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Abstract

Purpose—Extracellular proteins are easily accessible, which presents a sub-proteome of 

molecular targets that have high diagnostic and therapeutic potential. Efforts have been made to 

catalogue the cardiac extracellular matridome and analyze the topology of identified proteins for 

the design of therapeutic targets. Although many bioinformatics tools have been developed to 

predict protein topology, topology has been experimentally validated for only a very small portion 

of membrane proteins. The aim of this study was to use a glycoproteomics and mass spectrometry 

approach to identify glycoproteins in the extracellular matridome of the infarcted LV and provide 

experimental evidence for topological determination.

Experimental design—Glycoproteomics analysis was performed on eight biological replicates 

of day 7 post-MI samples from wild type mice using solid-phase extraction of glycopeptides, 

followed by mass spectrometric identification of N-linked glycosylation sites for topology 

assessment.
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Results—We identified hundreds of glycoproteins and the identified N-glycosylation sites 

provide novel information on the correct topology for membrane proteins present in the infarct 

setting.

Conclusions and clinical relevance—Our data provides the foundation for future studies of 

the LV infarct extracellular matridome, which may facilitate the discovery of drug targets and 

biomarkers.

Keywords

Extracellular matridome; glycoprotein; membrane orientation; matrix metalloproteinase; 
proteomics; myocardial infarction; left ventricle

1 Introduction

The extracellular matridome consists of all proteins expressed outside of cells, including 

transmembrane proteins, cell surface proteins, extracellular matrix (ECM) proteins, and 

secreted proteins [1]. The composition includes receptors, growth factors, cytokines, 

chemokines, hormones, enzymes, and fibrillar components [2]. The cardiac extracellular 

proteome provides the left ventricle (LV) with mechanical support, coordinates the signal 

transduction capabilities, and regulates cell functions by modifying biological processes [3]. 

Myocardial infarction (MI) is associated with extensive extracellular protein turnover as old 

ECM is replaced by an infarct scar that is primarily composed of ECM. MI is a highly 

prevalent cardiovascular disease, with over 1.5 million new patients diagnosed each year in 

the U.S. [4]. LV remodeling following MI depends on the balance between ECM 

degradation and deposition, as too much degradation can lead to LV aneurysms or rupture 

and too much deposition can lead to a stiff LV that provides a substrate for the development 

of heart failure [5]. Matrix metalloproteinase-9 (MMP-9) is a member of the family of 

enzymes that break down ECM and has been shown to play a critical role in LV remodeling 

post-MI [6, 7].

Knowledge of protein structure provides crucial information for understanding protein 

function, including information on location and availability for post-translational 

modification that is necessary for selecting optimal antigen sites and identifying drug 

targets. A common feature for optimal antigens and drug targets is easy accessibility, 

making extracellular protein analysis highly relevant to drug development for LV 

remodeling post-MI [8]. Therefore, efforts have been made to determine the spatial 

orientation of target proteins. In addition to the traditional methods for topology evaluation, 

membrane protein side accessibility is becoming a tool to evaluate protein orientation. 

Examples of this concept include N-glycosylation sites, antibody epitopes, iodinatable sites, 

and proteolytic sites [8]. The reason N-glycosylation sites can be used for topology 

evaluation is based on the fact N-linked glycosylation occurs only in extracellular domains 

of membrane proteins [9].

The goal of this study was to examine the geographic location of proteins in the LV infarct 

region, focusing on the extracellular matridome. Glycoproteomic analysis was performed on 

eight biological replicates of day 7 post-MI samples from wild type mice using solid-phase 

Tian et al. Page 2

Proteomics Clin Appl. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



extraction of glycopeptides, followed by mass spectrometric identification of N-linked 

glycosylation sites for topology assessment [10, 11]. The logic of this examination was 

based on the concept that extracellular proteins are frequently N-glycosylated [12–14]; 

therefore, preferential isolation of N-linked glycoproteins would greatly enrich for the 

extracellular matridome [1, 13, 15]. In the present study, we identified 1352 N-linked 

glycosylation sites, and 56% of them were from membrane proteins proteins. Since 

membrane N-glycans always face the extracellular space, the identification of these 

glycosites provides topological information and helps to determine the protein orientation.

