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1. Prologue - Pi Day 
 

 
I first witnessed how the high school where I was working as a math teacher was 

celebrating “Pi day” during my second year of teaching. It was an impressive school event, for 

which teachers and students were getting ready ahead of time. The school Math club collected and 

posted multiple Pi facts prior to the event; created posters, songs, and problems; and held a Pi 

contest on March 14. It all happened that day during lunch time. Students were asked questions on 

Pi, and as a reward, everybody got a generous slice of pie. Girls and boys, staff members and 

teachers, administration and counselors were all surrounded by Pi facts and lots of sweets. The 

high school even had a designated person charged with ordering pies of all kinds. The chocolate 

silk pies in high demand. As a new teacher, I had no idea of what this event meant for the whole 

school. I knew the school had a strong mathematics department, but I felt that this event was just 

a way to advertise the school itself. 

Growing up in a different country and learning about Pi just the old-fashioned way did not 

allow me to explore numbers deeply. High school trigonometry was always rich in Pi encounters. 

Every angle we worked with was in radian measure, so Pi was always present in my schoolwork. 

Most of the volume formulas for solids had the number Pi incorporated, so the approximation 3.14 

was in many instances my best friend. Generally, the number Pi brought joy to my math work.  I 

knew I could simplify and reduce complex mathematics to simpler expressions. Often my calculus 

homework included Pi. Its presence felt like a good friend; someone you could always rely on. As 

a high school student, I was fascinated by calculus and algorithms were my best friends. 

Mathematics represented to me a fascinating language that I kept in my heart for many years. 

However, there were few things I did not learn in high school: the number sets, the importance of 

real numbers, rational and irrational numbers — the essence of algorithms. I was trained to work 

well with numbers, but number theory and the history of all numbers were left out. It was as if all 

my mathematics teachers had forgotten the parts that make mathematics beautiful. It was the 

reason why, when I had to deal with traditional Pi day, I felt nothing, or I felt like people got way 

too excited about an ordinary number. 

 

 

 



3 
 

2. An Introduction to Pi: History and Interesting Facts about Pi  

 

My objective in this thesis is to develop a deeper understanding of Pi and some of its most 

beautiful aspects. Pi, denoted by the Greek letter , is known by many as a mysterious irrational 

number also known as “Pee” in Europe.  Most people remember Pi from school mathematics and 

relate Pi to formulas like the circumference of a circle , 2C r  , and the area of a circle, 

2A r , but many don’t know what it represents. For some people, Pi is nothing more than a 

touch of a button on a calculator. Depending on the size of a calculator’s display, the number will 

be:  

3.1415927, 

3.141592654, 

3.14159265359, 

3.1415926535897932384626433832975, 

or even longer, when using more advanced technology [1]. 

The symbol   is the sixteenth letter of the Greek alphabet. In the Hebrew and the Greek 

languages there were no numerical symbols. The Greeks began using the letter   first associating 

it to the number 80.  

 

 

 

          [2] 
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By coincidence, the Hebrew letter ף (pe) has the same value. 

 

[2] 

 

 According to history, the symbol  was first used in mathematics by William Oughtred (1575 - 

1660). He chose the letter   to represent a very significant value related to circles. In 1652 he 

referred to the ratio 


, where  represented the periphery (circumference , 2C r ) of a circle 

and the symbol  represented the diameter of the circle ( 2D r ). In 1665 John Wallis (1660 - 

1703) used the Hebrew letter מ (mem), to equal one-quarter of the ratio of the circumference of a 

circle to its diameter, 

1 = מ 1 2

4 4 2 4

C r

D r

 
    . 

In 1706, William Jones (1675 – 1749) published his book Synopsis Palmariorium Matheseos in 

which he also used the symbol  to represent the ratio of the circumference of a circle to its 

diameter. Later, in 1736 the Switzerland born mathematician Leonhard Euler (1707 – 1783) also 

used the symbol  to represent the ratio of the circumference of a circle to its diameter.  However, 

it was after Euler’s use of the symbol  in Introductio in Analysin Infinitorum, that it became 

popular as the symbol that represents the ratio of the circumference of a circle to its diameter [1]. 

Symbolically this means 

C

D
  , where C represents the length of the circumference and D is the length of the diameter. 

This ratio is a constant independent of the size of a circle.  D, the diameter of a circle is twice the 

length of its radius or 2D r  , where r is the radius. If we substitute this fact, we get
2

C

r
  , which 
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leads to the famous formula for the circumference of a circle 2C r . Euler was in fact the author 

of many symbols that are widely used in today’s mathematics. Among them are: ( )f x  — the 

common notation for a function,  e  — the base of natural logarithm,  , ,a b c  — the sides of the 

lengths of a triangle,   S — the semi perimeter, r — the radius of a circle inscribed in a right 

triangle, and  — for the summation sign.  Euler also discovered one of the most famous 

formulas in mathematics. His formula 1 0ie     involves five of the most important numbers in 

mathematics: e — the base for the natural logarithms and also known as the number satisfying the 

equation ln log 1ee e  , i  — the imaginary number that is the solution for 2 1x    ,  — the 

irrational number whose approximation is 3.14, 1 — known as the multiplicative identity, and 0 

— the additive identity. Benjamin Peirce, a 19th century Harvard mathematician, claimed that this 

formula lacked meaning but could be proved and therefore it represented a truth.   

Euler’s life was as interesting as his formula. He was a Swiss mathematician who studied 

mathematics with his father, who himself studied with the famous mathematician Jakob Bernoulli.  

This connection helped Euler later when his father arranged for him to study with Johann 

Bernoulli, Jakob’s Bernoulli’s son. Thanks to Bernoulli’s influence, Euler was able to work for 

the Russian Academy of St. Petersburg at the age of twenty and stayed there for fourteen years, 

eventually earning the position of Chief Mathematician. Although he spent the next twenty-five 

years working for the Prussian Academy, he never lost touch with the Russian Academy to which 

he returned to work for the last seventeen years of his life. He had an incredible memory and was 

known as a very productive mathematician, although he was deaf in his right ear and became blind 

in the last years of his lifetime. During his career he wrote 530 books and articles. Some of his 

manuscripts continued to appear after his death, so a total of 886 books and articles encompassed 

his entire life’s work [1]. 

 One familiar formula containing  is the area of a circle of radius r , 2A r . To derive 

this formula, draw a circle and divide it into sixteen equal sectors.  
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The central angle of each of the sector is 360
22.5

16
  . If we rearrange the sixteen sectors the 

following way: 
 
 

 
 
we get what is approximately a parallelogram. The more sectors the circle is cut into, the closer to 

a true parallelogram the figure will get. As the number of sectors approaches infinity, the arcs will 

look like segments and the area of the approximating parallelogram will approach the area of the 

circle itself. In other words, we have something that resembles a parallelogram and in the limit its 

area is equal to the area of a rectangle which is equal to the area of the circle. The length of the 

base of the rectangle is 1

2
C . Since, 2C r , the base length is r . The area of the rectangle 

equals the product of its height with its base. Since the rectangle’s height is equal to the radius of 

the circle, the area of the rectangle is 2A r , which gives us the well-known formula for the 

area of a circle [3]. 
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Another interesting fact about Pi is illustrated in the following diagram. 

