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Enhancing produce safety: State estimation-based robust adaptive 
control of a produce wash system
Vahid Azimi Daniel Munther Mojtaba Sharifi Patricio A. Vela
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The rapid introduction of fresh-cut produce into a produce wash system can dramatically decrease 
the free chlorine (FC) concentration level in the wash water, resulting in potential widespread cross­
contamination throughout the entire wash system. To minimize such contamination, a sufficient level of 
FC must be maintained in the wash water. This paper presents a state estimation-based robust adaptive 
sliding mode (RASM) control strategy for the wash system to stabilize the FC concentration level dur­
ing fresh-cut iceberg lettuce washing. This feedback control law for FC dosing is suggested to provide a 
sufficient FC injection rate (FCIR) to the wash system in order to compensate for the fall in the FC level 
and in turn to minimize the Escherichia coli (E. coli) O157:H7 levels on washed lettuce and in the wash 
water. The proposed controller uses the estimated chemical oxygen demand (COD) and FC concentration 
as feedback signals while system states are estimated by a hybrid extended Kalman filter (HEKF) and 
the unknown noise statistics are identified by a noise identification (NI) algorithm. Uniformly ultimately 
boundedness (UUB) of the FC concentration tracking error in the presence of unmodelled dynamics is 
proven using the Lyapunov framework and Barbalat’s lemma. The E. coli O157:H7 contamination levels 
are predicted from the joint estimator and controller properties. Simulation results show that the pro­
posed NI-based HEKF/RASM control methodology achieves FC tracking while the pathogens converge to 
their predicted levels. The E. coli O157:H7 levels decrease as FC concentration increases and in particular, 
no E. coli O157:H7 is detected when FC concentration is regulated at 15 mg/L. Two robustness tests are 
performed to show the performance of the proposed controller in the presence of chlorine actuator fail­
ure and system parameter uncertainties. Finally, cross-contamination management is examined in terms 
of the prevalence and mean pathogen levels of incoming pre-wash lettuce in the context of FC regulation 
at 15 mg/L.

1. Introduction

Pathogen contamination associated with fresh-cut produce has 
been linked to numerous food-borne illness outbreaks [1-3]. From 
the 2006 North American E. coli O157:H7 spinach outbreak to the 
recent (winter 2018) outbreaks associated to romaine lettuce, 
these illnesses continue to impose heavy burdens on public health 
[4]. While “best practices” have been developed and continue to 

improve for multiple stages of the supply chain, ranging from 
on the farm strategies to processing, transport and storage pro­
cedures, given the increasing complexity of the fresh-produce 
supply chain and the increased demand for fresh products, more 
insight is needed. For instance, washing and sanitization is a 
crucial step to ensure fresh produce safety. However, maintaining 
adequate sanitizer levels in produce wash water during high speed 
industrial processing is still a technical challenge. Not meeting this 
need is problematic as significant variations in sanitizer concen­
trations may give rise to conditions that are favorable for bacterial 
cross-contamination during washing, thus increasing the potential 
for produce related outbreaks.

To address the disinfection problem, pathogen level regulation 
is connected to chlorine concentration regulation. Doing so for 
a produce wash system model with model uncertainty and dis­
crete measurement times involves a state estimation-based robust

Abbreviations: COD, chemical oxygen demand; FC, free chlorine; FCIR, FC injec­
tion rate; E. coli, Escherichia coli; MPN, most probable number; RASM, robust adap­
tive sliding mode; HEKF, hybrid extended Kalman filter; NI, noise identification; 
PSO, particle swarm optimization; RMSE, root mean square error; UUB, uniformly 
ultimately boundedness.



Fig. 1. Proposed structure for the HEKF-based robust adaptive sliding mode con­
troller.

adaptive controller whose objective is to stabilize the free chlo­
rine (FC) concentration to a target level. Achieving the target FC 
concentration in the wash water minimizes microbial risks and 
pathogen contamination during the wash process. The paper’s ob­
jective is to guarantee convergence/boundedness of the FC con­
centration tracking error in the presence of modeling error and 
disturbances. The proposed controller is implemented on a sim­
ulated, pilot-scale double wash commercial system. Simulations 
show that the proposed controller effectively meets performance 
requirements such as state estimation, tracking, and robustness to 
unmodelled dynamics and disturbances. Further analysis provides 
insights into the closed-loop pathogen concentration dynamics.

1.1. Background

In recent years, numerous studies have examined fresh-cut pro­
duce washing to address how the microbial risks and pathogen 
contamination can be decreased during the washing process [5­
12]. Experiments show that rapid input of fresh-cut produce into 
the wash system, shown in Fig. 1, decreases the FC level, pro­
moting the potential for wash water induced pathogen cross­
contamination [13-15]. Under this situation, an appropriate FC in­
jection rate (FCIR) into the wash tank compensates for the drop in 
the FC level and in turn reduces the risk of cross-contamination 
via water [16-18]. Chlorine is a conventional sanitizer used in the 
fresh-cut produce industry [19,20]. However, maintaining a con­
stant level of the FC concentration during the washing process is a 
challenging task because of the continuous and rapid introduction 
of organic material into the wash water.

Given these dynamics, it is crucial to know what amount of 
FC concentration is required to keep wash water and fresh-cut 
produce “free” from human pathogens, that is to keep pathogen 
counts below detection levels. Experiments reveal that higher FC 
concentration results in lower pathogen levels during washing [21]. 
Although the U.S. Food and Drug Administration recommends up 
to 200 mg/L FC concentration during washing, most commercial 
wash systems maintain a minimum level of FC to inactivate the E. 
coli O157:H7 and simultaneously reduce the production of harmful 
byproducts during processing [21,22]. In [22], a minimum level of 
FC was prescribed to inactivate E. coli O157:H7 in industrial wash 
water during fresh-cut processing. In [21], a comprehensive exper­
iment was carried out and a sufficient FC concentration was sug­
gested for preventing pathogen cross-contamination during wash­
ing operations for fresh-cut produce. That work has reported that 
no cross contamination is observed when the FC concentration was 
maintained at level greater than or equal to 10 mg/L. In addition to 

that, in [23] , a comprehensive study was performed on the signif­
icance of regulating sufficient FC concentration to eliminate bac­
terial survival. That work showed that a concentration of at least 
10 mg/L FC in the wash water is needed to significantly reduce the 
cross contamination of the washed produce. When the FC concen­
tration was maintained below 10 mg/L, the produce was contam­
inated. Whereas, for a FC concentration above 10 mg/L, very few 
samples were found, and in particular, above 20 mg/L, no survival 
was observed.

1.2. Motivation and contribution

Due to the fact that a mathematical model is an approximated 
version of an actual system, modeling errors are inevitable. How­
ever, robust controllers can mitigate the effects of such modeling 
errors on system performance and stability [24-26]. The sliding 
mode control approach is a widely applied robust controller that 
handles uncertain nonlinear systems and ensures the stability of 
a closed-loop system [27,28]. Several results of sliding mode con­
trollers have recently been applied in various areas such as agricul­
ture irrigation [29] , chemical processes [30,31], and fuel cells [32]. 
Adaptive control implements learning and adaptation using online 
parameter estimation for managing system uncertainties. Adaptive 
components enhance the performance of robust controllers [33­
36].