2 Materials and methods

2.1 Mice

C57BL/6J male and female mice, 3–6 months of age, were used in this study (n=8, 4 male 

and 4 female). Mice were kept in a light-controlled environment with a 12:12 hour light-

dark cycle and given free access to standard mice chow and water. All animal procedures 

were approved by the Institutional Animal Care and Use Committee at the University of 

Texas Health Science Center at San Antonio and the University of Mississippi Medical 

Center in accordance with the “Guide for the Care and Use of Laboratory Animals”. The 

mice underwent permanent coronary artery ligation surgery, to produce myocardial 

infarction, as described previously [16, 17]. At day 7 post-MI, the mice were sacrificed.

2.2 Tissue samples and protein extraction

The infarct region of the LV was collected at 7 days post-MI as described previously [17], 

and the LV tissue was homogenized first in phosphate buffered saline (PBS; 16 μL per mg 

LV wet weight) with 1x protease inhibitors (Roche, Basel, Switzerland) and centrifuged to 

remove the soluble fraction. The insoluble pellet was homogenized in Reagent 4 (16 μL per 

mg LV wet weight; Sigma, St. Louis, MO) with 1x protease inhibitors [18]. Because the 

insoluble fraction is enriched for ECM, we used that fraction for the glycoproteomic 

analysis.

2.3 Trypsin digestion

Total protein from the insoluble fraction (1 mg) was denatured and reduced by adding 8 M 

urea and 12 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) in 1 M ammonium 

bicarbonate and incubating at 37°C for 1 h. The samples were alkylated with 16 mM 

iodoacetamide at room temperature in the dark for 30 min. The samples were diluted 5-fold 

with water prior to the addition of trypsin (Promega, Madison, WI), which was added at a 

ratio of 1:50 (w/w, enzyme: protein). The samples were digested at 37°C overnight with 

gentle shaking. The samples were centrifuged to remove precipitate. Peptides were cleaned 

by Sep-Pak Vac C18 cartridge (Waters, Milford, MA). Peptide concentration was 

determined by BCA assay (Thermo Fisher Scientific, Rochford, IL).

2.4 N-Linked Glycopeptide Capture

N-linked glycopeptides were isolated from the tryptic peptides using the solid phase 

extraction of glycopeptides (SPEG) method previously reported [10, 11]. Briefly, 0.8 mg of 

peptides was oxidized by 10 mM sodium periodate (Bio-Rad, Hercules, CA) at room 
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temperature for 1 h. Glycopeptides were covalently conjugated to a solid support via 

hydrazide chemistry (Bio-Rad, Hercules, CA), with incubation at room temperature 

overnight. The hydrazide beads were washed with 1.5 M NaCl, and water prior to release of 

formerly N-linked glycopeptides from solid support by PNGase F (New England Biolabs, 

Ipswich, MA) at 37°C overnight. The eluent was purified by Sep-Pak Vac C18 cartridge 

(Waters, Milford, MA) and re-suspended in 20 μL of 0.4% acetic acid.

2.5 Mass spectrometry analysis

The peptides were analyzed by LC-MS/MS using a Q Exactive (ThermoFisher, Waltham, 

MA) coupled with a 15 cm × 75 μm C18 column (5 μm particles with 100 angstrom pore 

size). A nano UPLC at 300 nL/min with a 90 min linear acetonitrile gradient (from 5–35% B 

over 90 min; A = 0.2% formic acid in water, B = 0.2% formic acid in 90% acetonitrile) was 

used. A top 20 data dependent MS/MS with exclusion for 25 s was set. The samples were 

run with HCD fragmentation at normalized collision energy of 30 and an isolation width of 

2 m/z. A lock mass of the polysiloxane peak at 371.10123 was used to correct the mass in 

MS and MS/MS. Target values in MS were 1e6 ions at a resolution setting of 70,000 and in 

MS2 1e5 ions at a resolution setting of 17,500.

MS/MS spectra were searched with SEQUEST using Proteome Discoverer (version 1.3; 

Thermo Fisher) against the mouse IPI database (version 3.87) containing 59,534 sequences. 