 

 

 
 

In this diagram the area of the square is 2r  but by multiplying its area by  , we convert its area 

to the area of the actual circle which is 2r . Hence  can also be an interesting link for the area 

of a square and the area of the associated circle [1]. 

 

The number  had an interesting evolution throughout history. Archimedes of Syracuse 

(287 - 212 BCE) showed that the value of  lies between 10
3

71
 and  1

3
7

 . The Dutch mathematician 

Rudolph van Ceulen (1540 - 1610) calculated the value of  with thirty-five places. John Wallis 

(1616 - 1703), a professor of mathematics at both Cambridge and Oxford presented a formula to 

represent as follows: 

2 2 4 4 6 6 8 8 2 2
... ...

2 1 3 3 5 5 7 7 9 (2 1)(2 1)

n n

n n

     
      

     
 

This infinite product is equal to the value of 
2

 . This means that the finite products get 

arbitrarily close to the value of 
2

  [1]. 

In the early 1700’s Euler examined the function  

2 2 4 6

0

sin( )
( ) 1 ...

(2 1)! 3! 5! 7!

n

n

x x x x x
F x

x n




      

  . 
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It has a value of (0) 1F  and an even symmetry property ( ) ( )F x F x  . Furthermore, there are 

an infinite number of equally spaced zeros located at x n  with  1, 2,3, 4,...n   These facts 

suggest that we can try to express sin( )
( )

x
F x

x
  as a product  

2 2 2
1 2 3( ) (1 )(1 )(1 )...F x Ax A x A x     

which has (0) 1F  . The constants nA are to be adjusted to match the location of the zeros of the 

function. Taking 
1 2

1
A


 , 

2 2

1

4
A


 , 

3 2

1

9
A


 ,… etc., the function will vanish at all its zeros 

and one has the symmetric product expansion  

2

1

( ) 1
n

x
F x

n





     
   

  [4]. 

The plot of this function is: 

 

 

By using Euler’s infinite product of the sin( )
( )

x
F x

x
 , we can easily prove John Wallis’s product 

leading to 
2

 .  
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In 

2

1

sin( )
( ) 1

n

x x
F x

x n





      
   

 , 

if we let 
2

x


  the function becomes  

2

2 2
1

sin
2( ) (1 ( ))

2 4
2

n

F
n


 

 





    

or simplified  

2

2 2
1 1

2 1 4 1
(1 ) ( )

4 4n n

n

n n

 

 


    . 

By reversing this result 

2

2
1 1

4 2 2 2 2 4 4 6 6
( ) ...

2 4 1 2 1 2 1 1 3 3 5 5 7n n

n n n

n n n

  

 

               
   

we obtain Wallis’s product 

 

   

such an important step in the developing   [5]. 

 An interesting fact about  is that it is an irrational number. Aristotle  

(384 - 322 BCE) assumed that   is such a number, one that cannot be expressed as a fraction. 

However, the most fascinating fact about   is that this number cannot be calculated by a 

combination of the operations of addition, subtraction, multiplication, division, and root 

extraction, that is, it is not an algebraic number. This is the reason for which  is called a 

transcendental number. It is a number that is not algebraic and cannot be the root of any 

polynomial equation with integer coefficients. This fact was first suspected by Euler and proved 

in 1882 by the German mathematician Ferdinand Lindemann (1852 - 1939). In 1844, the 

mathematical genius Joseph Liouville (1809-1882) was the first to prove the existence of 

transcendental numbers. In 1851 he gave the first decimal examples such as the Liouville 

constant

! 1 2 6 24 120 720

1

10 10 10 10 10 10 10 ... 0.110001000000000000000001...n
b

n

L


      



          in 

which the nth digit after the decimal point is 1 if n is equal to k!. Hence, the nth digit of this 

2 2 4 4 6 6 8 8 2 2
... ...

2 1 3 3 5 5 7 7 9 (2 1)(2 1)

n n

n n

     
      

     
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number is 1 only if n is one of the numbers 1! 1, 2! 2,3! 6, 4! 24,...    . Liouville showed that 

the number belongs to a class of transcendental numbers that can be more closely approximated 

by rational numbers that can any irrational algebraic number. Such numbers are called Liouville 

numbers, named in the honor of him. He also proved that all Liouville numbers are 

transcendental. Charles Hermite (1822 – 1901) proved that the number e, another irrational 

number, is transcendental in 1873. Lindemann proved that  is transcendental in 1882. The 

transcendence of   put an end to all hopes of those who were looking for a method to “square 

the circle” [1]. 

Among the impossible construction problems, squaring the circle represented a challenge 

for many mathematicians over time. The three actual ancient constructions using only a compass 

and a straight edge in Euclidean Geometry are:  trisecting an angle (dividing a given angle into 

three equal angles), squaring a circle (constructing a square with the same area as a given circle), 

and doubling a cube (constructing a cube with twice the given cube). People have tried for 

centuries to make such constructions. It was not until the development of abstract algebra in the 

nineteenth century that it was proven these constructions were impossible. The only shapes we can 

draw with a compass and straightedge are line segments and circles (or parts of circles). The only 

ways of constructing new points out of old points is to take the intersection of two lines, two 

circles, or a line and a circle. Now, if we write down the general equations for these intersections 

and try to solve for one of the coordinates of the intersection point, we could end up with either a 

linear or quadratic equation. “The coefficients of the equation involve the coordinates of the old 

points (or the sums, differences, products, or quotients of them). Linear equations can be solved 

by simple division: the equation ax = b has as its solution x = b/a. Quadratic equations can be 

solved using the quadratic formula. In each case, we see that the only arithmetic operations 

required to calculate the new coordinate from the old coordinates are addition, subtraction, 

multiplication, division, and taking square roots” [6]. 

Therefore, if you start with some initial points whose coordinates are all rational numbers, 

then apply any sequence of compass-and-straightedge construction techniques, the coordinates of 

the points you end up with will be a very special kind of number: they will be obtainable from the 

rational numbers by a sequence of operations involving only addition, subtraction, multiplication, 

division, and the extraction of square roots. The reason the three classical constructions are 

impossible is the fact they all require the construction of points whose coordinates are not numbers 
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of this type. Proving that they are not numbers of this type requires advanced mathematics from 

field theory. “If x is a number obtainable from the rational numbers using only addition, 

subtraction, multiplication, division, and the taking of square roots, then x is a solution to some 

polynomial equation with rational coefficients. Moreover, if one factors out irrelevant factors from 

this equation until one gets down to an "irreducible" polynomial equation (one that cannot be 

factored any further and still have rational coefficients), the degree of this polynomial will always 

be a power of 2. Each time you take a square root, you usually double the degree of the polynomial 

required to represent the number. For example, 2  can be represented as a solution to the 

quadratic equation 2 2 0x   , whose degree is 2. (Of course, it's also a solution to the cubic 

equation  3 2 0x x   whose degree is 3, not a power of 2; but that's because this equation can be 

factored, and after factoring out the x you are left with the quadratic 2 2 0x   , which is 

irreducible: it can't be factored any further where the polynomial factors have rational coefficients). 