For produce wash systems, the existence of unmodeled dynam­
ics, such as water recirculation dynamics [37] and chlorine break­
point phenomena [38], may degrade the closed-loop performance 
or even lead to instability. In addition, when abnormal operations 
occur in chlorine actuators, regulation of the FC is negatively im­
pacted. More importantly, real-time water quality measurements 
(such as COD and even FC) with respect to product specific wash­
ing specifications may not be available. Even if such data can be 
consistently obtained, it is not immediately apparent how the mea­
surements can support the target outcomes through feedback con­
trol. Motivated by the aforementioned issues and the challenge of 
maintaining a stable FC level during the wash process, this paper 
employs model-based robust adaptive control for regulating a pro­
duce wash system. It also provides an accompanying analysis of 
the controller’s parametric sensitivity relative to target outcomes 
(chlorine and pathogen concentrations). The analysis informs de­
ployment options for meeting the outcomes under modeling un­
certainty.

In our prior work [38], a noise identication-based hybrid ex­
tended Kalman filter (NI-based HEKF) was designed for a pro­
duce wash system to estimate the states of the system while only 
discrete-time measurements of the FC were available. However, in 
that paper, (i) the FCIR to the wash tank was manually chosen; (ii) 
there was no feedback control to stabilize the FC concentration and 
in turn to minimize the pathogen levels; and (iii) a prediction of E. 
coli O157:H7 levels relative to a specific level of FC concentration 
was not established. However, this present paper adds the follow­
ing original contributions: (a) formulating a robust adaptive sliding 
mode (RASM) controller to stabilize the FC concentration level and 
to minimize the E. coli O157:H7 levels while using the estimated 
states from the NI-based HEKF algorithm, (b) proving boundedness 
of the FC concentration tracking error in the presence of unmod­
eled dynamics and estimation error, (c) predicting the pathogen 
levels from the target FC level, tracking and estimation bounds, 
and the average pre-wash pathogen counts on produce, (d) eval­
uating the controller’s robustness to chlorine actuator failures and 
system parameter uncertainties, and (e) quantifying the effects of 
pathogen-to-water shedding rate on pathogen levels.

In this work, the RASM controller is first formulated to regu­
late the FC concentration to the targeted level. The robust term 
added to the controller manages unmodeled system dynamics and 



disturbances. The robust gain is updated by an adaptation mech­
anism to compensate for (i) time-varying disturbances stemming 
from possible actuator failure, and (ii) estimation error variations 
due to system parameter uncertainties and neglected dynamics. 
The adaptation mechanism uses a dead-zone modification to pre­
vent unfavorable robust gain drift, and to trade off FCIR chatter­
ing and FC concentration tracking accuracy. Unlike baseline robust 
controllers with constant gains, our method renders better control 
optimality and stronger robustness in the presence of unexpected 
actuator failures. The proposed controller uses the estimated COD 
and FC concentration, which are estimated by the HEKF while the 
unknown noise statistics of the wash system are identified by the 
NI algorithm. Stability analysis is carried out in the presence of 
the unmodeled dynamics, system parameter uncertainty, and the 
estimation error. Boundedness of the actual FC concentration to a 
compact ball around the target value is proven using the Lyapunov 
framework and the Barbalat’s lemma whose outcomes allow us to 
predict the pathogen level convergence bounds and limits.

Effectiveness of the proposed controller is evaluated by per­
forming simulation studies on the produce wash system for differ­
ent target FC concentration levels. Simulation results demonstrate 
that system states are accurately estimated and the FC concentra­
tion is stabilized during the washing process. Results show that the 
E. coli O157:H7 levels converge to their predicted values and reduce 
as the FC level increases. In particular, no E. coli O157:H7 survives, 
i.e. pathogens counts are lower than the detection level, when the 
FC level is regulated at 15 mg/L, which aligns with observations 
in [21,23]. The proposed structure shows an appropriate robust­
ness in the presence of the parameter uncertainties. Results illus­
trate that the proposed controller is able to compensate for possi­
ble chlorine actuator failure. Results also show that our approach 
with gain adaptation outperforms the constant-gain controller in 
the presence of the FC control actuator failures. Finally, the effect 
of the average pathogen level and prevalence from incoming pre­
wash produce is simulated against a FC level regulated at 15 mg/L, 
providing a quantified link between incoming pathogen levels and 
the resulting pathogen counts on post-wash produce.

The paper is organized as follows. Section 2 presents the pro­
duce wash dynamic model, state estimation algorithm, and the 
problem statement. Section 3 presents the controller formulation 
and the pathogen level prediction. Section 4 presents simulation 
results. Section 5 analyzes effects of pathogen-to-water shedding 
rate on pathogen levels. Section 6 presents concluding remarks and 
suggestions for future work.

2. Produce wash dynamic model, state estimation, and 
problem statement

2.1. Produce wash model description

The evolution equations modeling chlorine and E. coli 
cross-contamination in a commercial wash system (primary 
tank) [14,37,38] are:

where the non-negative state variables are: ο (mg/L) denoting the 
COD in the wash water, C (mg/L) denoting the FC concentration in 
the wash water, XW (MPN/ml) denoting the E. coli concentration in 
the water wash, and Xi (MPN/g) denoting the E. coli concentration 
on the lettuce. Contamination is controlled through u (mg/l min), 

the control command, which is the FC injection rate (FCIR) into the 
wash tank. Key parameters are all positive and include K0 the COD 
increase rate, γ c (1/min) the decay rate of FC in municipal tap wa­
ter, βc (L/(mg min)) the second order rate constant describing FC 
reaction with organics, βws (MPN/(ml min)) the rate of pathogen 
entry into the wash water (a function of the pathogen shed rate 
from produce to water due to shear forces during washing), and 
β lw (mL/(g min)) the rate of cross-contamination from water to let­
tuce. Additionally, L (g) is the amount of lettuce in the wash water 
(assumed to be constant, on average), V (mL) is the volume of the 
wash tank, α (L/(mg min)) is the killing rate due to FC, and 1/ Cl is 
the average dwell time of the lettuce in the wash tank ( Cl is the 
reciprocal of the average wash time). The full system state vector 
is x = [ O, C, XW , XL ]T . The system parameters are the general vector 
® = [K0 , Yc, ßc, ßws> ßiwK L, ^Λa, Ci] ε ^9.