For this database search, the precursor mass tolerance and fragment mass tolerance were set 

at 15 ppm and 0.05 Da, respectively. Trypsin was specified as the protease. The fixed 

modification was set as carbamidomethylation (C), and other modifications were set as 

flexible modification as follows: deamidation (N) and oxidation (M). Full-tryptic end and 

two missed cleavage sites were allowed. A decoy version of the IPI mouse database was 

used to estimate peptide and protein false discovery rate. The False Discovery Rate was set 

at 0.01 to eliminate low-probability protein identifications.

2.6 Protein classification

Signal peptides were predicted using SignalP 4.1 [19]. Transmembrane (TM) helices were 

predicted using the TMHMM program (version 2.0; CBS prediction servers), which predicts 

protein topology and the number of TM helices [20]. Information from SignalP and 

TMHMM were combined to classify proteins into one of the following 6 categories: (i) 

secreted proteins that contain predicted cleavable signal peptides and no predicted TM 

segments; (ii) single TM type I proteins that contain predicted single TM helix with an 

extracellular (or luminal) N-terminus; (iii) single TM type II proteins that contain predicted 

single TM helix with an extracellular (or luminal) C-terminus; (iv) multiple TM proteins that 

contain multiple TM helices; or (v) ambiguous proteins [21].

3 Results

3.1 Extracellular matridome of cardiac tissue

To profile the extracellular matridome of post-MI LV tissue, the infarct region was 

analyzed. Since extracellular proteins are more likely to be glycosylated compared to 

intracellular proteins [8], the glycopeptide capture method was used to enrich for 
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extracellular proteins [10, 11]. Of the identified peptides, 95.6% were de-glycosylated and 

had N-linked glycosylation motif (NXS/T, where X is any amino acid except proline). We 

also determined the extent of spontaneous deamidation on Asn residues in the N-

glycosylation motif by profiling the un-conjugated fraction of hydrazide beads with or 

without PNGase F treatment [22]. The rate of spontaneous deamidation was 1.5% in our 

sample sets. The deamidated peptides identified in this negative control were not included in 

the identification list (Supplementary Table S1).

A total of 1352 unique N-linked glycosylation sites were identified, with a 1% false 

discovery rate (FDR), and these sites represented 694 unique glycoproteins (Supplemental 

Table S1). A unique glycosylation site was defined as a peptide containing a unique 

glycosylation motif, regardless of the length of the peptide and other modification of amino 

acid other than on asparagine in the motif. As summarized in Figure 1A, 406 proteins (59%) 

were identified as having one unique glycosite, whereas 288 (41%) were identified as 

having two or more unique glycosites. The majority of single-glycosites (80%) were 

identified more than two times (either in multiple identifications of the same peptide 

sequence with varying charge states or in different peptides). For the single-glycosite 

peptides only identified once, the annotated MS/MS spectra are provided in Supplemental 

Table S2. Many ECM proteins were identified with multiple peptides, such as collagens, 

fibronectin, and laminins (Supplemental Table S2).

The prevalence of identified glycopeptides in eight biological replicates is illustrated in 

Figure 1B. A total of 907 glycosites (67%) were identified in at least 4 biological replicates, 

whereas 200 glycosites (15%) were only identified in one of the biological replicates. 

Notably, 486 glycosites (36%) were identified from all eight samples. This large overlap 

indicates that our data were highly consistent in biological replicates, implicating good 

coverage of the N-glycoproteome in the mouse LV infarct region.

3.2 Functional analysis and KEGG pathway analysis of identified glycoproteins

To obtain an overview of the molecular functions and associated pathways, the identified 

glycoproteins were analyzed using David bioinformatics tools (6.7) [23, 24]. With 1% FDR, 

many functions related to extracellular activities were significantly enriched (p < 0.01), 

including calcium ion binding, exopeptidase activity, endopeptidase inhibitor activity, 

peptidase activity, carboxypeptidase activity, ECM structural constituent, 

metalloexopeptidase activity, and metallocarboxypeptidase activity (Table 1 and 

Supplemental Table S3). KEGG pathway analysis using DAVID revealed similar results 