If we take a square root a second time, getting the number 42 , it's a root of the fourth-degree 

polynomial 4 2 0x   , which is irreducible. A number like 2 3 , also obtained by twice 

taking a square root, is also the root of an irreducible fourth-degree polynomial: 4 210 1 0x x   . 

A number obtained by taking a square root three times, like
1

82  , is typically the root of an 

irreducible 8th degree polynomial, like 8 2 0x   . This intuitive understanding is not always 

correct, though. For example, 2 8   , even though it is obtained using two square roots, is the 

same as 3 2 , which involves only one square root. The argument only shows us that the claims 

of the theorem are to some degree reasonable. In fact, proving the theorem (and proving, not just 

that there is some irreducible polynomial equation for x whose degree is a power of 2, but 

that every irreducible polynomial equation for x also has that same degree) involves many 

advanced mathematical methods” [6]. 

Using the theorem, it is easy to prove the impossibility of the three constructions: Doubling 

a cube is impossible because if you start with a cube of side length 1, you would need to construct 

a cube whose side length is 3 2 . But 3 2 is a solution to the irreducible equation  3 2 0x  

whose degree, 3, is not a power of 2 [6]. 
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Squaring a circle is impossible because if you start with a circle of radius 1 you would need to 

construct a square whose side length is   . But  is a transcendental number, which is not the 

solution to any polynomial equation with rational coefficients, let alone one whose degree is a 

power of 2. 

 

 

Trisecting an angle is impossible because if you start with an angle of 6 0   (which is easily 

constructible, since an equilateral triangle is constructible), you would then need to be able to 

construct an angle of 20 degrees. This would be equivalent to constructing a point whose 

coordinates for the unit circle are cos( 2 0  ) and sin( 2 0  ) . This is impossible because  

cos( 2 0  ) is a solution to the irreducible polynomial equation 38 6 1 0x x    whose degree, 3, 

which is not a power of 2. 
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3. Archimedes’ Early Work 

 Born in Syracuse (Sicily) about 287 BCE, son of Phidias, an astronomer, Archimedes is 

one of the greatest mathematicians of all times. As a child he may have studied with Euclid’s 

successors in Alexandria, Egypt. He collaborated with Conon de Samos and Eratosthenes of 

Cyrene and brought contributions to the world of mathematics and physics. Parts of his work are 

related to circles and  [1].  

In Archimedes’ Measurement of the Circle, more specifically, in the three volumes of this 

book, there are three propositions regarding the circle that are tied to development of  .The first 

proposition says that the area of a circle is equal to that of a right triangle when the legs of the right 

triangle are respectively equal to the radius and circumference of the circle. 

  

 

 

Archimedes’ second proposition states that the ratio of the area of a circle  

to that of a square with the side equal to the circle’s diameter is closed to 11:14.  

 

21
( )(2 )

2
Area r r r  
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The area of the circle is 2r while the area of the square is
2 2(2 ) 4r r  . The ratio of the two is 

2

2

11

4 4 14

r

r

 
  . If we simplify, we get 44 22

14 7
   , which represents a very well 

known approximation of  [1]. 

The third proposition states that the circumference of a circle is less than 1
3

7
times its 

diameter and more than 10
3

71
 times the diameter. Archimedes got to this result by inscribing a 

regular hexagon into a given circle and then circumscribing a regular  

hexagon about the same circle.  
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He looked for the areas of the two hexagons and then the area of the circle. He knew the  

area of the circle must be in between the areas of the two hexagons. For accuracy, he then  

repeated the calculations for regular dodecagons, then twenty-four, forty-eight, and  

ninety-six sided regular polygons, and each time getting closer and closer to the area of  

the actual circle. Finally, Archimedes concluded that 10 1
3 3

71 7
  .   

Archimedes modified this method of estimating the value of  , by looking at the 

perimeters of repeated regular polygons. This resulted in a better method of calculating . He 

noticed that as the number of sides of a regular polygon increases, while keeping the radius or the 

apothem constant, the perimeter of polygon gets closer and closer to the circumference of the 

circle. The circumscribed circle must contain each of the vertices of the polygon. Here is what it 

can look like: 
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This may be much easier to see when the regular polygon’s sides increase further, so it becomes a 

dodecagon (12 sided polygon). 

 

Likewise, with an icosagon (20 sided regular polygon) we can see the actual perimeter approaching 

the circumference of the circle. 
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Archimedes knew that the perimeter of the n-sided regular polygon equal to 180
sinn

n
.  With this 

formula he computed the perimeter of regular polygons whose circumscribed circle has a radius 

of 1

2
.  Hence, for a 10,000-sided polygon and an inscribed circle with the radius of 1

2
, 

Archimedes knew that the perimeter of the polygon is approximately equal to the circumference 

of the circle which is 1
2 2 ( )

2
r    .  He obviously did not have the luxury of using technology. 

Yet, through hand calculations, he was still able to approximate the perimeter of a 96-sided regular 

polygon. He saw the circle as the limiting figure between the inscribed polygon and the 

circumscribed polygon used earlier. He also knew that the perimeter of inscribed polygon is 

180
siniP n

n
 



 while the perimeter of the circumscribed  perimeter is 
180

tancP n
n

 


. Then, by 

taking the average of the perimeters of each pair of n-sided regular polygons, he arrived at an 

approximation of the circumference of the circle, which in the case of a circle with a radius of 1
2

 

is   [1]. 

With today’s technology, more specifically with GeoGebra, Paul Hartzer, a high school 

mathematics teacher, was able to illustrate the calculations of Archimedes’ method of using the 

perimeters of polygons to approximate the circumference of circles. In this presentation, polygons 
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of 6, 12, 24, 48, and 96 sides are shown, as well as a circle. Each table shows half the length of the 

perimeter of each inscribed and circumscribed polygon, as well as the average of those two values. 
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           [7] 

As we step through this animation, we observe what happens to the difference between  

the perimeter of the polygons and the circumference of the circle. When the inscribed  

and circumscribed polygons get to 96 sides, the perimeter is approximately 3.14.  

Therefore, the average is approximately 3.14, and that is close to the actual value of Pi. 

 

                       

 

 
 
 
 
 
 
 
 

 
 

 

    3.46 
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4.  Probability and Buffon’s Needle Problem 
 
 

The French naturalist, mathematician, cosmologist, and encyclopedist Georges Louis 

Leclerc, Comte de Buffon (1707 - 1788) is generally remembered for his Histoire Naturelle, 

Générale et Particulière. This work contained 37 volumes and was written in an ingenious style 

and read by every cultivated person in Europe.  Originally designed to cover all the natural habitats, 

the Histoire Naturelle was referring specific to animals and minerals. The animals described by 

Buffon were birds and quadrupeds.  Buffon's Histoire Naturelle was translated at that time into 

multiple languages, and therefore made him one of the most read authors and a true competitor to 

Montesquieu, Rousseau, and Voltaire [8]. In mathematics, he is known for his French translation 

of Newton’s Method of Fluxions, the main framework of today’s calculus and even more so for 

“Buffon’s needle problem.”   

For many, the needle problem is one of the oldest geometric probability problems. In this 

problem he is making a fine connection among the value of   and probability. 

Suppose you have a piece of paper with ruled parallel lines throughout, equally spaced — with a 

distance d between the lines and a needle of length l d . 