Several additional details of the process include the assumption 
that the pH is regulated to be 6.5 during the wash process. The 
model described in Eq. (1) involves FC control for disinfection with 
pH tightly regulated. In addition, the wash model simulation prop­
erties include (i) a fixed time wash process for introduced produce 
lasting 36 min during which the incoming produce rate is fixed, 
(ii) the tank water volume is constant with recirculating wash wa­
ter, (iii) contaminated spinach acts as the pathogen delivery vehi­
cle to the wash water (i.e., the spinach and lettuce had no con­
tact until both were put into the water) [21,37]. The equations in 
(1) model the washing of spinach and fresh cut lettuce together, 
where the cross-contamination dynamic only considers pathogen 
transfer from spinach to water to lettuce and ignores direct con­
tact transmission between spinach and lettuce. Therefore, XL re­
flects the pathogen level on the lettuce in the wash tank due to 
cross-contamination from wash water.

2.2. State estimation using HEKF and noise identification algorithm

Mitigation of pathogen levels requires maintaining sufficient FC 
levels in the face of the introduction of large amounts of organic 
material from washed produce. For this purpose, the feedback con­
trol signal will require the COD and FC concentration state coordi­
nates. Since real-time measurements of these variables may not be 
possible, this paper uses an HEKF algorithm to estimate the pro­
duce wash states with the FC being the only measured quantity. 
The “hybrid” adjective refers to the discrete-time availability of the 
FC concentration measurements versus the continuous-time model 
of the commercial wash process.

Generically, the continuous produce wash system of Eq. (1) 
with discrete measurements follows

for discrete time points indexed by k, where f(.) represents 
the process dynamics and hk (.) is the measurement equations, 
with yK ε Ώ as the discrete-time FC measurement. The variable 
ws((t) ε ^4 stands for continuous-time white process noise vector 
with covariance Qs ε ^4 x 4 and vsK ε SH represents discrete-time 
white measurement noise with covariance Rsk ε SH. The filter esti­
mates are initialized to be

where E[.] stands for the expected value operation; P+ is the co­
variance of the initial estimate; and x0 and x+ are the initial values 
of the state and its estimate.

The time-update equations for states and covariance are given 
as [38,39]



where A and L are the partial derivatives of f w.r.t. x and ws eval­
uated at the current estimated state; and Qf denotes the filter pro­
cess noise covariance. At each measurement time, the state esti­
mate and the covariance are updated as

where Hk and Mk are the partial derivatives of hk w.r.t. xk and vs( 

evaluated at the current predicted state; Kk is the Kalman filter 
gain; and R fk denotes the filter measurement noise covariance.

Remark 1. The process and measurement noise covariance matri­
ces of the filter (Q f , R fk ) are unknown and different than the ones 
of the system (Qs, Rsk). The system covariance parameters (Q, Rs() 
are identified using experimental data per [38].

The HEKF estimation performance depends on the noise relative 
to the model parameters. As the covariance matrices in the filter 
(Q f , R fk ) are unknown, they are calculated by a noise identifica­
tion algorithm. This algorithm uses a particle swarm optimization 
(PSO) to optimize the estimator covariance matrices for estimation 
performance.

Assumption 1. The process and measurement noises are uncorre­
lated.

According to Assumption 1, the problem is to estimate the four 
diagonal elements of Q, and the single element of Rsk to achieve 
an optimal state estimation, that is the innovations yk , - h(X— are 
(i) white noise with (ii) zero mean and with (iii) covariance of 
H k Rk- Hk T + Rs k . The joint HEKF and the noise identification algo­
rithm leads to an NI-based HEKF algorithm to estimate the system 
states and unknown noise statistics [38].

Property 1. The norm of the estimation error is bounded by a pos­
itive scalar ||ee| | < ee, Consequently, the FC concentration and COD 
estimation errors, denoted by e, and eO , respectively, are bounded, 
e.g., |êC| < eC and Iê0 I < eo by positive scalars eC and eO.

Convergence of the estimator to the true states cannot be 
guaranteed, however boundedness of the estimation error of the 
EKF is guaranteed using stochastic Lyapunov functions if the ini­
tial estimation error ee (0), control input u, and disturbances are 
bounded [40,41]. Thus, Property 1 reflects bounded error operation 
of the NI-based HEKF arising from bounded error initial conditions 
and bounded disturbances. This outcome is exploited in the robust 
controller.

2.3. Problem statement

Organic matter entering the wash tank lowers the FC level (as 
determined by the rate constant ßc ) thereby increasing the risk 
of cross-contamination [13,14]. Injecting more FC into the primary 
wash tank counters this effect. To prevent overchlorination of the 
wash water, the FC concentration should be regulated by manag­
ing the FCIR. This paper details a RASM control strategy for the 
produce wash system that stabilizes the FC concentration to a tar­
get level and is robust to uncertainty in the model dynamics. Given 
a fixed input rate of E. coli shed into the wash water from contam­
inated produce (ßws), the resulting pathogen levels transferred to 
the water and the lettuce are predicted based on the prescribed 
FC concentration level in the water tank. The proposed controller

uses the COD and FC concentrations, estimated by the NI-HEKF al­
gorithm, as feedback signals. A joint robust component and adapta­
tion mechanism promote system robustness to unmodeled dynam­
ics, estimation error, and disturbances. The boundedness of the FC 
concentration tracking error to a compact set around the desired 
value is proved using the Lyapunov framework and the Barbalat’s 
lemma. The proposed estimation-based control approach is finally 
implemented on the produce wash system illustrated in Fig. 1.

3. Proposed controller for the wash system

Regulating the FC concentration involves focusing on the equa­
tion Eq. (1b) while modeling the effects due to the other variables 
as external disturbances. For example, water is recirculated to the 
tank during the wash process [37]. Due to the lack of a model for 
the quantity of COD and free chlorine returning to the tank, the re­
circulation dynamic is neglected. Additionally, the equations do not 
account for chlorine breakpoint phenomena [38] . Both of these un­
modeled effects are considered by the unknown function fun(C, O) 
in the chlorine update equations. Lastly, FC actuation failures may 
lead to free chlorine concentration changes that differ from those 
intended. These will be described by ud (t ), but with the time argu­
ment removed in displayed equations, generically representing an 
unknown actuator disturbance. Together, these contributions lead 
to the free chlorine dynamics,

Replacing the C dependent dynamics with a linearly parametrized 
regressor, they become

where Y (C, O) = [C, OC] e -K1r with r = 2 is the model regressor 
matrix and θ = [ Yc, ßc]T e SHxx1 is the unknown parameter vector.

These equations will be the core equations for deriving a con­
trol law u with the objective of regulating the FC concentration to 
meet a desired minimum level. The estimated COD ( Ô) and FC con­
centration (C) will be used as feedback signals for the controller.

Abnormal operation for the actuator leads to a reduced or in­
creased FCIR relative to the desired rate. It is modeled by the dis­
turbance ud (t ) to the system. During abnormal operation the de­
manded control signal cannot be effected and will negatively im­
pact regulation of the FC concentration. Under total failure, nothing 
can be done as it is the only control signal available. For tractable 
analysis, we will assume that actuator failure can only be partial, 
implying a bounded error in the target FCIR.

Assumption 2 Partial actuator failure. The time-varying distur­
bance u d (t ) occurs for a small time duration T > 0 and is uniformly 
bounded by |u, (t) | < Ud , for Ud > 0.

