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CONCEPTS & THEORY

Loss of foundation species revisited: conceptual framework with
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Abstract. Ecologists and conservation biologists often prioritize the study of species that are declining,
threatened, or endangered over species that are abundant and ecologically important, such as foundation spe-
cies (FS). Because entire ecosystems and their biodiversity depend on FS, we argue that they have high conser-
vation priority. A citation analysis reveals that FS are studied, but often are characterized ambiguously. More
effort is needed to identify FS before they, and the ecosystems they define, are at risk of decline or loss. We sug-
gest a new conceptual framework that includes: informed identification of FS in ecosystems; documentation of
ecosystem services provided by FS; a long-term monitoring strategy to detect threats to FS within specified
ecosystems; and, if threats are identified, a comprehensive conservation and adaptive management strategy
for FS. We use two widely distributed, rapidly declining North American foundation tree species (Tsuga
canadensis [eastern hemlock] and Pinus albicaulis [whitebark pine]) to illustrate this framework. These species
exemplify the importance of identifying FS early and conserving or restoring them when they are threatened.

Key words: citation analysis; conceptual conservation framework; conservation; nonnative species; Pinus albicaulis;
Tsuga canadensis.
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INTRODUCTION

Species that are dominant, abundant, or not in
immediate danger of population loss are studied
less frequently by ecologists and conservation
biologists than are rare or threatened species
(Gaston and Fuller 2007, Baker et al. 2019).

Abundant species typically are excluded from
conservation planning until threats to their
populations emerge, by which time research to
understand their life history, roles, and functions
in their ecosystem is akin to emergency triage
(Gerber 2016, Cornwall 2018). However, the
assumption that dominant or abundant species
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should not be a priority for conservation is
unfounded, because commonness itself is rare
(Gaston and Fuller 2007), and common species
often are ecologically important as structural,
dominant, or foundation species (Ellison et al.
2005, Ellison 2019). We strongly warn against
assuming that common species have little conser-
vation value. For example, several species of ash
trees (Fraxinus spp.) have recently declined dra-
matically. Although there are still >8 9 109

individual living trees globally, they are now
considered critically endangered (IUCN). Fur-
ther, if common species that also are foundation
species are understudied or ignored by conserva-
tion biologists until they become rare and no
longer function in their foundational roles, it is
more likely that their ecological importance may
be underestimated or misinterpreted, and it may
be impossible to recover either their populations
or their functionality in the ecosystems they
otherwise define.

Dayton (1972), working in the marine benthos
of Antarctica, described a foundation species (FS)
as, “a single species that defines much of the
structure of a community by creating locally
stable conditions for other species and by modu-
lating and stabilizing fundamental ecosystem
processes.” This concept was extended to terres-
trial ecosystems by Ellison et al. (2005) who
delineated the common characteristics of terres-
trial FS—especially that many are primary pro-
ducers. Ellison (2019) expanded the definition of
a FS to include functional groups linked by key
traits and explained more clearly the meaning of
structure of a community: “a foundation species
can be defined as a species (or group of function-
ally similar taxa) that dominates an assemblage
numerically and in overall size (usually mass),
determines the diversity of associated taxa
through non-trophic interactions, and modulates
fluxes of nutrients and energy at multiple control
points in the ecosystem it defines.” Although
Ellison et al. (2005) have been cited extensively
(>800 citations listed in Web of Science as of 3
April 2019), a citation analysis through 2017
(results below) illustrates that neither Dayton’s
nor Ellison et al.’s concept of an FS is used accu-
rately in basic research or consistently in conser-
vation practice (Ellison and Degrassi 2017).

