C(n, 4) = Cn−1 − 2Cn−2;

(e)
∑n
k=s C(n, k) = C(n+ 1, s+ 1), and in particular

∑n
k=1 C(n, k) = Cn;

(f)
∑n
k=1 kC(n, k) = Cn+1 − Cn;

(g)
∑n
k=1 k

2C(n, k) = 2Cn+2 − 5Cn+1 + Cn; and

(h) limn→∞
C(n,k)
Cn

= k
2k+1 .

Proof. The proof of the first four parts of this lemma are immediate from the

definition.

To prove the next three parts, we will use a standard interpretation of the ballot

numbers and Catalan numbers based on lattice paths. In particular, C(n, k) gives

the number of paths from the point (0, 0) to the point (n − k, n − 1) that travel

only along grid lines and avoid all points (x, y) with x > y. Additionally, Cn gives

the number of such paths from (0, 0) to (n, n). See [8] for more details on this

interpretation.

In particular, C(n+ 1, s+ 1) will count the number of lattice paths to the point

(n− s, n). Each such path will traverse exactly one edge from a point (j, n− 1) to

(j, n) where 0 ≤ j ≤ n− s, and in particular the number of paths that cross each

such edge for a fixed j is exactly the number of lattice paths to the point (j, n− 1),
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which is given by C(n, n− j). This tells us that

n−s∑
j=0

C(n, n− j) = C(n+ 1, s+ 1),

and statement (e) follows from the a change of variables.

In a similar vein, we note that Cn+1 −Cn counts the number of paths from (0, 0)

to (n+ 1, n+ 1) that avoid the point (n, n) and therefore must include the point

(n − 1, n + 1). Now, any such path must include exactly one edge from a point

(j, n− 1) to (j, n) where 0 ≤ j ≤ n− 1. Fixing one such j, we see that the number of

paths including that edge is equal to the product of the number of paths from (0, 0)

to (j, n−1) and the number of paths from (j, n) to (n−1, n+1). There are C(n, n−j)
of the former and n− j of the latter, so

∑n−1
j=0 (n− j)C(n, n− j) = Cn+1−Cn. Part

(f) follows by setting k = n− j.
The proof of part (g) works in a similar manner, conditioning the paths to

(n+ 2, n+ 2) on the edge they contain from (j, n−1) to (j, n) in the same way as the

previous paragraph in order to obtain the identity

n∑
k=1

1

2
(k2 +5k+4)C(n, k) = Cn+2,

from which the claim follows.

The proof of the final part is a straightforward exercise in computing limits, after

noting that
C(n, k)

Cn
=
k(2n− k − 1)!(n+ 1)!

(n− k)!(2n)!
.

In order to understand the set SArith(Pm,n), we will first show that a smooth

arithmetical structure is uniquely determined by the choice of a1 and b1. In order

to do this, we define an auxiliary function F (x1, x2).

Definition 5. Let x1 > 0 and x2 ≥ 0. We define a sequence {xi} by letting xi be

the least residue of −xi−2 (mod xi−1). We then define the function F (x1, x2) to be

the largest i so that xi > 0.

For example, if x1 = 8 and x2 = 5 we compute that x3 is the least residue of −8

(mod 5), which is 2. We then get that x4 = 1, x5 = 0. In particular, F (8, 5) = 4.

Lemma 2. For any pair of relatively prime integers (a1, b1) there is at most

one smooth arithmetical structure on a graph of the form Pm,n. Moreover, m =

F (2b1, a1)− 1 and n = F (2a1, b1)− 1.

Proof. Given the pair (a1, b1), we define b2 to be the least residue of −2a1 (mod b1)

so that b1|(2a1 + b2). For i > 2 we define bi to be the least residue of −bi−2 mod

bi−1. We define ai in an analogous way for i > 1. As long as bi > 0 we therefore

have that bi < bi−1, and the same is true for the ai, so the nonzero entries of this

sequence satisfy the divisibility requirements of a smooth arithmetical structure on



INTEGERS: 20 (2020) 7

PF (2b1,a1)−1,F (2a1,b1)−1. The fact that a1 and b1 are relatively prime implies that

the greatest common divisor of the entire set is also one.