3.1. Robust adaptive sliding mode (RASM) controller

To regulate the system in the face of parameter uncertain­
ties, neglected dynamics fun(O, C(, actuation disturbances Ut(t), and 
state estimation error, all of which degrade the performance of the 
closed-loop system, a RASM will be applied. Given system parame­
ters estimate θ and the state signal estimates, the RASM controller 
is:

where Cd is the desired FC concentration so that Cd is a feed­
forward term for the desired rate of change of C; Y ( Ĉ, Ô( = [Ĉ ÔĈ]



is the estimated model regressor matrix for canceling the associ­
ated system dynamics; λ is a positive scaling factor of the esti­
mated tracking error ê = C - Cd for aiding in stabilization; and kd(t) 
is the time-varying control gain for the robust term compensating 
for unmodeled dynamics and disturbance. The regression param­
eter vector θ = [ γc, βt ]T represents the estimates of θ such that 
θ = θ + θ , with θ being the parameter estimate deviation from its 
nominal value. The function sat(.) denotes the saturation function, 
defined as:

where φ is width of the saturation function.
To relieve the engineer of the need to manually tune the gain k d 

in the presence of neglected dynamics fun( C, O), disturbance ud(t), 
and state estimation error ee , the following adaptation law will up­
date the gain

with positive scalar k d0 and dead-zone modification as [26,42]

The reason for having the control law of Eq. (8) in conjunc­
tion with the gain update law of Eq. (1ο) is three-fold [47]: (i) 
the adaptation law tunes k d (t ) for sufficiently large tracking error 
( | ê | > φ) and stops tuning when the error trajectory lies in the 
dead-zone region (-φ < ê < φ). Small tracking errors are usually 
caused by the measurement noise, to which the adaptation mech­
anism should be insensitive; (ii) the controller trades off between 
FCIR chattering and FC concentration tracking performance; and 
(iii) the controller bounds the gain evolution and the error trajec­
tory in the boundary layer |e| < φ, leading to UUB of all system 
solutions.

Writing the true tracking error as a function of the FC estima­
tion error êc = Ĉ - C, C, and Cd gives

whose time derivative along with the system in Eq. (6) is

Further substitution of the controller from Eq. (8) gives

r> r' A\ xz/z^ . i · .1Define the regressor error eY = Y (C , O ) - Y (C, O ) to emphasize the 
effects of estimation errors on the error dynamics,

To provide context for the mismatch terms contained in Eq. (15), 
their roles and properties are described below. In particular, ma­
nipulations and consideration of physical constraints on the pro­
cess dynamics leads to linear plus bounded defect inequality 
bounds on the absolute values of these mismatch terms.

3.1.1. Term fun (C, O)
The unmodeled dynamics fun( C, O) are structurally unknown 

but must satisfy certain properties based on physical considera­
tions. Since this contribution models uncertain recirculation and 
breakpoint dynamics such that it is impossible to recirculate or to 
break down more chemical concentration than exists in the wa­
ter, these functions are necessarily limited in terms of the potential 
function classes they can belong to. We first make an assumption 
on fun(C, O) that covers a wide variety of physically motivated un­
modeled dynamics.

Assumption 3. The function fun is a continuous function such that 
there exists a constant b 1 and a bounded function fun (C, O( for 
which the unmodeled dynamics fun(C, O) have a linear in C con­
tribution plus a bounded or saturated in C and O contribution 'fun2 
as

While fun(C, O) may depend linearly or non-trivially on O, the 
nature of the COD dynamics (1a) (which tend to increase linearly 
in the wash water relative to the produce input rate) and the fixed 
time duration of the wash process implies that the COD lies in a 
compact domain with upper bound

where O0 is the initial value of O and tu is the final time (here 
36 min). Thus dependence on O is necessarily bounded by a linear 
function of C plus a constant value in the worst case. Combining 
the simplified form of the unmodeled dynamics for C and O to­
gether leads to a function of the form of Eq. (16). With C being 
unknown but satisfying C = ê - êc + Cd means that we can define 
an alternative function form for fu n in terms of these other vari­
ables,

where we likewise exploit the known boundedness of êc and Cd . 
Using the boundedness of fun to define the upper bound |fun | < 

D 1 (eC , Ō, Cd ( , implies that

Remark 2. Eq. (16) suggests a model for the neglected dynamics 
in Eq. (1b) that is motivated by physical characteristics involved 
in produce washing. For instance, the first term of this equation 
( b1 C ) gives a simple account of the typical practice of water recir­
culation to the tank during the wash process and the second term 
(fun) treats chlorine breakpoint phenomena which involves nonlin­
ear but bounded dynamics (since washing operates on a finite time 
scale).

3.1.2. Term eγ θ
Manipulating eY θ , we have

ΓΊ 11 , 1 , , 1 . . A · 1 11 11Recall that the parameter estimate θ is bounded and due to
Property 1 the estimation errors eu and eu are also bounded.
In conjunction with Eq. (17), these bounds mean that | eY θ |



is bounded by a linear function of |ê| plus a bounded term 
D2 (fC, eO , Ō Cd, θ) > 0 such that

r-> i A ,i, Ixz/x’ λ\ΛΙ ■ 1 illBoundedness of êC, O, and θ, means that |Y(C, O)θ | is bounded by 
linear in |ê| and bounded terms,

3.1.4. Term êC
The derivative of the FC estimation error is

for which the bounds for the constitutive terms were just detailed. 
rnl 1 1 C I ·*· I · 1 . · 1The bound for |êc | is obtained as

Simplifying these uncertain terms to linear in ê plus bounded 
or saturating terms admits more explicit analysis of the Lyapunov 
rate bounds for the closed-loop subsystem of the wash process. 
Whereby, using the previously computed bounds,

3.2. Stability analysis

Using the control and adaptation laws of Eqs. (8) and (10), the 
FC tracking error and the gain remain bounded for all time. The 
following Lyapunov function shows the boundedness of all system 
solutions,

where kd = k) - kd such that kd is the positive ideal gain.
Barbalat’s lemma [43] is a useful tool in stability analysis of 

nonlinear systems and also used to verify the asymptotic conver­
gence of adaptive control systems. A version of it can be stated as 
follows:

Lemma 1 Barbalat’s Lemma. If a function g(t) is uniformly contin­
uous 1 for all t > 0 and if the limit of the integral limt .■■ ft) g(h)dh 
exists and is finite, then lim)-+<x> g(t) = 0.

Theorem 1. Consider the FC error dynamics of es (13), the FC dos­
ing control law of Eq. (8), and the adaptation law of Eq. (10). Un­
der Property 1, and Assumptions 1 , 2, and 3 , the uniform ultimate

1 A function g()): SR ^ SR is uniformly continuous on [0, ∞ ] if V c > 0, 3 <5(e) > 
0, V )i > 0, V ) > 0, |) - t1 | < δ ^ |g(t) - g(ti ) | < e. 

boundedness2 of all system solutions (ê, kd) is guaranteed for un­
known Θ e Ώ9, ud, and fun, and any ê(0) e SH, when λ > b.