Here, we present a framework to reify the FS
concept and guide its useful application in

ecological research and conservation practice
(Fig. 1). Our framework includes three compo-
nents: (1) reliable and consistent definition and
identification of FS for different ecosystems, illu-
minated through citation analysis; (2) assessment
and documentation of ecosystem services pro-
vided by FS in these ecosystems; and (3) compre-
hensive monitoring strategies to detect threats to
FS and, if threats are identified, the implementa-
tion of conservation and adaptive management
strategies for FS (Holling 1973) that reflect and
inform primary research. Our framework could
assist in forecasting the cascading effects of FS
loss and encourage timely implementation
of conservation strategies to ameliorate those
consequences.
The importance of FS also challenges many

assumptions held about conservation and
assigning species conservation status. If a once-
abundant FS declines or is (functionally)
extirpated, the ecosystem it defines deteriorates
and the other species that depend on it are
more likely to decline or disappear. Given that
we cannot easily predict the next existential
threat to a FS, identification, ongoing monitor-
ing and surveillance for threats are crucial.
Because FS are often abundant, large-scale
efforts are likely to be needed to conserve,
manage, or restore them. We suggest that it is
ecologically sensible and cost-effective to pro-
tect a FS proactively rather than engage in post
hoc, costly, and often untested efforts to restore
a once-abundant and widespread species. We
use information on two declining FS—Tsuga
canadensis (L.) Carr. (eastern hemlock) and
Pinus albicaulis Engelm. (whitebark pine)—to
illustrate the application of this framework.
Both tree species, now understood to be foun-
dation species, were identified as ecologically
important long before the FS concept was
applied to terrestrial ecosystems.

AN INTEGRATED FRAMEWORK FOR RESEARCH,
CONSERVATION, AND MANAGEMENT OF
FOUNDATION SPECIES

Identifying and distinguishing foundation species
The first component of our framework is to

carefully and consistently define FS (Dayton
1972, Ellison 2019) so that they can be identified
and differentiated reliably from other important
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species types (Ellison and Degrassi 2017; see also
Box 1 in Ellison 2019). A citation analysis illus-
trates that the concept of a FS still is not fully
understood or widely embraced by terrestrial
ecologists or natural resource managers.

We used Web of Science to identify literature
citing Ellison et al. (2005) through December
2017. We focused our literature review on the 630
papers recovered in Web of Science because it
was most inclusive of citation type and did not
yield as many misleading results. (For example,
the number of citations to Ellison et al. (2005)
was nearly 20% greater in Google Scholar, which
included non-peer-reviewed papers and confer-
ence abstracts. However, the Google Scholar
search also inexplicably returned citations to Elli-
son et al. (2005) that were published before
2005.) Of the set of 630 papers, we excluded from
our analysis 77 secondary or tertiary reviews and

commentaries related to the concept and defini-
tion of FS presented by Ellison et al. (2005). For
the remaining 553 primary research papers, we
identified the focus of the original research
described by the authors. We then asked whether
the authors:

1. Precisely or accurately defined FS, or if not,
what or whose definition was used?

2. Explicitly studied a FS?
3. Characterized the main ecological role of the

FS being studied?
4. Identified the main threats to the FS?

The raw data from our search are available
from the Harvard Forest Data Archive (Degrassi
and Brantley 2017), and we used R version 3.4.1
(R Core Team 2017) for all analyses.
Our analyses indicated that the FS concept

was not defined or mentioned in 40% of the

Fig. 1. Suggested framework for research, monitoring, management, and conservation of foundation species.
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papers (Table 1). Ellison et al.’s (2005) definition
was cited in 47% of the papers, whereas Dayton’s
original paper was cited in 3%. Dayton (1972)
and Ellison et al. (2005) were cited together in
4% of the papers. The remaining 6% either
defined a FS differently from Dayton or Ellison
et al.; inaccurately equated it with an ecosystem
engineer, keystone species, or framework species
(among others); or attributed the FS concept to
other authors (Table 1). We conclude that many
researchers may not be aware of the FS concept
as an entity distinct from other functional
ecological terms for species that are important in
ecosystems (Ellison and Degrassi 2017). Alterna-
tively, despite efforts of ecologists to clearly dis-
tinguish different types of important species
(Ellison et al. 2005, Valls et al. 2015, Ellison
2019), researchers do not agree on and use a
single definition of FS or any other important
species.

