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LOCAL LAGGED ADAPTED GENERALIZED
METHOD OF MOMENTS DYNAMIC
PROCESS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/068,848, filed Oct. 27, 2014, the entire
contents of which are hereby incorporated herein by refer-
ence. The application also claims the benefit of U.S. Provi-
sional Application No. 62/246,189, filed Oct. 26, 2015, the
entire contents of which are hereby incorporated herein by
reference.

GOVERNMENT LICENSE RIGHTS

This invention was made with government support under
Grant Numbers W91INF-12-1-0090 and W911NF-15-1-
0182 awarded by the Army Research Office. The govern-
ment has certain rights in the invention.

BACKGROUND

Tools for analyzing and managing large collections of
data are becoming increasingly important. For example, data
models between various commodities can be analyzed to
determine whether a collaborative or competitive relation-
ship exists between the commodities. However, traditional
methods of verifying and validating nonlinear time series
type data sets can encounter state and parameter estimation
errors.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
emphasis instead being placed upon clearly illustrating the
principles of the present disclosure. Further, in the drawings,
like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 illustrates an example computing environment for
a local lagged adapted generalized method of moments
dynamic process according to various aspects of the embodi-
ments described herein.

FIG. 2 illustrates a local lagged adapted generalized
method of moments dynamic process according to various
aspects of the embodiments described herein.

FIG. 3 illustrates a process of generating a discrete time
interconnected dynamic model of statistic processes in the
process shown in FIG. 2 according to various aspects of the
embodiments described herein.

FIG. 4A illustrates real and simulated prices for natural
gas using the local lagged adapted generalized method of
moments dynamic process according to various aspects of
the embodiments described herein.

FIG. 4B illustrates real and simulated prices for ethanol
using the local lagged adapted generalized method of
moments dynamic process according to various aspects of
the embodiments described herein.

FIG. 5A illustrates real and simulated U.S. treasury bill
interest rates using the local lagged adapted generalized
method of moments dynamic process according to various
aspects of the embodiments described herein.

FIG. 5B illustrates real and simulated U.S. eurocurrency
exchange rates using the local lagged adapted generalized
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65

2

method of moments dynamic process according to various
aspects of the embodiments described herein.

FIG. 6A illustrates the real, simulated, forecast, and 95%
limit natural gas spot prices using the local lagged adapted
generalized method of moments dynamic process according
to various aspects of the embodiments described herein.

FIG. 6B illustrates the real, simulated, forecast, and 95%
limit ethanol prices using the local lagged adapted general-
ized method of moments dynamic process according to
various aspects of the embodiments described herein.

FIG. 7A illustrates the real, simulated, forecast, and 95%
limit U.S. treasury bill interest rates using the local lagged
adapted generalized method of moments dynamic process
according to various aspects of the embodiments described
herein.

FIG. 7B illustrates the real, simulated, forecast, and 95%
limit U.S. Eurodollar exchange rates using the local lagged
adapted generalized method of moments dynamic process
according to various aspects of the embodiments described
herein.

FIG. 8 illustrates an example schematic block diagram of
the computing device 100 shown in FIG. 1 according to
various embodiments described herein.

The drawings illustrate only example embodiments and
are therefore not to be considered limiting of the scope
described herein, as other equally effective embodiments are
within the scope and spirit of this disclosure. The elements
and features shown in the drawings are not necessarily
drawn to scale, emphasis instead being placed upon clearly
illustrating the principles of the embodiments. Additionally,
certain dimensions may be exaggerated to help visually
convey certain principles. In the drawings, similar reference
numerals between figures designate like or corresponding,
but not necessarily the same, elements.

DETAILED DESCRIPTION

1. Introduction

The embodiments described herein are directed to the
development and application of a local lagged adapted
generalized method of moments (LLGMM) dynamic pro-
cess. Various embodiments of the approach can include one
or more of the following components: (1) developing a
stochastic model of a continuous-time dynamic process, (2)
developing one or more discrete time interconnected
dynamic models of statistic processes, (3) utilizing Euler-
type discretized schemes for non-linear and non-stationary
systems of stochastic differential equations, (4) employing
one or more lagged adaptive expectation processes for
developing generalized method of moment/observation
equations, (5) introducing conceptual and computational
parameter estimation problems, (6) formulating a conceptual
and computational state estimation scheme, and (7) defining
a conditional mean square e-best sub-optimal procedure.

The development of the LLGMM dynamic process is
motivated by and applicable to parameter and state estima-
tion problems in continuous-time nonlinear and non-station-
ary stochastic dynamic models in biological, chemical,
engineering, energy commodity markets, financial, medical,
physical and social science, and other fields. The approach
result in a balance between model specification and model
prescription of continuous-time dynamic processes and the
development of discrete time interconnected dynamic mod-
els of local sample mean and variance statistic processes
(DTIDMLSMVSP). DTIDMLSMVSP is the generalization
of statistic (sample mean and variance) for random sample
drawn from the static dynamic population problems. Fur-
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ther, it is also an alternative approach to the generalized
autoregressive conditional heteroskedasticity (GARCH)
model, and it provides an iterative scheme for updating
statistic coefficients in a system of generalized method of
moment/observation equations. Furthermore, the applica-
tion of the LLGMM to various time-series data sets dem-
onstrates its performance in forecasting and confidence-
interval problems in applied statistics.

Most existing parameter and state estimation techniques
are centered around the usage of either overall data sets,
batched data sets, or local data sets drawn on an interval of
finite length T. This leads to an overall parameter estimate on
the interval of length T. The embodiments described herein
apply a new approach, the LLGMM. The LLGMM is based
on a foundation of: (a) the It6-Doob Stochastic Calculus, (b)
the formation of continuous-time differential equations for
suitable functions of dynamic state with respect to original
SDE (using It6-Doob differential formula), (¢) constructing
corresponding Euler-type discretization schemes, (d) devel-
oping general discrete time interconnected dynamic model
of local sample mean and variance statistic processes
(DTIDMLSMVSP), (e) the fundamental properties of solu-
tion process of system of stochastic differential equations,
for example: existence, uniqueness, continuous dependence
of parameters.

One of the goals of the parameter and state estimation
problems is for model validation rather than model mis-
specification. For continuous-time dynamic model valida-
tion, existing real world data sets are utilized. This real
world data is time varying and sampled, drawn, or recorded
at discrete times on a time interval of finite length. In view
of this, instead of using an existing econometric specifica-
tion/Euler-type numerical scheme, a stochastic numerical
approximation scheme is constructed using continuous time
stochastic differential equations for the LLGMM process
described herein.

In almost all real world dynamic modeling problems,
future states of continuous time dynamic processes are
influenced by past state history in connection with response/
reaction time delay processes influencing the present states.
That is, many discrete time dynamic models depend on the
past state of a system. The influence of state history, the
concept of lagged adaptive expectation process, and the idea
of'a moving average lead to the development of the general
DTIDMLSMVSP. Extensions of the discrete time sample
mean and variance statistic processes are: (a) to initiate the
use of a discrete time interconnected dynamic approach in
parallel with the continuous-time dynamic process, (b) to
shorten the computation time, and (c) to significantly reduce
state error estimates.

Utilizing the Euler-type stochastic discretization, for
example, of the continuous time stochastic differential equa-
tions/moment/observations and the discrete time intercon-
nected dynamic approach in parallel with the continuous-
time dynamic process (and the given real world time series
data and the method of moments), systems of local moment/
observation equations can be constructed. Using the DTID-
MLSMYVSP and the lagged adaptive expectation process for
developing generalized method of moment equations, the
notions of data coordination, theoretical iterative and simu-
lation schedule processes, parameter estimation, state simu-
lation and mean square optimal procedures are introduced.
The approach described herein is more suitable and robust
for forecasting problems than many existing methods. It can
also provide upper and lower bounds for the forecasted state
of the system. Further, it applies a nested “two scale hier-
archic” quadratic mean-square optimization process,
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whereas existing generalized method of moments
approaches and their extensions are “single-shot”.

Below, using the role of time-delay processes, the concept
of lagged adaptive expectation process, moving average,
local finite sequences, local mean and variance, discrete time
dynamic sample mean and variance statistic processes, local
conditional and sequences, local sample mean and variance,
the DTIDMLSMVSP is developed. A local observation
system is also constructed from nonlinear stochastic func-
tional differential equations. This can be based on the
It6-Doob stochastic differential formula and Euler-type
numerical scheme in the context of the original stochastic
systems of differential equations and the given data. In
addition, using the method of moments in the context of
lagged adaptive expectation process, a procedure is outlined
to estimate state parameters. Using the local lagged adaptive
process and the discrete time interconnected dynamic model
for statistic process, the idea of time series data collection
schedule synchronization with both numerical and simula-
tion time schedules induces a chain of concepts further
described below.

The existing GMM-based parameter and state estimation
techniques for testing/selecting continuous-time dynamic
models are centered around discretization and model errors
in the context of the use of an entire time-series of data,
algebraic manipulations, and econometric specification for
formation of orthogonality condition parameter vectors
(OCPV). The existing approaches lead to an overall/single-
shot state and parameter estimates, and requires the ergodic
stationary condition for convergence. Furthermore, the
existing GMM-based single-shot approaches are not flexible
to correctly validate the features of continuous-time
dynamic models that are influenced by the state parameter
and hereditary processes. In many real-life problems, the
past and present dynamic states influence the future state
dynamic. In the formulation of one of the components of the
LLGMM approach, we incorporate the “past state history”
via a local lagged adaptive process.

As an introduction to an LLGMM dynamic system
according to various aspects of the embodiments, FIG. 1
illustrates an example computing environment 100 for
LLGMM dynamic processes. The computing environment
100 includes a computing device 110, a data store 120, and
an LLGMM dynamic process module 130.

The computing environment 100 can be embodied as one
or more computers, computing devices, or computing sys-
tems. In certain embodiments, the computing environment
100 can include one or more computing devices arranged,
for example, in one or more server or computer banks. The
computing device or devices can be located at a single
installation site or distributed among different geographical
locations. The computing environment 100 can include a
plurality of computing devices that together embody a
hosted computing resource, a grid computing resource,
and/or other distributed computing arrangement. One
example structure of the computing environment 100 is
described in greater detail below with reference to FIG. 8.

The data store 120 can be embodied as one or more
memories that store (or are capable of storing) and/or
embody a discrete time data set 122 and state and parameter
values 124. In addition, the data store 120 can store (or is
capable of storing) computer readable instructions that,
when executed, direct the computing device 110 to perform
various aspects of the LLGMM dynamic processes
described herein. In that context, the the data store 120 can
store computer readable instructions that embody, in part,
the LLGMM dynamic process module 130. The discrete
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time data set 122 can include as past state information of any
number of continuous time dynamic processes over any time
intervals, as described in further detail below. Further the
state and parameter values 124 can include both admissible
parameter estimates for a stochastic model of a continuous
time dynamic process and state values of the stochastic
model of the continuous time dynamic process as described
in further detail below.

The LLGMM dynamic process module 130 includes the
dynamic model generator 132, the LLGMM processor 134,
the state and parameter estimator 136, and the forecast
simulator 138. Briefly, the dynamic model generator 132 can
be configured to develop a one or more stochastic models of
various continuous time dynamic processes. The LLGMM
processor 134 can be configured to generate a DTIDMLSM-
VSP based on any one of the stochastic models of the
continuous time dynamic processes developed by the
dynamic model generator 132. The state and parameter
estimator 136 is configured to calculate a plurality of admis-
sible parameter estimates for the stochastic model of the
continuous time dynamic process using the DTIDMLSM-
VSP. The state and parameter estimator 136 can be further
configured to calculate a state value of the stochastic model
of the continuous time dynamic process for each of the
plurality of admissible parameter estimates, to gather a
plurality of state values of the stochastic model of the
continuous time dynamic process. The state and parameter
estimator 136 can be further configured to determine an
optimal admissible parameter estimate among the plurality
of'admissible parameter estimates that results in a minimum
error among the plurality of state values. Additionally, the
forecast simulator 138 can be configured to forecast at least
one future state value of the stochastic model of the con-
tinuous-time dynamic process. The functional and opera-
tional aspects of the components of the LLGMM dynamic
process module 130 are described in greater detail below.

This remainder of this disclosure is organized as follows:
in Section 2, using the role of time-delay processes, the
concept of lagged adaptive expectation process, moving
average, local finite sequence, local mean and variance,
discrete time dynamic sample mean and variance statistic
processes, local conditional sequence, and local sample
mean and variance, we develop a general DTIDMLSMVSP.
DTIDMLSMVSP is the generalization of statistic of random
sample drawn from the “static” population. In Section 3, a
local observation system is constructed from a nonlinear
stochastic functional differential equations. This is based on
the 1t6-Doob stochastic differential formula and Euler-type
numerical scheme in the context of the original stochastic
systems of differential equations and the given data. In
addition, using the method of moments in the context of
lagged adaptive expectation process, a procedure to estimate
the state parameters is outlined.

Using the local lagged adaptive process and the discrete
time interconnected dynamic model for statistic process, the
idea of time series data collection schedule synchronization
with both numerical and simulation time schedules induces
a finite chain of concepts in Section 4, namely: (a) local
admissible set of lagged sample/data/observation size, (b)
local class of admissible lagged-adapted finite sequence of
conditional sample/data, (c) local admissible sequence of
parameter estimates and corresponding admissible sequence
of simulated values, (d) e-best sub-optimal admissible sub-
set of set of m,-size local conditional samples at time t, in
(a), (e) e-sub-optimal lagged-adapted finite sequence of
conditional sample/data, and (f) the e-best sub optimal
parameter estimates and simulated value at time t, for k=1,
2, ..., Nin a systematic way. In addition, the local lagged
adaptive process and DTIDMLSMVSP generate a finite
chain of discrete time admissible sets/sub-data and corre-
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sponding chain described by simulation algorithm. The
usefulness of computational algorithm is illustrated by
applying the code not only to four energy commodity data
sets, but also to the U.S. Treasury Bill Interest Rate data set
and the USD-EUR Exchange Rate data set in finance for the
state and parameter estimation problems. Further, we com-
pare the usage of GARCH (1,1) model with the presented
DTIDMLSMVSP model. We also compared the DTID-
MLSMVSP based simulated volatility U.S. Treasury Bill
Yield Interest rate data with the simulated work shown in
Chan, K. C., Karolyi, G. Andrew, Longstaff, F. A., Sanders,
Anthony B., An Empirical Comparison of Alternative Mod-
els of the Short-Term Interest Rate, The Journal of Finance,
Vol. 47., No. 3, 1992, pp. 1209-1227 (“Chan et al”).

In Section 5, the LLGMM is applied to investigate the
forecasting and confidence-interval problems in applied
statistics. The presented results show the long-run prediction
exhibiting a degree of confidence. The use of advancements
in electronic communication systems and tools exhibit that
almost everything is dynamic, highly nonlinear, non-station-
ary and operating under endogenous and exogenous pro-
cesses. Thus, a multitude of applications of the embodiments
described herein exist. Some extensions include: (a) the
development of the DTIDMLSMVSP and (b) the Aggre-
gated Generalized Method of Moments AGMM of the
LLGMM method are presented in Section 6. In fact, we
compare the performance of DTIDMLSMVSP model with
the GARCH(1,1) model and ex post volatility of Chan et al.
Further, using the average of locally estimated parameters in
the LLGMM, an aggregated generalized method of moment
is also developed and applied to six data sets in Section 6.

In Section 7, a comparative study between the LLGMM
and the existing parametric orthogonality condition vector
based generalized method of moments (OCBGMM) tech-
niques is presented. In Section 8, a comparative study
between the LLGMM and some existing nonparametric
methods is also presented. The LLGMM exhibits superior
performance to the existing and newly developed OCB-
GMM. The LLGMM is problem independent and dynamic.
On the other hand, the OCBGMM is problem dependent and
static. In appearance, the LLGMM approach seems compli-
cated, but it is user friendly. It can be operated by a limited
theoretical knowledge of the LLGMM. Furthermore, we
present several numerical results concerning both math-
ematical and applied statistical results showing the compari-
son of LLGMM with existing methods.

2. Derivation of Discrete Time Dynamic Model for
Sample Mean and Variance Processes

The existing GMM-based parameter and state estimation
techniques for testing/selecting continuous-time dynamic
models are centered around discretization and model mis-
pecifications errors in the context of usage of entire time-
series data, algebraic manipulations, and econometric speci-
fication for formation of orthogonality condition parameter
vectors (OCPV). The existing approaches lead to a single-
shot for state and parameter estimates and require the
ergodic stationary condition for convergence. Furthermore,
the existing GMM-based single-shot approaches are not
flexible to correctly validate the features of continuous-time
dynamic models that are influenced by the state parameter
and hereditary processes. In many real-life problems, the
past and present dynamic states influence the future state
dynamic. In the formulation of one of the components of the
LLGMM approach, we incorporate the “past state history”
via local lagged adaptive process.

Further, based on one of the goals of applied mathematical
and statistical research, the embodiments described herein
are applicable for various processes in biological, chemical,
engineering, energy commodity markets, financial, medical,
and physical and social sciences. Employing the hereditary
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influence of a systems, the concept of lagged adaptive
expectation process, and the idea of moving average, a
general DTIDMLSMVSP is developed with respect to an
arbitrary continuous-time stochastic dynamic process. The
development of the DTIDMLSMVSP can be motivated by
the state and parameter estimation problems of any continu-
ous time nonlinear stochastic dynamic model. Further, the
idea of DTIDMLSMVSP was primarily based on the sample
mean and sample variance ideas as statistic for a random
sample drawn from a static population in the descriptive
statistics. Using the DTIDMLSMVSP, the problems of long-
term forecasting and interval estimation problems with a
high degree of confidence can be addressed.

For the development of the DTIDMLSMVSP, various
definitions and notations are described herein. Let T and y be
finite constant time delays such that O<y=<t. Here, T charac-
terizes the influence of the past performance history of state
of dynamic process, and y describes the reaction or response
time delay. In general, these time delays are unknown and
random variables. These types of delay play a role in
developing mathematical models of continuous time and
discrete time dynamic processes. Based upon the nature of
data collection, it may be necessary to either transform these
time delays into positive integers or to design the data
collection schedule in relations with these delays. For this
purpose, the discrete version of time delays of T and y are
defined as

r=(lglle e e =il v

respectively. For simplicity, we assume that 0<y<1 (q=1).
Definition 1.
Let x be a continuous time stochastic dynamic process
defined on an interval [-t, T] into ‘R, for some T>0. For

tE€[—t, T], let 7 be an increasing sub-sigma algebra of a

complete probability space for which x(t) is -, measurable.
Let P be a partition of [-t, T] defined by

P:={t=—t+(r+i)At}, for i€I_(N), 2)
where
A T+ T
1= —,

and 1,(k) is defined by L(k)={iEZ li<j<k}.
Let {x(t)},__," be a finite sequence corresponding to the
stochastic dynamic process x and partition P in Definition 1.

Further, x(t,) is F. measurable for i€l_,(N). The definition
of forward time shift operator F is given by:
Fix(t)=x(tyy 1)- 3

Additionally, x(t,) is denoted by x, for i&l_,(N).

Definition 2.

For g=1 and r=1, each k&I,(N), and each m,E1,(r+k-1),
a partition P, of closed interval [t,_,, , t,_,] is called local at
time t, and it is defined by

P = my, < Ty 41 < oo < Ti-

)

P, is referred as the m,-point sub-partition of the partition P
in (2) of the closed sub-interval [t;_,,, t_;] of [-T.T].
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Definition 3.
For each k€I (N) and each m,E1,(r+k-1), a local finite
sequence at a time t, of the size m, is restriction of
Ix(t)},__ Y to P, in (4), and it is defined by

Sy ke 1= {F‘.kal}?:,mk e ®)

As m, varies from 2 to k+r-1, the corresponding local
sequence S, . at t; varies from X o xS
As aresult of this, the sequence defined in (5) is also called
a my-local moving sequence. Furthermore, the average cor-
responding to the local sequence S, ; in (5) is defined by

B 1 0 (6)

— i
Smk,k =— Flx_y.
my . 4
i=—my +1

The average/mean defined in (6) is also called the m,-
local average/mean. Further, the m,-local variance corre-
sponding to the local sequence S,, ; in (5) is defined by

= M

0 2
1 . - .
— Fixg g — — Z Fix for small my
my my

2 .
$2 4

2 +1 J=my+l
1 ° : I
Flxg_ 1 — — Z Flx for large my
my — 1 my . 1
i=—mg +1 Sy

Definition 4.

For each fixed k&I, (N), and any m,El, (k+r-1), the
sequence {gl.,k]>i:k_,nkk"1 is called a m;-local moving average/
mean process at t,. In other words, the LLGMM dynamic
process includes, for each m;-local moving sequence, cal-
culating an m,-local average to generate an m;-moving
average process (e.g., reference numeral 310 in FIG. 3).
Further, the sequence {s,;*},,_, ' is called a my-local
moving variance process at t,. That is, for each m,-local
moving sequence, the process includes calculating an m,-
local variance to generate an my-local moving variance
process (e.g., reference numeral 312 in FIG. 3).

Definition 5.

Let {x(t)},__," be a random sample of continuous time
stochastic dynamic process collected at partition P in (2).
The local sample average/mean in (6) and local sample
variance in (7) are called discrete time dynamic processes of
sample mean and sample variance statistics.

Definition 6.

Let {x(t)},__" be a random sample of continuous time
stochastic dynamic process collected at partition P in (2).
The m,-local moving average and variance defined in (6)
and (7) are called the m,-local moving sample average/mean
and local moving sample variance at time t,, respectively.
Further, m,-local sample average and m,-local sample vari-
ance are referred to as local sample mean and local sample
variance statistics for the local mean and variance of the
continuous time stochastic dynamic process at time t,,
respectively. §mk and sm: are called sample statistic time
series processes.
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Definition 7.

Let {E [x(t)! %, 1},_,..~ be a conditional random
sample of contlnuous time stochastic dynamic process with

respect to sub-o-algebra Z,, t,€P in (2). The m;-local
conditional moving average and variance defined in the
context of (6) and (7) are called the m,-local conditional
moving sample average/mean and local conditional moving
sample variance, respectively.

The concept of sample statistic time-series/process
extends the concept of random sample statistic for static
dynamic populations in a natural and unified way. Employ-
ing Definition 7, we introduce the DTIDMLSMVSP. As
described in detail below, this discrete time algorithm/model
plays an important role in state and parameter estimation
problems for nonlinear and non-stationary continuous-time
stochastic differential and difference equations. Further, it
provides feedback for both continuous-time dynamic model
and corresponding discrete time statistic dynamic model for
modifications and updates under the influence of exogenous
and endogenous varying forces or conditions in a systematic
and unified way. It is also clear that the discrete time
algorithm eases the updates in the time-series statistic. Now,
achangein§,, ; and smk’k2 with respect to change in time t,
can be stated.

Lemma 1. (DTIDMLSMVSP).

Let {E[x) F.1},_,.,~ be a conditional random
sample of contlnuous time stochastic dynamic process with

respect to sub-o-algebra F, , 1, belong to partition P in. Let
S, e A0A S, ¢ 2 be m,-local condltlonal sample average and
local condltlonal sample variance at t, for each k&Il (N).
Using these inputs (e.g., reference numeral 314 in FIG. 3),
an example DTIDMLSMVSP can be described by

_ Mi—p = 8
S k-ptl = —ps k=P F ®
k—p+1- My_pi1 —p+l-
Ty e—p> Smg,0 =50
k—p 0
p
my—1 My
e i-1
=L | [ e
=0
2 for small m,
Simye_ih—i + e
m_, my_y = ny
S +
p-1 M—pk=p
[T -
J=0
Emy_ | k1>
2 —
Stk = my—i =1
I
[T my—;
0
2 for large m
Smy_ph—i T 8¢ My,
Miep 2 my_y = ny
+
p-1 M—pk=p
[T my_;
J=0
Emy_1k-1>
o _ o i .
Sp;i =Si.1€1p(0),  initial conditions
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where

®

7mk,p+l

i
Ny _pk—p = Fxep—

1
My—p+1

—my_p+l —My_ 0
F P p = F Py p+F X p

i=—my_ —p+1 +1

5

2

my =1 (F ™ x0) B

Em_ k=1 = gy

i1
I
=0
(F iy
i1 -
I my—j
=0
Ciaem 2
(F7 i)
i1
[T my—;
=0
—i+2—my_;

2
(Flxey)

my =1 l=—i42-my iy

i-1

I my—j
=0

my
=1

—i+l
lek,lFSxk,l
p | bs=it2omy_iyy
s

i-1

I my—j

=0

Z Fla 1 Poxy,

“y s=—my, +1
s

i=1

(Fe)! O FH i )t

Emy_y k-1 =

IT my—j

J=0

i=1

i1
I my—j
0

—i+2-my_;

2
(Flxy)

Fﬂ+2 my_; 2 I=—it2— .

( a1 =it 2y vy
1 +
.

l_l my_j =1 I e

—i+l

2

P | bs=—it2omy_jyy

s 1 0
Z i1 T -1 Z

l—l mkfj l,F*mk‘Fl
J=0

lek,lFSxk,l

Flxy Fox_y

s

Remark 1.