Proof of Theorem 1. The proof relies on the Lyapunov function _ __ - . - < 1 .of Eq. (28). First consider |ê > φ, for which eΔ = e. Substituting 
Eq. (15) into the derivative of Eq. (28) yields

Substitute Eq. (10) into Eq. (29) , then use the definition of êΔ and 
the property sat (φ )eΔ = |êΔ |, to obtain

Substitute the calculated bounds from Section 3.1 to yield

which can be written as

Use the definition of ê = êΔ + φsat (φ) for |ê | > φ, and the def-
■ ·. · c r~\ ii, i ,initions of D and b, to obtain

for which the true knowledge of the ideal gain is not required, only 
its existence is assumed. Using the equality condition presented in 
Eq. (35), we then have

λ ,ι,,ι ·ιι ·ι , ■ r' ,i rii ■ i ■,Assume that the ideal gain kd satisfies the following equality con­
dition

r' · ir / . \ r> ii 1 r· ■, ■ t rr . \ z-».i i r·. i i ■ i cSince V (t) < 0, and by definition V(t) > 0, the left-hand side of 
Eq. (39) is positive and finite ( V is bounded), which follows that 
the right-hand side of Eq. (39) exists, and is positive and finite. 
Hence, according to the Barbalat’s lemma



Since κ > 0, Eq. (40) implies that êΔ ^ 0 (i.e., ê < φ) from 
which and the boundedness of V it follows that k d is bounded. 
Going further, since kd is constant, kd = kd + kd is bounded. This 
proves UUB of the system’s solutions (ê, kd).

In case that |ê| > φ, the adaptation law presented in 
Eq. (10) applies to the system until the unmodelled dynamics, dis­
turbances, and estimation error are all compensated for, resulting 
in the convergence of ê to its ultimate bound φ. This implies that 
all error trajectories starting outside the boundary layer will con­
verge to a small neighborhood around the origin, where the size 
of the neighborhood depends on the selection of the width of sat­
uration function φ. Inside the boundary layer ( | ê | < φ), V can take 
positive sign. However when |ê| < φ, we have eΔ = 0 that inac- •
tivates the adaptation process, kd = 0. This ensures the bounded­
ness of gain kd and prevents the potential ‘gain drift’ phenomenon. 
Taken altogether, the proposed controller provides the uniformly 
ultimately boundedness of the system’s solutions (ê, kd ) regardless 
of starting from inside/outside the boundary layer. □

Remark 3. The width of saturation function φ trades off between 
the FC tracking performance and chattering of the FCIR. Although 
a small value of φ provides better tracking, it results in chattering. 
Adjusting the parameter λ tunes the tracking error convergence 
rate to achieve better tracking. The rate of convergence depends 
on the scale of b and stability of the system holds when λ > b.

Remark 4. Theorem 1 brings a practical property of the gain selec­
tion to light. As shown, if λ > b, the error term has the property 
that |ê | < φ. Further expanding this condition yields 

implying that the choice of the gain λ is dependent on (i) the scale 
of the constant b1 associated with the function fu n , (ii) the maxi­
mum value of COD, (iii) the COD estimation error, and (iv) the scale 
of the parameter estimation error.

3.3. Pathogen levels

As the produce wash system has only one control signal (the FC 
injection rate), only one state can be controlled (in this work, the 
FC concentration). The other states follow the natural dynamics of 
Eq. (1), also called the “internal dynamics”, and cannot be seen 
from the input-output ( u - C) relationship. However, the purpose 
of controlling C is to ultimately minimize the internal contamina­
tion variables. Section 3.1 formulated a controller to maintain FC 
concentration within a neighborhood of the desired level Cd . This 
section shows the convergence of the internal contamination vari­
ables XW and XL to neighborhoods determined by the neighbor­
hood of C.

Theorem 2. Given the desired FC concentration level Cd and the pro­
posed Theorem 1, the ultimate bounds for the pathogen levels in the 
water and on the lettuce are predicted to lie in the intervals deter­
mined by the following interval membership equations:

when the estimation and tracking errors are sufficiently small relative 
to the target concentration Cd (Cd » φ + ec). For zero-mean estima­
tion and tracking error statistics, the expected pathogen levels match 
their steady-state values

Proof of Theorem 2. Since the FC concentration converges to a 
neighborhood of the target concentration Cd , the equivalent neigh­
borhoods for the E. coli concentration in the wash water and on the 
lettuce can be predicted. Predicting the interval of convergence for 
XW requires considering the dynamics in Eq. (1c) while replacing 
c with Cd + ê — êc (see Eq. (12)) as

Boundedness of the estimator and controller means that |ê| < φ 
and |êc| < ec , which is equivalent to ê e [—φ, φ] and êc e [—ec , ec ] , 
implying that

Employing the Comparison Lemma, the lower and upper 
bounds for XW are obtained as

Note that since the FC concentration is a non-negative vari­
able, the term C = C d- φ - eC is always non-negative. Manipulat­
ing both equations to have a common denominator leads to the 
following re-centered ultimate bound inequality

For the ultimate bound intervals of XL , consider the dynamics 
in Eq. (1d) as

r' · \r 1 ' 1 11 1 \r ,i c 11 1 1Since XW lies in a ball around XW, the following upper and lower
inequalities apply to XL as

Once again employing the Comparison Lemma, the lower and up­
per bounds are computed as



Fig. 2. State estimation performance for different desired FC concentration.

Extracting the common components (added and subtracted) 
from the two inequalities leads to the following re-centered ulti­
mate bound

When the error terms ê and êc are zero-mean, i.e., E[ê] = E[ê ] = 
0, the average pathogen levels can be computed from the centers 
derived in Eqs. (48) and (52) as

Remark 5. Eqs. (42) and (43) show that terminal pathogen con­
centration intervals for water and lettuce can be computed by 
knowing the prescribed FC concentration in the water tank Cd and 
ultimate bounding radii φ and eC. Referring to Eq. (44) , the ex­
pected pathogen levels can be predicted from the target FC if the 
errors have zero mean. These average levels and bounds depend 
on the shed rate of E. coli. The predicted levels and bounds change 
if ßws changes.

4. Simulation results

This section verifies the effectiveness of the proposed NI- 
based HEKF/RASM algorithm by performing simulation studies on 
the produce wash system with nominal parameters presented 
in [14,38].