 

  

 

 

 

You toss the needle onto the paper many times. Buffon tossed the needle thousands of  

times to conclude that the probability that the needle will touch one of the ruled lines is 2l

d
. 

Thirty-five years later, Pierre Simon Laplace popularized the problem. Laplace was one of the  

most well-known French mathematicians and showed a great interest for the  

l  d 
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field of probability.  If one wants to try this experiment, he or she will begin by  

simplifying the problem, without loss of generality, by letting l d  . The probability of the needle 

touching one of the lines is now 2


. So now, 2

P
   , where P is the probability that the needle 

will intersect a line, which is  

P   number of line touching tosses / number of all tosses  

Hence by substitution 2   / (number of all tosses / number of intersection tosses) [9]. 

When looking at this experiment we can identify two scenarios: a base case and the other  

cases. In the base case, the length of the needle is one-unit and the distance between the  

lines are also one unit. We have two variables, the angle at which the needle falls ( ) and  

the distance from the center of the needle to the closest line ( D ). The angle can vary from  

0 to 180 degrees and it is measured against a line parallel to the lines on the paper. The  

distance from the center to the closest line can never be more than half the distance  

between the lines. The diagram below illustrates the case where the needle misses the  

line. 

  

 

             
          [9] 

The needle in the diagram misses the line. The needle will touch the line if the distance to  

the nearest line (D) is less than or equal to ½ times the sine function of theta.  

This is, 1
sin

2
D  . The question is how many times will this situation occur? In the diagram 

below we have D along the ordinate and  along the abscissa. The values on or below the curve 

represent a hit where 1
sin

2
D  . So, the probability of the needle hitting the line is the ratio of 

the shaded area over the area of the whole rectangle.  
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 [9] 

 

We can calculate this probability by calculating the two areas. The shaded area is given by the 

integral: 

0 0

1 1 1
( ) sin cos cos 0 1

2 2 2
f x d d

 
         . 

The area of the entire rectangle is 1

2
 . Therefore, the ratio of the two areas represents 

geometrically the probability: 1 2
1 /

2
P 


  , as previously stated. This is approximately 

.6366197. To estimate , we can simply multiply the experimental ratio by 2.  Hence,   2 / 

(number of total drops/ number of hits). The other cases would be those resulting from the 

relationship between the length of the needles and the distance between the lines.  The case of the 

distance between the lines being larger than the needle is an extension of the simple case above. 

The probability of a hit in this new case is:  

2l

d
, where l  is the length of the needle and d  is the distance between the lines. The situation 

where the needle is longer than the distance between the lines leads to a more accurate result for 

which we encourage the reader to pursue [9].   

However, going back to the relationship between the number of tosses and probability of a 

hit, the more tosses you have, the more accurate is your estimate of the number . In 1901 Mario 

Lazzarini, an Italian mathematician, tried the needle experiment with 3,408 tosses and got    

3.1415929.  

With a computer simulation, one could easily get close to  .  With a simulation created by the 

University of Illinois, we only need to press the “drop” button and drop the chosen number of 

needles. The computer simulation performs the calculations.  



27 
 

Dropping more needles allows you to approximate  more precisely.  

Here are few cases: 

A. Number of drops = 5002 

 

 

Drop Amount
5002

 
Drop

 
Measurement Value 
Needle Scale 1 

Extent = Perimeter / Greatest Vertex Distance 1 
Number of Drops 5002 
Number of Hits 3204 

Drops / Hits 1.5611735330836454 
π ≈ 2 * Extent * Scale * Drops / Hits 3.1223470661672907 

Needle Scale
1 Start Over
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B. Number of Drops = 15,002 
 

 
 
 
 

 

Drop Amount
15,002

 
Drop

 
Measurement Value 
Needle Scale 1 

Extent = Perimeter / Greatest Vertex Distance 1 
Number of Drops 15002 
Number of Hits 9597 

Drops / Hits 1.5631968323434406 
π ≈ 2 * Extent * Scale * Drops / Hits 3.1263936646868813 

Needle Scale
1 Start Over
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C. Number of drops = 20,000 
 

 
 
 
 
 

Drop Amount
20000

 
Drop

 
Measurement Value 
Needle Scale 1 

Extent = Perimeter / Greatest Vertex Distance 1 
Number of Drops 20000 
Number of Hits 12721 

Drops / Hits 1.5722034431255405 
π ≈ 2 * Extent * Scale * Drops / Hits 3.144406886251081 

Needle Scale
1 Start Over

 
 
             
        [9] 
 
 
Buffon’s needle method is not the most efficient way to calculate  . However,  
 
we can conclude that the probability of a tossed needle intersecting a line is related to   
 
and therefore, is related to the ratio of the circumference of a circle of any radius to its  
 
diameter.   
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Due to frequent Pi encounters, mathematicians have asked themselves many questions 

about Pi and some have found astonishing answers. For example, what is the probability of two 

random integers being coprime [10]? I will now explain why the surprising answer is
2

6


. In 

number theory, two integers a and b are said to be coprime if the only positive integer (factor) that 

divides both is 1. So, in other words, the two numbers have no common factors.   

A short proof for this probability result using Euler’s famous equation   

2

2 2 2 2 2
1

1 1 1 1 1
1 ...

2 3 4 5 6k k





       , was published by two high school students, Aaron Abrams 

and Matteo Paris in the College Mathematics Journal. It was introduced by a letter from Henry L. 

Adler where he tells the actual story of the proof. He originally answered the question with a 

traditional proof that required prior knowledge of number theory. However, the two authors, both 

high school students at the time, came up with a much simpler proof. Adler was the one to 

encourage the boys to share their proof with the readers of the College Mathematics Journal [10]. 

Assume that p is the probability that two random integers are coprime. They first showed that the 

probability of gcd( , )a b k , for 1, 2, 3, ...k  is 
2

p

k
. 

Since the probability that k divides a is 1

k
, the probability of the event that k divides both a and 

b is 
2

1

k
. The probability of the independent event that a and b have no other factors is equal to the 

probability that gcd( , ) 1
a b

k k
 , which is p by assumption. Hence the probability such that 

( , )a b k  is 
2

p

k
.  Since any pair of positive integers must have a greatest common divisor, the 

sum of the probabilities that gcd( , )a b k  for 1, 2, 3, ...k  must be 1, so that 

2

2 2
1 1

1
1

6k k

p
p p

k k

 

 

     . Thus, 
2

6
p


  [11] 
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5. Pi an Irrational Number, Number Sets and 

Pi as a Limit 

 

The great astronomer, geographer, and mathematician Claudius Ptolemaeus, known as 

Ptolemy (83 – 161 CE), wrote in 150 CE his astronomical treatise Almagest. With the help of the 

sexagesimal system, a base 60 numerical system, Ptolemy was able to express the fractional parts 

of numbers. In particular, his table of chords, which was essentially the only extensive table for 

more than a millennium, has fractional parts of a degree in base 60 [12]. A chord of a circle is a 

line segment whose endpoints are on the circle. Ptolemy used a circle whose diameter is 120. He 

tabulated the length of a chord whose endpoints are separated by an arc of n degrees, for n ranging 

from 0 to 180 by increments of 1

2
. In modern notation, the length of the chord of circle with 

diameter 120 corresponding to an arc of θ degrees is 

chord( ) 120sin( ) 60(2sin( radians))
2 360

     

      

where  is in between 0 to 180 degrees and the chord of  is in between 0 to 120 degrees.  