The interconnected dynamic statistic system (8) can be
re-written as the one-step Gauss-Sidel dynamic system of
iterative process described by

X(k; p) = Alk, Xtk = 15 p) p)X (k= 1; p) +elks; p), 10

X1k p)]

where X(k; p) = ( 5
Xa(k; p)
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-continued

> 0
Sy _pyrdpt2 er(k; p) = . A
i p) =3, = : 5 :
Xitks p) = Sy 1 kpr1> Xolh) = : 5 € it
S;i,(,l,kfl
S;i . - _{Emk—lvk’l’ for small my
5 1 k=1 =
Emy_y =15 for large my,
Aut p) At p) 10
A(k,X(k—l;p);p):(A (o XU—1: p): 1) Anlk: )],
21K, sPhp 28 p Remark 2.
Atk p) = L"H For each k&€1,(N), p=2, and small m,, the inter-connected
my — . .
TP system (8) reduces to the following special case
Aptk;p)=(0 0 ... 0), 15
X(k:2)=A(k, X (k-1;2);2)X(h-1;2)+e(k;2), (11)
where X(k; 2), A(k; 2) and e(k; 2) are defined by
0
0 20 X1k 2)
X(k;2) = ( ]
: Xa(k; 2)
0 , for small my
my — Dimy_,, =]
%Smk—pv"*l’ 25 Xl(k,2) Smk—lsk—l’
my [T my—j
J=0
A (ks p) = 0 , 2 o o
my_ | k=1 A ; A ;
; Xk 2) = -1 ,A(k;2)=( 110k 2) Apal )]’
S Ak 2) Anlk;2)
30
0 . for large my. Aulki2) = 2 Aps2) = (0 0),
my —
Mi—p  —
1 My pk=p 0
T s Ak 2) = | = Dmica ,
k-1
0 1 0 0 0
0 0 1 0 0
0 0 0
An(k; p) = 0 0 0 0 1 , for small my,
(my = Dmy—p (mye = D1 (my = Dimy—pri-y (my — Dmy_y
p-1 P2 i P
my [1 my; my [T my_; my [1 my;
=0 j=0 =0
0 1 0 0 0
0 0 1 0 0
0 0 0 :
and 0 0 0 0 1 , for large my
M p—1 m -1 My_pric =1 my- —1
-1 p—2 i i
IT mey T muey 1 mye—j
J=0 =0 J=0
-continued
er(k; p) 60 0 1
E(k;p):( . ] S =
ea(k; p) An(k; 2) =| (mg — Dmy—p (my — Dmyy |,
m,%mk,l m,%
o (81(/(;2)] o
65 elk;2) = eath: 2) s e1(k; 2) = My _p k-2

er (ks p) =Ty kp>
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-continued

ex(k; 2) =(

Emy_y k-1 ]

1 —my_p+1
i
Ty _p k-2 = o Z Flxga -
e im—mp 1
FMe2tly 5 — F™e2x_, + FOx s,
0 2 - 2
(Fx1)” = (F™-1xg )" —
. 2
my =1 (F"™-1x_ 1)
Emy_1 k-1 = +
my my
—1 2 —1-m, 2 —m, 2
(F 7 xy) = (F7 72y )" = (F™2x ) N
my )
-1
— i i
2 . » Z Flx 1 Fix
Z (F'xg_1) i j=—my_y
my — 1| i=—my_y i+
+ +
my mgmy—y My
0
S » Z Flx 1 Flx
i
Z (F'x-1) i, j=Tomy
i=Iomy i
my m}
Remark 3.
Define
my — 1 my g my—1 my_a my_a
@Y= —,pp=—————,and g3 = —.
my my my Ay My my—1

For small m,, m,_,=m,, Yk, we have ¢, <1, ¢,<1, and ¢;=<1.
From O<g,, i=1, 2, 3, and the fact that

the stability of the trivial solution (e.g., X(k; 2)=0) of the
homogeneous system corresponding to (10) follows. Fur-
ther, under the above stated conditions, the convergence of
solutions of (10) also follows.

Remark 4.

From Remark 2, the local sample variance statistics at
time t, depends on the state of the m, ;, and m, ,-local
sample variance statistics at time t,_, and t,_,, respectively,
and the m,_,-local sample mean statistics at time t,_,.

Remark 5.

Aspects of the role and scope of the DTIDMLSMVSP can
be summarized. First, the DTIDMLSMVSP is the second
component of the LLGMM approach. The DTIDMLSM-
VSP is valid for a transformation of data. It is generalization
of a “statistic” of a random sample drawn from “static”
population problems. Further, Lemma 1 provides iterative
scheme for updating statistic coefficients in the local systems
of moment/observation equations in the LLGMM approach.
This accelerates the speed of computation. The DTID-
MLSMVSP does not require any type of stationary condi-
tion. The DTIDMLSMVSP plays a significant role in the
local discretization and model validation errors. Finally, the
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approach to the DTIDMLSMVSP is more suitable for fore-
casting problems, as further emphasized in the subsequent
sections.

Remark 6.

The usefulness of the DTIDMLSMVSP arises in estima-
tion of volatility process of a stochastic differential or
difference equations. This model provides an alternative
approach to the GARCH(p,q) model. Below, the m,-local
sample variance statistics are compared with the GARCH
(p,q) model to show that the m,-local sample variance
statistics give a better forecast than the GARCH(p,q) model.

3. Theoretical Parametric Estimation Procedure

In this section, a foundation based on a mathematically
rigorous theoretical state and parameter estimation proce-
dure is formulated for a very general continuous-time non-
linear and non-stationary stochastic dynamic model
described by a system stochastic differential equations. This
work is not only motivated by the continuous-time dynamic
model validation problem in the context of real data energy
commodities, but also motivated by any continuous-time
nonlinear and non-stationary stochastic dynamic model vali-
dation problems in biological, chemical, engineering, finan-
cial, medical, physical and social sciences, among others.
This is because of the fact that the development of the
existing Orthogonality Condition Based GMM (OCBGMM)
procedure is primarily composed of the following five
components: (1) testing/selecting continuous-time stochas-
tic models for a particular dynamic process described by one
or more stochastic differential equations, (2) using either a
Euler-type discretization scheme, a discrete time economet-
ric specification, or other discretization scheme regarding
the stochastic differential equation specified in (1), (3)
forming an orthogonality condition parameter vector
(OCPV) using algebraic manipulation, (4) using (2), (3) and
the entire time series data set, finding a system of moment
equations for the OCBGMM, and (5) single-shot parameter
and state estimates using positive-definite quadratic form.
The existing OCBGMM lacks the usage of 1t6-Doob calcu-
lus, properties of stochastic differential equations, and a
connection with econometric based discretization schemes,
the orthogonality conditional vector, and the quadratic form.

In this section, an attempt is made to eliminate the
drawbacks, operational limitations, and the lack of connec-
tivity and limited scope of the OCBGMM. This is achieved
by utilizing (i) historical role played by hereditary process in
dynamic modeling, (ii) It6-Doob calculus, (iii) the funda-
mental properties of stochastic system of differential equa-
tions, (iv) the lagged adaptive process, (v) the discrete time
interconnected dynamics of local sample mean and vari-
ances statistic processes model in Section 2 (Lemma 1), (vi)
the Euler-type numerical schemes for both stochastic dif-
ferential equations generated from the original stochastic
systems of differential equations and the original stochastic
systems of differential equations, (vii) systems of moments/
observation equations, and (viii) local observation/measure-
ments systems in the context of real world data.

Starting in this section, parts of the the LLGMM dynamic
process 200 shown in FIG. 2 are also described. At reference
numeral 202, the process 200 includes obtaining a discrete
time data set as past state information of a continuous time
dynamic process over a time interval, such as the [-T,T]
described herein. The discrete time data set can be stored in
the data store 120 as the discrete time data set 122. Further,
at reference numeral 204, the process 200 includes devel-
oping a stochastic model of a continuous time dynamic
process.
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As one example of a stochastic model of a continuous
time dynamic process, a general system of stochastic dif-
ferential equations under the influence of hereditary effects
in both the drift and diffusion coefficients is described by

dy=ft,y )dr+o(ty )dW().y, =0, (12)

where, y(0)=y(t+0), 0€[-1,0], f, o: [0, T]xC—R’ are
Lipschitz continuous bounded functionals, C is the Banach
space of continuous functions defined on [-t,0] into
R? equipped with the supremum norm, W(t) is standard
Wiener process defined on a complete filtered probability

space (Q, F(F)aeP), @ EC, yo(ty+0) is F ), measur-
able, the filtration function (F),.,, is right-continuous, each
F ,with t=t, contains all P -null events in F, and the solution
process y(t,,p,)(t) is adapted and non-anticipating with
respect 10 (F )0

3.1 Transformation of System of Stochastic Differential
Equations (12)

At reference numeral 206, the process 200 includes gen-
erating a DTIDMLSMVSP based on the stochastic model of
the continuous time dynamic process. As part of the con-
ceptual aspects of generating the DTIDMLSMVSP, at ref-
erence numeral 206, the process 200 can include transform-
ing the stochastic model of the continuous time dynamic
process into a stochastic model of a discrete time dynamic
process utilizing a discretization scheme. For example, let
VEC[[—, o]xR?,RN" ]. Its partial derivatives V,,

v Pv

exist and are continuous. The It6-Doob stochastic differen-

tial formula can be applied to V to obtain
AVey)=LV 3y )dt+ Vo (1y)0(ty )W), 13)

where the L operator is defined by

14
LV, y,y) = 4

bit, y,) =

1
Vilt, M+ Va1, DS 30 + 5V (1, 9)B(E, 31)

o, y)oT (2, yo).

3.2 Euler-Type Discretization Scheme for (12) and (13)
For (12) and (13), the Euler-type discretization scheme
can be presented as

A S@imts iy DAL + (15)
Vi T ol yy AW i€ [UN)
LV (i1, (@), yy_ DAL +
AV(w, y@) =
Vy(timts Y@im1 Do (G, vy JAW ()
and 7, =F ., can be defined as the filtration process up
to time t,_;.
3.3 Formation of Generalized Moment Equations from
(15)

As another part of the conceptual aspects of generating
the DTIDMLSMVSP, at reference numeral 206, the process
200 can also include developing a system of generalized
method of moments equations from the stochastic model of
the discrete time dynamic process. For example, with regard
to the continuous time dynamic system (12) and its trans-
formed system (13), the more general moments of Ay(t,) are:
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E[AY@) | Fit] =
E[(Ay(@) - EIAYE) | Fimt])

AY(@) - EAY@) | FroaDT | Fioa]
E[AY (5, (@) | Fict] =
E[AV@, y@) - E[AV (1, y(0))

| Fio i DAV (5, y(:) - =
E[AV@E, ya) | Fia D [ Fial

Simts yiy_ DAL,
oltimgs Yi_y)
o7 (i1, vy AL,
LV (i1, y(@), yy,_ )AL,

B(ti—1, y(ti1), yy_y)

where B(t,_,y(t._1),y, )=V, (t_ 1.yt )bt 1y, DV, {1y
(t,_)*A’, and T stands for the transpose of the matrix.

3.4 Basis for Local Lagged Adaptive Discrete Time
Expectation Process

From (15) and (16),

E[Ay(5) | Fior] +

oltimts Yo AWy, i€ [L(N)
E[AV (&, y@) | Fio] +

Vylti-t, y@im1))o (Gt Yoy JAW(5)

an

Ay

AV (5, y(i;)

This provides the basis for the development of the concept
of lagged adaptive expectation with respect to continuous
time stochastic dynamic systems (12) and (13). This also
leads to a formulation of mg-local generalized method of
moments at t,.

Remark 7.

(Block Orthogonality Condition Vector for (12) and (13)).
From (17), one can define a block vector of orthogonality
condition as

Ay(t:) = fltim1, Y(Ei-1 DAL (18)

Hlt, v, Y0 = (Avm, VD) = LY (51, Y1, vy AT |

Further, unlike the orthogonality condition vector defined in
the literature, the definition of the block vector of orthogo-
nality condition (18) is based on the discretization scheme
associated with nonlinear and non-stationary continuous-
time stochastic system of differential equations (12) and (13)
and the It6-Doob stochastic differential calculus.

Example 1
For V(t,y) in (13) defined by
(19)

.
Ve =iz = i,

=

pZ P santyhf @, v+ 2212yl

=1

.
P WP sen(yherte, yhdwi.
=1

Hence, the discretized form of (19) is given by

n 20
P N NI GO
PZ lyial” " sen(yio )f Gimrs yi_ ) +

=
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-continued

plp-1) ;
lei

p=2 J
7 Tolir, yi_ ) e+

.
o o
Py WLl sen(vloe 1, ¥ aw;.
=

In this special case, (17) reduces to

E[Ay@) | Fie] +
T o1, v AWy, i€ L(N)

A[ Z i
=1

.

o

P vl e
=

@D

E Fio1|+

o, v AW/

Example 2

We consider a multivariate AR(1) model as another
example to exhibit the parameter and state estimation prob-
lem. The AR(1) model is of the following type

X, =, 1X,_1+0,_1e,x(0)=x,, for t=0,1,2, . . .,
22

where x,, X,ER", e £R” is F; a measurable normalized
discrete time Gaussian process, and a, ; and 0,_, are nxn and
nxm discrete time varying matrix functions, respectively.
Here

Q1 X1 (23)

[ Elx | Fiuil

E[xrx;T [ Fii] ] N [arflxrfl (@1x ) +ooe) )

In this case, the block orthogonality condition vector is
based on a multivariate stochastic system of difference
equation and difference calculus for (22) and (23), given by

Xy = Gr—1 X1 ] (24)

H(t;_1, Xy Xo—15 G4y, O11) =
(11 to Ar—1> Ur—1 rl) (AV(X,)—LV([,X,,I)AI

where A and L are difference and L operators with respect to
V=xx, for xER”, and are defined by

{AV(x,) =V(x,)-V(x_),forr=1,2,... ,1,... ,N (25)

T T
LV(t, % 1) = a1 1 (2 +ar1)x1) +0107

and differential of V with respect to multivariate difference
system (22) parallel to continuous-time version (13) is as:

AVix)=a, ¥, 1%(2‘”1:71)%71)T"'szlaozflT+2(1 +a, X

1)(01—1: et) . (26)

From the above, it is clear that the orthogonality condition
parameter vector in (24) is constructed with respect to
multivariate stochastic system of difference equations and
elementary difference calculus.
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Remark 8.

From the transformation of system of stochastic differen-
tial equations (13) in Sub-section 3.1, the construction of
Euler-type Discretization Scheme for (12) and (13) in Sub-
section 3.2, the Formation of Generalized Moment Equa-
tions from (15) in Sub-section 3.3, and the Basis for Local
Lagged Adaptive Discrete time Expectation Process in Sub-
section 3.4, the system is in the correct framework for
mathematical reasoning, logical, and interconnected/inter-
active within the context of the continuous-time dynamic
system (12).

Further, a continuous-time state dynamic process
described by systems of stochastic differential equations
(12) moves forward in time. The theoretical parameter
estimation procedure in this section adapts to and incorpo-
rates the continuous-time changes in the state and param-
eters of the system and moves into a discrete time theoretical
numerical schemes in (15) as a model validation of (12). It
further successively moves in the local moment equations
within the context of local lagged adaptive, local discrete
time statistic and computational processes in a natural,
systematic, and coherent manner. On the other hand, the
existing OCBGMM approach is “single-shot” with a global
approach, and it is highly dependent on the second compo-
nent of the OCBGMM. That is, the use of either Euler-type
discretization scheme or a discrete time econometric speci-
fication regarding the stochastic differential equation. We
refer to OCBGMM as the single-shot or global approach
with formation of a single moment equation in a quadratic
form.

Below, a result is stated that exhibits the existence of
solution of system of non linear algebraic equations. For the
sake of reference, the Implicit Function Theorem is stated
without proof.

Theorem 2 (Implicit Function Theorem).

Let F={F,, F,, . . . , F,} be a vector-valued function
defined on an open set SER ** with values in R 7. Suppose
FEC on S. Let (uy; vg) beapointin § for which F(u,; v,)=0
and for which the gxq determinant det [D/F,(uy; v,)]=0.
Then there exists a k-dimensional open set T, containing v,
and unique vector-valued function g, defined on T, and
having values in R 4, such that g&C' on T,, g(v,)=u,, and
F(g(v); v)=0 for every v&T,.

TMustration 1: Dynamic Model for Energy Commodity
Price.

As one example, the stochastic dynamic model of energy
commodities described by the following nonlinear stochas-
tic differential equation is considered:

dy=ay(p-y)di+o(ty )ydW () .y =%o, (27)

where y(0)=y(t+0); 0E[-1,0], 1, aER, the initial process

Po={Y(t+0)} oev 07 1S F, —measurable and independent of
{W(),t€[0,T]}, W(t) is a standard Wiener process defined in

(12), o:[0, T]xC—®R"is a Lipschitz continuous and
bounded functional, and C is the Banach space of continuous
functions defined on [—T,0] into R equipped with the supre-
mum norm.
Transformation of Stochastic Differential Equation (27).
A Lyapunov function V(t,y)=In(y) in (13) is picked for
(27). Using Ito-differential formula,

1, (28)
d(In(y)) = |a(u - y) - 57 (&, y)|di +o(t, y)aw.

The Euler-Type Discretization Schemes for (27) and (28).
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By setting At=t,-t, ,, Ay,=y,-y,_;, the combined Euler
discretized scheme for (27) and (28) is

Ay _ ay;_y(p— yi-0 )AL + 29
' o (timt, Yy )Yirt AW(B), ey = 0,
1,
Aln(y) = [a(ﬂ = Yim) = 50 (et Yy )
Aty + (i1, yy_ AW (1), yiy = @o.

where @,=1y,},__,° is a given finite sequence of %, — mea-
surable random variables, and it is independent of {AW
(ti}iZON'

Generalized Moment Equations.

Applying conditional expectation to (29) with respect to

L, =i, 30

Ay | Fial = ay;_ (¢ —yi-)AL

1 2
B [Fi] = |a = yi-0) = 50701 vy ) A

15 [(Adln(y;) -
1 [AIn(y;)) =
| FioD? | Fict]

oGt vy DAL

Basis for Lagged Adaptive Discrete Time Expectation
Process.
From (30), (29) reduces to

Ay
{ A(ln(y;)

Equation (31) provides the basis for the development of the
concept of lagged adaptive expectation process with respect
to continuous time stochastic dynamic systems (27) and
(28).

Remark 9. Orthogonality Condition Vector for (27) and
(28).

Following Remark 7 and using (29), (30), and (31), the
orthogonality condition vector with respect to continuous-
time stochastic dynamic model (27) is represented by

BD

B Ay | Fial + o, vy Dy AW()
E [A(n(y)) | Fiog] + 010 v DAW()

H_y, (@), y(t-p) = (32

Ay() - ayi-D (e — Yo DAG
Aln(y(e)) ~ Lln(y(rio1). yy,_ )AG
(Aln(y()) = Ln(y(Giy), v ALY =020y, v NG

wherein L In

1
0050, 3480 = (=351 = 50213

Unlike the orthogonality condition vector defined in the
literature, this orthogonality condition vector is based on the
discretization scheme (29) associated with nonlinear con-
tinuous-time stochastic differential equations (27) and (28)
and the Ito-Doob stochastic differential calculus.
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Local Observation System of Algebraic Equations.

For k€I ,(N), applying the lagged adaptive expectation
process from Definitions 3-7, and using (8) and (31), a local
observation/measurement process is formulated at t, as one
or more algebraic functions of m,-local restriction sequence

of the overall finite sample sequence {y,},__," to a subpar-
tition P, in Definition 2 as:
p k-1 (33)
a m_k Vi1 —
il i=km,
L Z lb [Ay; |./. = *
my i—om 1 k=1
* — 2 |ar
P Vi1 |AL
i=k—my
1 k=1 N
- -
P ik g
k=1
Ay | 5] = 1 &
m £ - T E [adngy:)) -
My
i=k—my,
1 [AQny) | 70 P 1 01,
k=1
A E [(Ada(y)) -
iy [‘:k = if my is small
B Ay | 52D 1 5]
A2
Gk = 1 )
(my — AT, Z
i=k—my . .
} if my is large.
E [(A(n(y:) -
A 1 72D 1 £

From the third equatlon in (33), it follows that the average
volatility square o, k is given by

2
e G
Mk T AL

where smk’k2 is the local sample variance statistics for vola-
tility at t, in the context of x(t,)=A(In(y,)).

We define
Fi@ [Ay | 7,1 BIAGy) | £, L e, ) = 39
k-1 k-1 k-1
Flay 17,1 “ Yie1 Vi
i=k—my —a i=k—my, i=k—my, A
my my my
BE Ay 1A, Blay) | F, a0 =
= 1~ r2n K
o > BlAy) 7] -alu- o > v Az+%.
i=k—my i=k—my
Then, we have
{F1 Elay | 5,1 E[A(ny) | £l a ) =0, (36)
F(EAy | £, ] BAly) | £ a0 =0
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Let F={F,, F,}. The determinant of the Jacobian matrix of
F is given by

k-1 = 2 (€)
JF(a, p) = - — o] 2 v 80t =
i=k—m, i=k—my,

—avar(y(t- )5, JAD® %0,

provided that a=0 or the sequence {x(t,_,)},__,,," is neither
zero nor a constant. This fulfils the hypothesis of Theorem
2.

Thus, by the application of Theorem 2 (Implicit Function
Theorem), we conclude that for every non-constant m;-local
sequence {x(tl.)}i:k_mkk‘l, there exists a unique solution of
system of algebraic equations (36), 4,, ; and 1, , as a point
estimates of a and p, respectively.

We also note that the estimated values of a and p change
at each time t,. For instance, at time t,=0 and the given

F | measurable discrete time process V_,..;, V_,uas - - s Y_15
(33) reduces to
12 p 0 12 R (38)
m_o.z Ay; = am_o_z yi—l—m_o.z yii1|At,
i£mg i==mg i==mg
12 1 S0
m—o_z Allny) = alu- m—o_z yiet |Ar = 3=,
o o,
2
S
N _ "m0
T T Ar

10

20

30

The initial solution of algebraic equations (38) at time t, .

is given by
0 & (39)
0
— 3 Adlny) + —5— m_oz yit| -
i=Tmg i=<mg
0
m_o.z Ay
N i=Tmg
— S i z
e ;:7m0y 1 o 7m0y 1
1 ZO: Al + 0.0 mo-0 ZO:
AT )+ 3+ | 20
R i i=Tmg
Himg 0 tmg 0
2
S
A2 _ my,0
Tmg.0 = Ar

At time t,=1 and the given F , measurable discrete time
Process V_,, Y_,uqs - - 5 Y15 Yo, (33) reduces to

12 p 0 & 40)
— Ay, = a|— pp— 2 | lAr,
P HZ;n Vi a P '—; Yi-1 P '—; Yic1
“1omy i=1-my i=1my

1 J R L
. Z Allny;) = a|lp-— Z Yi-1 AI—T,

L iom L iiom,
A2 _ 5'2"14
Giny 1 = A

50

55
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The solution of algebraic equations (40) is given by

R g1 @n
— A(lny) + == || — i1 —
ml_z (Iny;) 3 ml_Zyl
i=omy i=1omy
>
— Ay
N M1,
iy, 1
1 1 ) A 2
— | X v |Ar
my |i=i-m my \i=i-m,
0 . &
—— > Allny) + e+ —2 i
mIIZ: Iy + 55+ T _lzy‘
R =15 i=Tomy
Fin >
vl Ay 1
A2 S'Z"LI
Ty 1 At
Likewise, for k=2, we have
1 1 5'2ﬂ 1 1 42)
[— Z A(lny;)+£][— Z Vi1 | =
my 2 my .
i=2-m, i=2-m,
L
m_z. Z Ay
. i=2-m,
am
2,2 1 , 1 1 2
— i —| X v |Ar
ma |i=2-m, ma \i=2-m,
1 , 4
AT Z Alny;) + A . Z Vi1
. i=2— i=2-my
Mo Py >
2 Gmy,2
A2 _ 5,2,‘272
Tmp2 = T

Hence, from (33) and applying the principle of math-
ematical induction, we have

|kl S;Zn,(,k |kl 43)
[m_kikz;nk A(lny;) + T][m_"‘kz;nk yil] -
=
) m_ki:kz—;nk Ay;
Gk 1] et 1 &1 2
SRR R
k-1 P =
m—[‘:kim A(lnyt)'*'w e [[Z;nk ytl]
ﬁmk,k = am,“k >
>
O = L
Remark 10.

We note that without loss in generality, the discrete time
data set {y_, . i€1,(r-1)} is assumed to be close to the true
values of the solution process of the continuous-time
dynamic process. This assumption is feasible in view of the
uniqueness and continuous dependence of solution process
of stochastic functional or ordinary differential equation

with respect to the initial data.
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Remark 11.
If the sample {y,}, ;_,,_,*~" is a constant sequence, then

it follows from (43) and the fact that A(ln y;)=0 and s,,, =0,
that

k=1

1
- — i1
Hoy mk.g Yi-1
i=k—my,

Hence, it follows from (33) that &, ,=0.

Remark 12.

The estimated parameters a, j1, and o~ depend upon the
time at which data point is drawn. This is expected because
of the nonlinearity of the dynamic model together with
environmental stochastic perturbations generate non station-
ary solution process. Using this locally estimated parameters
of the continuous-time dynamic system, we can find the
average of these local parameters over the entire size of data
set as follows:

N 44
a = %; a,ﬂw
L&
"= ﬁ;ﬂm;,i
— 1Y
7= N

Here, a, 11, and o are referred to as aggregated parameter
estimates of a, 11, and o over the given entire finite interval
of time, respectively.

Remark 13.

The DTIDMLSMVSP and its transformation of data are
utilized in (33), (34), (35), (43), and (44) for updating
statistic coefficients of equations in (30). This accelerates the
computation process. Furthermore, the DTIDMLSMVSP
plays a significant role in the local discretization and model
validation errors.

Mlustration 2: Dynamic Model for U.S. Treasury Bill
Interest Rate and the USD-EUR Exchange Rate.

As noted above, at reference numeral 204 in FIG. 2, the
process 200 includes developing a stochastic model of a
continuous time dynamic process. As another example of
this, the scheme presented above can be applied for esti-
mating parameters of a continuous-time model for U.S.
Treasury Bill Interest Rate and USD-EUR Exchange Rate
processes. By employing dynamic modeling process, a
continuous time dynamic model of interest rate process
under random environmental perturbations can be described
by

dy=(By+uy®)di+ay* dW () W (10)=vo, 45)

where 3, u, 8, o, YER; y(t, t,, y,) is adapted, non-
anticipating solution process with respect to F,, the initial
process y, is F,. measurable and independent of {W@),
t€[ty, T] }, and W(t) is a standard Wiener process defined on
a filtered probability space (Q, F,(F),0.F ).
Transformation of Stochastic Differential Equation (45).