One approach to counting smooth structures on Pm,n would therefore be to

try to understand the number of pairs (a1, b1) so that F (2b1, a1) = m + 1 and

F (2a1, b1) = n+ 1. Unfortunately, we cannot write down a concise formula for F ,

let alone invert it, so this direct approach seems out of reach. On the other hand,

there are a number of properties of the function F (x, y) that are discussed at length

in [1] that will be useful. We will omit proofs of the following two of these facts,

although they are not difficult.

Lemma 3. For any x > 0 and y ≥ 0 we have the following:

• F (x+ ky, y) = F (x, y), and

• F (x, kx+ y) = k + F (x, y).

One consequence of Lemma 3 that will come in handy later is the following.

Lemma 4. For any x, we have F (4, x) = x+εx
4 where εx =


4, x ≡ 0 (mod 4),

7, x ≡ 1 (mod 4),

6, x ≡ 2 (mod 4),

13, x ≡ 3 (mod 4).

Proof. Write x = 4k + ε where 0 ≤ ε < 4. Then it follows from Lemma 3 that

F (4, x) = k + F (4, ε). If ε = 0, then F (4, ε) = 1 so F (4, x) = k + 1 = x+4
4 . If ε = 1

(resp. 2) then F (4, ε) = 2, so F (4, x) = k + 2, which is equal to x+7
4 (resp. x+6

4 ).

Finally, if ε = 3 we have that F (4, ε) = 4 so F (4, x) = x−3
4 + 4 = x+13

4 .

Note that in the introduction we defined an arithmetical structure to include the

criterion gcd({ai, bi}) = 1. This is simply a way of specifying a single representative

in the equivalence class of possible r-vectors. The following theorem shows in an

elementary manner that in such a representation either am = 1 or am = 2. For this

reason, each arithmetical structure also has a representative in which am = 2, which

can be obtained by scaling the entire structure by a factor of 2 if needed. We will

refer to this as an r-vector for the structure, and in subsequent sections it often

turns out to be easier to count these.

Theorem 3. If we have an arithmetical structure on Pm,n represented by its r-vector,

then am ∈ {1, 2}.

Proof. Note that am|am−1. Moreover, am−1|(am + am−2), which implies in turn

that am|am−2. We similarly see that am|ai for all i. The fact that a1|(a2 + 2b1)

and am divides both a1 and a2 now shows that am|2b1, and similar to the above

we see that am|2bi for all i. By symmetry, we also have that bn|2ai for all i. The

fact that the set {ai, bi} has greatest common divisor equal to one now implies that

gcd(am, bn) = 1, but if am|2bn then we must have that am = 1 or 2.
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3. Graphs of the Form P1,n

In this section, we wish to count the number of arithmetical structures on the graph

P1,n. It follows from Corollary 1 that our first step should be to count the number

of smooth structures.

Given a smooth arithmetical structure, we will consider the r-vector discussed in

the previous section. In particular, we will set a1 = 2 and fix n and ask how many

choices of b1 there are so that F (2a1, b1) = n + 1 and F (2b1, a1) = 2. The latter

condition is immediate as a1|2b1, and it follows from Lemma 4 that

F (2a1, b1) = F (4, b1) =
b1 + εb1

4
.

In particular, if b1 ≡ 1 (mod 4) then we want to set n+1 = b1+7
4 , so that b1 = 4n−3.

Considering the other cases of b1 (mod 4), we see that for each n we will get a

structure on P1,n by choosing b1 = 4n or 4n − 2. If n ≥ 3, then we will get an

additional structure by setting b1 = 4n− 9.

In particular, we have proven the following:

Theorem 4. There are exactly four smooth arithmetical structures on P1,n for all

n ≥ 3. There are 3 smooth arithmetical structures on each of P1,1 and P1,2.

This allows us to prove the following count on the total number of arithmetical

structures.