The fractional parts of chord lengths were expressed in sexagesimal (base 60) numerals. For 

example, the length of a chord subtended by a 112° arc has a length of approximately  

2

29 5
99 99.48472

60 60
   . 

Likewise, using the same system, the square root of 2, the length of the diagonal of a unit square, 

was approximated by the Babylonians of the Old Babylonian Period (1900 BC – 1650 BC) as 

2 3

24 51 10 30547
1 1.41421296...

60 60 60 21600
      

Using this system, Ptolemy was able to approximate  as  

2

8 30 17
3 3 3.141666... 3.1416 3.14167

60 60 120
      . 

At the time, other than the approximation of  by Archimedes, this one was one of the most 

accurate results [12].  The existence of irrational numbers was already acknowledged at that time. 



32 
 

The Jewish philosopher Maimonides (1135 – 1204) first refers to irrational numbers in his 

comments on the Bible, when he explicitly says that the ratio of the circle’s diameter to its 

circumference is not known and it can never be expressed precisely. He also explains that a circle, 

whose diameter is one handbreadth, has a circumference of approximately three and one seventh 

handbreadth. Therefore, by reversing the order we get the ratio of circumference and diameter of 

a circle to be  

1
3 17 3 3.142857...
1 7

   

which is approximately the value of  [1]. 

By definition an irrational number is any real number that cannot be expressed as the 

quotient of two integers. For example, there is no number among integers and fractions that equals 

the square root of 2  , which is the length of the diagonal of a square whose side is one unit long. 

Early in the history of mathematics it became necessary to extend the concept of number to include 

irrational numbers. Each irrational number can be expressed as an infinite decimal expansion with 

no regularly repeating digit or a finite group of digits. The natural numbers, also called the counting 

numbers  , are part of the integers  , which are part of the rational numbers  , which together 

with the irrational numbers comprise the set of real numbers  . The real number system together 

with the two operations of addition and multiplication, and the ordering property of the real 

numbers, ( , , , )   , satisfies the properties of an ordered field. Under both addition and 

multiplication, the associative property, the commutative property, the distributive property, the 

identity elements, and the inverse elements constitute the properties of a field. The completeness 

property of the real numbers implies that ( , , , )    is a complete field. The completeness property 

of real numbers states that every nonempty set of real numbers that is bounded from above contains 

a least upper bound that is itself a real number.  The completeness property of real numbers plays 

a major role in defining the irrational numbers. Completeness implies that there are no gaps or 

holes on the real number line. Irrational numbers are the least upper bounds of convergent 

increasing sequences of rational numbers. Hence, they fill in the holes of the real number line. This 

can be illustrated by using Newton’s method. In numerical analysis, Newton's method, also known 

as the Newton–Raphson method, after Isaac Newton and Joseph Raphson, is a root-finding 
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algorithm which produces successively better approximations to the roots (or zeroes) of a real-

valued function.  

 

The most basic version of this algorithm starts with a single-valued function f defined for a real 

variable x, the function's derivative f ′, and an initial guess x0 for a root of f.  If the function satisfies 

necessary assumptions and the initial guess is close to the root, then a better approximation is 

0
1 0

0

( )

'( )

f x
x x

f x
  . 

Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0, f (x0)). 

That is the improved number which represents the unique root of the linear approximation at the 

initial point. The process is repeated as iteratively 

1

( )

'( )
n

n n
n

f x
x x

f x   ,  

until an acceptable value is reached. 

Now let us examine our irrational number 2x  . Consider 
2( ) 2f x x  . 

Then, '( ) 2f x x  and  

2

1

2 1 1 1 1
( )

2 2 2
n

n n n n n
n n n

x
x x x x x

x x x


       . 

Begin with: 
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1

2

3

4

2

1 1 3
2 1.5

2 2 2
1 3 1 3 2 17

1.416
32 2 4 3 12
2

1 17 1 17 12 289 288 577
1.414225686...

172 12 24 17 408 408
12

x

x

x

x



    

      


       

 

If we arrange these terms in a sequence,  3 17 577
2, , , , ...

2 12 408
, then the terms become arbitrarily close 

to 2 . Hence 2 is the least upper bound and is a real number due to the completeness property. 

Hence it fills a hole on the real number line that was not filled by any rational number.  

This can be done for all irrational numbers, not just the square roots. Hence  

 can also be obtained this way. To prove this fact, begin with: 

 

 

 

 

 

These fractions become closer and closer to  but never equal  . So, the limit of this 

sequence of fractions is  . Hence,   is the least upper bound, or the smallest upper bound of all 

the upper bounds and is one of the irrational numbers that completes the real number line.  

The monotone convergence theorem states that if a sequence is increasing and bounded 

above by a supremum, then the sequence will converge to the supremum. In the same way, if a 

sequence is decreasing and is bounded below by an infimum, it will converge to the infimum. 

Hence a bounded monotonic sequence of real numbers will converge to a real number that is the 

limit. This completeness property ensures us that this real number is one that fills in the hole on 

the real number line. 

 

1

2

3

4

3

31
3.1

10
314

3.14
100
3141

3.141
1000

x

x

x

x



 

 

 
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This completeness fact relating to real and therefore, irrational numbers, allows us to see the set of 

all real numbers as made up of the rational numbers together with the limits of all convergent 

sequences of rational numbers, which in fact include the set of irrationals. Hence,    U {limits 

of all convergent sequences of rational numbers}.  

There are some other results in mathematics which illustrate the need for irrational 

numbers. The calculus concept of continuity, the Intermediate Value Theorem, and the Extreme 

Value Theorem are just a few examples where the irrational numbers are essential.  

A function f is continuous at x a  if lim ( ) ( ) ( )
x a

f x y a f a


  . 
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Irrational numbers are the limits and fill in the holes allowing continuity of the number line. 

Without the completeness property we would have holes in the curve of the function, so the 

function would not be continuous.  

The Intermediate Value Theorem applies indirectly to irrational numbers as well. The 

Intermediate Value Theorem states that for any continuous function and any number N  between 

( )f a  and ( )f b , there must be a number c in between a and b for which ( )f c N . 
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Just as in the previous instances, for the Extreme Value Theorem the irrational numbers 

are needed.  

 

 

 

The extreme value theorem states that if a real-valued function f is continuous on the closed interval 

[a, b], then f must attain a maximum and a minimum, each at least once. The function is continuous 

and bounded on [a, b], and it cannot have a hole at the extreme; hence, irrational numbers are 

needed.  

These theorems assure us that is in fact not just an ordinary number, but an irrational number 

that fills a hole in the number line and completes the real number system in a perfect way. During 

the Renaissance Fibonacci approximated    to be  

1440
3.1418181818181818181818181818

1
458

3

 . 

In 1223, in Practica Geometria, he obtained the value from the average of   

1440
1

458
5

 and 1440
4

458
9

 [1]. 
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Although his approximation was not as close as later ones, Fibonacci’s work represented a major 

development of the number system and mathematics generally. Throughout the 16th century, 

Francois Viète, considered a regular polygon with 
166 2 393,216  sides and estimated   by 

using a method developed by the Greeks. He estimated   correct to nine decimal places, by using 

an infinite product.  He used  

2 1 1 1 1 1 1 1 1 1
...