Study organisms were identified as a FS in
53% of the reviewed papers; however, only 77%
were identified to species (Appendix S1:
Table S1). The other 23% were identified to genus
(7%; Appendix S2: Table S1) or were identified to
a group only (16%, e.g., trees, cushion plants,
oysters; Appendix S2: Table S1). Among studies
that identified FS, 34% studied only their role in
community interactions, 17% studied ecosystem
processes alone, 21% studied ecosystem pro-
cesses and impact on community interactions,
and 28% did not specify an ecological role
(Table 1). These data suggest that the foundation
species concept is used more in the context of
biotic interactions than in the context of biogeo-
chemistry or other ecosystem processes.
Most of the papers (83%) identified the FS dur-

ing or after a population decline, and the most
frequent threats identified were nonnative spe-
cies (24%) and climate change (17%; Table 1).

Table 1. Summary and interpretation of general trends in the study of foundation species based on the results of
the Ellison et al. 2005 study.

Questions Studies (n) % Conclusion

Was foundation species
defined and how was it defined?

Defining the foundation species (FS) concept accurately did not
appear to be a major priority for these papers as the term was
not defined in ~40% of the papers. Other definitions included
keystone, dominant, and ecosystem engineers

Ellison et al. (2005) 258 46.7
Not defined 220 39.8
Other 35 6.3
Ellison et al. (2005) and Dayton (1972) 23 4.1
Dayton (1972) 16 2.8

What was the main topic of the p
aper or the main role
of the foundation species?

Foundation species roles (either support for other organisms or
abiotic ecosystem functions) are being studied. Most papers
studied the importance of FS to other organisms, and the
minority of papers studied the role of FS in ecosystem functions

Community 180 33.5
Ecosystem and community 112 20.8
Ecosystem 94 17.5
Not identified 150 27.9

Did the study identify a threat to
foundation species,
and what is the major threat?

Threats to FS are being identified. Most studies identified
nonnative species and pathogens as threats. Studies also
identified habitat degradation and climate change as threats.
Ellison et al. (2005) suggested that ecologists study FS before a
threat occurs, but these data suggest that FS are being studied
only during or after a threat has been identified

Nonnative species 221 24.4
Climate change 145 16.8
Disease or pathogen 142 16.4
No threat identified 122 14.1
Exploitation 108 12.5
Habitat degradation 107 12.3
Other 28 3.2
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These data illustrate a failure of researchers to
study FS before they decline. This failure may be
a result of long-term population declines that
pre-date discussion of FS; lack of awareness of
the FS concept when planning research programs
(Ellison and Degrassi 2017); or lack of research or
conservation attention to abundant species
(Gaston and Fuller 2007, Baker et al. 2019).

Documenting foundation species and the
ecosystem services they provide

The second component of our framework is to
assess and communicate the importance of FS
through research and discussion of the ecosys-
tem functions and services they provide. We
illustrate some of the functions and services pro-
vided by FS using examples drawn from two
canonical FS—Tsuga canadensis and Pinus albi-
caulis. Both species were discussed by Ellison
et al. (2005), and both are declining primarily
because of nonnative species (the hemlock
woolly adelgid, Adelges tsugae Annand, and the
fungal pathogen causing white pine blister rust,
Cronartium ribicola (J. C. Fisch.), respectively).
Regional extirpation or functional extinction of
FS will lead to major shifts in biodiversity and
loss of important ecosystem services.

Tsuga canadensis.—Tsuga canadensis has a his-
toric range in eastern North America that covers
>10,000 km2 from northern Georgia (USA) to
southern Canada, and west into Michigan and
Wisconsin. Throughout much of its range, T.
canadensis historically comprised >50% of the
total basal area in any given forest stand (Smith
et al. 2009), and it is the dominant component of
14 forest associations—more than any other tree
species in North America (FGDC 2008).