[25]. The N-glycoproteome enriched the pathways of ECM-receptor interaction, cell 

adhesion molecules, arrhythmogenic right ventricular cardiomyopathy, hypertrophic 

cardiomyopathy, and dilated cardiomyopathy (Table 1 and Supplemental Table S3). These 

results indicate that the N-glycoproteome of the LV infarct region has important myocardial 

functions, and the identified extracellular proteome contains a large number of cardiac 

specific glycoproteins.
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3.3 New information for protein topology provided by glycosite identification

Based on the information from SignalP and TMHMM, the proteins were classified into one 

of five categories: secreted, single transmembrane protein (TM) type I, single TM type II, 

multiple TM, or ambiguous [21]. Of 694 identified proteins, 388 (56%) were TM proteins 

including single TM type I, type II, and multiple TM (Figure 1C). The identification of N-

linked glycosylation site provided topological information for the transmembrane proteins, 

since N-linked glycosylation only occurs in extracellular domains of plasma membrane 

proteins. Because the orientation of single TM protein determines the protein type, this 

information is important to corroborate the orientation prediction of single TM proteins. Our 

study identified 153 single TM type I proteins and 107 single TM type II proteins based on 

the prediction using TMHMM. The single TM type I proteins have extracellular (or luminal) 

N-terminus, while the single TM type II proteins have extracellular (or luminal) C-terminus. 

The identified N-glycosites matched with the TMHMM predicted single TM protein type for 

252 of the 260 proteins (Supplementary Table S4). The remaining 8 single TM proteins had 

identified N-glycosites that TMHMM predicted to be cytoplasmic domains (Supplementary 

Table S4). For these 8 proteins, we checked the topology prediction in Swiss-Prot, and 

found that our results matched Swiss-Prot prediction (which was of TMHMM prediction) 

for 7 of the 8 proteins. The final protein was not recorded in Swiss-Prot.

Many integrins were identified in the most enriched KEGG pathway, ECM-receptor 

interaction. They are the major adhesion receptor for many ECM proteins, and their primary 

role is to link ECM to the intracellular signaling network [26]. Therefore, it is very 

important to determine their topology in order to fully understand the signaling interactions. 

Fourteen integrins are predicted as single transmembrane proteins. Table 2 shows the 

predicted topology of these integrins, how many N-glycosites are predicted in the 

extracellular domain, and how many of the predicted N-glycosites identified in this study are 

in the extracellular domain. The identified glycosylation sites were all in the predicted 

extracellular domains, supporting the topology prediction. The β1 Integrin is further 

illustrated in Figure 2. The β1 Integrin has fourteen predicted N-linked glycosites, which are 

located in the potential extracellular domain (Figure 2). However, out of fourteen predicted 

N-linked glycosites in β1 integrin, only four have supporting experimental evidence 

according to Swiss-prot (highlighted in green). Our study identified four novel N-glycosites 

for β1 Integrin (namely, N212, N406, N481, N520, highlighted in yellow) in addition to one 

of the four N-glycosites recorded in Swiss-prot (Figure 2). These glycosites confirm the 

extracellular domain prediction of β1 integrin.

4 Discussion

This study employed a glycoproteomic analysis followed by mass spectrometry and a 

topology bioinformatic assessment to profile the extracellular matridome of the LV infarct 

region. The most significant findings were: 1) 1352 unique N-linked glycosylation sites 

(representing 694 unique glycoprotein groups) were identified, with the majority (77%) 

being membrane proteins and secreted proteins; 2) the extracellular proteins identified 

included collagens, fibronectin, and laminins. These proteins were highly prevalent in the 

LV infarct; and 3) analysis of N-linked glycosites provides experimental evidence of 
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membrane protein orientation. Out of 260 single TM proteins, the N-glycopeptides 

identified in the present study confirmed 259 proteins for the topology prediction using 

TMHMM or Swiss-Prot. TMHMM and Swiss-Prot had opposite topology predictions for 

seven proteins. Combined, these results provide the first glycoproteomic analysis of the 

extracellular matridom of the LV infarct region and validate the assumption that 

extracellular proteins are greatly enriched by the glycoprotein isolation approach used. 

These results also provide useful geographic information on membrane proteins, which will 

help in mechanistic and drug discovery studies, particularly for the proteins having 

controversial topology prediction.