As part of the conceptual aspects of generating the
DTIDMLSMVSP, at reference numeral 206 in FIG. 2, the
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cretization scheme. As another example of this, for (45), the
Lyapunov functions V, (t,y)=Y4y> and V,(t,y)=V4y" as in (13)
are considered. The Ito-differentials of V,, for i=1, 2, are
given by

1 46
dv, = [y(ﬁy )+ Eo'zyzy dr + oy Law )

dVy = [ (By + uy°) + oy 1dr + oy R dw

The Euler-Type Numerical Schemes for (45) and (46)).

Following the approach in Section 3.5, the Fuler dis-
cretized scheme (Delta=1) for (45) is defined by

Ayi = By + i) + oyl AWE) @7
1 1

EA(y;Z) = Y By + i)+ 50'2}1;231 +oylaw;

1

380D = YL By i+ Py + oyl AW

Generalized Moment Equations.

As another part of the conceptual aspects of generating
the DTIDMLSMVSP, at reference numeral 206 in FIG. 2,
the process 200 can also include developing a system of
generalized method of moments equations from the stochas-
tic model of the discrete time dynamic process. As another
example of this, applying conditional expectation to (47)
with respect to F ,_,,

B [Ay; | Fio1] = By +uyl “48)
%Jl‘ﬁ AGH | Fit] = B+ + %Uzy;zﬂ

%Jl‘ﬁ AGHIFia] = Byl +miT+ %Uzy;szl :
Bl@ay - B Ay | Fa)? 1Fa] = oy,

%M [AODE [AGHD | Fi] = B

Basis for Lagged Adaptive Discrete Time Expectation
Process.

From (48), (47) reduces to

Ay; = WAy [Fial+ oyl AW®) “9)
1 1

5807 = FEBODIT]+ oyl aw

1 1

3807 = ZEBAGHIF]+ oyl Taw;

Remark 14. (Orthogonality Condition Vector for (45) and
(46)).

Again, imitating Remarks 7, 8 and 9 in the context of (45),

process 200 can include transforming the stochastic model 65 (46), (47), (43), and (49), the orthogonality condition vector

of the continuous time dynamic process into a stochastic
model of a discrete time dynamic process utilizing a dis-

with respect to the continuous-time stochastic dynamic
model (45) is
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H(tiy, y(@), y(51)) = G0
Ay(t;) = (By(timy) + 1y’ (o)A
1 2 2
FAG(E) = LGP @1 A
1 3 3
3807 @) - L @ A :
) = By(aio) + (- ))AG) = 2y (1A,
1 2
(QA(yz @) - uyz(nfl))m;] -ty DA
where
2 6 1 2.2
LOP ()AL = (y(zzfl)(ﬁy(ml) + )+ 507 V(zifn]m‘
and
Ly (Goy))AL = (P (By() + (o) + a2y o)A,

Further, unlike other orthogonality condition vectors, this
orthogonality condition vector is based on the discretization
scheme (47) associated with nonlinear continuous-time sto-
chastic differential equations (45) and (46).

Local Observation System of Algebraic Equations.

Following the argument used in (33), for k&€I,(N), apply-
ing the lagged adaptive expectation process from Definitions
3-7, and using (8) and (48), we formulate a local observa-
tion/measurement process at t, as a algebraic functions of
m,-local functions of restriction of the overall finite sample
sequence {y,},__," to subpartition P in Definition 2, as

S| el S
e W
1 k-1 FA i=k—my, i=k—my,
P Ay | #4] —ﬁ’—mk e
ik,
k=1 k-1
L5 yi i
T EAGDIF, ik i—k—my
ik, = - +u o
[(A% [Ayt|’l ]) |:’L;-1]]
k=1 k-1
1 v ¥t
1 =k, =k,
= ) [sEmonimL e = g
o & i
k-1
2
Z yi;yl
S N
— Eray-Eiay 17, )" 17, ]= 0 —r,
my my
ik,
2y+2
5
S NE=9
T 2 BlOODH - BAGHY | 7] = ?
my
i=kmy,

Following the approach discussed in Section 5, the solu-
tion of 0, ; is given by
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Sk (62

k=1

L Z Pk
my

i=k—

Tk =

and v, , satisfies the following nonlinear algebraic equation

k=1
2y +2 B £52

2
Sy k Yi-1
i=k—my

k-1 Dk 53

Yi-1 =4,
i=k—my,

75mk

Where S, i and Sk 2 denotes the local moving variance of
y, and A(yl ) respectlvely

To solve for the parameters [ and y, and d, we define the
conditional moment functions

Fy= Fi(E Ay |Fiod, B A | Fial BlAG)® | FiaD, j=1,2,3
as
k-1 k-1 54
Yi-1 Z y?—l
1 < i=k—my, i=k—my,
Fy=— WAy | Fia]- 8 —f
(i & my
%
1 k-1
S 2 WEAGDIFi, B Ay -
i=k—my
F,= k-1 k=1
y‘_271 6+1
B [y | Fia P T ] - foe
Vil Fi-1 i-1 e H P
1 &
— 3 [sEBoniT - -
“ ik
F3 = k-1 k=1
Z y371 6+2
i=k—my i=k—my,
B Pl —

Fi=0 (55)
Fa=0
F3=0

Let F={F,, F,, F;}. The determinant of the Jacobian
matrix of F is given by
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JF(B, u, 6) = (56)
-1 -1 1
Yie1 W (Inyi)y? )
iy, iy, i<y
| -1 1 -1
—— det ¥ il (nye0)y |0,
| o iy, i<k
-1 1 -1
v Wit (Iny;_)yiE
iy, iy, i<k

provided 8=1 and the sequence {y(t,_;)},—4_,, " is neither
zero nor a constant sequence. Thus, by the application of
Theorem 2 (Implicit Function Theorem), we conclude that
for every non-constant m;-local sequence {y(ti)}i:k_mkk‘l,
d=1, there exist a solution of system of algebraic equations
(55 Bmk’k, ﬁ.mk’k_ 1s Smk,k as a point estimates of f§ and p, and
d respectively.

The solution of system of algebraic equations (55) is
given by

-1 il (57)
1
2
m_k Ay Vi1 —
[
k-1 k-1
111 Ar? 5
3o Z OF) =Sy & Z Yi-1
N i=k—my, i=k—my,
oy b = -1 -1
Oy o =L 146, k=1
§ k iy :
— Yi-1 2 Y- Yi-1 2 Vit
ny i=k—my, i=k—my,
i=k—my, i=k—my,
k-1 k-1
A N Sy ke
Vi = gk Vi1
. i=k—my, i=k—my,
ﬁ"‘k"‘ k-1
2 Yiml
i=k—my,

k-1 k-1
1 s gk i k1 (58)
o Z Alyi) - Yic1
3mk my
i=k—my, i=k—my,
k-1 k-1
3 S+2
Yie1 Z Yi-1
i=k—my, i=k—my,
B —u =0
my my

The parameters of continuous-time dynamic process
described by (45) are time-varying functions. This justifies
the modifications/correctness needed for the development of
continuous-time models of dynamic processes.

Remark 15.

The illustrations presented above exhibit the important
features described in Remark 8 of the theoretical parameter
estimation procedure. The illustrations further clearly dif-
ferentiate the It6-Doob differential formula based formation
of orthogonality condition vectors in Remarks 9 and 14 and
the algebraic manipulation and discretized scheme using the
econometric specification based orthogonality condition
vectors.

Remark 16. The DTIDMLSMVSP and its transformation
of data are utilized in (51), (52), (53), (57), and (58) for
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updating statistic coeflicient of equations in (45). Again, this
accelerates the computation process. Furthermore, the
DTIDMLSMVSP plays a significant role in the local dis-
cretization and model validation errors.

4. Computational Algorithm

In this section, the computational, data organizational,
and simulation schemes are outlined. The ideas of iterative
data process and data simulation process time schedules in
relation with the real time data observation/collection sched-
ule are also introduced. For the computational estimation of
continuous time stochastic dynamic system state and param-
eters, it is important to determine an admissible set of local
conditional sample average and sample variance, in particu-
lar, the size of local conditional sample in the context of a
partition of time interval [-t, T]. Further, the discrete time
dynamic model of conditional sample mean and sample
variance statistic processes in Section 2 and the theoretical
parameter estimation scheme in Section 3 coupled with the
lagged adaptive expectation process motivate to outline a
computational scheme in a systematic and coherent manner.
A brief conceptual computational scheme and simulation
process summary is described below:

4.1. Coordination of Data Observation, Iterative Process,
and Simulation Schedules

Without loss of generality, we assume that the real data
observation/collection partition schedule P is defined in (2).
Now, we present definitions of iterative process and simu-
lation time schedules.

Definition 8.

The iterative process time schedule in relation with the
real data collection schedule is defined by

IP={F 1 for t,EP},

where F7t=t,_,, and F~" is a forward shift operator.

The simulation time is based on the order p of the time
series model of my,-local conditional sample mean and
variance processes in Lemma 1 in Section 2.

Definition 9.

The simulation process time schedule in relation with the
real data observation schedule is defined by

(59

{{F’t;: for; eP), ifp <r (60)
SP=

{FPri: for ; e P}, if p>r

Remark 17.

The initial times of iterative and simulation processes are
equal to the real data times t, and t,, respectively. Further,
iterative and simulation process times in (59) and (60),
respectively, justify Remark 10. In short, t, is the scheduled
time clock for the collection of the i th observation of the
state of the system under investigation. The iterative process
and simulation process times are t,,, and t,, ,, respectively.
4.2. Computational Parameter Estimation Scheme

For the conceptual computational dynamic system param-
eter estimation, a few concepts are introduced below, includ-
ing local admissible sample/data observation size, m;-local
admissible conditional finite sequence at t,&SP, and local
finite sequence of parameter estimates at t,.

Referring back to the drawings, as part of the computa-
tional aspects of generating the DTIDMLSMVSP at refer-
ence numeral 206 (FIG. 2), in FIG. 3 the process includes
selecting at least one partition P in the time interval [—t,0]
of the discrete time data set [T, T] as past state information
of a continuous time dynamic process at reference numeral
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302. As described herein, multiple partitions P in the time
interval [—T,0] can be selected in the iterative, nested pro-
cess.

Definition 10.

For each k€1, (N), we define local admissible sample/data
observation size m,, at t, as m,E0S,, where

Lr+k=-1), ifp <vr,

(61)
oS, = . .
hip+k=-1),ifp >r,

Further, OS,, is referred as the local admissible set of lagged
sample/data observation size at t,. In other words, at refer-
ence numeral 304 in FIG. 3, at each time point in the
partition P, the process includes selecting an m,-point sub-
partition P, of the partition P, the m,-point sub-partition
having a local admissible lagged sample observation size
OS,,. based on p, r, and a sub-partition time observation index
size k.

Definition 11.

For each admissible m,&0S, in Definition 10, an m,-local
admissible lagged-adapted finite restriction sequence of con-
ditional sample/data observation at t, to subpartition P, of P

in Definition 3 is defined by {  [y,I % ]},_,_,,"". Further,
an m,-class of admissible lagged-adapted finite sequences of
conditional sample/data observation of size m, at t, is
defined by
AS =B ) T o mE0s)={ B 1y
F

1 ]}i:k—mk}Fl bmcosy (62)

In other words, at reference numeral 306 in FIG. 3, for
each m,-point in each sub-partition P,, the process includes
selecting an m,-local moving sequence in the sub-partition
to gather an my-class of admissible restricted finite
sequences.

Without loss of generality, in the case of energy com-
modity model, for example, for each m,E0S,, the corre-
sponding my,-local admissible adapted finite sequence of

conditional sample/data observation at [P
{B [y 11}k, " is found. Using this sequence and
(43), 4,, 1> W, 4 and Gmk,kz are computed. This leads to a
local admissible finite sequence of parameter estimates at t,

defined on OS, as follows: {(4,, s, ﬁmk’k, 6mk,k2)}mkgosk:

A 2 r+k—
{(amak’ l‘j'r;tj;_f;f_ 1 Grfzk,k )}mk62 * or (amk,ks W, oo

O M mges . It is denoted by
O R (RN Ty S (63)

4.3. Conceptual Computation of State Simulation
Scheme:

For the development of a conceptual computational
scheme, the method of induction can be employed. The
presented simulation scheme is based on the idea of lagged
adaptive expectation process. An autocorrelation function
(ACF) analysis performed on smk’k2 suggests that the discrete
time interconnected dynamic model of local conditional
sample mean and sample variance statistic in (8) is of order
p=2. In view of this, the initial data is identified. Referring
to FIG. 3, at reference numeral 308, the process includes, for
each of the plurality of admissible parameter estimates,
calculating a state value of the stochastic model of the
continuous time dynamic process to gather a plurality of
state values of the stochastic model of the continuous time
dynamic process. For example, it is possible to begin with a
given set of initial data y,, {8, 0>} cosy {8m 1" b cos
and {8,, .’} eos, Lety, ; be a simulated value of
E [yl F_ ] at time t, corresponding to a local admissible
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lagged-adapted finite sequences of conditional sample/data
observation of size m; at t, { B [y, % 1}, 'EAS, in
(62). This simulated value is derived from the discretized
Euler scheme (29) by

5. S5, A4 ”~ 3
Yol Yoy et g de1 Wy 1Yy ie-1”)

Vg bl NHO e Vg et DWW i (64)
Further, let
{)’mk,ks}mkeosk (65)

be a my-local admissible sequence of simulated values
corresponding to my-class .AS, of local admissible lagged-
adapted finite sequences of conditional sample/data obser-
vation of size m, at t, in (62). That is, at reference numeral
208 in FIG. 2, the process 200 can include calculating a
plurality of m,-local admissible parameter estimates for the
stochastic model of the continuous time dynamic process
using the DTIDMLSMVSP.

4.4. Mean-Square Sub-Optimal Procedure

Using the mj-local admissible parameter estimates, at
reference numeral 210 in FIG. 2, the process 200 can include
calculating a state value of the stochastic model of the
continuous time dynamic process for each of the plurality of
admissible parameter estimates, to gather a plurality of state
values of the stochastic model of the continuous time
dynamic process. Further, at reference numeral 312 in FIG.
2, the process 200 includes determining an optimal admis-
sible parameter estimate among the plurality of admissible
parameter estimates that results in a minimum error among
the plurality of state values. For example, to find the best
estimate of [ [y,| F_, ] at time t, from a m,-local admissible
finite sequence {y,,, i} cos, of a simulated value of { & [y,|
F.. 1}, we need to compute a local admissible finite
sequence of quadratic mean square error corresponding to
Y it mpcos,: The quadratic mean square error is defined
below.

Definition 12.

The quadratic mean square error of E [y,| F,_ ] relative to
each member of the term of local admissible sequence
i bmecos, of simulated values is defined by

BB 0l Tt oy

For any arbitrary small positive number e and for each
time t,, to find a best estimate from the m,-local admissible
sequence {ymk’ks}mkeosk of simulated values, the following
e-sub-optimal admissible subset of set of m,-size local
admissible lagged sample size m, at t, (OS,) is defined as

(66)

M, ={M32E oy <€ TOr m; E08,}. (67)

There are three different cases that determine the e-best
sub-optimal sample size M, at time t,.

Case 1: If mEM, gives the minimum, then m, is
recorded as .

Case 2: If more than one value of mkEJ\/lk , then the
largest of such m;’s is recorded as M.
Case 3: If condition (67) is not met at time t;, (e.g.,

M, =), then the value of m, where the minimum
rfnlli(nEmk,k,yk

is attained, is recorded as th,. The e-best sub-optimal esti-
mates of the parameters 4, s, ﬁ.mk’k and (Ajmk,kz at the e-best
sub-optimal sample size th, are also recorded as a,, 4, 115 4
and G,ﬁk,kz, respectively. It should be appreciated that the
three cases described above present only one example way
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that a minimum error can be determined, and other ways are
within the scope of the embodiments.

At reference numeral 214, the process 200 further
includes identifying an optimal m,-local moving sequence
My, among the my-class of admissible restricted finite
sequences based on the minimum error. For example, the
simulated value y,, ,* at time t, with fh, is now recorded as
the e-best sub-optimal state estimate for E [y,| 7, | ] at time
t,. This e-best sub-optimal simulated value of E [y,| F,_ | at
time t, is denoted by y; .’

In addition to comparative statements in Sections 2
together with Remarks 7, 8, 9, 13, 14, 15, and 16, the
following comparisons between the LLGMM and the exist-
ing OCBGMM are noted: The LLGMM approach is focused
on parameter and state estimation problems at each data
collection/observation time t, using the local lagged adap-
tive expectation process. LLGMM is discrete time dynamic
process. On the other hand, the OCBGMM is centered on the
state and parameter estimates using the entire data that is to
the left of the final data collection time T,~T. Implied
weakness in forecasting, as seen in the next section, is
explicitly shown with the OCBGMM approach and the
ensuing results.

It is noted that Remark 8 exhibits the interactions/inter-
dependence between the first three components of LLGMM,
including (1) the development of the stochastic model for
continuous-time dynamic process, (2) the development of
the discrete time interconnected dynamic model for statistic
process, and (3) using the Euler-type discretized scheme for
nonlinear and non-stationary system of stochastic differen-
tial equations and their interactions. On the other hand, the
OCBGMM is partially connected. From the development of
the computational algorithm in Section 4, the interdepen-
dence/interconnectedness of the four remaining components
of the LLGMM, including (4) employing lagged adaptive
expectation process for developing generalized method of
moment equations, (5) introducing conceptual computa-
tional parameter estimation problem, (6) formulating con-
ceptual computational state estimation scheme, and (7)
defining conditional mean square e-sub optimal procedure
are clearly demonstrated. Further, the components above
and the data are directly connected with the original con-
tinuous-time SDE. On the other hand, the OCBGMM is
composed of single size, single sequence, single estimates,
single simulated value, and single error. Hence, the OCB-
GMM is the “single shot approach”. Further, the OCBGMM
is highly dependent on its second component rather than the
first component.

As discussed above, the LLGMM is a discrete time
dynamic system composed of seven interactive interdepen-
dent components. On the other hand, the OCBGMM is static
dynamic process of five almost isolated components. Fur-
thermore, the LLGMM is a “two scale hierarchic” quadratic
mean-square optimization process, but the optimization pro-
cess of OCBGMM is “single-shot”. Further, the LLGMM
performs in discrete time but operates like the original
continuous-time dynamic process. As further shown below,
the performance of the LLGMM approach is superior to the
OCBGMM and IRGMM approaches.

The LLGMM does not require a large size data set. In
addition, as k increases, it generates a larger size of lagged
adapted data set, and thereby it further stabilizes the state
and parameter estimation procedure with finite size data set,
on the other hand the OCBGMM does not have this flex-
ibility. The local adaptive process component of LLGMM
generates conceptual finite chain of discrete time admissible
sets/sub-data. The OCBGMM does not possess this feature.
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The LLGMM generates a finite computational chain. The
OCBGMM does not possess this feature. A further com-
parative summary analysis is described in Sections 6 and 7
in context of conceptual, computational, and statistical set-
tings and exhibiting the role, scope, and performance of the
LLGMM.

Remark 19.

The choice of p=2 can be determined based on the
statistical procedure known as the Autocorrelation Function
Analysis (AFA).

Tustration 1: Application of Conceptual Computational
Algorithm to Energy Commodity Data Set.

As one example, the conceptual computational algorithm
is applied to the real time daily Henry Hub Natural gas data
set for the period 01/04/2000-09/30/2004, the daily crude oil
data set for the period 01/07/1997-06/02/2008, the daily coal
data set for the period of 01/03/2000-10/25/2013, and the
weekly ethanol data set for the period of 03/24/2005-09/26/
2013. The descriptive statistics of data for daily Henry Hub
Natural gas data set for the period 01/04/2000-09/30/2004,
the daily crude oil data set for the period 01/07/1997-06/
02/2008, the daily coal data set for the period of 01/03/
2000-10/25/2013, and the weekly ethanol data set for the
period of 03/24/2005-09/26/2013, are recorded in the Table
1 below.

TABLE 1

Descritive Statistics

Data Set Y N Y Std(Y)

Nat. Gas 1184 (days) 4.5504 1.5090)
Crude Oil 4165 (days) 54.0093 31.0248
Coal 3470 (days) 27.1441 17.8394
Ethanol 438 (weeks) 2.1391 0.4455

Sample size, mean, and standard deviation of energy
commodities data are computed. N represents the sample
size of corresponding data set.

Graphical, Simulation and Statistical Results—Case 1.

Three cases are considered for the initial delay r and show
that, as r increases, the root mean square error reduces
significantly. Here, we pick r=5, At=1, e=0.001, and p=2, the
e-best sub-optimal estimates of parameters a, p and o® at
each real data times are exhibited in Table 2.

Table 2 shows the e-best sub-optimal local admissible
sample size th, and the parameters a,;, ., G,ﬁk,kz, and p,; ;. for
four price energy commodity data at time t,. This was based
on p=r, and the initial real data time-delay r=5. We further
note that the range of the e-best sub-optimal local admissible
sample size m, for any time t,&[5,251U[1145,1165], t,€[5,
251U[2440,2460], t,£[5,25]1U[2865,2885], 1,£[5,25]U[375,
395] for natural gas, crude oil, coal and ethanol data,
respectively as

2=ify=5. (68)
TABLE 2
e 1y L Wy se iy e
Natural gas

5 3 0.0001 2.2231 0.6011

6 3 0.0002 2.2160 0.6122

7 3 0.0002 2.2513 0.6087

8 4 0.0002 2.2494 0.1628

9 4 0.0002 2.2658 -0.1497
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TABLE 2-continued TABLE 2-continued
t it 02,;%1{ Wit gy ke t iy 02,;%1{ Wit gy ke
10 4 0.0003 2.1371 0.1968 2454 4 0.0003 59.978 0.0193
11 4 0.0004 2.5071 -0.2781 5 2455 5 0.0003 59.957 0.0199
12 4 0.0000 2.2550 0.3545 2456 4 0.0005 59.849 0.0163
13 4 0.0005 25122 0.6246 2457 5 0.0004 59.441 0.0095
14 4 0.0015 2.4850 0.5604 2458 4 0.0003 58.479 0.0103
15 3 0.0007 25378 0.4846 2459 4 0.0002 57.917 0.0158
16 3 0.0007 25715 0.7737 2460 4 0.0005 56.122 0.0062
17 5 0.0011 2.5688 0.5984 10 Coal
18 4 0.0010 2.5831 0.5423
19 5 0.0007 2.5893 0.4256 5 3 0.0001 11.5534 0.0142
20 5 0.0006 2.6100 0.0683 6 3 0.0000 11.2529 0.4109
21 5 0.0007 23171 0.2893 7 3 0.0001 9.9161 0.0165
22 4 0.0015 2.7043 0.6983 8 3 0.0002 11.4663 -0.0403
23 3 0.0009 2.6590 0.8316 15 9 3 0.0005 10.5922 -0.0843
24 3 0.0010 2.6917 0.1822 10 4 0.0009 8.9379 0.0714
25 4 0.0017 25620 0.2201 11 4 0.0023 8.9051 0.1784
12 3 0.0015 9.0169 0.0855
.. .. .. . .. 13 3 0.0020 8.6231 0.0739
1145 4 0.0003 5.7203 0.1225 14 2 0.0001 10.0100 0.0564
1146 3 0.0003 5.6651 0.2031 15 5 0.0067 9.5281 0.0741
1147 3 0.0002 5.6601 0.3133 20 16 4 0.0058 6.1821 0.0694
1148 5 0.0006 5.6909 0.216 17 4 0.0015 8.8087 0.0404
1149 3 0.0003 5.6982 0.2404 18 4 0.0035 9.0681 0.0652
1150 5 0.0006 5.6108 0.1362 19 3 0.0040 9.0752 0.1527
1151 5 0.0006 5.61 0.1089 20 3 0.0049 9.0801 0.1405
1152 5 0.0006 5.4383 0.06272 21 4 0.0043 8.9898 0.0946
1153 4 0.0003 5.4307 0.1755 25 2 5 0.0054 8.9148 0.0036
1154 5 0.0005 5.4155 0.1569 23 4 0.0018 8.6771 0.0884
1155 3 0.0004 5.3742 -2.275 24 5 0.0035 8.7586 0.0985
1156 5 0.0006 5.4405 0.1392 25 5 0.0006 8.4779 -0.1155
1157 4 0.0003 5.4423 0.2339
1158 4 0.0008 5.4276 0.1712 .. .. .. .. .
1159 5 0.0006 5.3958 0.1309 30 2865 3 0.001 37.657 0.0397
1160 3 0.0002 5.3557 -0.1882 2866 3 0.0006 37.73 0.0468
1161 3 0.0003 5.5081 -0.0696 2867 5 0.0014 39.6 0.0087
1162 4 0.0003 4.908 0.0381 2868 3 0.0006 38.769 0.0331
1163 4 0.0002 5.0635 0.1038 2869 5 0.0019 38.272 0.0245
1164 3 0.0002 5.082 0 2870 3 0.0014 37.627 0.0234
1165 4 0.0002 5.1099 -0.2756 35 2871 3 0.0004 37.753 -0.243
Crude oil 2872 4 0.0008 36.11 0.0101
2873 5 0.0015 33.823 0.0042
5 3 0.0001 24.4100 0.0321 2874 4 0.0009 35.221 0.0183
6 3 0.0002 24.7165 0.0341 2875 5 0.0011 33.381 0.0084
7 4 0.0003 25.5946 0.0537 2876 4 0.0007 34.6 0.0228
8 5 0.0006 25.5550 0.0467 2877 3 0.001 34.463 0.0441
9 4 0.0006 25.5695 0.0499 40 2878 5 0.0009 34.583 0.0334
10 4 0.0004 25.4787 0.0221 2879 5 0.0008 34.63 0.0443
11 3 0.0001 25.7742 0.0100 2880 4 0.0005 35.221 0.0207
12 3 0.0002 26.9477 -0.0157 2881 5 0.0007 35.249 0.0196
13 3 0.0001 25.8786 -0.0112 2882 3 0.0003 35.583 0.1566
14 5 0.0005 22.1834 0.0049 2883 4 0.0004 36.036 0.0224
15 5 0.0004 23.5425 0.0010 45 2884 3 0.0005 36.276 0.0373
16 4 0.0002 23.8500 0.0000 2885 4 0.0004 36.195 0.0374
17 4 0.0002 23.8486 0.0502 Ethanol
18 5 0.0004 23.2913 -0.0113
19 3 0.0000 244715 0.1282 5 2 0.0002 1.1767 0.5831
20 3 0.0004 24.3878 0.0415 6 5 0.0008 1.1717 0.5159
21 5 0.0003 24.3336 0.2067 50 7 4 0.0007 1.1707 1.4925
22 4 0.0002 23.9993 0.0200 8 5 0.0008 1.1713 1.4791
23 4 0.0001 24.1909 -0.0894 9 5 0.0006 1.1709 2.1406
24 3 0.0002 25.0812 -0.0252 10 4 0.0004 1.1900 0.8621
25 3 0.0002 22.2942 0.0064 11 3 0.0025 1.1900 03719
12 3 0.0004 1.2188 0.5368
.. .. .. . .. 55 13 5 0.0004 1.1120 12.2917
2440 5 0.0003 58.431 0.0141 14 5 0.0007 1.1669 -0.9289
2441 5 0.0003 57.205 0.0084 15 5 0.0014 0.7492 -0.0879
2442 4 0.0001 57.554 0.0165 16 5 0.0011 1.7968 0.3087
2443 5 0.0003 57.871 0.0168 17 5 0.0002 1.8484 -0.1901
2444 5 0.0003 60.441 0.0023 18 5 0.0003 1.1650 -0.1611
2445 5 0.0003 38.954 -0.0006 19 5 0.0022 1.8943 0.1502
2446 4 0.0006 59.659 0.0165 60 20 5 0.0047 1.8144 0.2073
2447 4 0.001 59.548 0.016 21 4 0.001 1.8400 0.0464
2448 4 0.0007 58.964 0.0115 2 3 0.0020 3.7350 0.1628
2449 4 0.0005 58.415 0.0166 23 3 0.0008 1.9905 0.1599
2450 5 0.0003 58.61 0.0193 24 3 0.0018 1.9006 ~3.4926
2451 4 0.0004 59.244 0.0091 25 4 0.0234 24827 0.1837
2452 5 0.0003 58.955 0.0143 65
2453 4 0.0004 59.508 0.0179
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TABLE 2-continued

t it 02,;%1{ Wit gy ke
375 3 0.0008 2.1456 1.1005
376 4 0.0012 2.0689 0.2666
377 3 0.0009 2.0538 0.4339
378 3 0.0008 2.054 0.7726
379 4 0.0007 2.0551 0.7588
380 3 0.0003 2.0692 4.5252
381 5 0.0021 1.995 -0.4407
382 5 0.0025 1.3252 -0.048
383 5 0.0023 0.82891 -0.04
384 4 0.0025 2.5937 0.3073
385 3 0.0064 2.6054 0.6097
386 5 0.0044 2.5947 0.4157
387 3 0.0035 2.595 0.354
388 3 0.0018 2.6054 0.6561
389 5 0.0043 2.5992 0.3862
390 3 0.0009 2.5812 0.3334
391 4 0.0013 2.6299 -0.3594
392 4 0.0013 2.6776 -0.2827
393 4 0.0011 1.5114 0.0394
394 3 0.0006 2.2927 0.5982
395 5 0.0035 2.3275 0.3191

Remark 20.