Theorem 5. The number of arithmetical structures on P1,n is given by 4Cn−2Cn−1

Proof. We have from Corollary 1 that the number of arithmetical structures on P1,n

is equal to

n∑
n′=1

C(n, n′)|SArith(P1,n′)| = 3C(n, 1) + 3C(n, 2) +

n∑
n′=3

4C(n, n′)

=

n∑
n′=1

4C(n, n′)− C(n, 1)− C(n, 2)

= 4Cn − 2Cn−1.

It is well known that, for large n, we have Cn ≈ 4n√
πn3/2 . In particular, we see

that for large n the number of arithmetical structures on P1,n is approximately
7
2Cn ≈

7·4n
2
√
πn3/2 .
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4. Graphs of the Form P2,n

We will begin by counting the number of smooth arithmetical structures on the

graph P2,n. We will assume for simplicity that n > 1, as we have considered the

n = 1 case in the previous section. We will again count the number of possible

r-structures. Recall in particular that this means that a2 = 2 and a1 = 2a for some

a > 1. Setting b1 = b, we are trying to find pairs (a, b) so that 2a|(2b + 2) and

F (4a, b) = n+ 1; any such pair satisfying these conditions will give a unique smooth

structure. Our goal will be to compute the number of pairs (a, b) satisfying these

conditions.

2 2a b . . .

The fact that 2a|(2b + 2) implies that b ≡ −1 (mod a), so we let b = ka − 1.

We now note that we wish for n+ 1 = F (4a, ka− 1). The right-hand side of this

equation will simplify in different ways depending on the value of k (mod 4).

• If k ≡ 1 (mod 4), then we have from Lemma 3 that

F (4a, b) = F (4a, ka− 1) =
k − 1

4
+ F (4a, a− 1) =

k − 1

4
+ F (4, a− 1).

We can use Lemma 4 to further simplify to get F (4a, b) = k−1
4 + a−1+εa−1

4 .

Knowing that this value should be equal to n+ 1 allows us to compute that

k = 4n+6−a−εa−1, which in turn implies that b = −a2 +(4n+6−εa−1)a−1.

We want b > 0, so any choice of a that makes this true will give us a smooth

structure. In particular, for each ε ∈ {0, 1, 2, 3} we wish to count the number of

choices of a that are congruent to ε (mod 4) that make a2−(4n+6−εa−1)+1 <

0. To see which values of a make this true, we will make use of the following

result:

Lemma 5. Let γ > 2 be an integer. Then the function f(x) = x2 − γx + 1

will be negative for all integers x ∈ [1, γ − 1] and positive for all other integers.

Proof. It is a simple algebra exercise to see that f(x) < 0 for all x in the range(
γ−
√
γ2−4
2 ,

γ+
√
γ2−4
2

)
. One can show using calculus that the left endpoint is

in the range (0, 1) and the right endpoint is in the range (γ−1, γ). In fact, one

can see directly that f(0) = f(γ) = 1 > 0 and f(1) = f(γ − 1) = 2− γ < 0.

Thus, the two roots of f(x) are in the ranges (0, 1) and (γ − 1, γ) so the result

follows from properties of quadratic equations.

In particular, if ε = 0 we are counting the number of values of a that are

congruent to 0 (mod 4) in the range [1, 4n + 6 − ε3 − 1] = [1, 4n − 8], so
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(because n ≥ 2) there are n− 2 choices of a that work. Similarly, if ε = 1 we

are counting the number of choices of a ≡ 1 mod 4 in the range [2, 4n + 1],

of which there are n. The conditions are also satisfied if a ≡ 2 (mod 4) and

a ∈ [1, 4n− 2] or if a ≡ 3 (mod 4) and a ∈ [1, 4n− 1]. Summing these up gives

us a total of 4n− 2 structures on P2,n.

• If k ≡ 2 (mod 4), we can compute that

F (4a, b) = F (4a, ka− 1) = F (4a, 2a− 1) +
k − 2

4
= F (2, 2a− 1) +

k − 2

4

= a+ 1 +
k − 2

4
.