4.1. Desired FC concentration and initialization

For no pathogen survival, the desired FC concentration should 
be above 10 mg/L [23]; E. coli O157:H7 cannot be detected on 

washed produce when the FC concentration in the wash water 
is above 10 mg/L. Three levels of the desired FC concentration 
(C d = [5, 10, 15](mg/L )) are tested for the system to see how the 
pathogen levels change based on FC concentrations. The design 
parameters are set to λ = 2 and kd 0 = 1. The width of saturation 
function is adjusted depending on the target FC concentration as

implying that φ is chosen as 10% of Cd plus a constant 
considering the noise effects3Design parameters prioritize FCIR 
chattering-free and tracking performance. The initial condition 
of the system states is chosen as [ O (0), C(0) , XW (0), XL (0)]T = 
[350 , 2 , 0. 7, 0. 05]T and differs from the filter initial condition, 
[Ô(0) , Ĉ(0) ,X^ (0) ,X0 (0)]T = [300, 0, 0 , 0]T, and all desired FC con­
centration levels. The initial covariance of the estimation is chosen 
as P+ = 10 I. The simulation runs for 36 min, which is equivalent to 
washing 1620 kg of lettuce [37].

3 The parameter φ is different for different desired FC concentration as φσι=5 = 1, 
Φcd=10 = 1- 5 , and φ^=15 = 2.

4.2. State estimation

This section presents the results for the NI-based HEKF algo­
rithm of Section 2.2, which simultaneously identifies the process 
and measurement noise statistics (filter noises), and estimates the 
system states under the proposed closed-loop control. Using the 
experimental data from a commercial double wash system in a 
commercial pilot plant (New Leaf Food Safety Solutions, LLC, in 
Salinas, CA), the covariance matrices of the system (used in Eq. (2)) 
are identified as Qs = diag (420, 0. 4, 1. 6 , 1. 2) and Rs k = 1. The noise 
identification algorithm optimizes the covariance matrices of the 
filter (used in Eqs. (4) and (5)) as Q f = diag (700, 0. 1, 1. 9, 1. 9) and 
R fk = 1. 2.

Fig. 2 compares the actual states of the wash system with the 
estimated states using the NI-based HEKF/RASM algorithm. The 
proposed algorithm accurately estimates the wash system states 
for different Cd levels. Fig. 2 shows that when the FC concentra­
tion is regulated to 5 mg/L, the pathogen levels are relatively high.



Fig. 3. FC tracking performance and the required FCIR.

Fig. 4. Average RMSECt of 100 Monte Carlo simulations (left figure) and the FCIR comparison between the controller using the width of saturation function φ suggested in 
Eq. (54) and the controller using 0.2 times 20% φ (right figure).

When the FC concentration increases to 10 and 15 mg/L, the E. coli 
O157:H7 levels go down. In particular, for 15 mg/L FC concentra­
tion, E. coli O157:H7 both in the water and on the lettuce are suf­
ficiently killed (e.g., below the detection limits of 0.36 MPN/ml for 
the water and 0.36 MPN/g for the lettuce [21]) resulting in mini­
mal pathogen cross-contamination.

4.3. FC concentration control

This section shows the FC concentration tracking performance 
and the required FCIR generated by the proposed closed-loop con­
troller. Fig. 3 illustrates the FC concentration tracking responses, 
when the proposed controller is used. The actual4 FC of the wash 
system accurately tracks different FC commands even when the 
initial value of the FC in the wash tank is zero. Fig. 3 also shows 
the required FC injection rates for different FC concentration levels, 
for which a higher FCIR is required to ensure a higher sustained FC 
concentration in the wash water. When the fresh-cut produce load 
increases, the required FCIR proportionally increases. Consequently, 
the FC concentration level remains unchanged in the water result­
ing in a constant level of pathogens in the water and on the lettuce 
(Fig. 2).

4 The word “actual” stands for the variables that are generated from the model 
of Eq. (1), while the word “estimated” represents the variables that are estimated 
based on the model and the experimental data as explained in Section 2.2.

Fig. 4 shows the average RMSECt (root mean square error of the 
FC tracking) from 100 Monte Carlo simulations each with a 36 min 
simulation time. This figure illustrates that the proposed controller 
provides accurate FC tracking for all three target FC levels. To shed 
some light on the Remark 3, Fig. 4 also demonstrates the effects 
of the width of saturation function φ on the FCIR solutions. Al­
though experiments show that the controller with φ; = 0.2φ (φ; = 
0.2 t 0.3, 0 .4 for Ct = 5 t 10 t 15 t respectively) enhances the tracking 
performance up to 5% for all three levels of the desired FC concen­
tration, it can be seen from this figure that decreasing φ causes 

undesirable oscillations in the FCIR solutions. This phenomenon 
(oscillations) is known as ‘chattering’ and may be harmful for the 
moving parts of the chlorine actuator. These oscillations can be 
properly reduced by adjusting the design parameter φ as men­
tioned in Remark 3. Fig. 4 shows that when the controller de­
rives the parameter φ from Eq. (54) , a reasonable trade off be­
tween tracking performance and chattering is made resulting in 
chattering-free FCIR solutions.

4.4. Pathogen levels

This section supports Theorem 2, in which the steady-state E. 
coli O157:H7 levels and the corresponding intervals are computed 
from Eqs. (42)-(44). Fig. 5 compares the actual pathogen levels 
with the steady-state ones. This figure confirms that both pathogen 
levels in the water and on the lettuce converge to their predicted 
values, and stay bounded by their calculated intervals for all differ­
ent C d levels.

4.5. Numerical evaluation

This section shows that when the proposed controller regulates 
the FC concentration level at 15 mg/L, no pathogen can be detected 
in the water and on the lettuce. Table 1 lists RMSE value for state 
estimation, RMSE s , RMSE value of tracking performance, RMSE t , 
RMS value of the FCIR, RMS u , steady state value of the pathogen in 
the water, Xts, and steady state value of the pathogen on the let­
tuce, Xtt, for the wash system using the proposed controller. Since, 
in this paper, the FC concentration in the wash solution is between 
5 mg/L and 15 mg/L (in steady state) during the washing process, 
Table 1 is comparable with Table 3 of [21], in which the relation­
ship between the E. coli O157:H7 survival and the FC concentration 
level was numerically reported for different C d solutions from 5- 
to 25-mg/L.

This table shows that as the FC concentration level increases, 
the estimation performance of O, XW, and Xt improves while chlo­
rine estimation slightly degrades. The RMSE value of FC tracking



Fig. 5. The actual and steady-state E. coli O157:H7 for different desired FC concentration. The dash-dot lines show the computed bounds for the pathogen levels. The y-axis 
scales differ for the three target concentrations.

Table 1
Tracking and estimation performances, and pathogen levels for different Cd solutions i.e., 5- to 25-mg/L (comparable to Table 3 of [21]), where ND denotes 
“not detected” at a detection level of 0.36 MPN/ml in water and 0.36 MPN/g on lettuce. Better values for each metric are underlined.