From (68), the following conclusions can be drawn:

(a) From (61) and Definition 10 (OS,), at teach time t, for
the four energy price data sets, the e-best sub-optimal
local admissible sample size m; is attained on the
subset {2, 3, 4, 5} of (0S,). Hence, the e-best sub-
optimal local state and parameter estimates are
obtained in at most four iterates rather than k+r-1.

(b) The basis for the conclusion (a) is due to the fact that
the e-best sub-optimization process described in Sub-
sections 4.3 and 4.4 stabilize the local state and param-
eter estimations at each time t,.

(c) From (a) and (b), we further remark that, in practice,
the entire local lagged admissible set OS, of size m, at
time t, is not fully utilized. In fact, for any m, in OS,
and m,>my, such that as m, approached to k+r-1, the
corresponding state and parameters relative to m,
approach to the e-best sub-optimal local state and
parameter estimates relative to the e-best sub-optimal
local admissible sample size at time t,. This is not
surprising because of the nature of the state hereditary
process, that is, as the size of the time-delay m,
increases, the influence of the past state history
decreases.

(d) From (c), we further conclude that the second DTID-
MLSMVSP and the fourth component (local lagged
adaptive process) of the LLGMM are stabilizing
agents. This justifies the introduction of the term con-
ceptual computational state and parameter estimation
scheme. These components play a role of not only the
local e-best suboptimal quadratic error reduction, but
also local error stabilization problem depending on the
choice of e.

(e) The conclusions (a), (b), (¢) and (d) are independent of
a “large” data size and stationary conditions.

Remark 21.

We remark that {p, ,},_.~ and {a,, ,},_,~ are discrete time
€-best sub-optimal simulated random samples generated by
the scheme described at the beginning of Section 4.5.

Remark 22.

We have used the estimated parameters a,; 4 iy, and
O, k in Table 2 to simulate the daily prices of natural gas,
crude oil, coal, and ethanol. Using the computer readable
instructions described herein and the parameters described
in Table 2, we simulate the daily prices of natural gas, crude
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oil, coal, and ethanol. For this purpose, we pick e=0.001; for
each time t,, we estimate the simulated prices y,, ,*.

Among the collected values m,, the value that gives the
minimum &, , . is recorded as ih,. If condition (67) is not
met at time t,, the value of m, where the minimum

minZ,,, ¢
kY

is attained, and is recorded as in,. The e-best sub optlmal
estimates of the parameters 4, p.mk’k and Gmk > at iy, are
alsorecorded as a, 4, I, ,and o, k , and the value of'y,, ,*

at time t,, correspondlng fo By, 8 4 W, i and Oy, kz is also
recorded as the e-best sub- optlmal simulated value Yo Of
V- A detailed algorithm is given in Appendlx D. In Table 3,

the real and LLGMM simulated price values of the energy
commodities: Natural gas, Crude oil, Coal, and Ethanol are
exhibited in columns 2-3, 6-7, 10-11, and 14-15, respec-
tively. The absolute error of each of the energy commoditys
simulated value is shown in columns 4, 8, 12, and 16,
respectively.

TABLE 3

Real, Simulation using LLGMM method, and absolute
error of simulation with starting delay r = 5.

Simulated

Real Y iy |Error]

e Vi (LLGMM) Vi = Yo

Natural gas
5 2.216 2.216 0

6 2.260 2.253 0.007
7 2.244 2.241 0.003
8 2.252 2.249 0.003
9 2.322 2.329 0.007
10 2.383 2.376 0.007
11 2.417 2.417 0.000
12 2.559 2.534 0.025
13 2.485 2.554 0.069
14 2.528 2.525 0.003
15 2.616 2.615 0.001
16 2.523 2.478 0.045
17 2.610 2.638 0.028
18 2.610 2.606 0.004
19 2.610 2.614 0.004
20 2.699 2.726 0.027
21 2.759 2.748 0.011
22 2.659 2.638 0.021
23 2.742 2.737 0.005
24 2.562 2.561 0.001
25 2.495 2.487 0.008
1145 5.712 5.709 0.003
1146 5.588 5.592 0.004
1147 5.693 5.650 0.043
1148 5.791 5.786 0.005
1149 5.614 5.458 0.156
1150 5.442 5.460 0.018
1151 5.533 5.571 0.038
1152 5.378 5.397 0.019
1153 5.373 5.374 0.001
1154 5.382 5.420 0.038
1155 5.507 5.501 0.006
1156 5.552 5.551 0.001
1157 5.310 5.272 0.038
1158 5.338 5.348 0.010
1159 5.298 5.353 0.055
1160 5.189 5.207 0.018
1161 5.082 5.087 0.005
1162 5.082 5.207 0.125
1163 5.082 4.783 0.299
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Real, Simulation using LLGMM method, and absolute

error of simulation with starting delay r = 5.

Simulated
Real Y iy |Error
e Vi (LLGMM) Vi = ¥ gl
1164 4.965 4.849 0.116
1165 4.767 4.733 0.034
Crude oil

5 25.200 25.200 0
6 25.100 25.077 0.023
7 25.950 25.606 0.344
8 25.450 25.494 0.044
9 25.400 25411 0.011
10 25.100 24.981 0.119
11 24.800 24.763 0.037
12 24.400 24.301 0.099
13 23.850 24.862 1.012
14 23.850 23.961 0.111
15 23.850 24.010 0.160
16 23.900 24.071 0.171
17 24.500 24.554 0.054
18 24.800 24.795 0.005
19 24.150 24.165 0.015
20 24.200 23.971 0.229
21 24.000 24.028 0.028
22 23.900 23.886 0.014
23 23.050 23.253 0.203
24 22.300 22.586 0.286
25 22.450 22.418 0.032
2440 57.350 57.298 0.052
2441 56.740 56.650 0.090
2442 57.550 57.613 0.063
2443 59.090 59.152 0.062
2444 60.270 58.926 1.344
2445 60.750 59.675 1.075
2446 58.410 59.408 0.998
2447 58.720 58.917 0.197
2448 58.640 58.502 0.138
2449 57.870 58.721 0.851
2450 59.130 58.985 0.145
2451 60.110 60.087 0.023
2452 58.940 58.858 0.082
2453 59.930 59.390 0.540
2454 61.180 60.283 0.897
2455 59.660 59.939 0.021
2456 58.590 58.49 0.100
2457 58.280 58.624 0.344
2458 58.790 59.188 0.398
2459 56.23 55.442 0.788
2460 55.900 56.055 0.155

Coal

5 10.560 10.560 0
6 10.240 10.436 0.196
7 10.180 10.325 0.145
8 9.560 10.072 0.512
9 8.750 8.338 0.412
10 9.060 9.072 0.012
11 8.880 9.084 0.204
12 9.440 9.581 0.141
13 10.310 9.739 0.571
14 9.810 9.633 0.177
15 9.060 9.197 0.137
16 8.750 8.806 0.056
17 8.820 8.879 0.059
18 9.560 9.326 0.234
19 8.820 8.749 0.071
20 8.820 8.774 0.046
21 8.690 8.867 0.177
22 8.630 8.519 0.111
23 8.690 8.693 0.003
24 8.940 8.952 0.012
25 9.310 9.374 0.064
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Real, Simulation using LLGMM method, and absolute
error of simulation with starting delay r = 5.

Simulated
Real Yty |Error
e Yk (LLGMM) Vi = ¥
2865 29.310 29.065 0.245
2866 28.680 28.619 0.061
2867 26.770 28.408 1.638
2868 27.450 27.480 0.03
2869 27.000 27.250 0.250
2870 26.670 26.544 0.126
2871 26.510 26.497 0.013
2872 26.480 26.463 0.017
2873 25.150 25.781 0.631
2874 25.570 25.615 0.045
2875 25.880 25.948 0.068
2876 25.240 25.451 0.211
2877 25.000 24.649 0.351
2878 25.080 24.984 0.096
2879 25.050 25.158 0.108
2880 25.890 25.835 0.055
2881 25.230 25.211 0.019
2882 25.940 25.727 0.213
2883 25.260 25.347 0.087
2884 25.250 25.276 0.026
2885 26.060 25.660 0.400
Ethanol
1.190 1.190 0
1.150 1.174 0.024
1.180 1.180 0.000
1.160 1.148 0.012
1.190 1.196 0.006
1.190 1.209 0.019
1.225 1.186 0.039
1.220 1.217 0.003
1.290 1.250 0.040
1.410 1.320 0.090
1.470 1.392 0.078
1.530 1.461 0.069
1.630 1.545 0.085
1.7.50 1.743 0.007
1.750 1.858 0.108
1.840 1.886 0.046
1.895 1.916 0.021
1.950 2.034 0.084
1.974 2.033 0.059
2.700 2.011 0.69
2.515 2.332 0.179
2.073 2.019 0.054
2.020 2.003 0.017
2.073 2.094 0.021
2.065 2.076 0.011
2.055 2.061 0.006
2.209 2.169 0.040
2.440 2.208 0.232
2.517 2.220 0.297
2.718 2.362 0.356
2.541 1.687 0.146
2.566 2.607 0.041
2.626 1.549 0.077
2.587 2.606 0.019
2.628 2.624 0 004
2.587 2.556 0.031
2.536 2.546 0.010
2.420 2.425 0.005
2.247 2.245 0.002
2.223 1.196 0.027
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Real, Simulation using LLGMM method, and absolute

error of simulation with starting delay r = 5.

Simulated
Real Y iy |Error
t Vi (LLGMM) Vi = ¥ iyl
2.390 1.381 0.009
2.380 2.398 0.018

Graphical, Simulation and Statistical Results-Case 2.

For a better simulation result, we increase the magnitude
of time delay r. We pick r=10, At=1, €=0.001, and p=2, the
e-best sub-optimal estimates of parameters a, p and o® at
each real data times are exhibited in Table 4.

TABLE 4
Estmates 1, 0%, 4 Ik, z and o, ; for initial delay r = 10.
t it 02,;%1{ Wit e
Natural gas
11 8 0.0003 2.0015 0.1718
12 6 0.0003 2.1346 0.0131
13 7 0.0004 2.5701 0.0630
14 9 0.0007 2.6746 0.0461
15 7 0.0012 2.4415 0.407!
16 3 0.0013 2.5549 0.4621
17 8 0.0015 2.5576 0.1934
18 8 0.0014 2.5628 0.2495
19 7 0.0015 2.5705 0.3522
20 9 0.0011 2.5943 0.2946
21 9 0.0010 2.6947 0.0775
22 9 0.0010 2.6464 0.1883
23 3 0.0009 2.7139 0.6983
24 10 0.0013 2.6421 0.2966
25 9 0.0018 2.6387 0.2382
26 2 0.0015 2.5223 0.6595
27 4 0.0018 2.5464 0.3474
28 3 0.0008 2.5780 0.2807
29 2 0.0011 2.6588 -0.1271
30 7 0.0031 2.5610 0.3718
1145 4 0.0002 5.7205 0.1225
1146 4 0.0005 5.6485 0.0951
1147 4 0.0005 5.6704 0.2152
1148 7 0.0007 5.7158 0.1245
1149 4 0.0004 5.6800 0.2544
1150 6 0.0007 5.6551 0.1455
1151 4 0.0007 5.5648 0.0971
1152 10 0.0026 5.5582 0.0588
1153 5 0.0006 5.4049 0.1000
1154 5 0.0004 5.4155 0.1569
1155 8 0.0010 54718 0.0725
1156 7 0.0007 5.4528 0.1645
1157 8 0.0009 5.4595 0.2011
1158 5 0.0007 5.4185 0.1614
1150 7 0.0008 5.5905 0.1281
1160 9 0.0011 5.5567 0.0975
1161 8 0.0008 4.9559 0.0155
1162 8 0.0007 5.0020 0.0210
1165 7 0.0004 5.0947 0.0752
1164 5 0.0001 4.9554 0.0671
1165 9 0.0009 4.0877 0.0148
Crude oil

11 4 0.0003 24.3532 0.0100
12 4 0.0001 25.8537 -0.0157
13 3 0.0003 25.8786 -0.0152
14 10 0.0010 24.0633 0.0084
15 10 0.0009 22.7352 0.0025
16 4 0.0002 23.8665 0.0423
17 7 0.0005 24.0777 0.0194
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Estmates m, o2,

Ll for initial delay r = 10.

e e O Wy se iy e
18 9 0.0008 24.2210 0.0138
19 7 0.0006 24.1147 0.0268
20 6 0.0004 24.2748 0.0256
21 7 0.0005 24.2175 0.0258
22 4 0.0002 23.9993 0.0317
23 10 0.0008 23.8479 0.0130
24 10 0.0009 24.7657 -0.0087
25 4 0.0001 21.8903 0.0115
26 4 0.0003 22.2871 0.0258
27 10 0.0011 35.7200 -0.0010
28 4 0.0003 22.1582 0.0391
29 6 0.0004 22.2194 0.0401
30 7 0.0005 22.296 0.0394

2440 6 0.0004 58.4990 0.0149
2441 6 0.0004 57.7330 0.0070
2442 8 0.0006 58.1010 0.0086
2443 8 0.0006 58.2670 0.0105
2444 6 0.0004 60.6030 0.0027
2445 6 0.0003 70.6110 0.0005
2446 7 0.0003 58.6010 0.0072
2447 9 0.0009 58.7720 0.0077
2448 4 0.0006 58.9640 0.0115
2449 10 0.0011 58.4730 0.0073
2450 4 0.0003 58.5010 0.0344
2451 3 0.0003 59.6250 0.0077
2452 5 0.0003 58.9550 0.0143
2453 10 0.0014 59.3090 0.0137
2454 10 0.0013 59.4310 0.0108
2455 10 0.0012 59.2480 0.0133
2456 9 0.0010 59.3460 0.0112
2457 6 0.0005 59.2690 0.0106
2458 4 0.0002 58.4790 0.0103
2459 3 0.0004 58.4160 0.0976
2460 10 0.0014 57.0380 0.0026
Coal
11 6 0.0015 8.5931 0.0245
12 10 0.0011 9.1573 0.0208
13 2 0.0029 7.666.3 -0.0520
14 5 0.0053 9.7962 0.0481
15 10 0.0041 9.4047 0.0496
16 5 0.0050 9.4886 0.0694
17 10 0.0048 9.1694 0.0598
18 4 0.0016 9.0681 0.1119
19 4 0.0043 9.0152 0.1527
20 3 0.0039 9.0801 0.1613
21 3 0.0030 8.7421 0.0946
22 8 0.0085 8.8853 0.0944
23 3 0.0010 8.6669 0.1055
24 6 0.0060 8.7592 0.0967
25 7 0.0064 8.8440 0.0908
26 8 0.0067 8.8464 0.0895
27 3 0.0012 9.0667 0.1633
28 8 0.0053 8.9557 0.0539
29 4 0.0007 9.0561 0.1246
30 8 0.0041 8.9685 0.1025
2865 4 0.0001 29.6070 0.0559
2866 6 0.0005 29.5520 0.0215
2867 7 0.0008 29.8620 -0.0251
2868 5 0.0002 27.4.500 0.0255
2869 7 0.0016 26.8240 0.0056
2870 5 0.0010 27.0540 0.0542
2871 6 0.0009 26.7590 0.0182
2872 5 0.0006 26.4540 0.0220
2875 5 0.0004 26.6850 -0.1455
2874 9 0.0025 25.9970 0.0151
2875 5 0.0014 25.5990 0.0552
2876 4 0.0010 25.5580 0.0545
2877 10 0.0027 25.2940 0.0067
2878 6 0.0012 25.5500 0.0591
2879 9 0.0019 25.2960 0.0155
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TABLE 5

Estrnates My, 0%, g 1o, 2 and o, , for initial delay r = 10.

e e O e oy se iy e
2880 9 0.0017 25.4620 0.0264
2881 7 0.0012 25.5400 0.0569
2882 9 0.0018 25.4510 0.0416
2885 7 0.0011 25.5550 0.0445
2884 9 0.0016 25.5400 0.0445
2885 4 0.0005 25.5440 0.0675

Ethanol
11 6 0.0009 1.1830 0.8082
12 6 0.0009 1.2087 0.3843
31 9 0.0013 4.0236 0.0040
14 2 0.0009 1.1073 0.0509
15 9 0.0024 1.0755 -0.1896
16 2 0.0025 2.8800 0.0289
17 9 0.0023 0.9139 -0.1012
18 2 0.0018 0.7387 -0.0826
19 7 0.0017 2.0655 0.0896
20 8 0.0023 2.2742 0.0690
21 7 0.0014 2.4094 0.0554
22 6 0.0029 2.0457 0.1327
23 7 0.0016 2.0441 0.1332
24 9 0.0020 1.3966 -0.2082
25 6 0.0200 2.4981 0.1465
26 7 0.0173 2.3356 0.1927
27 9 0.0143 2.3860 0.1416
28 8 0.0138 2.3919 0.2196
29 7 0.0152 2.4087 0.3983
30 10 0.0106 2.3164 0.2386

375 5 0.0008 2.1469 0.9842

376 4 0.0009 2.0689 0.2666

377 6 0.0011 2.0999 0.2756

378 7 0.0014 2.0924 0.2551

379 10 0.0044 2.0941 0.2867

380 5 0.0007 2.0731 0.8434

381 6 0.0017 2.0214 -0.4677

382 6 0.0024 1.4504 -0.0549

383 6 0.0017 1.6343 -0.0794

384 10 0.0057 2.7780 0.0309

385 8 0.0039 2.7055 0.0750

386 6 0.0018 2.6000 0.3021

387 8 0.0031 2.6118 0.1997

388 6 0.0027 2.6058 0.6130

389 8 0.0035 2.5973 0.4169

390 5 0.0024 2.5947 0.5364

391 5 0.0019 2.6500 -0.2801

392 5 0.0017 2.6321 -0.3394

393 6 0.0020 3.0563 -0.0442

394 9 0.0055 2.4093 0.0868

395 4 0.0027 2.3140 0.4706

Table 4 shows the e-best sub-optimal local admissible
sample size m, and the parameters a,;, ;, 1, ;. and G,ﬁk,kz for
four price energy commodity data at time t,. This was based
on p, r, and the initial real data time delay r=10. We further
note that the range of the e-best sub-optimal local admissible
sample size m, for any time t,&[11, 30]U[1145,1165], t,&
[11,301U[2440, 2460], t,£[11,30]U[2865,2885], and t,&[ 11,
30]U[375,395] for natural gas, crude oil, coal and ethanol
data, respectively, is 2=, <10. Further, all comments that
are made with regard to Table 2 regarding the four energy
commodities remain valid with regard to Table 4.

In Table 5, the real and LLGMM simulated price values
of each of the four energy commodities: Natural gas, Crude
oil, Coal, and Ethanol are exhibited in columns 2-3, 6-7,
10-11, and 14-15, respectively. The absolute error of each of
the energy commodities simulated value is shown in col-
umns 4, 8, 12, 16, respectively.
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Real, Simulation using LLGMM method, and absolute
error of simulation using starting delay r = 10.

Simulated
Real Y iy |Error|
e Vi (LLGMM) Vi = ¥ o]
Natural gas
10 2.3830 2.3830 0.0000
11 2.4170 2.4179 0.0009
12 2.5590 2.4935 0.0655
13 2.4850 2.4949 0.0099
14 2.5280 2.5123 0.0157
15 2.6160 2.6158 0.0002
16 2.5230 2.5233 0.0003
17 2.6100 2.6314 0.0214
18 2.6100 2.5852 0.0248
19 2.6100 2.6130 0.0030
20 2.6990 2.6728 0.0262
21 2.7590 2.7601 0.0011
22 2.6590 2.6427 0.0163
23 2.7420 2.7365 0.0055
24 2.5620 2.5610 0.0010
25 2.4950 2.5455 0.0505
26 2.5400 2.5245 0.0155
27 2.5920 2.5996 0.0076
28 2.5700 2.5849 0.0149
29 2.5410 2.5403 0.0007
30 2.6180 2.6151 0.0029
1145 5.712 5.7533 0.0413
1146 5.588 5.5892 0.0012
1147 5.693 5.7143 0.0213
1148 5.791 5.8127 0.0217
1149 5.614 5.5940 0.0200
1150 5.442 5.6266 0.1846
1151 5.533 5.5122 0.0208
1152 5.378 5.3971 0.0191
1153 5.373 5.3496 0.0234
1154 5.382 5.3735 0.0085
1155 5.507 5.5360 0.0290
1156 5.552 5.5507 0.0013
1157 5.310 5.3019 0.0081
1158 5.338 5.3884 0.0504
1159 5.298 5.2554 0.0426
1160 5.189 5.1644 0.0146
1161 5.082 5.0874 0.0054
1162 5.082 5.0977 0.0157
1163 5.082 5.1334 0.0514
1164 4.965 5.0340 0.0690
1165 4.767 4.9143 0.1473
Crude oil
10 25.1000 25.1000 0.0000
11 24.8000 25.0181 0.2181
12 24.4000 24.3221 0.0779
13 23.8500 23.7260 0.1240
14 23.8500 24.4203 0.5703
15 23.8500 23.8174 0.0326
16 23.9000 23.8845 0.0155
17 24.5000 24.0924 0.4076
18 24.8000 24.3340 0.4660
19 24.1500 24.1566 0.0066
20 24.2000 24.5277 0.3277
21 24.0000 23.7803 0.2197
22 23.9000 24.1935 0.2935
23 23.0500 23.0564 0.0064
24 22.3000 23.2208 0.9208
25 22.4500 23.1610 0.7140
26 22.3500 22.7275 0.3775
27 21.7500 21.5907 0.1593
28 22.1000 22.0868 0.0132
29 22.4000 22.4301 0.0301
30 22.5000 22.6614 0.1614
2440 57.35 57.762 0.412
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TABLE 5-continued

Real, Simulation using LLGMM method, and absolute
error of simulation using starting delay r = 10.

Real, Simulation using LLGMM method, and absolute

error of simulation using starting delay r = 10.