In particular, n = k−2
4 + a, from which we can conclude that k = 4n− 4a+ 2

so that b = −(2a)2 + (2n + 1)2a − 1. It follows from Lemma 5 that we will

have a structure for each a > 1 so that 2a ∈ [1, 2n]. In particular, there are

n− 1 smooth structures that can be formed in this way.

• If k ≡ 3 (mod 4), then we can compute that

F (4a, b) = F (a+1, 3a−1)+
k − 3

4
= F (a+1, a−3)+

k + 5

4
= F (4, a−3)+

k + 5

4
.

This is equal to a+k+2+εa−3

4 . We note that this computation only works if

a ≥ 3, but separate direct computations will show that if a = 2 then we get

a structure whenever n ≥ 3. As before, setting F (4a, b) = n+ 1 allows us to

compute that b = −a2+(4n+2−εa−3)−1. A computation similar to the above

shows that this will be positive if a ∈ [3, 4n−11]∪{4n−9, 4n−8, 4n−7, 4n−5}.
Therefore, in this case we have 4n− 8 structures for each n > 3, 5 structures

for n = 3, and no structures when n = 2.

• Finally, if 4|k then we compute that

n = F (4a, b)−1 = F (4a, ka−1)−1 =
k − 4

4
+F (4a, 4a−1)−1 =

k

4
+ 4a−2.

Solving for k implies that k = 4n− 16a+ 8 and that b = −16a2 + (4n+ 8)a− 1.

Lemma 5 implies that b will therefore be negative if 4a ∈ [1, n+ 2), which will

happen precisely if 1 < a < n+2
4 . There are

⌊
n−3
4

⌋
such choices of a.

Combining these four cases gives us the following theorem.

Theorem 6. For all n ≥ 4 there are 9n−11+
⌊
n−3
4

⌋
smooth arithmetical structures

on the graph P2,n. Moreover, there are seventeen smooth structures on P2,3, eight

smooth structures on P2,2 and three smooth structures on P2,1.
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More specifically, when n ≥ 4 one notes that one gets four arithmetical structures

for each value of a ∈
[
2,
⌊
n−3
4

⌋]
, three structures for each a ∈

[⌊
n−3
4

⌋
+ 1, n

]
, two

structures for each a ∈ [n+ 1, 4n− 9]∪ [4n− 11, 4n− 7]∪ 4n− 5, and one structure

for each a ∈ {4n − 10, 4n − 6, 4n − 3, 4n − 2, 4n − 1, 4n + 1}. In particular, the

largest value of a1 in any smooth structure is 8n+ 2. It is interesting to note that

the biggest choice of b1 on any smooth arithmetical structure on P2,n occurs when

a1 = 4n+ 2 and b1 = 4n2 + 4n.

We can now use the results of Theorem 6 to count the total number of arithmetical

structures on P2,n.

Theorem 7. The number of arithmetical structures on P2,n is given by:

|Arith(P2,n)| = 9Cn+1 − 16Cn + 5Cn−1 − Cn−2 +

bn+1
4 c∑
j=2

C(n+ 1, 4j).

In particular, for large n we compute that

lim
n→∞

|Arith(P2,n)|
Cn+1

=
76523

14400
≈ 5.3141.

Proof. We recall from the discussion leading to Corollary 1 that any arithmetical

structure on P2,n can be obtained by taking a smooth structure on a small graph and

subdividing it appropriately. In particular, we can use the results from Theorems 4

and 6 and the properties of the function C(n, k) established in Lemma 1 to compute

that |Arith(P2,n)| is given by:

n∑
n′=1

(C(2, 1) · C(n, n′) · | SArith(P1,n′)|+ C(2, 2) · C(n, n′) · | SArith(P2,n′)|)

= 6C(n, 1) + 11C(n, 2) + 21C(n, 3) +

n∑
n′=4

(
9n′ − 7 +

⌊
n′ − 3

4

⌋)
C(n, n′)

