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Abstract. Under a NASA (National Aeronautics and Space Agency)-ESA (European Space 
Agency) collaborative research project, MICAST (Microstructure formation in casting of 
technical alloys under a diffusive and magnetically controlled convection conditions), three Al-
7wt% Si samples (MICAST-6, MICAST-7 and MICAST2-12) were directionally solidified at 
growth speeds varying from 10 to 50 µm s-1 aboard the International Space Station to determine 
the effect of mitigating convection on the primary dendrite array. The observed primary dendrite 
trunk diameters during steady-state growth of MICAST samples show a good agreement with 
predictions from a coarsening based model developed by the authors. The trunk diameters in the 
terrestrial-grown equivalent samples were larger than those predicted from the model. This 
suggest that thermosolutal convection increases the trunk diameter of primary dendrites, perhaps 
by increasing their tip radius due to compositional changes. 

1.  Introduction 
During directional solidification (DS) of alloys in a positive thermal gradient (GL) a mushy-zone 

consisting of array of primary dendrite arms and interdendritic liquids in between, develops between the 
melt above and the solid below. Analytical and numerical theories have been developed to describe 
various aspects of the dendrite network, e.g., cell to dendrite transition, dendrite tip radius and primary 
dendrite spacing [1-8] under diffusive growth conditions. Given that mechanical properties depend upon 
the dendrite spacing and distribution, numerous experiments have been carried out to measure primary 
spacing as a function of solute content (Co,), growth speed (R), thermal gradient (GL) and the physical 
properties of the alloy to compare with model predictions [9-27].  Invariably the discrepancy between 
the experimental observations and model predictions has been attributed to convection in the melt. 
Convection itself has been treated by a pseudo-analytical approach of defining an overall mushy-zone 
Rayleigh Number for the growth conditions [28-40], and correlating, for example, the increasing 
propensity for convection with observed reduction in mean spacing in terrestrial-grown samples as 
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compared with those solidified in microgravity [30-33, 40]. While primary spacing has been extensively 
evaluated as the morphology parameter for the dendritic arrays, another feature, the primary dendrite 
trunk-dimeter [41-44] has remained relatively unexplored. The trunk-diameter responds to an abrupt 
speed change more quickly because it is more reflective of the dendrite tip radius as compared with the 
primary spacing which achieve the new steady-state value only after further DS for two to three mushy-
zone length [45].  Here we present primary dendrite trunk diameter measurements from three Al-7Si 
alloy samples (MICAST6, MICAST-7 and MICAST2-12), which were directionally solidified on the 
Space Station at growth speeds varying from 5 to 50 µm s-1.  It is seen that the observed primary dendrite 
trunk-diameters during steady-state growth of MICAST samples are in a good agreement with 
predictions from a coarsening based model developed by some of the authors [44]. 

2.  Experiments 
Cylinders with a diameter of 7.8 mm and a length of ~25-cm were machined from [100] oriented 
terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules kept within the Sample 
Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF) for MICAST-6 and MICAST-7 
and in the Specimen Quench Furnace (SQF) for MICAST2-12. The A-7Si cylinders were partially re-
melted in space and directionally solidified by withdrawing the furnace with respect to the SCA; their 
unmelted solid portions at cold end acted as [100] oriented seed. Fig. 1 shows a schematic representation 
of the solidification processing conditions. The unmelted portion is left of TE (eutectic isotherm) with 
the melted and directionally solidified portion on the right. The mushy-zone lengths at the onset of DS 
are indicated in the figure. For MICAST-6 the withdrawal speed was 5 µm s1 for 3.75 cm, and then 50 
µm s-1 for rest of the 11.2 cm long melt. For MICAST-7 it was 20 µm s-1 for 8.5 cm and then 10 µm s-1 
for the rest 10.5 cm. For MICAST2-12 it was 40 µm s-1 along its entire 12 cm long melt column.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Temperatures along the sample length during DS were recorded by eleven thermocouples which 

were attached at regular intervals on the outer surface of the alumina ampoules along their length. 
Growth speeds and thermal gradients extracted from such thermal profiles are plotted in Fig. 2 for the 
MICAST-6, MICAST-7 and MICAST2-12 samples. Fig. 2(a), on the left, plots the thermal gradients at 
the liquidus (GTL) (solid lines) and at the eutectic (GTE) (dashed lines) temperature as a function of 
distance from the cold end of the samples. Fig. 2(b), on the right, plots the liquidus (VTL) and eutectic 
(VTE) isotherm velocities along the sample lengths. The thermal gradients were observed to vary during 