Simulated 5 Simulated
Real Y iy |Error| Real Y iy |Error|
e Vi (LLGMM) Vi = ¥ o] e Vi (LLGMM) Vi = ¥ o]
2441 56.74 56.743 0.0028 13 1.2900 1.2278 0.0622
2442 57.55 57.739 0.189 14 1.4100 1.5339 0.1239
2443 59.09 58.925 0.1646 10 15 1.4700 1.3390 0.1310
2444 60.27 59.663 0.607 16 1.5300 1.5745 0.0445
2445 60.75 61.161 0.4109 17 1.6300 1.5996 0.0304
2446 58.41 58.011 0.3994 18 1.7500 1.6320 0.1180
2447 58.72 58.762 0.042 19 1.7500 1.7495 0.0005
2448 58.64 58.409 0.2309 20 1.8400 1.8586 0.0186
2449 57.87 57.762 0.1081 15 21 1.8950 1.8874 0.0076
2450 59.13 59.243 0.1135 2 1.9500 1.9257 0.0243
2451 60.11 60.068 0.0419 23 1.9740 1.9548 0.0192
2452 58.94 58.956 0.0155 24 2.7000 2.1431 0.5569
2453 59.93 59.924 0.0062 25 2.5150 2.6941 0.1791
2454 61.18 62.168 0.9876 26 2.2900 2.2753 0.0147
2455 59.66 59.381 0.2786 27 2.4400 2.3645 0.0755
2456 58.59 58.468 0.1224 20 28 2.4150 2.4019 0.0131
2457 58.28 58.487 0.2067 29 2.3000 2.2440 0.0560
2458 58.79 58.896 0.1058 30 2.1000 2.2048 0.1048
2459 56.23 57.202 0.9715
2460 55.9 56.87 0.9701 .. .. .. .
375 2.073 2.0662 0.0068
Coal 25 376 2.02 2.0267 0.0067
377 2.073 2.0731 0.0001
10 9.0600 9.0600 0.0000 378 2.065 2.0709 0.0059
11 8.8800 8.8800 0.0000 379 2.055 2.0232 0.0318
12 9.4400 9.4216 0.0184 380 2.209 2.2109 0.0019
13 10.3100 10.0621 0.2479 381 2.44 2.296 0.144
14 9.8100 9.8058 0.0042 30 382 2517 2.4074 0.1096
15 9.0600 8.8075 0.2525 383 2.718 2.6839 0.0341
16 8.7500 8.4774 0.2726 384 2.541 2.5246 0.0164
17 8.8200 8.7839 0.0361 385 2.566 2.5629 0.0031
18 9.5600 9.3610 0.1990 386 2.626 2.6248 0.0012
19 8.8200 8.6667 0.1533 387 2.587 2.5871 0.0001
20 8.8200 8.7833 0.0367 35 388 2.628 2.6363 0.0083
21 8.6900 8.5498 0.1402 389 2.587 2.5332 0.0538
22 8.6300 8.7065 0.0765 390 2.536 2.5374 0.0014
23 8.6900 8.7620 0.0720 391 242 2.3401 0.0799
24 8.9400 8.9706 0.0306 392 2.247 2.1792 0.0678
25 9.3100 8.8231 0.4869 393 2223 2.1661 0.0569
26 8.9400 8.9945 0.0545 394 2.39 2.5122 0.1222
27 8.9400 8.9676 0.0276 40 395 2.38 2.3583 0.0217
28 9.1300 9.1741 0.0441
29 9.1900 9.1766 0.0134
30 8.5700 8.4567 0.1133 Graphical, Simulation and Statistical Results-Case 3.
Again, we pick r=20, At=1, €=0.001, and p=2, the e-best
e - o e sub-optimal estimates of parameters a, u and o at each real
2865 29.31 29.518 0.2083 45 : N
2866 8,68 28.495 01851 data times are exhibited in Table 6.
2867 26.77 28.727 1.9571
2868 27.45 26.979 0.471 TABLE 6
2869 27.00 26.879 0.121
2870 26.67 27.32 0.6499 Estmates M, 04, g L. 2 and . for initial delay r = 20.
2871 26.51 25.468 1.0415 50
2872 26.48 26.263 0.2174 B
2873 25.15 25.395 0.2445 fk T ik P ik
2874 25.57 25.555 0.0153 Natural gas
2875 25.88 26.08 0.2003
2876 25.24 25.528 0.2879 21 13 0.0011 2.7056 0.0816
2877 25 25.337 0.3375 55 2 5 0.0009 2.6748 0.233
2878 25.08 24.685 0.3951 23 3 0.0013 2.7139 0.6983
2879 25.05 24.848 0.2024 24 12 0.0021 2.6197 0.2119
2880 25.89 25.638 0.2518 25 10 0.0022 2.6201 0.2199
2881 25.23 25.405 0.1749 26 5 0.0015 2567 0.2063
2882 25.94 25.739 0.2007 27 9 0.0021 2.6295 0.1919
2883 25.26 24.858 0.4025 28 17 0.0031 2.6074 0.2204
2884 25.25 25.147 0.1028 60 29 1 0.0022 2.6099 0.1688
2885 26.06 25.613 0.4475 30 8 0.0014 2.5821 0.2593
31 7 0.0013 2.5605 0.3999
Ethanol 32 9 0.0016 2.5738 0.3887
33 16 0.0035 2.6195 0.2084
10 1.1900 1.1900 0.0000 34 20 0.0041 2.6078 0.2483
11 1.2250 1.2249 0.0001 65 35 16 0.0033 2.6031 0.2024
12 1.2200 1.2425 0.0225 36 5 0.0007 2.579 0.2816
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TABLE 6-continued

Estmates M, %4, g, W p and ., for initial delay r = 20. Estmates M, %4, z 1. and .., for initial delay r = 20.
e e O e Wy g iy e 5 e 1y O e oy se iy e
37 9 0.0013 2.5814 0.3453 Coal
38 10 0.0014 2.5836 0.3371
39 3 0.0015 2.603 0.3923 21 19 0.0042 9.1915 0.0255
40 18 0.0048 2.6026 0.2551 22 15 0.0044 9.0773 0.0601
23 19 0.0038 9.1073 0.0319
.. .. .. .. .. 10 24 10 0.0035 8.8762 0.0924
1145 3 0.0001 5.7243 0.1464 25 14 0.0049 9.1783 0.0517
1146 17 0.0033 5.7831 0.0272 26 9 0.003 8.9447 0.1
1147 15 0.0025 5.8662 0.0337 27 10 0.0031 8.9442 0.1
1148 8 0.0006 5.7271 0.0741 28 6 0.0013 9.0358 0.0767
1149 5 0.0004 5.6834 0.2598 29 3 0.0006 9.4379 0.0213
1150 18 0.0034 5.6161 0.0138 15 30 8 0.0019 8.9685 0.1025
1151 16 0.0026 5.6048 0.0268 31 4 0.0014 8.8837 0.0869
1152 18 0.0031 5.3059 0.0099 32 15 0.0096 8.9287 0.0972
1153 9 0.0008 5.4937 0.0517 33 5 0.0013 8.7634 0.0932
1154 7 0.0006 5.4044 0.0549 34 7 0.0018 8.8238 0.0869
1155 5 0.0003 5.4342 0.2005 35 8 0.0021 8.7923 0.0823
1156 7 0.0006 5.4528 0.1(46 36 9 0.0023 8.7282 0.0671
1157 8 0.0006 5.4395 0.2012 20 37 13 0.0062 8.7653 0.0502
1158 14 0.002 5.4704 0.0583 38 7 0.001 8.6612 0.1378
1159 10 0.0009 5.4035 0.1412 39 20 0.0151 8.8225 0.0644
1160 14 0.0018 5.3501 0.0373 40 17 0.0101 8.8585 0.0667
1161 11 0.001 5.174 0.0277
1162 18 0.0029 5.1069 0.016 .. .. .. .. ..
1163 18 0.0027 5.1426 0.0213 25 2865 4 0.0002 29.607 0.034
1164 16 0.002 5.0554 0.0297 2866 12 0.0023 29.257 0.0209
1165 15 0.0016 5.7431 -0.0195 2867 20 0.0054 26.256 0.0021
2868 14 0.0028 28.678 0.009
Crude oil 2869 11 0.0019 27.482 0.0052
2870 14 0.0026 26.136 0.0023
21 11 0.0003 24.115 0.0204 30 2871 12 0.0019 25.376 0.0021
22 7 0.0003 24.215 0.0278 2872 9 0.0011 26.067 0.0064
23 2 0.0006 24.013 -0.314 2871 4 0.0003 27.22 -0.0313
24 15 0.0007 14.246 0.0009 2874 10 0.0016 25.744 0.0095
25 19 0.0011 18.542 0.001 2875 3 0.0012 25.599 0.0532
26 19 0.001 21.738 0.0031 2876 3 0.0008 25.559 0.0541
27 4 0.0001 22.135 0.0355 35 2877 5 0.0006 25.415 0.0446
28 14 0.0007 20.045 0.0015 2878 4 0.0005 25.193 0.0206
29 14 0.0007 22.096 0.0034 2879 3 0.0002 25.059 0.0528
30 9 0.0004 22.249 0.0154 2880 5 0.0004 25.256 0.0431
31 3 0.0002 22.739 0.0203 2881 5 0.0005 25.254 0.0435
32 6 0.0004 22226 0.0427 2882 9 0.002 25431 0.0417
33 7 0.0005 22.084 0.0296 2883 13 0.0033 25.507 0.0243
34 i 0.001 31683 ootzs W 2884 20 0.006 25.52 0.0094
35 10 0.0009 20.446 0.0041 2885 5 0.0007 25.538 0.069
36 3 0 21.027 0.0489
37 4 0.0002 20.962 0.0465 Ethanol
38 3 0.0002 21.267 -0.0327 21 18 0.0024 0.7591 0.0467
39 13 0.0014 15.485 0.0012 45 2 4 0.0015 07929 —0.0272
40 5 0.0004 20617 0.028 23 8 0.0004 2.1528 0.0888
24 15 0.0025 1.0048 -0.1078
B e e R e 25 20 0.0094 -0.4372 -0.0208
2440 8 0.0007 58.338 0.0143 26 19 0.0094 3.1726 0.0251
2441 20 0.0033 58.546 0.0028 27 7 0.0205 2.3915 0.2198
2442 10 0.0008 58.056 0.0098 50 28 17 0.0087 2.6208 0.0553
2443 8 0.0006 58.267 0.0106 29 3 0.0218 2.3857 0.634
2444 7 0.0005 58.414 0.0079 30 19 0.0161 2.3086 0.0752
2445 7 0.0005 65.583 0.001 31 18 0.0162 2.2442 0.1049
2446 8 0.0005 58.733 0.0078 32 9 0.0279 23519 0.4089
2447 9 0.0007 58.772 0.0078 33 12 0.0193 2.2912 0.2631
2448 20 0.0033 58.727 00079 55 34 6 0.0186 21259 0.2733
2449 13 0.0013 58371 0.0087 35 20 0.0218 2.2078 0.1261
2450 3 0.0001 58.48 0.0345 36 10 0.0199 1.9158 0.0549
37 7 0.0146 1.9215 0.088
2451 9 0.0008 59.324 0.013 38 7 0.0127 006 01587
2452 5 0.0005 58.955 0.0144 39 19 0.0413 31885 01729
2453 9 0.001 59.171 0.0135 20 8 0.0112 Lo7s1 01655
2454 15 0.002 59.298 0.0063 60
2455 13 0.0015 59.512 0.0126 o o o o o
2456 11 0.0011 59.169 0.0137 375 6 0.0013 2.1486 0.7096
2457 12 0.0012 59.072 0.0128 376 3 0.0009 2.0699 0.2808
2458 8 0.0006 59.427 0.0112 377 5 0.0011 2.0858 0.3308
2459 15 0.0018 58.808 0.0092 378 11 0.007 2.1286 0.2103
2460 14 0.0015 58.187 0.0042 65 379 3 0.0007 2.0623 0.6096
380 16 0.0137 2.1586 0.1983
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TABLE 7-continued

Estmates M, %4, g, W p and ., for initial delay r = 20.

e e O e Wy g iy e
381 19 0.0185 2.2115 0.1503
382 11 0.0066 1.7644 -0.0401
383 3 0.0025 2.9233 0.1347
384 4 0.0025 2.5937 0.3073
385 5 0.0039 2.5887 0.3099
386 3 0.006 2.5861 0.4792
387 4 0.0039 2.5882 0.4761
388 11 0.0087 2.6964 0.077
389 6 0.0038 2.5952 0.4921
390 10 0.0075 2.5899 0.3122
391 9 0.0062 2.5817 0.4568
392 7 0.0038 2.6222 -0.3162
393 15 0.0142 2.5051 0.1102
394 12 0.01 2.4881 0.1156
395 3 0.0036 2.355 0.2939

Table 6 shows the e-best sub-optimal local admissible
sample size iy, and the parameters a,, 4, I, 5 and G,ﬁk,kz for
four price energy commodity data at time t,. This was based
on p, r, and the initial real data time delay r=20. We further
note that the range of the e-best sub-optimal local admissible
sample size M, for any time t,&[21, 40]U[1145,1165],
E£[21, 40]U[2440, 2460], t,£[21, 40]U[2865, 2885], and
t,£[21, 40]U[375, 395] for natural gas, crude oil, coal and
ethanol data, respectively, is 3=th,<20. Further, all com-
ments that are made with regard to Table 2 regarding the four
energy commodities remain valid with regard to Table 6.

In Table 7, the real and LLGMM simulated price values
of each of the four energy commodities, including natural
gas, crude oil, coal, and ethanol, are shown, respectively.
The absolute error of each of energy commodity simulated
value is also shown.

TABLE 7

Real, Simulation using LLGMM method, and absolute
error of simulation using starting delay r = 20.

Simulated

Real Y iy |Error

e Vi (LLGMM) Vi = ¥ i

Natural gas

21 2.759 2.7718 0.0128
22 2.659 2.6566 0.0024
23 2.742 2.7353 0.0067
24 2.562 2.5757 0.0137
25 2.495 2.5332 0.0382
26 2.54 2.5336 0.0064
27 2.592 2.5631 0.0289
28 2.57 2.5797 0.0097
29 2.541 2.4846 0.0564
30 2.618 2.6245 0.0065
31 2.564 2.5469 0.0171
32 2.667 2.6763 0.0093
33 2.633 2.6308 0.0022
34 2.515 2.5021 0.0129
35 2.53 2.5136 0.0164
36 2.549 2.5458 0.0032
37 2.603 2.5835 0.0195
38 2.603 2.5822 0.0208
39 2.603 2.6075 0.0045
40 2.815 2.8728 0.0578
1145 5.712 5.7577 0.0457
1146 5.588 5.6488 0.0608
1147 5.693 5.7062 0.0132

1148 5.791 5.7917 0.0007
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Real, Simulation using LLGMM method, and absolute

error of simulation using starting delay r = 20.

Simulated
Real Y ik |Error
e Vi (LLGMM) Ve = ¥ g
1149 5.614 5.5799 0.0341
1150 5.442 5.4099 0.0321
1151 5.533 5.5035 0.0295
1152 5.378 5.407 0.029
1153 5.373 5.3682 0.0048
1154 5.382 5.3827 0.0007
1155 5.507 5.4896 0.0174
1156 5.552 5.5423 0.0097
1157 531 5.318 0.008
1158 5.338 5.3794 0.0414
1159 5.298 5.3541 0.0561
1160 5.189 5.1838 0.0052
1161 5.082 5.3804 0.2984
1162 5.082 4.9802 0.1018
1163 5.082 5.1933 0.1113
1164 4.965 5.1925 0.2275
1165 4.767 4.7917 0.0247
Crude oil
21 24 24.025 0.025
22 23.9 24.093 0.193
23 23.05 23.051 0.001
24 223 22.887 0.587
25 2245 22.126 0.324
26 22.35 22.409 0.059
27 21.75 22.12 0.37
28 22.1 22.137 0.037
29 224 22.315 0.085
30 225 22.531 0.031
31 22.65 22.712 0.062
32 21.95 22.003 0.053
33 21.6 21.853 0.253
34 21 21.099 0.099
35 20.95 21.012 0.062
36 21.1 20.971 0.129
37 20.8 20.786 0.014
38 20.3 20.048 0.252
39 20.25 20.244 0.006
40 20.75 20.734 0.016
2440 57.35 57.376 0.026
2441 56.74 56.447 0.293
2442 57.55 57.523 0.027
2443 59.09 58.968 0.122
2444 60.27 60.278 0.008
2445 60.75 60.737 0.013
2446 58.41 58.494 0.084
2447 58.72 58.614 0.106
2448 58.64 58.95 0.31
2449 57.87 57.865 0.005
2450 59.13 58.967 0.163
2451 60.11 59.937 0.173
2452 58.94 59.068 0.128
2453 59.93 60.141 0.211
2454 61.18 61.53 0.35
2455 59.66 59.792 0.132
2456 58.59 58.481 0.109
2457 58.28 58.224 0.056
2458 58.79 58.928 0.138
2459 56.23 56.329 0.099
2460 55.9 54.676 1.224
Coal
21 8.69 8.6747 0.0153
22 8.63 8.6175 0.0125
23 8.69 8.6862 0.0038
24 8.94 8.9184 0.0216
25 9.31 9.3069 0.0031
26 8.94 8.8992 0.0408
27 8.94 8.8745 0.0655
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TABLE 7-continued

50
TABLE 7-continued

Real, Simulation using LLGMM method, and absolute

error of simulation using starting delay r = 20.

Real, Simulation using LLGMM method, and absolute
error of simulation using starting delay r = 20.

Simulated 5 Simulated
Real Y iy |Error Real Y ik |Error
e Vi (LLGMM) Ve = ¥ g e Vi (LLGMM) Ve = ¥ g
28 9.13 9.1162 0.0138 385 2.566 2.5328 0.0332
29 9.19 9.234 0.044 386 2.626 2.5831 0.0429
30 8.57 8.5495 0.0205 10 387 2.587 2.5606 0.0264
31 8.69 8.7241 0.0341 388 2.628 2.6322 0.0042
32 8.88 8.8866 0.0066 389 2.587 2.5651 0.0219
33 8.57 8.5084 0.0616 390 2.536 2.53 0.006
34 8.75 8.7447 0.0053 391 2.42 2.4268 0.0068
35 8.63 8.6003 0.0297 392 2.247 2.2228 0.0242
36 8.44 8.412 0.028 15 393 2.223 2.2072 0.0158
37 8.44 8.4465 0.0065 394 2.39 2.4141 0.0241
38 8.94 8.9538 0.0138 395 2.38 2.4265 0.0465
39 9 9.0064 0.0064
40 8.94 8.8655 0.0745
FIGS. 4A and 4B illustrate real and simulated prices for
- 5o hatural gas and ethanol using the local lagged adapted
2865 29.31 29.291 0.019 . .
2866 28.68 28.8 0.12 generalized method of moments dynamic process, respec-
2867 26.77 26.891 0.121 tively, for r=20.
;ggg ;;-45 ;Z-iég 8-};‘9‘ Goodness-of-Ft Measures.
2870 26.67 26.812 0.142 The gquness-of-ﬁt measures are found for four energy
2871 26.51 26.709 0.199 25 commodities, natural gas, crude oil, coal and ethanol. This
2872 2648 2654 0.06 is achieved by using the following goodness-of-fit measures:
2873 25.15 25.313 0.163
2874 25.57 25.47 0.1
2875 25.88 26.078 0.198
2876 25.24 25.208 0.032 N ! (69)
2877 25 25.138 0.138 30 o 1 1$
2878 25.08 25.306 0.226 RAMSE = | § §Z(y, -y
2879 25.05 25.16 0.11 = !
2880 25.89 25.509 0.381 L
2881 25.23 25.278 0.048 e s P
y = — » medi > —median(y;)||,
2882 25.94 25.961 0.021 AMAD N; s ‘m(y‘ ] (y‘)D
2883 25.26 25.255 0.005 15
2884 25.25 25.298 0.048 R g
2885 26.06 25.882 0.178 AMB = 3D (medianty!) - yi)
i=1
Ethanol
1 1.895 1.9024 0.0074 where {y},, 5 ,NFI’ 2 ---»%is a double sequence of
22 1.95 1.9315 0.0185 40 simulated values at the data collected/observed time t=1,
23 1.974 1.9788 0.0048 .
o e 5529 01471 2, ..., N, RAMSE is the root mean square error of the
55 5515 55134 0.0016 simulated path, AMAD is the average median absolute
26 2.29 2.3306 0.0406 deviation, and AMB is the the average median bias. The
27 244 23718 0.0682 goodness-of-fit measures are computed using S=100
28 2.415 2.3927 0.0223 45 .
29 53 23311 0.0311 pseudo-data sets. The comparison of the goodness-of-fit
30 2.1 2.072 0.028 measures RAMSE, AMAD, and AMB for the four energy
31 2.04 2.0323 0.0077 commodities: natural gas, crude oil, coal, and ethanol data
32 2.16 2.1561 0.0039 .
33 513 50796 0.0504 are recorded in Table 8.
34 2.155 2.2141 0.0591 50 Remark 23.
;2 f-gé }-zgg 8-8‘5%; As the RAMSE decreases, then the state estimates
37 19 19186 0.0186 approach to the true yalue of the state. As the .Value of
38 1.975 1.9052 0.0698 AMAD increases, the influence of the random environmen-
39 1.98 2.019 0.039 tal fluctuations on the state dynamic process increases. In
40 2 1.9385 0.0615 55 addition, if the value of RAMSE decreases and the value of
AMAD increases, then the method of study possesses a
greater degree of ability for state and parameter estimation
o K e e accuracy and greater degree of ability to measure the vari-
;;2 ;-823 ;-8289 8'8;7;9 ability of random environmental perturbations on the state
377 2073 50601 0.0129 60 fiynamic of system. Further, as RAMSE decreases, AMAD
378 2.065 2.0312 0.0338 increases, and AMB decreases, the method of study
379 2.055 2.0725 0.0175 increases its performance under the three goodness of fit
380 2.209 2.2254 0.0164 measures in a coherent way. On other hand, as the RAMSE
381 2.44 2.462 0.022 . .
382 5517 551 0.007 increases, the state estimates tend to move away from the
183 2718 26979 0.0201 65 true value of the state. As the value of AMAD decreases, the
384 2.541 2.5164 0.0246 influence of the random environmental fluctuations on state

dynamic process decreases.
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In addition, if the value of RAMSE increases and the
value of AMAD decreases, then the method of study pos-
sesses a lesser degree of ability for state and parameter
estimation accuracy and lesser degree of ability to measure
the variability of random environmental perturbations on the
state dynamic of system. Further, as the RAMSE increases,
AMAD decreases and the AMB increases, the method of
study decreases its performance under the three goodness-
of-fit measures in a coherent manner.

The Comparison of Goodness-of-Fit Measures for r=5,
r=10, and r=20.

The following table exhibits the goodness-of-fit measures
for the energy commodities natural data, crude oil, coal, and
ethanol data using the initial delays r=5, r=10, and r=20.

TABLE 8

Goodness-of-fit Measures for r= 5, r = 10 and r = 20

Goodness
of-fit
Measure Natural gas Crude oil Coal Ethanol
r=>5
TAMSE 0.1801 1.1122 1.2235 0.1001
1.1521 24.6476 9.4160 0.3409
1.1372 27.2707 12.8370 0.3566
r=10
AMAD 0.1004 0.5401 0.8879 0.0618
1.1330 24.5376 9.4011 0.3233
1.1371 27.2708 12.8369 0.3566
r=20
AMVB 0.0674 0.4625 0.4794 0.0375
1.1318 24.5010 9.4009 0.3213
1.1374 27.2707 12.8370 0.3566
Remark 24.

From Tables 3, 5, and 7 it is clear that as r increases the
absolute error decreases. Furthermore, the comparison of the
goodness-of-fit measures in Table 8 for the natural gas,
crude oil, coal, and ethanol data the energy commodities
using the initial delays r=5, r=10, and r=20 shows that as the
delay r increases, the root mean square error decreases
significantly, AMAD decreases very slowly, and AMB
remains unchanged.

Remark 25.

Computer readable instructions can be designed to exhibit
the flowchart shown in FIGS. 2 and 3. For example, com-
puter readable instructions for parameter estimation, simu-
lations, and forecasting can be written and tested using
MATLAB®. Due to the online control nature of m, in our
model, it is worth mentioning that the execution times for
each of the four commodities: Natural gas, Crude oil, Coal
and Ethanol depend on the robustness of the data.

Tlustration 2: Application of Presented Approach to U. S.
Treasury Bill Yield Interest Rate and U.S. Eurocurrency
Exchange Rate Data Set.

Here, the conceptual computational algorithm discussed
in Section 4 is applied to estimate the parameters in equation
(45) using the real time U.S. Treasury Bill Yield Interest
Rate (U.S. TBYIR) and the U.S. Eurocurrency Exchange
Rate (U.S. EER) data collected on Forex database.

Graphical, Simulation and Statistical Results.