=

n∑
n′=1

(9n′ − 7)C(n, n′) + C(n, 3) + 4C(n, 1) +

n∑
n′=7

⌊
n′ − 3

4

⌋
C(n, n′)

= 9

n∑
n′=1

n′C(n, n′)− 7

n∑
n′=1

C(n, n′) + C(n, 3) + 4C(n, 1) +

bn+1
4 c∑
j=2

n∑
k=4j−1

C(n, k)

= 9(Cn+1 − Cn)− 7Cn + (Cn−1 − Cn−2) + 4Cn−1 +

bn+1
4 c∑
j=2

C(n+ 1, 4j)

= 9Cn+1 − 16Cn + 5Cn−1 − Cn−2 +

bn+1
4 c∑
j=2

C(n+ 1, 4j),
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n |SArith(P2,n)| |Arith(P2,n)|
1 3 6
2 8 17
3 17 55
4 25 177
5 34 581
6 43 1945
7 53 6625
8 62 22899
9 71 80137
10 80 283426
11 90 1011561
12 99 3638862
13 108 13180428
14 117 48031613
15 127 175978875

Table 1: The number of smooth arithmetical structures and overall arithmetical
structures on the graphs P2,n for 1 ≤ n ≤ 15

which proves the formula in the first statement of the theorem. For large k, we again

note that Ck−1 ≈ Ck

4 . It follows from Lemma 1 that C(n + 1, 4j) ≈ 4j
24j+1Cn+1 ≈

j
24j−3Cn. Therefore, the total number of arithmetical structures on P2,n approaches

(9 · 4− 16 +
5

4
− 1

42
+

∞∑
j=2

j

24j−3
)Cn =

76523

57600
Cn.

Table 1 gives the number of smooth arithmetical structures as well as the overall

number of arithmetical structures on P2,n for each 1 ≤ n ≤ 10.

5. Graphs of the Form P3,n

As in previous sections, we begin by first counting the number of smooth structures

on P3,n. Similar to the last section, it is easier to relax the gcd condition on the

r-vector and instead consider the r-vector for each structure, which is defined as

having a3 = 2, a2 = 2t, a1 = 2a, b1 = b. Moreover, we have t|(a+ 1), so a = `t− 1 for

some ` ≥ 2 and a|(b+ t) so we have b = ka− t for some k > 1. In fact, we will get a

smooth structure on P3,n precisely for a triple of integers (t, k, `) so that t, ` ≥ 2,

k ≥ 1, and n+ 1 = F (4a, b) = F (4`t− 4, k`t− k − t). In order to count the number

of such triples, we will have to break into different cases based on the values of t, k, l
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(mod 4). We will explicitly work through a couple of these cases, and we summarize

the full results in Table 2.

k ` t Equation Number

1 1 all n− 7 = k−1
4 + `−5

4 + 4(t− 2) p′3(n− 7)

1 2 1 n− 1 = k−1
4 + `−2

4 + t−5
4 p3(n− 1)

1 2 2 n− 1 = k−1
4 + `−2

4 + t−2
4 p3(n− 1)

1 2 3 n− 1 = k−1
4 + `−2

4 + t−3
4 p3(n− 1)

1 2 0 n− 3 = k−1
4 + `−2

4 + t−4
4 p3(n− 3)

1 3 all n− 2 = k−1
4 + `−3

4 + (t− 2) p3(n− 2)

1 0 1 n− 3 = k−1
4 + `−4

4 + t−5
4 p3(n− 3)

1 0 2 n− 5 = k−1
4 + `−4

4 + t−6
4 p3(n− 5)

or t = 2, k−14 + `−4
4 = n− 3 p2(n− 3)

1 0 3 n− 2 = k−1
4 + `−4

4 + t−3
4 p3(n− 2)

1 0 0 n− 3 = k−1
4 + `−4

4 + t−4
4 p3(n− 3)

2 all 1 n− 4 = k−2
4 + (`− 2) + t−5

4 p3(n− 4)

2 all 2 n− 1 = k−2
4 + (`− 2) + t−2

4 p3(n− 1)

2 all 3 n− 2 = k−2
4 + (`− 2) + t−3

4 p3(n− 2)