Tsuga canadensis is a late-successional, shade-
tolerant species that exerts strong local control
on rates and seasonality of biogeochemical and
biophysical processes, including microclimate
(Lustenhouwer et al. 2012), soil moisture and
stream flow (Brantley et al. 2013), and carbon
storage (Krebs et al. 2017). Further, it is the only
shade-tolerant coniferous species within its
range, so its role for winter-time ecosystem pro-
cess likely will be particularly impacted by its
extirpation and replacement by deciduous trees.
Together, these critical processes create habitat
conditions and resources that support unique
communities of ants (Record et al. 2018), birds

(Tingley et al. 2002), small mammals (Degrassi
2018), and freshwater fauna (Snyder et al. 2002).
There also are unexpected interactions between
some organisms supported by T. canadensis and
ecosystem processes including nutrient cycling
and decomposition that further illustrate the irre-
placeable role of this FS and the ecosystem ser-
vices that it provides (Kendrick et al. 2015).
Research on the ecological role of T. canadensis

has been site-specific (Foster 2014), and its
identity as a FS has been supported through
long-term observations and experiments on
physiological, population, community, and
ecosystem ecology (Ellison 2014). Although its
ecological role overlaps with dominant species,
structural species, and ecosystem engineers, its
combination of life-history characteristics, func-
tional traits, and defining effects on stand-level
ecosystem processes distinguish it from these
other types of important species (Ellison et al.
2005, Ellison 2014).
Tsuga canadensis has been a conspicuous com-

ponent of eastern North American forests since
the end of the Holocene glacial retreat. It
declined precipitously in abundance �5400 yr
ago—most likely because of a combination of cli-
mate change and defoliation by a native insect—
but it recovered its former abundance after
~1000 yr (Foster et al. 2006). During the 17th–
19th centuries, European colonists cut T. canaden-
sis to clear land for pasture and to extract tannins
from its bark; again, natural regeneration led to
the recovery of T. canadensis to approximate pre-
colonization abundances (Foster 2014). Now, T.
canadensis populations are declining again as the
species is host to the rapidly spreading nonnative
hemlock woolly adelgid, Adelges tsugae (Domec
et al. 2013). Trees normally die within 2–10 yr of
infestation, and resistance is uncommon (Vose
et al. 2013). Regardless of differences in the time
required for trees to succumb, the result is the
same: a ghost-like, dead forest and a homoge-
neous understory of hardwood vegetation.
Because the adelgid feeds on and kills all size
and age classes of T. canadensis, and its seeds do
not persist in the seed bank, it is unlikely that
natural regeneration will lead to recovery of this
tree to its former range or abundance
(Farnsworth et al. 2012).
Pinus albicaulis.—Pinus albicaulis ranges from

about 37°–55° N latitude and grows in upper
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subalpine and treeline zones, from ~900 to
3660 m a.s.l.— to higher latitudes than other
North American white pines (Pinus subgen. Stro-
bus; Tomback and Achuff 2010). Within its west-
ern distribution, it occurs from the southern
Sierra Nevada north through the coastal ranges
of British Columbia. In the Rocky Mountains, it
grows from western Wyoming north through the
Canadian Rocky Mountains. On sheltered, pro-
ductive sites in the subalpine zone, P. albicaulis
pioneers after wildfire and persists as a
long-lived minor or major seral species late into
succession, whereas on harsh, exposed sites,
P. albicaulis forms self-replacing communities
(Tomback and Achuff 2010). In the drier regions
throughout its range, P. albicaulis is a major com-
ponent of treeline communities, growing both as
a solitary tree and within tree islands (Tomback
et al. 2016; Fig. 2C, D). In the United States
alone, P. albicaulis communities are estimated to
cover ~57,000 km2, with nearly 40% in desig-
nated wilderness (Keane et al. 2012) and more
than 4 9 106 ha if all community types are con-
sidered together (Goeking and Izlar 2018). Seven
recognized forest cover types include P. albicaulis
growing with one or more other conifers (Tom-
back and Achuff 2010).