Using €=0.001, r=20, and p=2, the e-best sub-optimal
estimates of parameters f3, |, 8, 0 and y for each Treasury bill
Yield and U.S. Eurocurrency rate data sets are exhibited in
Tables 9 and 10, respectively.
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TABLE 9

Estimates for 0, Bs.x, ks Ok Tiy Yix for ULS.
Treasury Bill Yield Interest Rate data.

interest rate

t my, B Hiyx G Ok Vs
21 2 1.5199 -7.0332 146 0.0446 0.9078
22 2 1.2748 -5.919 146 0.0941 1.5

23 10 2.9904 -13.928 146 0.0576 1.5

24 12 1.8604 -8.6515 146 0.0895 1.5

25 6 2.1606 -10.076 146 0.1064 1.5

26 20 0.0199 -0.0372 146 0.1097 1.3872
27 16 -0.0274 0.1991 146 0.1066 1.4348
28 4 -0.1841 0.9753 146 0.1345 1.2081
29 19 0.3261 -1.3952 146 0.1855 0.7006
30 12 0.2707 -1.1525 146 0.1624 1.4187
31 13 0.543 -2.4097 146 0.2571 1.4986
32 11 0.5357 -2.4098 146  0.1962 -0.0695
33 11 0.4723 -2.1258 146 0.3494 0.097
34 11 -0.3697 1.4705 146 14014 1.4983
35 4 -0.7862 3.3703 146 0.3488 1.4993
36 6 -0.3375 1.3041 146 0.2914 14711
37 5 0.3541 -2.0609 146 0.2676 1.4972
38 14 0.2368 -1.1239 146 03201 1.4961
39 8 1.1109 -5.5453 146 0.6811 -0.7462
40 4 1.9032 -9.1187 146 1.1055 0.1008
41 11 0.4364 -2.1327 146 03532 1.4994
42 4 0.2942 -1.3004 146 04885 1.4975
43 5 0.4012 -1.9198 146 03418 1.5

44 3 0.2605 -1.2108 146 04133 1.4705
45 5 0.4213 -2.0086 146 0.3324 1.4992
420 12 3.8416 -18.331 146 0.1187 1.4906
421 12 2.8918 -13.821 146 0.6961 1.386
422 12 0.5602 -2.6281 146 03759 1.1741
423 7 0.5825 -2.7201 146 0.1753 1.4935
424 7 0.7397 -3.4486 146 0.1687 0.5396
425 7 0.2488 -1.1148 146 0.1819 0.6161
426 7 0.8447 -3.9535 146 04182 0.7124
427 11 -0.2202 1.098 146 0.2013 0.6577
428 12 -0.1169 0.6256 146 0.1779 0.6063
429 9 0.1464 -0.6472 146 03672 1.2589
430 9 0.0343 -0.117 146 03637 0.7374
431 9 0.1785 -0.6832 146 0.1395 0.5804
432 19 -0.0031 0.1015 146 0.1932 1.1832
433 8 0.1651 -0.6463 146 0.1745 0.5374
434 19 0.4102 -1.6622 146 0121 03774
435 8 0.2941 -1.1608 146 0.1085 1.0262
436 19 0.3694 -1.4911 146  0.1547 1.4945
437 14 1.6473 -6.6877 146 0.2198 -0.0071
438 5 1417 -5.7323 146  0.1406 -0.1462
439 17 1.3024 -5.3352 146 0.133 0.2225
440 9 0.2839 -1.191 146 0.1929 0.0883
441 17 0.2053 -0.8785 146 0.2007 -0.1338
442 17 -0.4585 1.6754 146 04803 0.944
443 7 -0.2917 0.8858 146 0.5227 -0.236
444 9 -0.023 -0.2999 146 0.5836 -0.2083
445 13 -0.3263 1.2217 146 0.2632 -0.1684

TABLE 10
Estimates for 0, Bs.x, ks Ok Tiy Yix for ULS.
Eurocurrency Exchange Rate.
US Eurocurrency Exchange Rate

t my, ﬁﬁkk B 6,7.,(./( Tk 7ak.k
21 2 -0.1282 0.1406  1.4892 0.0235  -1.4529
22 3 8.3385 -7.7988  1.4892 0.0256 1.4954
23 2 3.1279  -2.9205  1.4892 0.0286 1.4995
24 20 0.22 -0.1976  1.4892 0.0298 1.4948
25 18 3.0772  -2.8778 1.4892 0.016 1.4741
26 4 3.8605 -3.6034  1.4892 0.0147 1.3925
27 13 3.7355 -3.4973  1.4892 0.0395 1.4959
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TABLE 10-continued

Estimates for iy, Bs.x, ks Ok Tiy Yei for ULS.
Eurocurrency Exchange Rate.

US Eurocurrency Exchange Rate

t m; B Hayx G Tk Yix
28 16 2.436 -2.2773 14892  0.0315 -0.7142
29 17 1.8545 -1.7299 1.4892  0.0159 -1.4613
30 3 6.4061 -5.9636 1.4892  0.0324  -2.4907
31 12 1.0648 -0.9689 1.4892  0.0242 1.47
32 15 0.4861 -0.4244 14892  0.0285 1.5
33 18 2.9505 -2.7502 1.4892  0.0267 1.4943
34 5 3.8981 -3.635 1.4892  0.0984 1.4807
35 4 0.4644 -0.4841 1.4892  0.1052 1.4884
36 3 0.753 -0.7159 1.4892  0.0474 1.4954
37 3 0.719 -0.682 1.4892  0.0472 1.4995
38 3 -0.7094 0.6544 1.4892  0.0482 1.4948
39 5 1.221 -1.1708 1.4892  0.0649 1.4741
40 9 6.7537 -6.4315 1.4892  0.0395 1.4959
41 9 1.0019 -0.9439 1.4892  0.0566 1.4962
42 11 5.5279 -5.2617 1.4892  0.0309 1.499
43 5 5.3829 -5.1253 1.4892  0.0529 0.1514
44 10 5.2433 -4.9934 1.4892  0.0483 0.8817
45 10 5.2445 -4.9945 1.4892  0.0305 1.3425
155 2 10.779 -10.219 1.4892  0.0167 0.8188
156 14 2.4641 -2.3297 14892  0.0227 0.8437
157 4 3.2423 -3.0622 1.4892  0.0184 1.4906
158 6 3.1716 -3.0016 1.4892  0.0204 0.4736
159 7 6.2013 -5.8656 1.4892  0.0163 0.6027
160 8 9.3459 -8.8311 1.4892  0.0207 0.6834
161 4 5.3512 -5.0566 1.4892  0.027 0.4978
162 16 -1.3298 1.2689 1.4892  0.0289 0.3431
163 12 4.7287 -4.4662 1.4892  0.0206 1.2122
164 18 6.22 -5.8772 14892  0.0184 1.0666
165 19 13.13 -12.394 14892  0.021 1.4906
166 18 7.1076 -6.6994 1.4892  0.0211 1.386
167 5 3.2762 -3.0824 1.4892  0.0255 1.1741
168 11 3.0507 -2.8403 1.4892  0.0296 1.4935
169 10 0.9617 -0.8742 1.4892  0.0234 0.5396
170 19 2.0934 -1.9275 1.4892  0.027 0.6161
171 5 0.0174 -0.0078 1.4892  0.0275 0.7124
172 7 3.2551 -3.0304 1.4892  0.0244 0.6577
173 19 0.909 -0.8452 1.4892  0.0258 0.6063
174 19 0.8669 -0.807 1.4892  0.0219 1.2589
175 10 1.9332 -1.7976  1.4892  0.0189 0.7374
176 10 13.928 -12.966 1.4892  0.0235 0.5804
177 6 8.7675 -8.1583 1.4892  0.0232 1.1832
178 9 1.3481 -1.2544 1.4892  0.0198 0.5374
179 14 0.9565 -0.8852 1.4892  0.0232 0.3774
180 8 0.7656 -0.5372 1.4892  0.0132 0.2771

Tables 9 and 10 show the e-best sub-optimal local admis-
sible sample size m, and the corresponding parameter esti-
mates B3, s Wy 4 O, 4 Oz @0d 7, 4 for the U. S. Treasury
Bill Yield Tnterest Rate (U 4 TBYIR) and U. S. Eurocurrency
Exchange Rate (US-EER) data at each time t,, respectively.
This is based on p=r, and the initial real data time-delay
r=20. That is, the data schedule time t,=t,,. Furthermore,
note that the range of the e-best sub-optimal local admissible
sample size for the U. S. TBYIR and U. S. EER data for time
,E£[21,451U[420,445] and t,E[21,45]U[155,180], respec-
tively, is 2=m,;<20. All comments made with regard to Table
2 remain valid with regard to Tables 9 and 10 in the context
of the the U. S. treasury bill Yield Interest Rate and the U.
S. Eurocurrency Exchange Rate data at time t, and the
LLGMM approach.

FIGS. 5A and 5B illustrate real and simulated U.S.
treasury bill interest rates and U.S. eurocurrency exchange
rates using the local lagged adapted generalized method of
moments dynamic process, respectively, with r=20.

Comparison of Goodness-of-Fit Measures for U. S.
TBYIR and U. S. EER Using r=20.
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Table 11 compares the Goodness-of-fit Measures for the
U. S. TBYIR and U. S. EER data using r=20.

TABLE 11

Goodness-of-fit Measures for the U. S. TBYIR
and U. S. EER data using r = 20.

r=20
Goodness of-fit Meaure U. S. TBYIR U. S. EER
/\SE 0.0024 0.0137
e 0.0148 0.0718
AMAD
ANB 0.0165 0.1033

5. Forecasting

Referring back to FIG. 2, at reference numeral 216, the
process 200 further includes forecasting at least one future
state value of the stochastic model of the continuous-time
dynamic process using the optimal mg-local moving
sequence. Further, at reference numeral 218, the process 200
includes determining an interval of confidence associated
with the at least one future state value. In those contexts, the
application of the LLGMM approach to robust forecasting
and the confidence interval problems is outlined in this
section. It does not require a large data size or any type of
stationary conditions. First, an outline about forecasting
problems is outlined. The e-best sub-optimal simulated
value y,, ;° at time t, is used to define a forecast y,ﬁk,kf fory,
at the time t, for each of the Energy commodity model, and
the U. S. TBYIR and U.S. EER.

5.1. Forecasting for Energy Commodity Model

In the context of the illustration in Section 3.5, we begin
forecasting from time t,. Using the data up to time t,_,, we
compute f, G,ﬁ a,,, and p, . for i€l,(k-1). We assume
that we have no information about the real data {y,},_".
Under these considerations, imitating the computational
procedure outlined in Section 4 and using equation (43), we
find the estimate of the forecast y,ﬁk,kf at time t, by employing
the following discrete time iterative process:

g0

_ s s
.Vrﬁ;hkf*yrhk,l,kfl iy 1V gde—1” (Pog_y o1~

Vo et O i Vi it AW (70)

where the estimates o, s &, g1 and Wy o, are
defined in (43) with respect to the known past data up to the
timet,_,. We note that y,ﬁk,kf is the e-sub-optimal estimate for
v, at time t,.

To determine y,, .., 7, we need G,ﬁk,kz, a5 and W, g
Since we only have information of real data up to time t,_,
we use the forecasted estlmate Vol / as the estimate of y, at
time t, and to estimate O, k s 8, pand p, ;. Hence, we can

write A i AS

a,

'y ,k =da, N . , .
wy Y yk—mkﬂ ykfrhk +2v---vyk71vy,j,-,k .
We can also re-write
i o = My :
i Tk 11 ykfrhk+2,...,yk71,y£lk .
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To find y,ﬁm,k_zf, we use the estimates

a; = Ay,
gtk L S Ly 2y 43,y oy W
el TR

and

Mo, kel = Hing 1y, y
ferl LTkt 43

o
gk ) kL

Continuing this process in this manner, we use the estimates .

a; L1 =Ea
g iy A+ . £ f
izl mkﬂfl'ykfm,(+i'yk7m,(+i+1""'ykfl'y;ak,ky;akﬂ,kﬂ""'y£k+1,k+i—1
and
Hiy iy ki1 S Hy roof I
erizl PRt i= o iy i Vi i1 g Vi e U Yy ki

to estimate y,;,kﬂ_,,mf.

5.1.1. Prediction/Confidence Interval for Energy Com-
modities

In order to be able to assess the future certainty, we also
discuss about the prediction/confidence interval. We define
the 100(1-a)% confidence interval for the forecast of the
state y,;,z_,ifat time t,, izk, as y,;,l_,l.fle_0(/2(5,;,1_71,l._lz)l/2 y,;,H,i_lf
where (s, , ,>)"? y, i is the estimate for the sample
standard deviation for the forecasted state derived from the
following iterative process

yrr}k,kf :yrhk,l,k—1f+a7ﬁk—1Jt7Lyrﬁk,1,k—lf(p‘rﬁk—lJf—l_

Yo 1de-D A Oiy Vo et DWW (71)

It is clear that the 95% confidence interval for the forecast
at time t; is

(y{h;,i - 1'96(5»2;1‘-,1,"71)1/2%

11

AP K R AN

i1l

where the lower end denotes the lower bound of the state
estimate and the upper end denotes the upper bound of the
state estimate.

FIGS. 6A and 6B show the graphs of the forecast and 95
percent confidence limit for the daily Henry Hub Natural gas
and weekly Ethanol data, respectively. Further, 6A and 6B
show two regions: the simulation region S and the forecast
region F. For the simulation region S, we plot the real data
together with the simulated data. For the forecast region F,
we plot the estimate of the forecast as explained in Section
5. The upper and the lower simulated sketches in FIGS. 6A
and 6B are corresponding to the upper and lower ends of the
95% confidence interval. Next, we show graphs which
exhibit the bounds of the estimates of the forecast for the
four energy commodity.

5.2. Prediction/Confidence Interval for U. S. Treasury Bill
Yield Interest Rate and U. S. Eurocurrency Rate

Following the same procedure explained in Section 5.1,
we show the graph of the real, simulated, forecast and 95%
confidence limit for the U. S. TBYIR and U.S. EER for the
initial delay r=20. FIG. 7A shows the real, simulated,
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forecast, and 95 percent confidence limit for the Interest rate
data, and FIG. 7B shows the real, simulated, forecast, and
95% confidence level for the U. S. EER.

6. The Byproduct of the Llgmm Approach

The DTIDMLSMVSP not only plays role (a) to initiate
ideas for the usage of discrete time interconnected dynamic
approach parallel to the continuous-time dynamic process,
(b) to speed-up the computation time, and (c¢) to significantly
reduce the state error estimates, but it also provides an
alternative approach to the GARCH(1,1) model and com-
parable results with ex post volatility results of Chan et al.
Furthermore, the LLGMM directly generates a GMM based
method (e.g., Remark 12, Section 3). In this section, we

5 briefly discuss these comparisons in the context of four

energy commodity and U.S. TBYIR and EER data.

6.1 Comparison Between DTIDMLSMVSP and GARCH
Model

In this subsection, we briefly compare the applications of
DTIDMLSMVSP and GARCH in the context of four energy
commodities. In reference to Remark 6, we compare the

estimates s,;,k,k2 with the estimate derived from the usage of
a GARCH(1,1) model described defined by

z | f; it N©, k), ]

2
he=ao+arhy + Bz, @ >0, a1, B 2 0.

The parameters o, o, and §, of the GARCH(1,1) condi-
tional variance model (72) for the four commodities natural
gas, crude oil, coal, and ethanol are estimated. The estimates
of the parameters are given in Table 12.

TABLE 12
Parameter estimates for Garch(1,1) Model (72).
Data Set o o B
Natural Gas 6.863 x 107> 0.853 0.112
Crude Oil 9.622 x 107> 0.917 0.069
Coal 3.023 x 107° 0.903 0.081
Ethanol 4.152 x 107 0.815 0.019
We later show a side by side comparison of s,;,k,k2 and the

volatility described by GARCH(1,1) model described in
(72) with coeflicients in Table 12. The GARCH model does
not estimate volatility but instead demonstrated insensitivity.

6.2 Comparison of DTIDMLSMVSP with Chan et al

In this subsection, using the U.S. TBYIR and U.S. EER
data, the comparison between the DTIDMLSMVSP and ex
post volatility of Chan et al is made. According to the work
of Chan et al, we define the ex post volatility by the absolute
value of the change in U.S. TBYIR data. Likewise, we
define simulated volatility by the square root of the condi-
tional variance implied by the estimates of the model (45).
Using (45), we calculate our simulated volatility as

6.
Ty k (yf;,,(,k) Tk )

We compare our work (DTIDMLSMVSP) with FIG. 1 of
Chan et al. Their model does not clearly estimate the
volatility. It demonstrated insensitivity in the sense that it
was unable to capture most of the spikes in the interest rate
ex post volatility data.
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6.3 Formulation of Aggregated Generalized Method of
Moment (AGMM)
In this subsection, using the theoretical basis of the
LLGMM and Remark 12 (Section 3), we develop a GMM

58

respectively. Further, a, 1, and o2 are referred to as aggre-
gated parameter estimates of a, 11, and o® over the given
entire finite interval of time, respectively.

These estimates are derived using the following dis-

based method for state and parameter estimation problems. 5 tized svstem:
6.3.1. AGMM Method Applied to Energy Commodities cretized system.
Using the aggregated parameter estimates a, {1, and o°
described by the mean value of the estimated samples Cn -
{a,} -0 o™ and {0, *},_o", respectively, we dis- ¥ =¥ a@ - yE Dy A+ Ty AW, 73
cuss the simulated price values for the four energy com- 10
modities. We define
1 1 X ag . .
as= _Z“fﬂ' pH= _Z o pand ot = =S g2 s Where v, denotes the? S{mulated Val.ue? for y, a.t time t, at
N N gm e N time. The overall descriptive data statistic regarding the four
energy commodity prices and estimated parameters are
recorded in the Table 13.
TABLE 13
Descriptive statistics for a, pu and o° with time delay r = 20.
Data SetY Y Std (Y) AIn(Y) var (Aln(Y)) a Std (a) m Std () = std (0?) 95% C.L 1
Nat. Gas  4.5504 1.5090 0.0008  0.0015  0.1867 0.3013 4.5538 2.3565 0.0013 0.0017 (4.4196, 4.6880)
Crude Oil 54.0093 31.0248 0.0003  0.0006  0.0215 0.0517 54.0307 37.4455 0.0005 0.0008 (51.8978, 56.1636)
Coal  27.1441 17.8394 0.0003  0.0015  0.0464 0.0879 27.0567 21.3506 0.0014 0.0022 (25.8405, 28.2729)
Ethanol ~ 2.1391 0.4455 0.0011  0.0020 03167 0.8745 21666 0.7972 0.0018 0.0030 (2.0919, 2.2414)
30 Table 13 shows the descriptive statistics for a, p and o®
with time delay r=20. Further, p is approximately close to
the overall descriptive statistics of the mean Y of the real
data for each of the energy commodities shown in column 2.
Also, o? is approximately close to the overall descriptive
55 statistics of the variance of A In(Y)=In(Y,)-In(Y, ;) in
column 5. Further, column 12 shows that the mean of the
actual data set in Column 2 falls within the 95% confidence
interval of p. This exhibits that the parameter p,, , is the
mean level of y, at time t,. -
20 Using the aggregated parameter estimates a, 11, and o2 in
Table 13 (columns 6, 8, and 10), the simulated price values
for the four energy commodities are shown in columns 3, 6,
9 and 12 of Table 14.
TABLE 14
Real, Simulation using AGMM with r = 20.
Natural gas Crude oil Coal Ethanol
Simulated Simulated Simulated Simulated
Vi Vi Vi vi*
t Real (AGMM) t Real (AGMM) t; Real (AGMM) t; Real (AGMM)
21 2759 2.649 21 2400 23974 21 8690  9.111 21  1.895 1.834
22 2659 2.651 22 23900 24204 22 8630  9.028 22 1950 1.854
23 2742 2.636 23 23.050 25229 23 8690  9.192 23 1974 1.798
24 2562 2.625 24 22300 2558 24 8940  9.032 24 2700 1.858
25 2495 2.593 25 22450 26470 25 9310 8938 25 2515 1.830
26 2.54 2.525 26 22350 25953 26 8940 8792 26  2.290 1.954
27 2592 2513 27 21750 26229 27 8940  9.035 27 2440 1.926
28 2.57 2.399 28 22100 26555 28 9130  9.255 28 2415 1.939
29 2541 2.485 29 22400 26402 29 9190  9.018 29 2300 1.883
30 2618  2.506 30 22500 27.34 30 8570 8687 30 2.100 1.880
31 2564 2.460 31 22650  26.24 31 8690 898 31 2.040 1.817
32 2.667  2.295 32 21950 26765 32 8.880 9339 32 2.160 1.810
33 2633 2534 33 21.600 26358 33 8570 9359 33 2130 1.774
34 2515 2514 34 21000 2687 34 8750 9310 34 2155 1.717
35 2.53 2.573 35 20950  26.835 35 8630 9302 35 2010 1.658
36 2549 2.592 36 21.100 26725 36 8440 9543 36 1930 1.607
37 2603  2.456 37 20800 26439 37 8440  9.288 37  1.900 1.645
38 2603  2.428 38 20300 26916 38 8940  9.155 38 1975 1.635



US 10,719,578 B1

TABLE 14-continued
Real, Simulation using AGMM with r = 20.
Natural gas Crude oil Coal Ethanol
Simulated Simulated Simulated Simulated
Vi Vi Vi vi*
t Real (AGMM) t Real (AGMM) t; Real (AGMM) t; Real (AGMM)
39  2.603 2.505 39 20.250 26.989 39 9.000 8.469 39 1.980 1.629
40  2.815 2.526 40  20.750 26.759 40 8.940 8.899 40 2.00 1.745
1145 5.712 5.218 2440 57.350 48.179 2865 29.310 17.839 375 2.073 2.625
1146 5.588 5.414 2441  56.740 48.239 2866 28.680 18.563 376 2.02 2.784
1147 5.693 5.460 2442 57.550 46.984 2867 26.770 19.577 377 2.073 2.558
1148 5.791 5.464 2443 59.090 47.418 2868 27.450 19.841 378 2.065 2.670
1149  5.614 5.544 2444 60.270 48.137 2869 27.000 18.876 379 2.055 2.565
1150  5.442 5.700 2445 60.750 49.185 2870 26.670 18.465 380 2.209 2.796
1151 5.533 5.710 2446 58.410 48.271 2871 26.510 18.139 381 2.44 2.783
1152 5.378 5.936 2447 58.720 48.384 2872 26.480 17.963 382 2.517 2.659
1153 5.373 5.869 2448  58.640 47.509 2873 25.150 18.151 383 2.718 2.739
1154 5.382 5.778 2449 57.870 48.654 2874 25.570 17.987 384  2.541 2.681
1155 5.507 5.732 2450 59.130 46.883 2875 25.880 18.393 385 2.566 2.631
1156 5.552 5.816 2451 60.110 46.403 2876  25.240 18.492 386 2.626 2.638
1157 531 6.000 2452  58.940 45.564 2877 25.000 18.621 387 2.587 2.542
1158  5.338 6.162 2453  59.930 44.177 2878 25.080 18.806 388 2.628 2491
1159  5.298 5.899 2454 61.180 43.112 2879 25.050 19.384 389 2.587 2.392
1160  5.189 6.008 2455  59.660 43.47 2880 25.890 20.131 390 2.536 2.393
1161  5.082 6.175 2456 58.590 41.531 2881 25.230 21.099 391 2.42 2.534
1162 5.082 6.191 2457 58.280 40.452 2882 25940 21499 392 2.247 2.687
1163 5.082 5.814 2458 58.790 41.968 2883 25.260 21.38 393 2.223 2.701
1164  4.965 5.701 2459  56.230 44.359 2884 25.250 20.786 394  2.39 2.703
1165  4.767 5.871 2460 55.90 44.679 2885 26.060 20.892 395 2.38 2.655
1166 4.675 5.998 2461 56.420 43.081 2886 26.030 21.269 396 2.366 2.559
1167 479 5.952 2462 58.010 44.235 2887 26.660 20371 397 2.335 2.575
1168  4.631 5.782 2463 57.280 43.199 2888 27.120 19.822 398 2.428 2.466
1169  4.658 5.673 2464 60.30 42.655 2889 26.400 19.644 399 2.409 2.369
1170 4.57 5.936 2465 60.970 43.498 2890 26.940 20.602 400 2.29 2.222
TABLE 15
Comparison of Goodness-of-fit Measures for the LLGMM and AGMM method
using initial delay r = 20.
Goodness LLGMM AGMM
of-fit Natural Crude Natural Crude
Measure Gas Oil Coal Ethanol gas oil Coal Ethanol
FAMSE 0.0674 0.4625 04794  0.0375 1.4968  30.7760 17.7620  0.4356
AMAD 1.1318  24.5010 9.4009  0.3213 0.0068 0.0857 0.0833  0.0035
AMB 1.1371  27.2707 12.8370 03566 1.2267  27.3050 13.1060  0.3579
50
6.3.2. Formulation of Aggregated Generalized Method of
Moment (AGMM) for U.S. Treasury Bill and U.S. Euro-
currency Rate
The overall descriptive statistics of data sets regarding U.
S. Treasury Bill Yield Interest Rate and U. S. Eurocurrency
Exchange Rate are recorded in the following table for initial
delay r=20.
TABLE 17
Y std (Y) B Std (B) m Std () 3 Sts (0) o Std (o) ¥ Std (y)
Descriptive statistics for B, i, 8, 0, and y for the U.S. TBYIR data with initial delay r = 20
0.05667 0.0268 0.8739 1.8129 -3.8555 8.7608 1.4600 0.00 0.3753  0.5197 1.4877 0.1357

Descriptive statistics for B, 1, 8, 0, and y for the U.S. Eurocurrency Exchange Rate data with initial delay r = 20

1.6249 0.1337 1.5120 2.1259 -1.1973 1.6811 1.4892 0.00

0.0243

0.0180

1.08476

1.0050
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In Tables 16 and 17, the real and the LLGMM simulated
rates of the U.S. TBYIR and the U. S. Eurocurrency
Exchange Rate (US-EER) are exhibited in the first and
second columns, respectively. Using the aggregated param-
eter estimates B, 1, 3,  and v in the respective Tables 16
(columns: 3, 5, 7, 9 and 11) and Table 17 (columns: 3, 5, 7,
9, and 11), the simulated rates for the U.S. TYBIR and the
U.S. EER are shown in the column 3 of Table 18. These
estimates are derived using the following discretized system:

yiag:yi—lag+q§yi—lag+ﬁ(yi—lag)g)+6(yi—laf)vAVVia
where AGMM, y,“, y, at time t, are defined in (73).

74

TABLE 18

10
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In Table 18, we show a side by side comparison of the
estimates for the simulated value using LLGMM and
AGMM methods for U.S. Treasury Bill Yield Interest Rate
and U.S. Eurocurrency Exchange Rate, respectively: initial
delay r=20.

7. Comparisons of LLGMM with OCBGMM

In this section, we briefly compare LLGMM and OCB-
GMM in the frame-work of the conceptual, computational,
mathematical, and statistical results coupled with role, scope
and applications. For this purpose, to better appreciate and
understand the comparative work, we utilize the state and
parameter estimation problems for the stochastic dynamic
model of interest rate that has been studied extensively in the

Estimates for Real, Simulated value using LLGMM and AGMM methods for U.S.
TYBIR and the U.S. EER, respectively for initial delay r = 20.