2 all 0 n− 2 = k−2
4 + (`− 2) + t−4

4 p3(n− 2)

3 1 all n− 4 = k−3
4 + `−5

4 + (t− 2) p3(n− 4)

3 2 1 n− 5 = k−3
4 + `−6

4 + t−5
4 p3(n− 5)

or ` = 2, k−34 + t−5
4 = n− 3 p2(n− 3)

3 2 2 n− 7 = k−3
4 + `−6

4 + t−6
4 p3(n− 7)

or t = 2, k−34 + `−6
4 = n− 5 p2(n− 5)

or ` = 2, k−34 + t−6
4 = n− 5 p2(n− 5)

or k = 3, ` = 2, k−34 = n− 3 1 if n ≥ 3

3 2 3 n− 4 = k−3
4 + `−6

4 + t−3
4 p3(n− 4)

or ` = 2, k−34 + t−3
4 = n− 2 p2(n− 2)

3 2 0 n− 5 = k−3
4 + `−6

4 + t−4
4 p3(n− 5)

k−3
4 + t−4

4 = n− 3 p2(n− 3)

3 3 all n− 9 = k−3
4 + `−7

4 + 4(t− 2) p′3(n− 9)
or ` = 3, n− 7 = k−3

4 + 4(t− 2) p′2(n− 7)

3 0 1 n− 3 = k−3
4 + `−4

4 + t−5
4 p3(n− 3)

3 0 2 n− 3 = k−3
4 + `−4

4 + t−2
4 p3(n− 3)

3 0 3 n− 3 = k−3
4 + `−4

4 + t−3
4 p3(n− 3)

3 0 0 n− 5 = k−3
4 + `−4

4 + t−4
4 p3(n− 5)

0 all 1 n− 7 = k−4
4 + 4(`− 2) + t−5

4 p′3(n− 7)

0 all 2 n− 6 = k−4
4 + 4(`− 2) + t−2

4 p′3(n− 6)

0 all 3 n− 8 = k−4
4 + 4(`− 2) + t−3

4 p′3(n− 8)

0 all 0 n− 4 = k−4
4 + 4(`− 2) + t−4

4 p′3(n− 6)

Table 2: The number of smooth structures on P3,n in various cases of k, `, t (mod 4)
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If k ≡ ` ≡ 1 (mod 4) then we use Lemma 3 to compute that

n+ 1 = F (4a, b)

n+ 1 = F (4`t− 4, k`t− k − t)

n+ 1 =
k − 1

4
+ F (4`t− 4, `t− t− 1)

n+ 1 =
k − 1

4
+ F (4t, (`− 1)t− 1)

n+ 1 =
k − 1

4
+
`− 5

4
+ F (4t, 4t− 1)

n+ 1 =
k − 1

4
+
`− 5

4
+ 4t

n− 7 =
k − 1

4
+
`− 5

4
+ 4(t− 2).

In particular, we have shown that the smooth structures in this category are in

bijection with ordered triples of nonnegative integers (x, y, z) so that x+y+z = n−7

and 4|z.
We next consider the case where k ≡ 1 (mod 4) and ` ≡ 2 (mod 4). As in the

previous case, we compute that

n+ 1 = F (4a, b)

=
k − 1

4
+ F (4t, (`− 1)t− 1)

=
k − 1

4
+
`− 2

4
+ F (4t, t− 1)

=
k − 1

4
+
`− 2

4
+ F (4, t− 1).