2 2 2 2 2 2 2 2 2
      ,  

to calculate the value of   to be in between 3.1415926535 and 3.1415926537.  During the 

17thcentury, John Wallis, a professor of mathematics derived the formula 

2 2 4 4 6 6 8 8 2 2
... ...

2 1 3 3 5 5 7 7 9 (2 1)(2 1)

n n

n n

     
      

     
. 

Wallis’s result was then transformed into a continued fraction by William Brouncker (1620 – 

1684), an English mathematician, as: 

2

2

2

2

2

4 1
1

3
2

5
2

7
2

9
2

2 ...


 









. 

To analyze the continued fraction, we can look at each increasing piece of the fraction, each time 

cutting off the rest of the fraction at the plus sign. These parts are called convergents.  

The first convergent is 1. The second convergent is 
21 3

1
2 2

  . The third convergent is  

2

2

1 1 2 15
1 1 1

93 13 1322
22

     


. 

The fourth convergent is 105

76
. The fifth convergent is 945

789
.  To get the related approximation of 

 , we need to multiply the reciprocal of each convergent by 4.  
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Hence, we get: 

1 4 4

2 8
4 2.6667

3 3
13 52

4 3.46667
15 15
76 304

4 2.8952380
105 105
789 3,156 1,052

4 3.3396825
945 945 315

 

  

  

  

   

 

The fractions get closer to the true value of  = 3.14159265358979… [1]. 

As I mentioned earlier in this essay, it took centuries to obtain more accurate approximations of 

 . In 1668 the Scottish mathematician James Gregory anticipated a result of the famous German 

mathematician Gottfried Wilhelm Leibniz, when he derived the following approximation: 

1 1 1 1 1 1
1 ...

4 3 5 5 7 9 11


         

Using power series, Newton and Leibnitz, the founders of calculus, were able to prove 

1 2 4 6
2

1 2 4 6

1
(tan ( )) 1 ...

1

tan ( ) (1 ...)

d
x x x x

dx x

x x x x dx





     


    
 

Hence,  

1 3 5 71 1 1
tan ( ) ...

3 5 7
x x x x x       

and therefore, when substituting  1x  ,  they obtained 

1 3 5 71 1 1
tan (1) 1 1 1 1 ...

4 3 5 7

          and 1 1 1
4(1 ...)

3 5 7
      . 

Today this method is considered not very useful because the series converges to  very slowly. It 

takes 500,000 terms to estimate   correctly to five decimal places and about five billion terms to 

estimate it to ten correct decimal places. However, one can distinguish the partial sums as follows  
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1

2

3

4

1 8
4(1 )

3 3
1 1 52

4(1 )
3 5 15

...

x

x

x



  

   
 

which becomes Brouncker’s method of estimating . The fractions make up a sequence of rational 

numbers that converges in the end to our special irrational number .  

Isaac Newton’s arcsine computation provided 15 digits of . Born in 1642, Isaac Newton, 

was an English mathematician, physicist, and astronomer recognized as one of the most influential 

scientists of all times [13]. 

To develop  , he looked at the area A of the left-most region shown as 

 

The area expresses as an integral is 
1

24

0
A x x dx   .  The same area refers to the circular sector 

and is 
2 4

 minus the area of the triangle which is 
3

32
. Newton used his binomial theorem in this 

integral and developed  

3 5 7 9
1 1 11 1 1 12 3 4 2 2 2 2
4 4 42 2 2 2

0 0 0

5 5
(1 ) (1 ...) ( ...) .

2 8 16 128 2 8 16 128

x x x x x x x x
A x x dx x dx x dx                 
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By integrating term-by-term and combining the like terms, Newton got to: 

5 7 9

3 3 1 1 1 1
24[ ...]

4 12 (5 2 ) (28 2 ) (72 2 )
      

  
 [14]. 

Euler calculated  to 126 place accuracy.  He created a series by taking the squares of the 

terms in a harmonic series. A harmonic series is created by taking the reciprocal of the terms of an 

arithmetic sequence, one with a common difference between terms. The simplest arithmetic series 

is 1, 2, 3, 4, 5… The related harmonic series is  

1 1 1 1 1
1 ....

2 3 4 5 6
      

Euler created the series 
2

2 2 2 2

1 1 1 1
1 ....

6 2 3 4 5


      to estimate  . Moreover, Euler’s 

trigonometric identity 1 1 11 1
tan (1) tan ( ) tan ( )

2 3
     produces the convergent rational series  

3 5 7 3 5 7

1 1 1 1 1 1 1 1
... ...

4 2 3 2 5 2 7 2 3 3 3 5 3 7 3


         

     
 [1]. 

He also developed the formula 1 0ie     which includes the five famous numbers: 

0, 1, , , and e i  . The number   like e is not only irrational but is also transcendental.  
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6. Is Pi Algebraic or Transcendental? 

 

A transcendental number is a number that cannot be the root of any polynomial with integer 

coefficients. Therefore, a transcendental number is not an algebraic number and therefore must 

also be irrational. Transcendental numbers represent an important part of mathematics because for 

instance, they helped mathematicians understand that squaring a circle was not possible. On the 

other hand, many algebraic numbers, known also as Euclidean numbers, can be produced by a 

geometric construction using the Greek rules. The question of the rationality of 𝜋 came to an end 

in the late 1700s, when Lambert and Legendre proved, by using continuous fractions, that the 

constant is irrational. The question of whether 𝜋  was algebraic was settled in 1882, when 

Lindemann proved that 𝜋  is transcendental. Lindemann’s proof settled once and for all the 

impossibility of “squaring the circle”— that is constructing with straightedge and compass alone 

a square whose area equals that of a given circle. This was one of the great straight edge and 

compass problems of classical geometry, along with doubling the cube and trisecting an angle 

[14]. Ancient Greek geometers studying the circle had proven that the circumference, or 

“periphery”, is proportional to the diameter, and that the area is proportional to the square of the 

radius. Carl Louis Ferdinand Von Lindemann (1852 – 1939) was a professor of mathematics at the 

University of Freiburg and a specialist in geometry and analysis and had completed his doctoral 

thesis on a topic in non-Euclidean geometry [14]. As a necessary introduction to von Lindemann’s 

proof, we must recall some familiar properties of polynomial equations, and establish some fewer 

familiar ones. The Fundamental Theorem of Algebra tells us that any complex polynomial of 

degree n, with complex coefficients has exactly n complex roots if duplicate roots are counted 

[14].  

The following proof is a variation of Lindemann’s original proof by Michael Filaseta, a  

number theorist in the Department of Mathematics at the University of South Carolina. 

To prove that  is transcendental we first need to make use of  

0
( ) ( ) ,

t t uI t e f u du   

where t is a complex number and ( )f x is a polynomial with complex coefficients to be specified 

later. Integration by parts gives us 
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(1)  ( ) ( ) ( ) ( )

0 0 0 0

( ) (0) ( ) (0) ( )
n n

t j j t j j

j j j j

I t e f f t e f f t
 

   

       , 

 where n is the degree of ( )f x .  