Interest Rate Data

Eurocurrency Rate

Simulated Simulated Real Simulated Simulated
e Real LLGMM AGMM e Real LLGMM AGMM
21 0.0465 0.0459 0.0326 21 1.7448 1.6732 1.655
22 0.0459 0.0467 0.0299 22 1.7465 1.7711 1.6588
23 0.0462 0.0463 0.0342 23 1.7638 1.7588 1.6096
24 0.0464 0.0463 0.034 24 1.874 1.8423 1.6251
25 0.045 0.0457 0.0365 25 1.7902 1.7971 1.6221
26 0.048 0.048 0.0447 26  1.7635 1.7668 1.5984
27 0.0496 0.0496 0.0449 27 174 1.7362 1.6368
28 0.0537 0.053 0.0538 28  1.7763 1.7755 1.5795
29 0.0535 0.0529 0.0535 29  1.8219 1.8224 1.5708
30 0.0532 0.0536 0.0489 30 1.8985 1.9002 1.6174
31 0.0496 0.0495 0.0575 31 19166 1.8897 1.6403
32 0.047 0.0479 0.0548 32 1.992 1.9361 1.6425
33 0.0456 0.0453 0.0385 33 1.7741 1.7738 1.6409
34 0.0426 0.0423 0.042 34 1.5579 1.5601 1.6759
35 0.0384 0.0413 0.0339 35 1.5138 1.5017 1.5287
36 0.036 0.0363 0.0384 36 1.5102 1.5028 1.5445
37 0.0354 0.0358 0.0457 37  1.4832 1.5171 1.6334
38 0.0421 0.0434 0.0321 38 14276 1.4353 1.6666
39 0.0427 0.043 0.023 39 1.51 1.4972 1.606
40 0.0442 0.044 0.0299 40  1.5734 1.588 1.662
41 0.0456 0.0463 0.0301 41 1.5633 1.5556 1.6305
42 0.0473 0.0462 0.0365 42 1.4966 1.4856 1.5987
43 0.0497 0.0512 0.0341 43 1.4868 1.4914 1.5832
44 0.05 0.0505 0.042 44 1.4864 1.4785 1.621
45 0.0498 0.0497 0.0451 45 1.4965 1.4854 1.6208
420 0.045 0.0449 0.0337 155  1.5581 1.5635 1.6326
421 0.0457 0.045 0.0309 156 1.6097 1.6195 1.574
422 0.0455 0.0459 0.0389 157  1.6435 1.6089 1.6232
423 0.0472 0.047 0.0306 158  1.5793 1.5817 1.6669
424 0.0468 0.0464 0.0385 159 1.5782 1.5826 1.649
425 0.0486 0.0481 0.0179 160 1.6108 1.6206 1.5725
426 0.0507 0.0499 0.0191 161  1.6368 1.6256 1.6879
427 0.052 0.0514 0.0257 162 1.662 1.644 1.6681
428 0.0532 0.0539 0.029 163 1.6115 1.6156 1.6534
429 0.0555 0.0546 0.0379 164 1571 1.5708 1.6387
430 0.0569 0.0588 0.0404 165  1.6692 1.6912 1.6243
431 0.0566 0.056 0.0487 166  1.6766 1.6832 1.5822
432 0.0579 0.0587 0.0432 167 1.7188 1.7224 1.5764
433 0.0569 0.0571 0.0436 168  1.7856 1.7285 1.6206
434 0.0596 0.0602 0.0393 169  1.8225 1.7952 1.6044
435 0.0609 0.0601 0.04 170 1.8699 1.8896 1.6792
436 0.06 0.0601 0.0483 171 1.8562 1.8964 1.5417
437 0.0611 0.0604 0.0292 172 1.772 1.7717 1.6087
438 0.0617 0.0617 0.031 173 1.8398 1.8372 1.5426
439 0.0577 0.0583 0.0379 174 1.8207 1.8214 1.6147
440 0.0515 0.0509 0.0464 175 1.8248 1.8242 1.6544
441 0.0488 0.05 0.0476 176  1.7934 1.7795 1.3929
442 0.0442 0.0441 0.0516 177 1.7982 1.8056 1.5845
443 0.0387 0.0445 0.0675 178  1.8335 1.835 1.6625
444 0.0362 0.0313 0.0484 179 1.934 1.9301 1.5832
445 0.0349 0.0386 0.0484 180  1.9054 1.8939 1.5472
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frame-work of orthogonality condition vector based gener-
alized method of moments (OCBGMM). Recall that the
LLGMM approach is based on seven interactive compo-
nents (Section 1). On the other hand, the existing OCBGMM
(GMM and IRGMM) approach and its extensions are based
on five components (Section 3). The basis for the formation
of orthogonality condition parameter vectors (OCPV) in the
LLGMM (Section 3) and OCBGMM (GMM/IRGMM) are
different. In the existing OCBGMM (GMM/IRGMM), the
orthogonality condition vectors are formed on the basis of
algebraic manipulation coupled with econometric specifica-
tion-based discretization scheme (OCPV-Algebraic) rather
than stochastic calculus and a continuous-time stochastic
dynamic model based OCPV-Analytic. This motivates to
extend a couple of OCBGMM-based state and parameter
estimation methods.

Using the stochastic calculus based formation of the
OCPV-Analytic in the context of the continuous-time sto-
chastic dynamic model (Section 3), two new OCBGMM
based methods are developed for the state and parameter
estimation problems. The proposed OCBGMM methods are
direct extensions of the existing OCBGMM method and its
extension IRGMM in the context of the OCPV. In view of
this difference and for the sake of comparison, the newly
developed OCBGMM and the existing OCBGMM methods
are referred to as the OCBGMM-Analytic and OCBGMM-
Algebraic, respectively. In particular, the GMM and
IRGMM with OCPV-algebraic are denoted as GMM-Alge-
braic and IRGMM-Algebraic and corresponding extensions
under the OCPV-Analytic as GMM-Analytic and IRGMM-
Analytic, respectively.
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Furthermore, using LLGMM based method, the aggre-
gated generalized method of moments (AGMM) introduced
in Subsection 3.5 and described in Subsection 6.3 is also
compared along with the above stated methods, namely
GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, and
IRGMM-Analytic. A comparative analysis of the results of
GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic,
IRGMM-Analytic and AGMM methods with the LLGMM
for the state and parameter estimation problems of the
interest rate and energy commodities stochastic dynamic
models are briefly outlined in the subsequent subsections.
First, based on Sections 1, 2, 3 and 4, we briefly summarize
the comparison between the LLGMM and OCBGMM meth-
ods.

7.1 Theoretical Comparison Between LLGMM and OCB-
GMM

Based on the foundations of the analytical, conceptual,
computational, mathematical, practical, statistical, and theo-
retical motivations and developments outlined in Sections 2,
3, 4 and 5, we summarize the comparison between the
innovative approach LLGMM with the existing and newly
developed OCBGMM methods in separate tables in a sys-
tematic manner.

Table 19 outlines the differences between the LLGMM
method and existing orthogonality condition based GMM/
IRGMM-Algebraic and the newly formulated GMM/IR-
GMM-Analytic methods together with the AGMM.

TABLE 19

Mathematical Comparison Between the ILL.GMM and OCBGMM

Feature

LLGMM

OCBGMM-
Algebraic

OCGMM-

Analytic Justifications

Composition:

Seven components Five components

Five components Sections 1. 3

Model: Development Selection Development/Selection Sections 1, 3
Goal: Validation Specification/Testing Validation/Testing Sections 1, 3
Discrete-Time  Constructed Using Econometric  Constructed Remarks 8,15
Scheme: from SDE specification from SDE
Formation of  Using stochastic ~ Formed using Using Stochastic Remarks 7, 8,
Orthogonality  calculus algebraic calculus 9,14, 15
Vector: manipulation
TABLE 20
Intercomponent Interaction Comparison Between LLGMM and OCBGMM
OCBGMM- OCGMM-
Feasture LLGMM Algebraic Analytic Justifications
Moment Equations: Local Lagged Single/global Single/global Remarks 5, 8, 18a,
adaptive process  system system and 18b
Type of Moment Local lagged Single-shot ~ Single-shot  Remarks 5, 8, 13,
Equations: adaptive process 15, and 16
Component Strongly Weakly Weakly Remarks 8, 13, 14,
Interconnections: connected connected connected 15, 16, and 18
Dynamic Discrete-time Static Static Remarks 5, 8, 18 and
and Static: Dynamic Lemma 1 (Section 2)
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Conceptual Computational Comparison Between LLGMM and OCBGMM

OCBGMM- OCGMM-
Feature LLGMM Algebraic Analytic  Justifications
Local admissible Multi- Single- Singe- Definition 10, Remark 18,
Lagged Data choice choice/data  choice/data Subsection 4.2
Size: size size
Local admissible Multi- Single- Single- Adapted finite restricted
class of lagged choice choice/data  choice/data sample data: Definition 11,
finite restriction sequence sequence Remark 18, Subsection 4.2
sequences
Local admissible Multi- Single-shot  Single-shot Subsection 4.2
finite sequence choice estimate estimates
parameter
estimates:
Local admissible Multi- Single- Single- Remark 18, Subsection 4.3
sequence of choice choice choice
finite state
simulation values:
Quadratic Mean Multi- Single- Single- Remark 18, Subsection 4.3
Square e-sub- choice error error
optimal errors:
€e-sub-optimal Multi- Single- Single- Definition 12, Remark 18,
local lagged choice choice choice Subsection 4.3
sample size:
e-best sub optimal  e-best sub No-choice No-choice Remark 18, Subsection 4.3
sample size: optimal
choice
e-best sub optimal  e-best No-choice No-choice Remark 18, Subsection 4.3
parameter estimated: estimators
e-best sub optimal  e-best No-choice No-choice Remark 18, Subsection 4.3
state estimate sub optimal
choice
TABLE 22

Theoretical Performance Comparison Between LLGMM and OCBGMM

OCBGMM- OCGMM-
Feature LLGMM Algebraic Analytic Justifications
Data Size: Reasonable Size  Large Data Size Large Data  For Respectable
Size results
Stationary Condition: Not required Need Ergotic/ Need For Reasonable
Asympotic Ergodic/ results
stationary Asymptotic
Multi-level At least 2 level Single-shot Single-shot ~ Not comparable
optimization: hierarchical
optimization

Admissible Strategies:
Computational Stability:

Significance of lagged

Multi-choices
Algorithm

Converges in a
single/double digit

trials

Stabilizing agent

Single-shot
Single-choice

Non-existence of the

Single-shot
Single-choice

Not comparable
Simulation
results

Non- Not comparable

feature
Operates like a static
dynamic process

adaptive process:
Operation: Operates like
Discrete time

Dynamic Process

existence
Operates like
static process

Obvious, details
see Sections 4,
5,6 and 7

7.2 Comparisons of LLGMM Method with Existing
Methods Using Interest Rate Stochastic Model

The continuous-time interest rate process is described by
a nonlinear It6-Doob-type stochastic differential equation:

dy=(a+Py)de+0y dIW(). 75

The energy commodities stochastic dynamic model is
described in (27), in Subsection 3.5. These models would be
utilized to further compare the role, scope and merit of the
LLGMM and OCBGMM methods in the frame-work of the
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graphical, computational and statistical results and applica-
tions to forecasting and prediction with certain degree of
confidence.

Remark 26.

The continuous-time interest rate model (75) was chosen
so that we can compare our LLGMM method with the
OCBGMM method. Our proposed model for the continu-
ous-time interest rate model is described in (45). We will
later compare the results derived using model (75) with the
results using (45) from Subsections 3.6 and 4.6.
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Descriptive Statistic for Time-Series Data Set.

For this purpose, first, we consider one month risk free
rates from the Monthly Interest rate data sets for the period
Jun. 30, 1964 to Dec. 31, 2004. Table 23 below shows some
statistics of the data set shown in FIG. 19.

TABLE 23

68

Statistics for the Interest Rate data for Jun. 30, 1964 to Dec. 31, 2004.

Variable N Mean Std dev [ [ Pa

Pa

Ps Pe

y, 487
Ay, 486

0.0592
-0.00003

0.0276
0.0050

0.9809
0.3305

0.9508
-0.0919

0.9234
-0.1048

0.8994
-0.0351

0.8764
0.0403

0.8519
-0.1877

Mean, standard deviations,
monthly Treasury bill yields (US TBYIR) and yield changes
p, denotes the autocorrelation coeflicient of order j, N
represents the total number of observations used.

The Orthogonality Condition Vector for (75).

First, we present the orthogonality condition parameter
vectors (OCPV) for the GMM-Algebraic, GMM-Analytic,
IRGMM-Algebraic, and IRGMM-Analytic methods. These
orthogonality vectors are then used for the state and param-
eter estimation problems. For this, we need to follow the
procedure (Section 3) for obtaining the analytic orthogonal-
ity condition parameter vector (OCPV-Analytic). We con-
sider the Lyapunov functions (

1,
Vi, y) = 57

and

1 3

Valt, y) = 37
The Tto-differential of V, and V, with respect to (75) are:
1 1 76
d(zyz] = [ay + By + zolyzy]dm oy aw(n 79

) .
d(§y3) = [y + By + o'zyz)'“]dt + oy 2 dW (D)

The component of orthogonality condition vector (OCPV-
Analytic) is described by:

Ay, — (E e | Feo1] = ye-1) an
1 1.

380D = 5B 1Fa] =y

1 1.

380D - 3B I1F]-ylD

B [(Ay, ~ [y [ Froi D | Fici ] - 252 AL,

20

25

30

40

45

50

55

65

and autocorrelations of 15 where

KLy | Froa] =y (a + By)Ar 8)

1 1
SELZIF 132 = [owe + o+ 5o ae

2y+1 '
[01}’124 +Byr + oyl ]Al

o'zy,zzllAt

1
FELT 1Fal =y
E[@Ay, ~E[ay | Fa D | Fiaa] =

On the other hand, using discrete time econometric speci-
fication coupled with algebraic manipulations, the compo-
nents of orthogonality condition parameter vector (OCPV-
Algebraic) are as follows:

Ve = Ye-1 = (@ + By)Ar 79
V-1Vt = Y1 = (@ + By)AID)
e = ¥t — (@ + A0 — o2y

Yot [ = Yot = (@ + BYAD? — 2y

We apply the GMM-Algebraic, IRGMM-Algebraic,
GMM-Analytic, and IRGMM-Analytic methods.
Parameter Estimates of (75) Using LLGMM Method.
Using the LLGMM method, the parameter estimates
o s Bons Oz A0 ., & are shown in Table 24. Here, we
o 'y & Ve,
use €=0.001, p=2, and initial delay r=20.

TABLE 24

Estimates for .rﬁk, i sor B s Gy o Vi for U. S. Treasury Bill
Yield Interest Rate data using LLGMM.
Interest Rate

e It iy e By Ok Yiagde
21 2 0.0334 -0.7143 0.0446 1.5
22 3 0.0427 -0.9254 0.0766 1.5
23 4 0.0425 -0.9198 0.0914 1.5
24 5 0.0413 -0.8937 0.09 1.5
25 4 0.1042 -2.2619 0.1003 1.5
26 19 0.0002 0.0083 0.1043 1.5
27 14 0.0024 -0.0359 0.1281 1.5
28 5 -0.023 0.5207 0.3501 1.5
29 13 0.0037 -0.0573 0.1652 1.5
30 18 0.0008 0.001 0.1447 1.5
31 3 -0.3827 7.1316 0.26 1.5
32 19 0.006 -0.1213 0.1828 1.5
33 6 0.0063 -0.1359 0.343 1.5
34 19 0.0081 -0.1705 0.1993 1.5
35 4 -0.0166 0.2984 0.3509 1.5
36 4 -0.0059 0.0721 0.2318 1.5
37 9 -0.0035 0.0324 03114 1.5
38 14 0.0051 -0.1186 0.3385 1.5
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TABLE 24-continued
L& (80)
Estimates forlrhk, Oy 1o Brgtr oo Vg for U. S. Treasury Bill a= ﬁz @iy >
Yield Interest Rate data using LLGMM. k=1
Interest Rate N
5 7 1 Zﬁ
N = e &
t my Qe Bigie O ke Yok N "
39 20 0.0059  -0.1294 0.282 1.5 1 &
40 12 0.0075 -0.185 0.3447 1.5 T=5 Z T >
41 12 0.0099  -0.2379 0.3579 1.5 k=1
42 4 -0.0089 0.2335 0.3562 1.5 10 v
43 7 0.0074  -0.1289 0.4654 1.5 5= 127 .
44 7 00182  -03677 04206 L5 N & Tt
45 6 0.0106  -0.2031 0.2356 1.5
20 3 0086  -19 0.1006 15 |5 Where the parameters o x Bra, s> Oy Yon, 2 ate each esti-
421 8 0.0428  -0.9671 0.783 L5 mated in Table 25 at time t, using LLGMM method.
422 3 0.0359  -0.7857 0.1702 L5 Imitating the argument used in Subsection 6.3, the param-
423 8 00127  -0.2766 0.1719 1.5 q ) . 4. Th .
424 6 0.0178 _0.3857 0.1636 15 eters an st?lte are also estimated. These pargmeter estimates
425 6 00177 -0.3685 0.1829 1.5 are shown in the row of AGMM approach in Table 25. We
i;g 1§ 8-8(1;113 —8-3 gz 8-?%; }2 50 also estimate the parameters in (75) by following both the
198 4 0.000 01489 01341 L5 GMM-algebraic agd GMM-analytic frme-work. Similarly,
429 9 -0.0059 0.1469 0.1616 1.5 the parameter estimates (75) are determined under the
430 13 -0.0046 0.116 0.191 L5 IRGMM-algebraic and IRGMM-analytic approaches. These
431 2 0.0039 -0.0332 0.1369 L3 arameter estimates are recorded in rows of GMM-alge-
432 9 00027  -00287  0.1109 1.5 pare ) 4 5
433 3 0.0857 -15 0.0952 1.5 25 braic, GMM-analytic, IRGMM-algebraic, and IRGMM-
434 9 0.0102 -0.1661 0.1197 L5 analytic approaches, respectively, in Table 25.
435 ? 0.0075 - -0.114 0.107 L3 Comparison of Goodness-of-Fit Measures.
436 5 0.029 -0.485 0.1446 1.5 o . .
437 4 0.0476 _0.784 0.2163 15 In order to statistically compare the different estimation
438 9 0.0122 -0.1966 0.1054 1.5 techniques we estimate the statistics RAMSE, AMAD, and
439 4 01626 -2.6824 0.1248 L5 30 AMB defined in (69). The goodness-of-fit measures are
440 20 0.0072  -0.1278 0.1916 1.5 .
241 19 0.0084 ~0.1502 0.2016 15 computed using S=100 pseudo-data sets of the same sample
442 17 0.0024 -0.0479 0.2369 1.5 size, and the real data set, N=487 months. The t-statistics of
443 7 -0.0153 0.2236 0.2687 L5 each parameter estimate is in parenthesis, the smallest value
444 3 0.0054  -0.2188 0.3887 1.5 fRAMSE for all method is italicized. Th dn hit
445 16 -0.0076 0.1177 0.2528 15 35 ° or all method 1s 1talicized. 1he goodness-ol-
measures RAMSE, AMAD and AMB are recorded under the
columns 6, 7, and 8 respectively.
TABLE 25
Comparison of parameter estimates of model (75) and the goodness-of-
fit measures RAMSE, AMAD, and AMB under the usage of GMM-
Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic,
AGMM, and LLGMM methods.
T e T
Method o B o ¥ RAMSE AMAD AMB
GMM- 0.0017  -0.0308  0.4032 1.5309  0.0424 0.0098 0.0195
Algebraic  (1.53) (-1.33) (1.55) (3.21)
GMM- 0.0009  -0.0153  0.0184 0.4981  0.0315 0.0161 0.0190
Analytic (1.06) (=0.90) (1.25) (1.73)
IRGMM- 0.0020  -0.0410  0.207 1.3031  0.03186 0.00843 0.01972
Algebraic  (0.32) (<0.21) (0.25) (1.02)
IRGMM- 0.0084  -0.1436  0.1075 1.3592  0.0278 0.0028 0.01968
Analytic (0.44) (~0.40) (0.22) (1.01)
AGMM 0.0084  -0.1436  0.1075 1.3592  0.0288 0.0047 0.0207
(0.41) (-0.33) (0.25) (0.98)
LLGMM 0.0027% 0.0146 0.0178

Table 24 shows the parameter estimates of iy, 0, 4> B ps

Otter Vi

» in the model (75) for U.S. Treasury Bill Yield

Interest Rate data. As noted before, the range of the e-best
sub-optimal local admissible sample size m, for any time
,6[21,451U[420,445] is 2=im,<20. We also draw the similar
conclusions (a) to (e) as outlined in Remark 20.

Parameter Estimates of (75) Using OCBGMM Methods.
Following Remark 12, we define the average o, B, 0, and
y by
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The LLGMM estimates are derived using initial delay
r=20, p=2 and €=0.001. Among these stated methods, the

LLGMM method generates the smallest RAMSE value. In
fact, the RAMSE value is smaller than the one tenth of any
other RAMSE wvalues. Further, second, third and fourth
smaller RAMSE wvalues are due to the IRGMM-Analytic,
AGMM and GMM-Analytic methods, respectively. This
exhibits the superiority of the LLGMM method over all
other methods. We further observe that the LLGMM
approach yields the smallest AMB in comparison with the
OCBGMM approaches. The GMM-Analytic, IRGMM-Ana-
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Iytic and IRGMM-Algebraic rank the second, third and
fourth smaller values, respectively. The high value of
AMAD for the LLGMM method signifies that the LLGMM
captures the influence of random environmental fluctuations
on the dynamic of interest rate process. We further note that
the first, second, third, and fourth smaller AMB values are
due to the GMM-Analytic, LLGMM, IRGMM-Algebraic,
and GMM-Algebraic methods, respectively. Again, from
Remark 23, the smallest RAMSE, higher AMAD, and
smallest AMB value under the LLGMM method exhibit the
superior performance under the three goodness-of-fit mea-
sures. We also notice that the performance of stochastic
calculus based-OCPV-Analytic methods, namely, GMM-
Analytic, IRGMM-Analytic and AGMM is better than the
performance of OCPV-Algebraic based, GMM-Algebraic,
and IRGMM-Algebraic approaches. In short, this suggests
that the OCPV-Analytic based GMM methods are more
superior than the OCPV-Algebraic based GMM methods.

TABLE 26

Parameter estimates and goodness of fit tests
for one month risk free rates for periods
June 1964-December 1981 and January 1982-December 2004.

June 1964- January 1982-
Orthogonality December 1981 December 2004
Condition RAMSE RAMSE
GMM-Algebraic 0.0468 0.0377
GMM-Analytic 0.0315 0.0347
IRGMM-Algebraic 0.0307 0.0326
IRGMM- Analytic 0.0200 0.0215
LLCIMM 0.0030% 0.0017*

Table 26 shows the goodness-of-fit measures RAMSE
using GMM-Algebraic, GMM-Analytic, IRGMM-Alge-
braic, IRGMM-Analytic, and LLGMM method for two
separate sub-periods: 06/1964-12/1981 and 01/1982-12/
2004. Among all methods, the LLGMM method generates
the smallest RAMSE value for each sub-period. Further, the
goodness-of-fit measure RAMSE regarding the LLGMM
method is less than the one sixth, and one twelfth of any
other RAMSE value, respectively. The IRGMM-Analytic,
IRGMM-Algebraic, GMM-Analytic, and GMM-Algebraic
methods are in second, third, fourth and fifth place.

Comparative Analysis of Forecasting with 95% Confi-
dence Intervals.

Using data set June 1964 to December 1989, the param-
eters of model (75) are estimated. Using these parameter
estimates, we forecasted the monthly interest rate for Jan. 1,
1990 to Dec. 31, 2004.

TABLE 27

Parameter estimates in (75) in the context of the data
from June 1964 to December 1989.

Method a B o Y

GMM-Algebraic 0.0033 -0.051 0.4121 1.5311
GMM-Analytic 0.0009 -0.0155 0.0197 0.4854
IRGMM-Algebraic 0.0023 -0.0421 0.3230 1.3112
IRGMM-Analytic 0.0084 -0.1436 0.1073 1.3641
AGMM 0.01.54 -0.2497 0.2949 1.4414
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7.3 Comparisons of LLGMM Method with Existing and
Newly Introduced OCBGMM Methods Using Energy Com-
modity Stochastic Model

Using the stochastic dynamic model in (27) of energy
commodity represented by the stochastic differential equa-
tion

dy=ay(p-y)dr+o @,y JydW(t).y(to)=vo, (81)

the orthogonality condition parameter vector (OCPV) is
described in (30) in Remark 9.

Based on a discretized scheme using the econometric
specification, the orthogonality condition parameter vector
in the context of algebraic manipulation is as:

Ve = Ye-1 = @y, (= ye-1)AT (82)
Vo1 (e = Yem1 = @y (pt = yi-1)AD

(= Y1 = @y, (= yD)AD =07y ]

The goodness-of-fit measures are computed using pseudo-
data sets of the same sample size as the real data set: (i)
N=1184 days for natural gas data, (ii) N=4165 days for crude
oil data, (iii) N=3470 for coal data, and (iv) N=438 weeks
for ethanol data. The smallest value of RAMSE for all
method is italicized.