Recalling Lemma 4, we now have that n = k−1
4 + `−2

4 + t−1+εt−1

4 −1. For example,

if t ≡ 1 (mod 4) we have that

n− 1 =
k − 1

4
+
`− 2

4
+
t− 5

4
,

which shows us that the smooth structures in this category are in bijection with

ordered triples of nonnegative integers (x, y, z) so that x + y + z = n − 1. More

generally, we make the following notational definition:

Definition 6. For any integer n, we define p3(n) to be the number of ordered triples

of nonnegative integers (x, y, z) so that x+ y + z = n and p2(n) to be the number

of ordered pairs of nonnegative integers (x, y) so that x+ y = n. We further define

p′3(n) (resp. p′2(n)) to be the number of triples (resp. pairs) of nonnegative integers

summing to n with the further restriction that 4|x.
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It is well established in the literature (for example, [8]) that p2(n) =
(
n+1
1

)
and

p3(n) =
(
n+2
2

)
. It is straightforward to check that if n ≥ 0 then p′2(n) =

⌊
n+4
4

⌋
. The

function p′3(n) is discussed in [6, A130519], and we will use the following lemma

about it:

Lemma 6. For n ≥ 0 we have that p′3(n+ 4) = p′3(n) + n+ 5.

Proof. If (x, y, z) is a triple so that x+y+z = n and 4|x, then by setting x′ = x+4 we

obtain a new triple (x′, y, z) whose entries sum to n+4 so that 4|x′. Moreover, all such

triples are obtained in this way except for the n+5 triples of the form (0, y, n+4−y)

where 0 ≤ y ≤ n+ 4. In particular, we see that p′3(n+ 4) = p′3(n) + n+ 5.

Theorem 8. For all n ≥ 5, the number of smooth arithmetical structures on P3,n

is given by:

|SArith(P3,n)| =


47
4 n

2 − 36n+ 205
4 , n ≡ 1 (mod 4),

47
4 n

2 − 36n+ 51, n ≡ 2 (mod 4),
47
4 n

2 − 36n+ 209
4 , n ≡ 3 (mod 4),

47
4 n

2 − 36n+ 52, n ≡ 0 (mod 4).

We also have that |Arith(P3,1)| = 4, |Arith(P3,2)| = 17, |Arith(P3,n)| = 48, and

|Arith(P3,4)| = 95.

Proof. The results of Table 2 can be summarized by noting that, for n ≥ 3, the

number of smooth structures on P3,n is given by

|SArith(P3,n)| = 4p3(n− 1) + 4p3(n− 2) + 6p3(n− 3) + 3p3(n− 4) + 4p3(n− 5)

+p3(n− 7) + 2p′3(n− 6) + 2p′3(n− 7) + p′3(n− 8) + p′3(n− 9)

+p2(n− 2) + 3p2(n− 3) + 2p2(n− 5) + p′2(n− 7) + 1.

From this, we can compute the values of |Arith(P3,n)| directly for n ≤ 4. As

discussed above, if n ≥ 0 we have that p2(n) = n+ 1 and p3(n) = (n+2)(n+1)
2 , which

allows us to simplify the above formula to get that for all n ≥ 5 we have that:

| SArith(P3,n)| = 11n2−30n+40+2p′3(n−6)+2p′3(n−7)+p′3(n−8)+p′3(n−9)+p′2(n−7).

For notational convenience, we set h(n) = 2p′3(n − 6) + 2p′3(n − 7) + p′3(n − 8) +
p′3(n− 9) + p′2(n− 7). We will use induction to prove a formula for h(n) that will in
turn give us a formula for |SArith(P3,n)|. In order to prove some base cases it is
straightforward to compute that we have h(5) = 0, h(6) = 2, h(7) = 7 and h(8) = 12.
Moreover, Lemma 6 gives us the following relationship:

h(n+ 4) = 2p′3(n− 2) + 2p′3(n− 3) + p′3(n− 4) + p′3(n− 5) + p′2(n− 3)

= 2p′3(n− 6) + 2p′3(n− 7) + p′3(n− 8) + p′3(n− 9) + p′2(n− 7) + 6n− 12

= h(n) + 6n− 12.
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By recursion, we see that

h(n+ 4k) = h(n) +

k−1∑
i=1

6(n+ 4i)− 12k

= h(n) + 6nk + 24
k(k − 1)

2
− 12k

= h(n) + 12k2 − 24k + 6nk.