Cd O C XW XL C ss ssRMSEs RMSEs RMSEs RMSEs RMSEt RMS u XW XL

5
10
15

29.690 0.132 0.075 0.008 0.326 2.766 0.787 0.062ND

20.750 0.145 0.065 0.007 0.788 5.600 0.392 0.020ND

18.180 0.164 0.057 0.005 1.267 8.540 0.259ND 0.009ND

increases with the increase in FC concentration level, whereas the 
FCIR must increase when the targeted FC is increased. The reason 
why RMSECs and RMSEtC increase with the increase of targeted FC 
level stems from the larger initial condition mismatch between ac­
tual and estimated states with desired FC value. In addition, in­
creasing the FC concentration in the wash water by 10 mg/L (from 
5 and 15 mg/L) results in decreasing pathogen levels in the wa­
ter by 67% and on the lettuce by 85%. In particular, when the FC 
concentration level reaches 15 mg/L, there is no detectable E. coli 
O157:H7 in the wash water and on the lettuce (pathogen levels are 
below the detection level of 0.36 MPN/ml in water and 0.36 MPN/g 
on lettuce). When the FC concentration target is 15 mg/L, pathogen 
cross-contamination is effectively eliminated from the wash sys­
tem.

4.6. Robustness in the presence of parameter uncertainties

In this section, system parameters are deviated from their nom­
inal values from -50% to +50% with a resolution of 0.05 to see 
how the system reacts to parameter uncertainties under the pro­
posed controller. Fig. 6 illustrates that RMSE^ increases as Δθ is 
iteratively perturbed, for all different levels of the targeted FC con­
centration. Table 2 shows that although for all Cd values, tracking 
performance deteriorates when system parameters are perturbed 
by ± 50%, RMSEtC is impacted by the perturbation much less as 
Cd increases. For instance, when FC concentration is targeted at 
15 mg/L, the tracking performance degrades by only 6% and 10% 
for +50% and -50% parameter uncertainty respectively. Fig. 6 also 
shows that the FCIR linearly increases as Δθ increases. However,

Table 2
Controller performance in the presence of parameter uncertainties. The table shows 
percent chance in values when the system parameters deviate by ± 50%, where the 
plus sign shows a deterioration and the minus sign shows an improvement versus 
the controller performance with the nominal values.

Δθ (%) Cd = 5 C = 10 C d= 15

RMSECt +50 +33% +11% +6%
-50 +40% +13% +10%

RMSu +50 +12% +8% +2%
-50 -19% -12% -11%

according to Table 2, when Cd is regulated at 15 mg/L, the required 
FCIR only increases by 2% due to the +50% parameter perturbation.

4.7. Controller performance in the presence of the chlorine actuator 
failure

FC control actuator failures may cause an unknown disturbance 
and negatively impact wash system performance. In this section, 
an unknown time-varying disturbance ud ( t) is applied to the wash 
system and performance of the control law of Eq. (8) along with 
the adaptation mechanism of Eq. (10) is evaluated to see how the 
proposed controller compensates for the disturbance. For the sake 
of illustration of the adaptation mechanism against the actuator 
failures, the FC concentration is targeted at Cd = 5 based on which 
φ is computed using Eq. (54) while other design parameters re­
main unchanged. The disturbance u d (t ) takes values +5 and -7 in 
two time periods t e [8 , 10]sec and t e [23 , 27]sec respectively.



Fig. 6. Tracking performance and required FCIR in the presence of parameter uncertainties.

Fig. 7. Controller performance in the presence of the unknown disturbance ud(t). The disturbance ud( t) takes values +5 and -7 in two time periods t e [8, 10] min and 
t e [23, 27] min respectively.

Fig. 7 illustrates the time-varying disturbance u d (t ), FC tracking 
performance, and required FCIR when FC is targeted at 5 mg/L. It 
is seen that in the absence of the disturbance, êΔ = 0 , adaptation 
of Eq. (10) is off, and in turn kd is constant. However, when the 
disturbance is encountered for t e [8, 10] min and t e [23, 27] 
min, the error trajectory ê leaves the boundary layer, êΔ deviates, 
and the controller gain updates to compensate for the disturbance. 
This figure also illustrates that although the FC concentration de­
viates from the desired FC at the disturbance exposure, it quickly 
converges with kd settling once the error lies within the boundary 
layer region. The net effect is to modulate the FCIR to drive the FC 
concentration to its target value.

Fig. 8 compares the actual system states with the esti­
mated ones when the disturbance appears. When this disturbance 
emerges, the estimated states deviate but then return to the ac­
tual states. The estimated COD in the water wash has a more slug­
gish convergence back to the actual COD. Fig. 8 also shows that 
although the COD dynamic is independent of the FC dynamic and 
in turn of ud (t ), the estimated COD is effected when the actuator 
fails. This is because the NI-based HEKF algorithm estimates all the 
states by measuring the actual FC whose dynamic is effected by 
u d (t ). Thus the estimated COD deviates from the true values when 
the actuator failure happens.

To further highlight the benefit of the proposed adaptation 
mechanism of Eq. (10), experiments are carried out with a 
constant-gain controller, k d = kd 0 5, when the unknown distur­
bance u d is applied two times during the simulation while the 
FC concentration is targeted at 5 mg/ L. Fig. 9 shows that under 
the constant-gain controller, the FC concentration tracking perfor­
mance is degraded by 46% over the proposed controller with time­
varying control gain (see Table 3). In addition, the peak and steady 
state pathogen levels in the water and on the lettuce are dra­
matically increased with the constant-gain controller. Comparing 
Figs. 8 and 9 demonstrates that under the constant-gain controller, 
the peak pathogen levels increase from 4 to 31 (MPN/ml) for XW 
and from 0.54 to 4.9 (MPN/g) for XL (Table 3), resulting in a sud­
denly large pathogen level and also deteriorating the estimation 
performance.

5 As the scale of the actuator failure is unknown, the constant control gain is 
guessed as kd = kd 0 = 1.

Table 3 lists RMSEs, XW, X[s, and the peak pathogen levels, 
XWmax and Xs max , for all three levels of the desired FC concentration 
under both proposed and constant-gain controllers. It can be in­
ferred from this table that the proposed controller with the adap-



Fig. 8. State estimation performance in the presence of the unknown disturbance ud (t ).

Fig. 9. Tracking performance and pathogen levels in the presence of the unknown disturbance u d (t ) for the constant-gain controller.

Table 3
Performance comparison between our proposed approach and the constant-gain 
controller for different levels of the desired FC concentration in the presence of 
the unknown disturbances, where ND stands for “not detected” at a detection level 
of 0.36 MPN/ml in water and 0.36 MPN/g on lettuce. Better values for each metric 
are underlined.

Cd Controller RMSECt XW XL XWmax XL

5 Proposed 0.660 1.270 0.131 ND 4.00 0.541
Constant gain 1.230 4.060 0.585 31.251 4.978

10 Proposed 0.941 0.421 0.024ND 0.880 0.070ND

Constant gain 1.500 0.477 0.029ND 0.950 0.080ND

15 Proposed 1.383 0.262ND 0.009ND 0.811 0.060ND

Constant gain 1.930 0.280ND 0.013 ND 0.829 0.069ND

tation mechanism presented in Eq. (10) outperforms the constant­
gain controller in the presence of the FC control actuator failures 
under different levels of Cd with regard to all design specifications 
such as pathogen minimization and FC concentration tracking per­
formance.