The large, calorie-rich seeds of P. albicaulis are
obligately dispersed by Clark’s nutcrackers
(Nucifraga columbiana (Wilson)), which bury them
in caches for later consumption (Tomback 1978,
Tomback et al. 2011). This mutualism has shaped
the ecology, distribution, and multi-scale genetic
structure of P. albicaulis populations. The seeds
are also an important food source for many other
granivorous birds, small mammals, grizzly bears
(Ursus arctos L.), and black bears (Ursus ameri-
canus Pallas; Tomback and Kendall 2001). Many
western North American indigenous peoples
used its nutritious seeds and inner bark as sea-
sonal foods (Tomback et al. 2011).

The foundational role of P. albicaulis also is
expressed through ecosystem processes based on
its extreme hardiness and effective seed dispersal
(Tomback et al. 2011). As a post-disturbance pio-
neer, it appears early in succession across a range
of aspects and topography, mitigating harsh con-
ditions by providing shade, shelter, and moisture
(Tomback et al. 2001). On exposed sites and
ridgelines, less hardy conifers establish and grow
faster under its shelter (Callaway 1998). At

treeline on the harsh eastern Rocky Mountain
Front and other cold, arid regions, P. albicaulis is
the most abundant krummholz conifer and ini-
tiator of tree islands (Tomback et al. 2016). Pinus
albicaulis forest stands and treeline communities
redistribute and retain snow, which persists into
summer months and leads to continuous down-
stream flow during the growing season (Fig. 2).
Multiple factors threaten P. albicaulis, including

outbreaks of the native mountain pine beetle
(Dendroctonus ponderosae), altered fire regimes,
and distributional changes effected by climate
change (Tomback and Achuff 2010). However,
the most pervasive threat is the nonnative patho-
gen Cronartium ribicola, which causes white pine
blister rust. Cronartium ribicola now occurs at var-
ious infection levels within the P. albicaulis range
and potentially infects all age classes. Branch
infections damage tree canopies and reduce cone
production, and stem infections kill trees. Some
P. albicaulis populations are nearly 100% infected,
and most have low genetic resistance to the dis-
ease (Tomback and Achuff 2010). A recent assess-
ment using national forest inventory plots
indicates that 51% of all whitebark pine trees are
dead (Goeking and Izlar 2018).

Adaptive conservation and management of
foundation species
The third component of our framework is to

conserve and manage FS using strategies that
retain or restore key interactions, functions, and
ecosystem services (Fig. 1). The decline of both T.
canadensis and P. albicaulis continues to result in
functional loss of regional ecosystems and shifts
(and some losses) in the diversity of their associ-
ated species. The ecological importance of our
exemplar FS (T. canadensis and P. albicaulis) and
consequences of their decline were not well
understood when threats to them were first
detected. The continuing losses of these FS repre-
sent a failure of the current system to assign rec-
ognized FS and assign them conservation
priority (see also Gerber 2016).
Neither eastern hemlock nor whitebark pine

are currently listed as endangered in the United
States, although whitebark pine is listed in
Canada and being evaluated for U.S. listing
(Table 2). Both FS, however, are recognized as
species of importance to forest communities and
have inspired the formation of several advocacy
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groups (Table 2). Restoration efforts to date have
been funded primarily by the U.S. Forest Service
and other federal agencies, but the non-profit
organizations have raised awareness and con-
tributed financially and logistically to conserva-
tion and restoration efforts (Table 2).