Combining these with the values computed above, we obtain that

h(n) =


3n2

4 − 6n+ 45
4 n ≡ 1 (mod 4),

3n2

4 − 6n+ 11 n ≡ 2 (mod 4),
3n2

4 − 6n+ 49
4 n ≡ 3 (mod 4),

3n2

4 − 6n+ 12 n ≡ 0 (mod 4).

The theorem follows.

We can now use Theorems 8 and Corollary 1 to explicitly count the total number of

arithmetical structures on P3,n. In order to do this, we will define auxiliary functions

ηi(k) that give the difference between the actual number of smooth arithmetical

structures on Pi,k and the number predicted by the polynomials in the formulae in

Theorems 4, 6, and 8. Explicitly, we have the following:

k η1(k) η2(k) η3(k)

1 -1 6 -23
2 -1 2 -9
3 0 1 -2
4 0 0 -1
> 4 0 0 0

We will also define the function γ(k) as follows:

γ(k) =


3
4 k ≡ 1 (mod 4),

0 k ≡ 2 (mod 4),
11
4 k ≡ 3 (mod 4),

2 k ≡ 0 (mod 4).

Then it follows from our earlier results that

|SArith(P3,k)|+ 2|SArith(P2,k)|+ 2|SArith(P1,k)|

=
47

4
k2 − 35

2
k + 34 + γ(k) + η3(k) + 2η2(k) + 2η1(k).
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In particular, using the identities in Lemma 1 we can compute that |Arith(P3,n)| is:

n∑
k=1

C(n, k) (|SArith(P3,k)|+ 2|SArith(P2,k)|+ 2|SArith(P1,k)|)

=

n∑
k=1

C(n, k)

(
47

4
k2 − 35

2
k + 34 + γ(k)

)
+

n∑
k=1

(η3(k) + 2η2(k) + 2η1(k))C(n, k)

=

n∑
k=1

C(n, k)

(
47

4
k2 − 35

2
k + 34 + γ(k)

)
− C(n, 4)− 7C(n, 2)− 13C(n, 1)

=
47

2
Cn+2 −

305

4
Cn+1 +

253

4
Cn − (Cn−1 − 2Cn−2)− 20Cn−1 +

n∑
k=1

γ(k)C(n, k)

=
47

2
Cn+2 −

305

4
Cn+1 +

253

4
Cn − 21Cn−1 + 2Cn−2

+
3

4

∑
k≡1

C(n, k) +
11

4

∑
k≡3

C(n, k) + 2
∑
k≡0

C(n, k),

where the sums in the last line range over congruence classes mod 4. This gives an

explicit formula for the number of arithmetical structures on P3,n. See Table 3 for

explicit values.

n | SArith(P3,n)| |Arith(P3,n)|
1 4 16
2 17 55
3 48 200
4 95 698
5 165 2433
6 258 8529
7 376 30126
8 516 107227
9 679 384414
10 866 1387312
11 1078 5036958
12 1312 18388019
13 1569 67460437
14 1850 248605003
15 2156 919896078
16 2484 3416474991
17 2835 12731777602
18 3210 47593535704
19 3610 178420933448
20 4032 670633847016

Table 3: The number of smooth arithmetical structures and overall arithmetical
structures on the graph P3,n for n ≤ 20.
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For large values of n, we recall that Lemma 1 tells us that Ci ≈ 4Ci−1. Moreover,

C(n, k) ≈ k
2k+1 , implying that

n∑
k≡1

C(n, k) ≈
∞∑
j=0

4j + 1

24j+2
Cn ≈

76

225
Cn,

n∑
k≡3

C(n, k) ≈
∞∑
j=0

4j + 3

24j+4
Cn ≈

49

225
Cn,

n∑
k≡0

C(n, k) ≈
∞∑
j=0

4j + 4

24j+5
Cn ≈

32

225
Cn.

In particular, one can see that for large values of n we will have that |Arith(P3,n)| ≈
κCn, where

κ =
47

2
·42− 305

4
·4+

253

4
−21 · 1

4
+2 ·

(
1

4

)2

+
3

4
· 76

225
+

11

4
· 49

225
+2 · 32

225
= 130.2616.
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