Using a glycoproteomic approach to profile the extracellular matridome allows enrichment 

for extracellular proteins, targeting proteins with important signaling roles. In the functional 

analysis and pathway annotation of the identified proteins, functions related to extracellular 

proteins and cardiac signaling pathways were significantly enriched. For example, MMP-9 

was identified as a central player, and roles for this metalloproteinase in the post-MI setting 

have been well documented [7, 27–29].

Using the N-linked glycosylation site analysis provided in vivo topologic evidence that has 

not been previously available. Zielinska et al demonstrated that glycosylation sites of 

membrane proteins always orient toward the extracellular space [30]. Gundry and co-

workers found one glycoprotein transmembrane orientation was inconsistent with Swiss-

Prot annotation using glycoproteomic analysis, providing complementary information to 

correct the protein orientation prediction [9]. Rossi et al studied the membrane-bound form 

of complement protein C9 using glycosylation mapping, anti-peptide antibody binding, and 

disulfide modification analyses [31]. By deleting two N-glycosites and introducing new N-

glycosites, the authors determined the glycosylation required for human C9 activity and its 

membrane anchoring, which shows that the glycosite identification is a useful tool for 

protein orientation assignment. The current study identified 1352 unique N-linked 

glycosylation sites, providing new topologic information (Table 2 and Supplemental table 

S1). For β1 integrin, there were fourteen predicted N-linked glycosites, but only four of them 

(namely, N363, N366, N376, and N669) were identified previously according to Swiss-prot. 

In addition, these glycosites (N363, N366, and N376) are very close to each other, which is 

not good for supporting the large region (728 aa) of the extracelluar domain prediction. Our 

study identified four novel N-glycosites for β1 Integrin (namely N212, N406, N481, and 

N520) in addition to one of four N-glycosites (N669) recorded in Swiss-prot. These four 

novel glycosites were also recently identified by other groups [32, 33]. These five sites were 

distributed throughout the predicted extracellular domain, which provides supporting 

evidence for this section being the extracellular domain region of β1 integrin.

In the present data, 406 (59%) glycoproteins were identified by one unique glycosite, 

whereas 288 (41%) were identified by two or more unique glycosites. There are several 

possible reasons for a single identification. The first reason is that there really is only one 

potential N-glycosite in the protein. Out of the 406 proteins identified with one unique 

glycosite, 52 (12.8%) had only one single predicted glycosite, indicating that this reason 

accounted for a minority of the proteins. A second reason is that the peptide length of some 

glycopeptides may not be suitable for mass spectrometry analysis. Usually, a peptide length 
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of 7–35 residues is most suitable for mass spectrometry sequencing technology [34]. A third 

reason is that some peptides may not be suitable for identification due to poor ionization and 

fragmentation. A fourth reason is the random sampling issue of mass spectrometry, which 

basically means that false negatives can occur. Our results indicate that all of the above 

reasons likely contribute to the results. To assess the quality of identification, the single 

identified glycosites were counted for the number of peptide-spectra matching. We found 

that the majority of single glycosites (80%) were identified more than two times (either in 

multiple identification of the same peptide sequence or in different glycopeptides), 

indicating the majority of the glycopeptide identification was reliable.

In conclusion, this study identified a large number of extracellular proteins in the LV infarct. 

The information of experimentally identified N-glycosites provides in vivo experimental 

evidence for topology prediction. Our data provides the foundation for future studies of the 

LV infarct extracellular matridome, which may facilitate the discovery of drug targets and 

biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical relevance

The extracellular matridome plays a critical role in remodeling of the left ventricle (LV) 

following myocardial infarction (MI). The aim of this study was to use a glycoproteomics 

and mass spectrometry approach to identify glycoproteins in the extracellular matridome 

of the infarcted LV, to provide experimental evidence for topological determination. The 

information of protein topology is critical for selecting antigen sites and designing drug 

targets. The biological reproducibility was also investigated to assess the prevalence of 

the identified N-glycosylation sites. The identification of N-glycosylation sites supports 

the prediction of the membrane protein topology. Combined, this information may 

facilitate the discovery of drug targets and biomarkers for the post-MI patient.
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Figure 1. 
(A) Pie chart showing the distribution of glycosites identified per protein. Of the proteins 

identified, 59% had 1 glycosite and 41% proteins had ≥2 glycosites. (B) Stacked column 

chart showing the prevalence of identified glycopeptides in each of the eight biological 

replicates. A total of 36% of the glycosites were identified in all eight samples. (C) 