Although there is no central coordination of
efforts to conserve T. canadensis, multiple state
and federal agencies, numerous universities, and
non-governmental organizations are involved in
relevant conservation and management activities
(Table 2). Chemical control of the adelgid is cost-
prohibitive and impractical in large forest stands
(Vose et al. 2013). Introductions of predatory
beetles, such as Laricobius nigrinus (Fender) and
L. rubidus (LeConte), for biological control are
underway (Mausel et al. 2012), but results to
date are mixed (Vose et al. 2013). Genotypes of T.
canadensis with some resistance to the adelgid
have been identified and are being propagated

(Ingwell and Preisser 2011, McKenzie et al.
2014). Finally, the international tree breeding
conservation program at North Carolina State
University Department of Forestry and Environ-
mental Resources and the U.S. Forest Service
have been collecting seeds of both T. canadensis
and the narrow endemic Tsuga caroliniana
Engelm. (Carolina hemlock) since 2003. This pro-
gram prioritizes genetic diversity and long-term
storage of seeds to provide material for future
breeding for resistance (Hastings et al. 2017).
The fundamental approach to restoring

P. albicaulis consists of speeding up natural selec-
tion by planting seedlings with genetic resistance
to C. ribicola (Table 2). Determining genetic resis-
tance in P. albicaulis follows a protocol whereby
seedlings grown from candidate trees are
exposed to high densities of C. ribicola spores
under controlled conditions and then followed
over time to determine whether they develop

Fig. 2. (A) Eastern hemlock retaining snow fall in Harvard Forest Petersham, Massachusetts. (B) Old-growth
eastern hemlock forest, Harvard Forest Petersham, Massachusetts. (C) Whitebark pine growing along a ridgeline
in Grand Teton National Park, Wyoming, resulting in snow retention. (D) Whitebark pine tree island community,
Divide Mountain, Blackfeet Reservation, Montana, July, illustrating snow redistribution and retention. Photo
credits for eastern hemlocks: AM Ellison, and for whitebark pine: DF Tomback.
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blister rust symptoms or show resistance
(Sniezko et al. 2011). The frequency of resistance
is highly variable among populations, with most
showing from zero to <10% resistance among
seed parents. Other management actions include
developing regional seed orchards for seed pro-
duction from genetically resistant trees while
maintaining high genetic diversity, protecting
putative and confirmed resistant trees from
mountain pine beetle attack, and resetting suc-
cessional processes using prescribed fire and sil-
vicultural techniques (Tomback and Achuff 2010,
Keane et al. 2012; Table 2).

SYNTHESIS

Foundation species such as T. canadensis and P.
albicaulis define the structure of an ecological
community, control local biodiversity, and stabi-
lize and modulate core ecosystem processes
(Dayton 1972, Ellison et al. 2005). Foundation
species differ in significant ways from other
important species (Ellison et al. 2005, Ellison
2019). Unlike keystone species, FS are common
and do more than increase local biodiversity.
Unlike dominant species, the effects of FS on
ecosystem processes are disproportionate (e.g.,
nonlinearly related) to their abundance. Unlike
ecosystem engineers, FS do more than create
novel habitats through their activities. And most
species are not FS. Given their critical community
functions, we need to be consistent in defining
FS, rigorous in identifying them, and as certain

as possible in characterizing their foundational
traits.
Non-recognition of FS also could be detrimen-

tal to conservation efforts. For example, if a spe-
cies is incorrectly classified as something other
than a FS, such as a dominant species, projec-
tions of loss and impact on the community will
be modeled as linear, while, in fact, the impact to
greater community and ecosystem function will
be greatly underestimated. Therefore, the species
in question may not receive the proper attention
and funding needed to protect that system. Elli-
son and Degrassi (2017) suggested that research-
ers consider studying common species, spend
more time reading scientific literature, and also
read place-based poetry and literature to dis-
cover and study new FS before populations
become threatened. Any outcomes and manage-
ment decisions should be the product of careful
observation and long-term studies.
These case studies of Tsuga canadensis and

Pinus albicaulis illuminate key traits of FS, iden-
tify important threats and consequences to the
ecosystems they define, and highlight different
strategies to manage and conserve them. Future
research and successful conservation of FS and
the ecosystems they define depend on precise
identification, according them conservation sta-
tus, and monitoring and surveilling them to
identify emerging threats.
Our suggested integrated framework (Fig. 1)

tracks basic and applied work on FS from defini-
tion and scoping through conservation and

Table 2. Comparison between eastern hemlock and whitebark pine in distribution, foundational functions,
conservation status, advocacy groups, restoration plans, and source of funding for conservation and restoration.