TABLE 28

Parameter estimates of model (75) and the goodness-of-fit measures
RAMSE, AMAD, and AMB using GMM-Algebraic, GMM-Analytic,
IRGMM-Algebraic, IRGMM-Analytic, AGMM and LLGMM methods
for natural gas data

T e e
Method a n o’ RAMSE AMAD AMB
GMM-  0.0023 53312  0.0019 1.5119  0.0663 1.1488
Algebraic
GMM-  0.0018 5.4106  0.0015 1.5014  0.0538 1.1677
Analytic
IRGMM-  0.2000 4.4996  0.0010 1.4985  0.0050 1.2299
Algebraic
IRGMM- 0.1998 44917  0.0011 1.4901  0.0044 1.2329
Analytic
AGMM  0.1867 4.5538  0.0013 1.4968  0.0068 1.2267
LLGMM 0.0674* 1.1318 1.1371
TABLE 29

Parameter estimates of model (75) and the goodness-of-fit measures
RAMSE, AMAD, and AMB using GMM-Algebraic, GMM-Analytic,
IRGMM-Algebraic, IRGMM-Analytic, AGMM and LLGMM methods
for crude oil data

Method a n o? RAMSE AMAD AMB
GMM-  0.0023 544847 0.0005  39.2853 0.3577  29.1587
Algebraic

GMM-  0.0021 51.2145 0.0006  38.8007 0.5181  28.7414
Analytic
IRGMM-  0.0000 88.5951 0.0005  30.7511 0.0920  27.5791
Algebraic
IRGMM- 0.0021 51.2195 0.0005 28.9172 0.2496  27.3564
Analytic

AGMM  0.0215 54.0307 0.0005  30.776 0.0857  27.3050
LLGMM 0.4625* 24.501 27.2707
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TABLE 30

Parameter estimates of model (75) and the goodness-of-fit measures
RAMSE, AMAD, and AMB using GMM-Algebraic, GMM-Analytic,
IRGMM-Algebraic, IRGMM-Analytic, AGMM and LLGMM methods
for coal data

5
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respectively. The LLGMM estimates are derived using ini-
tial delay r=20, p=2 and €=0.001. Among all methods under
study, the LLGMM method generates the smallest RAMSE
value. In fact, the RAMSE value is smaller than the Y22, Ve,
Vss, and Vio of any other RAMSE values regarding the
natural gas, crude oil, coal and ethanol, respectively. This
exhibits the superiority of the LLGMM method over all
other methods. We further observe that the LLGMM

RAMSE AMAD AMB . .
Method : H ol approach yields the smallest AMB and highest AMAD value
GMM-  0.0000 944847 00006  22.6866 02015 16.3444 regarding the natural gas, crude oil, coal and ethanol. The
Algebraic 10 high value of AMAD for the LLGMM method signifies that
GMM- 0.0000 94.4446  0.0006 21.6564 02121 16.3264 the LLGMM captures the influence of random environmen-
Analytic tal fluctuations on the dynamic of energy commodity pro-
IRGMM- 0.0027 344838 0.0013  17.6894 0.3438 13.4981 cess. From Remark 23, the smallest RAMSE, highest
Algebraic AMAD, and smallest AMB value under the LLGMM
IRGMM- 0.0021 23.1151  0.0005  17.6869 0.3448 13.4989 15 method exhibit the superior performance under the three
Analytic goodness-of-fit measures.
Ranking of Methods Under Goodness of Fit Measure.
TABLE 32
Ranking of natural gas, crude oil, coal, and ethanol under three statistical measures
RANK OF METHODS UNDER GOODNESS OF FIT MEASURE
Natural gas Crude oil Coal Ethanol
Method RAMSE AMAD AMB RAMSE AMAD AMB RAMSE AMAD AMB RAMSE AMAD AMB
GMM-Algebraic 6 2 2 6 3 6 6 5 6 6 3 6
GMM-Analytic 5 3 3 5 2 5 5 4 5 5 2 5
IRGMM-Algebraic 4 5 5 3 5 4 4 3 3 4 5 4
IRGMM-Analytic 2 6 6 2 4 3 3 2 4 3 4 3
AGMM 3 4 4 4 6 2 2 6 2 2 6 2
LLGMM 1 1 1 1 1 1 1 1 1 1 1 1
TABLE 30-continued Remark 27.
The ranking of LLGMM is top one in all three goodness-
If:rﬁg%te; i/{“;“}“;ltes (‘;T;/Iogel 73) éﬁj&hzigoidn?“g&?&fg;i?s 35 of-fit statistical measures for all four energy commodity data
y , an using -Algebraic, - ic, v .
TRGMM.- Algebraic, IRGMM-Analytic, AGMM and LLGMM methods sets. Fur.ther, one of the IRGMM-Analytic and AGMM I
for coal data ranked either as top 2nd or 3rd under RAMSE measure. This
e exhibits the influence of the usage of stochastic calculus
Method a p o’ RAMSE AMAD AMB 4, based orthogonality condition parameter vectors (OCPV-
AGMM  0.0464 27.0567 0.0014 177620  0.0833 13.106 Analytic).
LLGMM 0.4794* 94009 12.8370 7.4 Comparison of Goodness of Fit Measures of Model
(45) with (75) Using LLGMM Method
As stated in Remark 26, we compare the Goodness of fit
TABLE 31 5 Measures RAMSE, AMAD, and AMB using the U.S. Trea-
sury Bill Interest Rate data and the LLGMM applied to the
Parameter estimates of model (75) and the goodness-of-fit measures model validation PrOblemS of two Proposed continuous-time
RAMSE, AMAD, and AMB using GMM-Algebraic, GMM-Analytic, dynamic models of U.S. Treasury Bill Interest Rate process
IRGMM-Algebraic, IRGMM-Analytic, AGMM and LLGMM methods described by (45) and (75). The LLGMM state estimates of
for ethanol e
0 (45) and (75) are computed under the same initial delay
Method . " o ORE AVAD AMB r=20, P:2, and €=0.001. The results are recorded in the
following table.
GMM-  0.0000 94.4847 0.0006  22.6866 0.2015 16.3444
Algebraic
GMM-  0.0000 94.4446 0.0006  21.6564 0.2121 16.3264 TABLE 33
Analytic 3 ¢ ison of goodness of fit £ model (45) with model (75)
IRGMM-  0.0014  3.4506  0.0026 0.5844  0.0322 0.4346 OIIPArISOn Of 200CRess of AL Measule of mode With moce
Algebraic el e o
IRGMM- 0.0015  3.4506  0.0026 0.5813  0.0336  0.4303 LLGMM RAMSE AMAD AMB
Analytic
AGMM 03167  2.166 0.0018 0.4356  0.0035 03579 Model (45) 0.0024% 0.0145 0.0178
LLGMM 0.0375* 03213 03566 , Model (75) 0.0027 0.0146 (10178

Tables 28, 29, 30, and 31 show a comparison parameter
estimates of model (75) and the goodness-of-fit measures
RAMSE, AMAD, and AMB using GMM-Algebraic, GMM-
Analytic, IRGMM-Algebraic, IRGMM-Analytic, AGMM
and LLGMM methods for the daily natural gas data, daily
crude oil data, daily coal data, and weekly ethanol data,
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Table 33 shows that the goodness-of-fit measures
RAMSE, AMAD, and AMB of the LLGMM method using
both models (75) and (45) are very close. Model (45)
appears to have the least RAMSE value. This shows that the
LLGMM result performs better using model (45) than using
model (75) since it has a lower root mean square error. The
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AMAD value using (75) is larger than the value using (45).
This suggests that the influence of the random environmen-
tal fluctuations on state dynamic model (75) is higher than
using the model (45). The AMB value derived using both
models appeared to be the same, indicating that both model 5
give the same average median bias estimates. Based on this
statistical analysis, we conclude that (45) is most appropriate
continuous-time stochastic dynamic model for the short-
term riskless rate model which includes many well-known
interest rate models.

8. Comparison of LLGMM with Existing Nonparametric
Statistical Methods

In this section, we compare our LLGMM method with
existing nonparametric methods. We consider the following
existing nonparametric methods.

8.1 Nonparametric Estimation of Nonlinear Dynamics by
Metric-Based Local Linear Approximation (LLA)

The LLA method assumes no functional form of a given
model but estimates from experimental data by approximat-
ing the curve implied by the function by the tangent plane
around the neighborhood of a tangent point. Suppose the
state of interest x, at time t is differentiable with respect to

10

15

20

t and satisfies dx,~f(x,)dt, where f:R* — R is a smooth map,

x,ER* .. The approximation of the curve f(x,) in a neigh-
bourhood U_(x,)={x: d(x,x,)<e} is defined by a tangent
plane at x,

25

k
a
vo= 10+ Y 9L (i -, >0
=1

where d is a metric on R *. Allowing error in the equation
and assigning a weight w(x,) to each error terms €, the

35
method reduces to estimating parameters
a
Bi= a—f(xo), 1=12,... ,k
H 40

in the equation

k 45
WDy = o wix) + D B wle)(xei = Xo):

i=1

Applying the standard linear regression approach, the

least square estimate [ is given by 30

B0 XY, (83)
where
55
X = 00 01 = Fo)s o s WO 5y, = %0)) s =1, e L k.
W= )y e W)
Vo= (W ey s e s WE)1,)
%= %, LR, 60

Particularly, the trajectory f(x,) is estimated by choosing
Xo=X,, for each i=1, 2, . . ., n,z respectively. We use d(x,
xo):I)Z(—XOI, where |.| is the standard Euclidean metric on
R % and wx)=p(d(x, X,)), where ¢p(u)=K(u/e) and K is the
Epanechnikov Kernel K(x)=0.75(1-x2),.
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8.2 Risk Estimation and Adaptation after Coordinate
Transformation (REACT) Method

Given n pairs of observations (x;, Y;), . . ., (X,, Y,,), the
REACT method, the response variable Y is related to the
covariate X (called a feature) by the equation

Y;=r(x;}+0€;, (84)

where €,~N(0, 1) are IID, and x,=i/n, i=1, 2, . . ., n. The
function r(x) is approximated using orthogonal cosine basis
$,, 1=1, 2, 3, . . . of [0,1] described by

§,(0)=1, §,x)=YZcos((j-Dmx),j=2. (85)

The function r(x), expanded as
& (86)
) = ) 0585
=
where
1
0;= f @ (xX)r(x) dx
0

is approximated. The function estimator

J
P = ) Zigio)

=
where
1 ]
Z; = ;Zl Yipia), j= 1,2, .

and J is found so that the risk estimator

is minimized, 02 is the estimator of variance of Z,.
8.3 Exponential Moving Average Method (EMA)

The EMA for an observation y, at time t may be calculated
recursively as

S=ap+(1-a)S, 1, 121,23, . . . (87)

where O<as<l is a constant that determines the depth of
memory of S,.

8.4 Goodness-of-Fit Measures for the LLA, REACT, and
EMA Methods

In this subsection, we show the goodness-of-fit measures
for the LLA, REACT, and EMA methods. We use J=183 for
the REACT method and a¢=0.5 for the EMA method.
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TABLE 34

Goodness-of-fit measures for the LI.A, REACT, and EMA methods.

Goodness
of-fit
Measure Natural gas Crude oil Coal Ethanol
LLGMM method
RAMSE 0.0674 0.4625 0.4794 0.0375
AMAD 1.1318 24.5010 9.4009 0.3213
AMB 1.1371 27.2707 12.8370 0.3566
LLA Method
EANMSE 0.3114 1.9163 2.1645 0.2082
AMAD 1.1406 24.3266 9.4511 0.3290
AMB 1.2375 27.2713 12.8388 0.3677
REACT method
EANMSE 0.1895 2.0377 2.0162 0.0775
AVAD 1.1779 24.6967 9.3791 0.3291
AMB 1.12352 27.2711 12.8369 0.3566
EMA method
EANMSE 0.1222 0.7845 0.8233 0.0682
AMAD 1.1336 24.5858 9.4183 0.3159
AMB 1.2352 27.2710 12.8370 0.3567

Comparison of the results derived using these non-para-
metric methods with the LLGMM method show that the
results derived using the LLGMM method is far better than
results of the nonparametric methods.

FIG. 8 illustrates an example schematic block diagram of
the computing device 100 shown in FIG. 1 according to
various embodiments described herein. The computing
device 100 includes at least one processing system, for
example, having a processor 802 and a memory 804, both of
which are electrically and communicatively coupled to a
local interface 806. The local interface 806 can be embodied
as a data bus with an accompanying address/control bus or
other addressing, control, and/or command lines.

In various embodiments, the memory 804 stores data and
software or executable-code components executable by the
processor 802. For example, the memory 804 can store
executable-code components associated with the visualiza-
tion engine 130 for execution by the processor 802. The
memory 804 can also store data such as that stored in the
device data store 120, among other data.

It is noted that the memory 804 can store other execut-
able-code components for execution by the processor 802.
For example, an operating system can be stored in the
memory 804 for execution by the processor 802. Where any
component discussed herein is implemented in the form of
software, any one of a number of programming languages
can be employed such as, for example, C, C++, C #,
Objective C, JAVA®, JAVASCRIPT®, Perl, PHP, VISUAL
BASIC®, PYTHON®, RUBY, FLASH®, or other program-
ming languages.

As discussed above, in various embodiments, the memory
804 stores software for execution by the processor 802. In
this respect, the terms “executable” or “for execution” refer
to software forms that can ultimately be run or executed by
the processor 802, whether in source, object, machine, or
other form. Examples of executable programs include, for
example, a compiled program that can be translated into a
machine code format and loaded into a random access
portion of the memory 804 and executed by the processor
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802, source code that can be expressed in an object code
format and loaded into a random access portion of the
memory 804 and executed by the processor 802, or source
code that can be interpreted by another executable program
to generate instructions in a random access portion of the
memory 804 and executed by the processor 802, etc.

An executable program can be stored in any portion or
component of the memory 804 including, for example, a
random access memory (RAM), read-only memory (ROM),
magnetic or other hard disk drive, solid-state, semiconduc-
tor, or similar drive, universal serial bus (USB) flash drive,
memory card, optical disc (e.g., compact disc (CD) or digital
versatile disc (DVD)), floppy disk, magnetic tape, or other
memory component.

In various embodiments, the memory 804 can include
both volatile and nonvolatile memory and data storage
components. Volatile components are those that do not retain
data values upon loss of power. Nonvolatile components are
those that retain data upon a loss of power. Thus, the
memory 804 can include, for example, a RAM, ROM,
magnetic or other hard disk drive, solid-state, semiconduc-
tor, or similar drive, USB flash drive, memory card accessed
via a memory card reader, floppy disk accessed via an
associated floppy disk drive, optical disc accessed via an
optical disc drive, magnetic tape accessed via an appropriate
tape drive, and/or other memory component, or any combi-
nation thereof. In addition, the RAM can include, for
example, a static random access memory (SRAM), dynamic
random access memory (DRAM), or magnetic random
access memory (MRAM), and/or other similar memory
device. The ROM can include, for example, a programmable
read-only memory (PROM), erasable programmable read-
only memory (EPROM), electrically erasable program-
mable read-only memory (EEPROM), or other similar
memory device.

The processor 802 can be embodied as one or more
processors 802 and the memory 804 can be embodied as one
or more memories 804 that operate in parallel, respectively,
or in combination. Thus, the local interface 806 facilitates
communication between any two of the multiple processors
802, between any processor 802 and any of the memories
804, or between any two of the memories 804, etc. The local
interface 806 can include additional systems designed to
coordinate this communication, including, for example, a
load balancer that performs load balancing.

As discussed above, the LLGMM dynamic process mod-
ule 130 can be embodied, at least in part, by software or
executable-code components for execution by general pur-
pose hardware. Alternatively the same can be embodied in
dedicated hardware or a combination of software, general,
specific, and/or dedicated purpose hardware. If embodied in
such hardware, each can be implemented as a circuit or state
machine, for example, that employs any one of or a com-
bination of a number of technologies. These technologies
can include, but are not limited to, discrete logic circuits
having logic gates for implementing various logic functions
upon an application of one or more data signals, application
specific integrated circuits (ASICs) having appropriate logic
gates, field-programmable gate arrays (FPGAs), or other
components, etc.

The flowchart or process diagrams in FIGS. 2 and 3 are
representative of certain processes, functionality, and opera-
tions of the embodiments discussed herein. Each block can
represent one or a combination of steps or executions in a
process. Alternatively or additionally, each block can rep-
resent a module, segment, or portion of code that includes
program instructions to implement the specified logical
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function(s). The program instructions can be embodied in
the form of source code that includes human-readable state-
ments written in a programming language or machine code
that includes numerical instructions recognizable by a suit-
able execution system such as the processor 802. The
machine code can be converted from the source code, etc.
Further, each block can represent, or be connected with, a
circuit or a number of interconnected circuits to implement
a certain logical function or process step.

Although the flowchart or process diagrams in FIGS. 2
and 3 illustrate a specific order, it is understood that the order
can differ from that which is depicted. For example, an order
of execution of two or more blocks can be scrambled relative
to the order shown. Also, two or more blocks shown in
succession in FIGS. 2 and 3 can be executed concurrently or
with partial concurrence. Further, in some embodiments, one
or more of the blocks shown in FIGS. 2 and 3 can be skipped
or omitted. In addition, any number of counters, state
variables, warning semaphores, or messages might be added
to the logical flow described herein, for purposes of
enhanced utility, accounting, performance measurement, or
providing troubleshooting aids, etc. It is understood that all
such variations are within the scope of the present disclo-
sure.

Also, any logic or application described herein, including
the LLGMM dynamic process module 130 that are embod-
ied, at least in part, by software or executable-code compo-
nents, can be embodied or stored in any tangible or non-
transitory computer-readable medium or device for
execution by an instruction execution system such as a
general purpose processor. In this sense, the logic can be
embodied as, for example, software or executable-code
components that can be fetched from the computer-readable
medium and executed by the instruction execution system.
Thus, the instruction execution system can be directed by
execution of the instructions to perform certain processes
such as those illustrated in FIGS. 2 and 3. In the context of
the present disclosure, a “non-transitory computer-readable
medium” can be any tangible medium that can contain,
store, or maintain any logic, application, software, or execut-
able-code component described herein for use by or in
connection with an instruction execution system.

The computer-readable medium can include any physical
media such as, for example, magnetic, optical, or semicon-
ductor media. More specific examples of suitable computer-
readable media include, but are not limited to, magnetic
tapes, magnetic floppy diskettes, magnetic hard drives,
memory cards, solid-state drives, USB flash drives, or
optical discs. Also, the computer-readable medium can
include a RAM including, for example, an SRAM, DRAM,
or MRAM. In addition, the computer-readable medium can
include a ROM, a PROM, an EPROM, an EEPROM, or
other similar memory device.

A phrase, such as “at least one of X, Y, or Z,” unless
specifically stated otherwise, is to be understood with the
context as used in general to present that an item, term, etc.,
can be either X, Y, or Z, or any combination thereof (e.g., X,
Y, and/or 7). Similarly, “at least one of X, Y, and Z,” unless
specifically stated otherwise, is to be understood to present
that an item, term, etc., can be either X, Y, and Z, or any
combination thereof (e.g., X, Y, and/or 7). Thus, as used
herein, such phases are not generally intended to, and should
not, imply that certain embodiments require at least one of
either X, Y, or Z to be present, but not, for example, one X
and one Y. Further, such phases should not imply that certain
embodiments require each of at least one of X, at least one
of' Y, and at least one of Z to be present.
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Although embodiments have been described herein in
detail, the descriptions are by way of example. The features
of the embodiments described herein are representative and,
in alternative embodiments, certain features and elements
may be added or omitted. Additionally, modifications to
aspects of the embodiments described herein may be made
by those skilled in the art without departing from the spirit
and scope of the present invention defined in the following
claims, the scope of which are to be accorded the broadest
interpretation so as to encompass modifications and equiva-
lent structures.

Therefore, at least the following is claimed:

1. Alocal lagged adapted generalized method of moments
(LLGMM) process to simulate a forecast using measured
data, the process to simulate comprising:

developing a stochastic model of a continuous time

dynamic process;

obtaining a discrete time data set measured for at least one

commodity as past state information of the continuous
time dynamic process over a time interval;
generating a discrete time interconnected dynamic model
of local sample mean and variance statistic processes
(DTIDMLSMYVSP) based on the stochastic model of
the continuous time dynamic process and the discrete
time data set measured for at least one commodity;

calculating, by at least one computer, a plurality of
admissible parameter estimates for the stochastic
model of the continuous time dynamic process, to
forecast a price of the at least one commodity, using the
DTIDMLSMVSP;

for each of the plurality of admissible parameter esti-
mates, calculating, by the at least one computer, a state
value of the stochastic model of the continuous time
dynamic process to gather a plurality of state values of
the stochastic model of the continuous time dynamic
process; and
determining an optimal admissible parameter estimate
among the plurality of admissible parameter estimates
that results in a minimum error among the plurality of
state values, wherein generating the DTIDMLSMVSP
further comprises:
at each time point in a partition of the time interval,
selecting, by the at least one computer, an m,-point
sub-partition of the partition, the m,-point sub-partition
having a local admissible lagged sample observation
size based on an order of a model, a response delay
associated with the continuous time dynamic process,
and a sub-partition time observation index size; and

for each m,-point in each sub-partition, selecting, by the
at least one computer, an m,-local moving sequence in
the sub-partition to gather an m,-class of admissible
restricted finite sequences.

2. The LLGMM process according to claim 1, wherein
generating the DTIDMLSMVSP further comprises:

for each m,-local moving sequence, calculating, by the at

least one computer, an m;-local average to generate an
m,-moving average process; and

for each m,-local moving sequence, calculating, by the at

least one computer, an m,-local variance to generate an
my,-local moving variance process.

3. The LLGMM process according to claim 2, wherein
generating the DTIDMLSMVSP further comprises:

transforming the stochastic model of the continuous time

dynamic process into a stochastic model of a discrete
time dynamic process utilizing a discretization scheme;
and
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developing a system of generalized method of moments
equations from the stochastic model of the discrete time
dynamic process.

4. The LLGMM process according to claim 2, further
comprising identifying an optimal m,-local moving
sequence among the m,-class of admissible restricted finite
sequences based on the minimum error.

5. The LLGMM process according to claim 4, wherein
determining the optimal admissible parameter estimate com-
prises:

identifying one mj-local moving sequence among the

m-class of admissible restricted finite sequences as the
optimal m,-local moving sequence when the one m,-
local moving sequence is associated with the minimum
error; and

selecting a largest m,-local moving sequence among the

m,~class of admissible restricted finite sequences as the
optimal m,-local moving sequence when more than one
m,-local moving sequence in the m,-class of admis-
sible restricted finite sequences is associated with the
minimum error.

6. The LLGMM process according to claim 4, further
comprising forecasting at least one future state value of the
stochastic model of the continuous-time dynamic process
using the optimal m,-local moving sequence.

7. The LLGMM process according to claim 6, further
comprising determining an interval of confidence associated
with the at least one future state value.

8. Alocal lagged adapted generalized method of moments
(LLGMM) system to simulate a forecast using measured
data, comprising:

a memory that stores a discrete time data set measured for

at least one commodity as past state information of a
continuous time dynamic process over a time interval
and computer readable instructions for an LLGMM
process; and

at least one computing device coupled to the memory and

configured, through the execution of the computer

readable instructions for the LLGMM process, to:

generate a discrete time interconnected dynamic model
of'local sample mean and variance statistic processes
(DTIDMLSMVSP) based on a stochastic model of a
continuous time dynamic process and the discrete
time data set measured for at least one commodity;

calculate a plurality of admissible parameter estimates
for the stochastic model of the continuous time
dynamic process, to forecast a price of the at least
one commodity, using the DTIDMLSMVSP;

for each of the plurality of admissible parameter esti-
mates, calculate a state value of the stochastic model
of the continuous time dynamic process to gather a
plurality of state values of the stochastic model of the
continuous time dynamic process;

determine an optimal admissible parameter estimate
among the plurality of admissible parameter esti-
mates that results in a minimum error among the
plurality of state values;

at each time point in a partition of the time interval,
select an m,-point sub-partition of the partition, the
mg-point sub-partition having a local admissible
lagged sample observation size based on an order of
a model, a response delay associated with the con-
tinuous time dynamic process, and a sub-partition
time observation index size; and

for each m,-point in each sub-partition, select an m,-
local moving sequence in the sub-partition to gather
an m,-class of admissible restricted finite sequences.
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9. The LLGMM system according to claim 8, wherein the
at least one computing device is further configured to:

for each m;-local moving sequence, calculate an mA-

local average to generate an m,-moving average pro-
cess; and

for each m;-local moving sequence, calculate an mA-

local variance to generate an m,-local moving variance
process.

10. The LLGMM system according to claim 9, wherein
the at least one computing device is further configured to:

transform the stochastic model of the continuous time

dynamic process into a stochastic model of a discrete
time dynamic process utilizing a discretization scheme;
and

develop a system of generalized method of moments

equations from the stochastic model of a discrete time
dynamic process.
11. The LLGMM system according to claim 9, wherein
the at least one computing device is further configured to
identify an optimal m,-local moving sequence among the
m,~class of admissible restricted finite sequences based on
the minimum error.
12. The LLGMM system according to claim 11, wherein
the at least one computing device is further configured to:
identify one m,-local moving sequence among the m,-
class of admissible restricted finite sequences as the
optimal m,-local moving sequence when the one m,-
local moving sequence is associated with the minimum
error; and
select a largest m,-local moving sequence among the
m-class of admissible restricted finite sequences as the
optimal m,-local moving sequence when more than one
my,-local moving sequence in the m,-class of admis-
sible restricted finite sequences is associated with the
minimum error.
13. The LLGMM process according to claim 11, wherein
the at least one computing device is further configured to
forecast at least one future state value of the stochastic
model of the continuous-time dynamic process using the
optimal m,-local moving sequence.
14. A non-transitory computer readable medium including
computer readable instructions stored thereon that, when
executed by at least one computing device, direct the at least
one computing device to perform a local lagged adapted
generalized method of moments (LLLGMM) process to simu-
late a forecast using measured data, the process to simulate
comprising:
obtaining a discrete time data set measured for at least one
commodity as past state information of a continuous
time dynamic process over a time interval;

generating a discrete time interconnected dynamic model
of local sample mean and variance statistic processes
(DTIDMLSMVSP) based on a stochastic model of a
continuous time dynamic process and the discrete time
data set measured for at least one commodity;

calculating, by the at least one computing device, a

plurality of admissible parameter estimates for the
stochastic model of the continuous time dynamic pro-
cess, to forecast a price of the at least one commodity,
using the DTIDMLSMVSP;

for each of the plurality of admissible parameter esti-

mates, calculating, by the at least one computer, a state
value of the stochastic model of the continuous time
dynamic process to gather a plurality of state values of
the stochastic model of the continuous time dynamic
process; and
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determining an optimal admissible parameter estimate
among the plurality of admissible parameter estimates
that results in a minimum error among the plurality of
state values, wherein generating the DTIDMLSMVSP
further comprises:

at each time point in a partition of the time interval,
selecting, by at least one computer, an m,-point sub-
partition of the partition, the m,-point sub-partition
having a local admissible lagged sample observation
size based on an order of a model, a response delay
associated with the continuous time dynamic process,
and a sub-partition time observation index size;

for each m,-point in each sub-partition, selecting, by the
at least one computer, an m,-local moving sequence in
the sub-partition to gather an m,-class of admissible
restricted finite sequences;

for each m;-local moving sequence, calculating, by the at
least one computer, an m,-local average to generate an
m,-moving average process; and

for each m;-local moving sequence, calculating, by the at
least one computer, an m,-local variance to generate an
m,-local moving variance process.
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