If 
0

( )
n

j
j

j

f x a x


 , we set  

0

( )
n

j
j

j

f x a x


 . 

Then  

0
( ) ( ) max{ }max{ ( ) } ( )

t tt u t uI t e f u du t e f u t e f t    . 

 

To continue the proof, we must review few definitions. 

 An algebraic number is defined to be any complex number that is a root of a non-zero 

polynomial in one variable with rational coefficients. Some examples of algebraic numbers include 

all integers, rational numbers, and some of the irrational numbers. However, numbers like and e   

are not algebraic numbers. While the set of complex numbers is uncountable, the set of algebraic 

numbers is countable.  

 An algebraic integer is a complex number that is a root of some monic polynomial, a 

polynomial whose leading coefficient of 1, with integer coefficients. The set of algebraic integers 

is closed under addition, subtraction, and multiplication. It is also a commutative subring of the 

complex numbers.  

 Let K be a number field. A rational integer of K is an integer of K that is included in the 

set of integers (   ). Generally, every integer n is a rational number since each integer can be 

written as a fraction n/1. The terminology “rational integer” is used to emphasize that the number 

is simply an integer in the usual sense and is not an algebraic number. 

 A minimum polynomial of a value   is the polynomial of lowest degree having 

coefficients of a given type, such that   is a root of the polynomial. If the minimum polynomial 

exists, it is unique. The highest degree coefficient is 1 and the rest of the coefficients could be 

integers, rational numbers, real numbers, or others. For example, suppose 2 3   .  The 

minimum polynomial of   in   is 4 4 1x x  . 
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Minimal polynomials are useful for constructing and analyzing field extensions. The field  

of complex numbers   is an extension field of the field of real numbers  and  in turn  

is an extension field of the field of rational numbers  . Clearly then, /   is also a field  

extension. Hence, more formally, let L/K be a field extension. Let L  be algebraic over  

K. The minimum polynomial of  over K is the unique irreducible, monic polynomial  

( )f K x such that ( ) 0f   . 

 

To prove that  is transcendental we also need to consider the following lemmas: 

 

Lemma 1  

If  and   are algebraic numbers, then so are their sum, difference, product, and quotient (when 

  is not 0) . If   and   are algebraic integers, then so are their sum, difference, and product. 

Lemma 2 

If  is an algebraic number with minimum polynomial ( ) [ ]g x x  and if b is the leading 

coefficient of ( )g x , then their product b  is an algebraic integer. 

Lemma 3  

If   is an algebraic integer and  is rational, then  is a rational integer. 

 

In addition, we need to be familiar with the fundamental theorem of elementary symmetric 

functions. For example, consider the real function in three variables: 

1 2 3 1 2 3
( , , ) ( )( )( )f x x x x x x x x x    . By definition, a symmetric function has the property that 

1 2 3 2 1 3 3 1 2
( , , ) ( , , ) ( , , )f x x x f x x x f x x x  , etc. Hence the function remains the same for every 

permutation of its variables. This means for this function  

1 2 3 2 1 3 3 1 2( )( )( ) ( )( )( ) ( )( )( )x x x x x x x x x x x x x x x x x x            

and so on for all permutations of 1 2 3, ,x x x . 
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Generally, any symmetric polynomial (respectively, symmetric rational function) can be expressed 

as a polynomial (respectively, rational function) in the elementary symmetric functions on those 

variables. 

The elementary symmetric function 
n on n variables 1 2{ , ,..., }nx x x  are defined by 

1
1

2
1

3
1

4
1

1

...

.

i
i n

i j
i j n

i j k
i j k n

i j k l
i j k l n

in
i n

x

x x

x x x

x x x x

x

 

  

   

    

 





















 

Alternatively,  
j can be defined as the coefficients of n jx   in the generating functions 

1

( ).in
i n

x x
 

   

The Fundamental Theorem of Elementary Symmetric Functions states that if R be a 

commutative ring and 1 2[ , , ..., ]nR x x x the polynomial ring in n  indeterminates over R  then a 

symmetric polynomial 1 2( , ,... )nf x x x of degree k can be expressed as a polynomial of the 

elementary symmetric polynomials. This representation is unique.  

Let’s begin by saying that if   were algebraic, then i would be as well ( by Lemma 1).  

Hence, it is enough to show that i   is transcendental. Assume otherwise. Let r be the degree 

of the minimal polynomial ( )g x  for   , and let 1 2, ,..., r   denote the conjugates for , where 

i   Let b denote the leading coefficient of ( )g x .  

Not that ib    is an algebraic integer (see Lemma 2). Since 1ie    , we deduce that  

1 2(1 )(1 )...(1 ) 0ne e e     . 
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Multiplying this expression on the left of the equation , we obtain  a sum of 2 r term of the form 

e 
where 1 1 2 2 ... r r          with {0,1}j  , for all j . Let 1 2, ,..., n   denote the nonzero 

expressions of this form so that  (since the remaining 2r n  values of  are 0) 

1 2 ... 0nq e e e     , where 2rq n  . Let p be a large prime, and let    

 1
1 2( ) ( ) ( ) ...( ) .np p p p p

nf x b x x x x       

By the fundamental theorem of elementary symmetric functions and Lemma 2 and  

Lemma 3,  ( ) [ ]f x x . To see this more clearly, consider 1 2 2
, ,..., r   as the complete set of ' s

as above (so the first n are still the non-zero ones) and use that  

2
2

1 1

( ) ( )
r

r
n

n
j j

j j

x x x 

 

     

 is symmetric in  1 2, ,..., r   . Define  

1 2( ) ( ) ... ( )nJ I I I       

From (1), we deduce that  

 

( ) ( )

0 0 1

(0) ( )
m m n

j j
k

j j k

J q f f 
  

     

where ( 1) 1.m n p   Observe that the sum over k is a symmetric polynomial in 1, 2,..., nb b b    

with integer coefficients and thus a symmetric polynomial with integers in the 2 r  numbers 

1 1 2 2( ... )r rb b         . Hence, by the Fundamental Theorem of Elementary Symmetric 

Functions we obtain that this sum is a rational number.  Observe that Lemma 2 and Lemma 3 

imply that the sum is furthermore a rational integer. Since 
( )( ) 0j

kf    for j p , we deduce that 

the double sum in the expression for J above is a rational integer divisible by !p . Observe that 

( )(0) 0jf   is divisible by !p  for j p . Also, 

( 1)
1(0) ( 1) ( 1)!( ... )p np np p

nf b p      . 
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From the Fundamental Theorem of Elementary Symmetric Functions and Lemma 2 and Lemma 

3, we deduce that 
( 1)(0)pf 

 is a rational integer divisible by ( 1)!p  . Furthermore, if p is 

sufficiently large, then 
( 1)(0)pf 

 is not divisible by p . If p q , we deduce that  

( 1)!.J p   

On the other hand, using the upper bound we obtained for ( )I t , we have  

1 2
1

( ( ) )k

n
p

k
k

J e f k c c 


   

for some constants 1c and 2c . We get a contradiction, completing the proof. 
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7. Euler’s Identity 

 

In complex analysis Euler’s formula shows the relationship between the trigonometric 

functions and the complex exponential function. Euler’s formula states that for any real number 

x, cos sinixe x i x  . In this formula, where e is the base of the natural logarithm function, i is 

the imaginary unit, 1i   , and cos and sin are the trigonometric 

functions cosine and sine respectively, with the argument x given in radians [15]. 