Comparison Eastern hemlock Whitebark pine

Status Not currently listed, but the Carolina hemlock is
under review for U.S. E.S.A. listing

Candidate for U.S. E.S.A. listing; listed as
endangered under S.A.R.A. in Canada

Advocacy Saving hemlocks—private group, Hemlock
Restoration Initiative, Forest Restoration Alliance

Whitebark Pine Ecosystem Foundation (and
WPEF-Canada), American Forests, Natural
Resources Defense Council

Restoration
plans drafted or
in progress

Camcore, U.S. Forest Service, North Carolina
Forest Service, Grandfather Restoration Project

Regional plans from U.S. Forest Service and
Greater Yellowstone; Crown of the Continent;
Bureau of Land Management; S.A.R.A., Canada
Recovery Plan; U.S. National Whitebark Pine
Restoration Plan; Keane et al. (2012)

Funding for
conservation
and restoration

U.S. Forest Service, National Park Service, State
forestry agencies

U.S. Forest Service, National Park Service, Bureau
of Land Management; American Forests and
National Arbor Day

Note: Camcore, Central American and Mexico Coniferous Resources Cooperative; E.S.A., Endangered Species Act; S.A.R.A.,
Species at Risk Act.
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management. We propose this framework both
to improve the recognition of FS and to provide
a general workflow for prioritizing research and
conservation tailored to the threats experienced
by a FS. Because one of the more interesting take-
home messages from our citation analysis was
that FS were not consistently identified as such,
we encourage researchers to distinguish FS from
other important species so that our understand-
ing of the key roles of any species can be accu-
rately evaluated and communicated.

We also think our framework will be useful for
ecosystem and community ecologists studying
species for which threats have yet to be identi-
fied. Ecosystem science tends to work at larger
scales of space, time, and biological organization,
and focuses on total system fluxes and, by neces-
sity, simplifying ecosystems using system-wide
parameters (e.g., NDVI or leaf area index of for-
ests) regardless of the ecological roles of individ-
ual species. In such cases, the system is treated as
the subject, even when the magnitude or flux of
system-wide processes may depend on species
composition and relative abundance. Elucidating
the unique contributions of FS to ecosystem
structure and function, especially under rela-
tively undisturbed conditions, may determine
the characteristics that make ecosystems either
vulnerable or resilient to change.

Lastly, our framework could help conserva-
tion biologists and land managers discover com-
monalities between their species of interest and
FS. These commonalities might include threats
to ecosystems of interest or the effectiveness of
specific management techniques applied to
specific situations. These parallels could be espe-
cially useful for conservationists who are look-
ing for case studies of restoration to use as
examples for species that are becoming more
vulnerable as disturbances increase. For restora-
tion ecologists, these studies could provide
insights into the possible desired future condi-
tions of other ecosystems being considered for
restoration.

We do not suggest that we have identified all
potential FS through our citation analysis. Nor
are we suggesting that scientists are unaware
that they are studying important species. On the
contrary, all species have value, and it is incum-
bent on researchers, conservation biologists, and
land managers to communicate the importance

of each species they study and care about. At
the same time, it is not enough to simply assert
that an apparently important species is a FS.
Rather, that a species plays a foundational role
should be regarded as a hypothesis to be tested;
observations or experiments to support or reject
the hypothesis that a species is an FS can take
decades or longer (Ellison 2014, Foster 2014).
We hope that FS in global communities will be
recognized, described, and studied whenever
appropriate so that we can coordinate efforts to
understand, conserve, and manage them. Pre-
serving foundation species proactively (i.e.,
before threats are present) will prove to be a
more strategic and efficient means of conserving
communities and the biodiversity that they har-
bor rather than attempting to restore some sem-
blance of these communities at some future time
through triage when population are dwindling.
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