-11.4 0 3.75 15 cm 

5 µm s-1 50 µm s-1 

20 µm s-1 10 µm s-1 

30 µm s-1 

-6 0 

-13 

19 cm 8.5 

0 12 cm 

MICAST-6 (LGF-SCA) 

MICAST-7 (LGF-SCA) 

MICAST2-12 (SQF-SCA) 

~20 K cm-1 

~26 K cm-1 

~32 K cm-1 
Figure 1. Solidification processing conditions of the MICAST samples. The unmelted portion 
is left-of eutectic temperature (TE) with the melted and directionally solidified portion on the 
right. The mushy-zone lengths at the onset of directional solidification are indicated near TE.   
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directional solidification. For example GTL varied from 22 to 14 K cm-1 during growth of MICAST-6, 
from 26 to 24 K cm-1 for MICAST-7, and from 33 to 31 K cm-1 for MICAST2-12. 
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Fig. 2(a)                                                    Fig. 2(b)     

  

3.  Results 
Fig.3 shows typical transverse microstructures along the lengths of the MICAST samples. Trunk 
diameters of primary dendrites on several such cross-sections along the length of the three MICAST 
samples were measured in the manner describes in Ref. 44.  Figure 4 shows the variation in the primary 
dendrite-trunk diameter along the length of the three samples. Circles are average primary dendrite trunk 
diameter and error bars are the ± standard deviation; the dotted lines are predictions from a model 
proposed by the authors [44]. Recall that for the MICAST-6 samples there was a step increase in the 
growth speed from 5 to 50 µm s-1 at the distance of 3.75 cm (Fig. 1(a)) and for the MICAST-7 sample 
an abrupt decrease from 20 to 10 µm s-1 at 8.5 cm (Fig. 1(b)). The entire 12 cm long melted portion of 
MICAST2-12 sample was grown at 30 µm s-1 (Fig. 1(c)). The trunk-diameters respond to the speed 

Figure 2. Thermal gradients at liquidus (GTL) and at eutectic (GTE) (Figs. 2(a) on the left), and 
velocities of liquidus (VTL) and eutectic (VTE) isotherms (Figs. 2(b) on the right) as a function of 
distance from the sample bottom during directional solidification of MICAST-6, MICAST-7 and 
MICAST2-12 samples. 
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changes almost immediately. Also, the predictions from the simple coarsening-based trunk-diameter 
model [44] are in a good agreement with the experimental observations during the transient and the 
steady-state DS.   

 

     

If we include data only from the steady-stare DS portion of the MICAST samples, the agreement  
appears to be even better (Fig. 5). For each growth speed the trunk-diameter measurements from only 
those transverse sections were pooled together which met the following conditions, (i) at least, 2-mushy 
zone lengths of directional solidification has occurred at one growth speed, (ii) at least, 2-mushy zone 
lengths of solid exists below TE, and, also at least 2-mushy zone lengths of liquid exists above TE. Fig.5 
shows that predictions from the model (the dotted line) are in a very good agreement with the observed 
trunk diameters (symbols and ± standard deviation).  

 
 

 
 

Figure 4. Primary dendrite trunk diameters along the DS length of MICAST-6, MICAST-7 and 
MICAST2-12 samples.  Symbols are average values and error bars are ± one standard deviation; 
the dotted lines are predictions from a model proposed by the authors [44]. 
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30 µm s-1 Figure 3. Primary dendrites on 

transverse sections of 
directionally solidified 
MICAST-6, MICAST-7 and 
MICAST2-12 samples. 
Markers correspond to 1-mm. 
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4.  Discussion and Conclusion 

Following additional observations were made during this study, details of which are not included in 
this paper because of the lack of space. The MICAST samples grown at 10, 20, 30 and 50 µm s-1 did 
not show the radial macrosegregation which invariably occurs during terrestrial DS of Al-7Si alloy 
[46] and is attributed to the “steepling” type thermosolutal convection [28-32, 46]. This strongly 
suggests that the three MICAST samples were indeed directionally solidified under convection-free 
diffusive transport conditions. We have also seen that primary dendrite trunk diameters in the Al-7Si 
samples, which were directionally solidified terrestrially under approximately similar growth 
conditions as the low-g processed MICAST samples, are larger than those predicted from the model. 
These observations strongly suggest that the thermosolutal convection during directional solidification 
not only reduces the spacing between primary dendrites [30-33] it also increases their trunk diameter 
as compared with growth under diffusive transport conditions, perhaps by increasing their tip radius.  
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