 

 

When x  , Euler’s formula becomes  

cos sin 1 (0) 1ie i i       , which is equivalent to 

1 0ie    , 

which is known as Euler’s Identity. Euler’s Identity is an expression that lies at the heart of  

complex number theory. Here is a proof of Euler's formula using Taylor series expansions as well 

as basic facts about the powers of i. We know: 

0 1 2 3

4 5 6 7

1, , 1, ,

1, , 1, ,

i i i i i i

i i i i i i

     
     

 

and so on. The functions ex, cos x and sin x of the real variable x can be expressed using their 

Taylor expansions centered at zero as: 
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2 3

2 4 6

3 5 7

1 ...
2! 3!

cos 1 ...
2! 4! 6!

sin ...
3! 5! 7!

x x x
e x

x x x
x

x x x
x x

    

    

    

 

For complex z we define each of these functions by the above series, replacing the real 

variable x with the complex expression iz. This is possible because the radius of convergence of 

each series is infinite. We then find that 

 
2 3 4 5 6 7 8

2 3 4 5 6 7 8

2 4 6 8 3 5 7

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 ...

2! 3! 4! 5! 6! 7! 8!

1 ...
2! 3! 4! 5! 6! 7! 8!

(1 ...) ( ...)
2! 4! 6! 8! 3! 5! 7!

cos sin

iz iz iz iz iz iz iz iz
e iz

z iz z iz z iz z
iz

z z z z iz iz iz
i z

z i z

         

         

          

 

 

The rearrangement of terms is justified because each series is absolutely convergent [16]. 

Euler’s highly valued expression is known as the “gold standard of mathematical beauty” because 

it links seemingly different branches of mathematics in an exquisitely simple manner. Its ability to 

represent a deep fundamental mathematical truth with an equation is what delights mathematicians 

all around the world.  Its aesthetic comes from Euler’s ability to connect the five royal constants 

[15]. 

Euler’s identity contains Euler’s number e, the base of the natural logarithm that is 

extensively used in calculus. It is a transcendental number whose value is 2.71828…. It also has 

i, the complex number or imaginary unit, which is the square root of -1 or the solution of the 

equation x²+1=0. It is important in electrical engineering and has provided great insights in 

quantum mechanics. This expression also includes π, the transcendental number obtained by the 

ratio of a circle’s circumference to its diameter. Its value is 3.14159… This constant does not 

need any further introduction, as it is the most popular mathematical constant, ubiquitous in 

fields from Euclidean geometry to General Relativity. It also includes the first natural number 1, 
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the multiplicative identity — any number multiplied by this identity results in the same number 

itself. It possesses the first whole number 0, the additive identity – any number added to this 

identity results in the same ordinary number itself.  Therefore, Euler’s Formula combines five of 

the most famous mathematical constants. These significant constants have many practical 

applications, including communication, navigation, energy, manufacturing, finance, meteorology 

and medicine. In this formula  , like e ,  is not just some ordinary number but as we have seen 

it is a transcendental and therefore irrational number that also has numerous applications in real 

life. The importance of   goes beyond mathematics and has many applications in the natural 

world as well. Since is related to circles, it is used to describe the disk of the sun, the spiral of 

the DNA double helix, the pupil of the eye, and the concentric rings from splashes in ponds. 

These are just a few of the examples where we encounter .There are of course many more. The 

number  also appears in the physics that describes waves, such as ripples of light and sound;  

describes a river’s windiness and it can be  used to identify its meandering ratio and the ratio of 

the river's actual length to its distance from its source to its mouth measured in a straight line. 

Rivers that flow straight from their source to their mouth have small meandering ratios, while 

those that meander along the way have higher ones. The average meandering ratio of rivers gets 

close to . Albert Einstein  used fluid dynamics to show that rivers tend to bend into multiple 

curves. He was the first to explain this fascinating fact. The slightest curve in a river will produce 

large currents on the outer side of the curve, which will cause extreme erosion and a deeper 

bend. This process will gradually tighten the curve, until it causes the river to change its direction 

and it begins to form a new curve. The curve looks like the circumference of a circle and the 

distance from one bend to another looks like a diameter. More so, the ratio of the two 

approximates  [17].  

For all these reasons, I understand today why a whole school got excited about what I 

thought was merely an ordinary number. An educated group of teachers transformed an entire 

school into a Pi celebration space. The teachers quickly engaged all students in many celebratory 

activities and the excitement of knowing facts about Pi was highly rewarded. It took me few 

years of teaching mathematics and some wonderful encounters within a mathematics masters 

degree program to fill in the void that I had as a student when it came to what I used to call 

ordinary numbers. Today, I also know the reasons for which I felt that Pi was my best friend 
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while completing my school assignments. Pi is not just a symbol for an ordinary number. It is a 

remarkable friend that always brings light, peace, and structure into my meandering work; its 

presence gives me joy because I know that no matter how chaotic my work is, it will always help 

me reach my destination successfully.  
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8. Epilogue 

 The presence of   can be thought of as the result of a battle between order and chaos. In 

her wonderful ode to , the Nobel-winning Polish poet Wislawa Szymborska describes the 

number as “the admirable number… nudging, always nudging a sluggish eternity to continue.”  

In 1996 the Cambridge scientist Hans-Henrik Stolum published a paper in which he also 

concluded that  is always nudging the paths of rivers that go into a predictable mathematical 

pattern. By using empirical data and fluid dynamics modeling he calculated the ratio of the 

river’s actual meandering length by the length of the direct line traced from source to sea and 

estimated the average is approximately 3.14 [18].  

PI 

by Wisława Szymborska 

“ The admirable number pi: 

three point one four one. 

All the following digits are also initial, 

five nine two because it never ends. 

It can’t be comprehended six five three five at a glance, 

eight nine by calculation, 

seven nine or imagination, 

not even three two three eight by wit, that is, by comparison 

four six to anything else  

two six four three in the world. 

The longest snake on earth calls it quits at about forty feet. 

Likewise, snakes of myth and legend, though they may hold out a bit longer. 

The pageant of digits comprising the number pi 

doesn’t stop at the page’s edge. 

It goes on across the table, through the air, 

over a wall, a leaf, a bird’s nest, clouds, straight into the sky, 

through all the bottomless, bloated heavens. 

Oh how brief — a mouse tail, a pigtail — is the tail of a comet! 

How feeble the star’s ray, bent by bumping up against space! 
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While here we have two three fifteen three hundred nineteen 

my phone number your shirt size the year 

nineteen hundred and seventy-three the sixth floor 

the number of inhabitants sixty-five cents 

hip measurement two fingers a charade, a code, 

in which we find hail to thee, blithe spirit, bird thou never wert 

alongside ladies and gentlemen, no cause for alarm, 

as well as heaven and earth shall pass away, 

but not the number pi, oh no, nothing doing, 

it keeps right on with its rather remarkable five, 

its uncommonly fine eight, 

it’s far from final seven, 

nudging, always nudging a sluggish eternity 

to continue.” [18] 
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