Classification of identified glycopeptides according to SignalP and TNHMM. A total of 

77% of the glycopeptides were classified as transmembrane (TM) or secreted proteins.
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Figure 2. 
The glycopeptide identification supports the topology prediction for the β1 integrin, which is 

predicted to be a TM protein (with residues 21–728 as the extracellular domain, 729–751 as 

the TM helices, and 752–798 as the intracellular domain). There were four N-glycosites 

previously identified in other studies (highlighted in green). Five N-glycosites were 

identified in this study, and four of the five N-glycosites were not previously reported and 

highlighted in yellow.
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Table 1

Molecular functions and KEGG pathways enriched for the identified glycoproteins, according to Gene 

Ontology (GO) analysis. The molecular functions of the identified glycoproteins are ordered by p value, from 

lowest to highest value.

Molecular functions enriched for the identified glycoproteins

Term P Value FDR Count %

Calcium ion binding 1.8E-35 2.6E-32 111 16.6

Carbohydrate binding 1.4E-28 2.0E-25 62 9.3

Polysaccharide binding 3.3E-24 4.9E-21 38 5.7

Pattern binding 3.3E-24 4.9E-21 38 5.7

Glycosaminoglycan binding 8.0E-23 1.2E-19 35 5.2

Heparin binding 1.8E-19 2.6E-16 28 4.2

Exopeptidase activity 1.6E-13 2.4E-10 21 3.1

Endopeptidase inhibitor activity 1.1E-11 1.5E-08 28 4.2

Metallopeptidase activity 1.3E-11 1.9E-08 30 4.5

Peptidase inhibitor activity 8.8E-11 1.3E-07 28 4.2

Peptidase activity 1.7E-10 2.5E-07 55 8.2

Integrin binding 2.5E-10 3.6E-07 12 1.8

Peptidase activity 2.8E-10 4.1E-07 56 8.4

Carboxypeptidase activity 1.2E-09 1.7E-06 13 1.9

Extracellular matrix structural constituent 2.6E-09 3.7E-06 12 1.8

Serine-type endopeptidase inhibitor activity 2.7E-09 3.9E-06 21 3.1

Transmembrane receptor protein tyrosine kinase activity 5.1E-09 7.4E-06 15 2.2

Enzyme inhibitor activity 7.4E-09 1.1E-05 30 4.5

Growth factor binding 2.1E-08 3.1E-05 16 2.4

Extracellular matrix binding 9.0E-08 1.3E-04 10 1.5

ion binding 9.2E-08 1.3E-04 191 28.6

Cation binding 9.9E-08 1.4E-04 189 28.3

Metalloexopeptidase activity 1.1E-07 1.6E-04 11 1.6

Metallocarboxypeptidase activity 4.4E-07 6.4E-04 9 1.3

Scavenger receptor activity 6.4E-07 9.2E-04 11 1.6

Metal ion binding 1.1E-06 1.5E-03 183 27.4

Sugar binding 1.4E-06 2.1E-03 22 3.3

Protein complex binding 2.8E-06 4.0E-03 14 2.1

KEGG Pathway enriched for identified glycoproteins

Term P Value FDR Count %

ECM-receptor interaction 1.5E-35 1.8E-32 45 6.7

Lysosome 5.7E-20 6.6E-17 38 5.7

Focal adhesion 2.4E-17 2.8E-14 45 6.7

Cell adhesion molecules 1.1E-16 1.3E-13 39 5.8
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Molecular functions enriched for the identified glycoproteins

Term P Value FDR Count %

Complement and coagulation cascades 1.2E-16 1.3E-13 28 4.2

Arrhythmogenic right ventricular cardiomyopathy 1.4E-14 1.7E-11 26 3.9

Hypertrophic cardiomyopathy 3.1E-14 3.6E-11 27 4.0

Hematopoietic cell lineage 2.3E-12 2.6E-09 25 3.7

Dilated cardiomyopathy 2.7E-12 3.1E-09 26 3.9
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