5. Effects of incoming pre-wash pathogen levels

This section analyses the effects of the pathogen-to-water shed­
ding rate on the pathogen levels during washing. The input rate 
of the pathogen into the water ßws is the first term in the water 

pathogen contamination dynamic of Eq. (1c). Based on the ob­
servations in [14,37], βws is approximately constant during wash­
ing (assuming a constant incoming microbial load on the pathogen 
delivery vehicle). An important application of the developed model 
and FC controller concerns the maximum input rate of E. coli into 
the wash water with regards to (i) whether or not pathogen lev­
els remain below the prescribed detection level in the water and 
(ii) the possibility of significant cross-contamination from water to 
lettuce.

Table 4 shows that the maximum value of ßws for no E. coli 
O157:H7 survival both in the water and on the lettuce is β^^χ = 
2. 63 ( MPN/( ml min )), which is +35% variation of its nominal value 
ßws = 1. 95 ( MPN/( ml min )). Comparing Table 1 with Table 4 shows 
that when βws increases by +35% , Χ(^ and X[S increase by 35% and 
44% respectively. With more than +35% deviation on ßws , although 
the steady state pathogen level on lettuce remains below the de­
tection level of 0.36 MPN/ ml, the steady state pathogen level in wa­
ter exceeds the level. Table 5 shows that the maximum value of 
βws for no E. coli O157:H7 survival on the lettuce is ßwsax = 68.25 
(MPN/(ml min )), which is +3400% variation of its nominal value. 
However, with this deviation of β ws , the steady state pathogen 
level in water obviously exceeds the detection threshold.

In light of the above discussion, it is important to point out 
that given pathogen-produce specific wash processing data (sim­
ilar to that in [37]), we can quantifiably link βws to specifics



Fig. 10. Management guidelines for controlling cross-contamination. σ (MPN/g) is 
the mean pathogen level on contaminated pre-wash lettuce and ρ is the fraction of 
pre-wash contaminated lettuce relative to total incoming pre-wash lettuce. Building 
off the results in Tables 4 and 5 and Eq. (58), the region between the curves (or 
below the upper curve) indicates when E. coli cross-contamination via wash water 
is controlled (i.e. ß < 68.25) given that Cd = 15 (mg/L).

concerning pathogen concentration and prevalence on pre-washed 
produce, thus informing pre-processing management to minimize 
cross-contamination during the wash step. In particular, we can ex­
press βws (MPN/(ml min )) as follows (see [14] for similar calcula­
tion):

where Rl t ( g/ min ) is rate of contaminated lettuce coming into the 
tank; σ (MPN/g) represents the mean pathogen level on contami­
nated pre-wash lettuce; Xt (MPN/g) represents the mean pathogen 
level remaining on initially contaminated lettuce during washing; 
V ( ml) is volume of wash tank. To find an explicit relationship be­
tween βws and σ, we can reasonably approximate X/ as a function 
of σ as follows:

where the shed rate b can be calculated by a given pair of ( σ, Xl ) 
and 0.5 min is the average dwell time of the produce in the wash 
tank.

Substituting Eq. (56) into Eq. (55) , βws can be presented as an 
explicit function of σ

Based on experimental data in Table 2, column 3 of [21], and 
data presented in Figure 1 of [44], we calculate that b = 0. 43 ± 
0.1 (1/min). Furthermore, we express Rlt = ρN/, where ρ e (0, 1) 
indicates the fraction of incoming lettuce that is contaminated and 
Nl (g/min) is the input rate of lettuce into the wash tank. Therefore, 
we have that

Using the fact that N/ = 45 , 000 (g/min), V = 3 .2 x 106 ml (com­
ing from [14,37]), and b = 0. 43 (1/min), we want to know when 
βws e [2.63, 68.25] given ρ and σ. Fig. 10 illustrates a basic guide 
for controlling water mediated cross-contamination. Essentially, if 
the pair ( ρ, σ ), that is the fraction of incoming lettuce that is con­
taminated with average pathogen level σ , lies in the region be­
tween the two curves (or below the upper curve), using C d = 15 
(mg/L) for chlorine control indicates that on average, E. coli levels 
on post-wash lettuce (due to cross-contamination via water) will 
be below the detection limit. In particular, this says two things: i) 
on average, contaminated pre-wash lettuce will not leave the wash

Table 4
Tracking and estimation performances, and pathogen levels for different input rates 
of E. coli at C d = 15 mg/L with detection level of 0.36 MPN/ml in water and 0.36 
MPN/g on lettuce.

β ws RMSEsO RMSECs RMSEsX W RMSEsX L RMSEtC RMSu XW Xds

3.00 20.301 0.131 0.057 0.005 1.293 8.290 0.404 0.015·'·'D

2.82 18.057 0.120 0.057 0.005 1.290 8.231 0.378 0.014•D

2.63 18.212 0.129 0.057 0.005 1.276 8.225 0.351 ND 0.013UD

Table 5
Tracking and estimation performances, and pathogen levels for different input rates 
of E. coli at Cd = 15 mg/L only considering a detection level of 0.36 MPN/g on let­
tuce.

β ws RMSEsO RMSECs RMSEsX W RMSEsX L RMSEtC RMSu XW Xds

79.95 20.176 0.130 0.115 0.009 1.286 8.216 10.651 0.412
72.15 18.083 0.148 0.119 0.010 1.270 8.368 9.645 0.374
68.25 19.412 0.156 0.117 0.009 1.267 8.288 9.128 0.355UD

tank more contaminated and ii) if uncontaminated pre-wash let­
tuce picks up E. coli from the wash water the resulting level (on 
average) will be below the detection limit of 0.36 MPN/g. Notice 
that the water to lettuce transfer rate relies on the assumption of 
complete mixing (refer to the βlw terms in model (1)), indicating 
that Fig. 10 provides guidelines to control the “worst case” sce­
nario for “averaged” dynamics describing water mediated cross­
contamination. Finally, it is important to mention that since the 
produce to water ratio in the tank is quite low (0.0061 (kg/L)), 
pathogen transfer due to direct produce to produce contact during 
washing is most likely insignificant as compared with the cross­
contamination dynamic via contaminated water [19,21,44].

6. Conclusions and future work

6.1. Conclusions

Experiments in [37] show that rapid input of organic load into 
the wash system decreases the FC level resulting in the potential 
for contaminated produce. In order to reduce FC variability during 
the washing process, a sufficient level of the FCIR must be injected 
into the wash tank to stabilize the FC concentration level and in 
turn reduce the risk of contaminated fresh produce. While on-line 
chlorine control is able to stabilize the FC level in the wash water, 
the challenge is that not only real-time measurements may not be 
available nor practical to obtain, but also noise statistics may be 
unknown. Since the existing mathematical model of the wash sys­
tem is a simplified version of the actual system, the approximated 
model always contains modeling errors. In addition, chlorine actu­
ators may not be able to consistently fulfill a sufficient FCIR due to 
actuator failure or faults.

In light of the aforementioned factors, FC control in produce 
wash systems with modeling errors and disturbances is a chal­
lenging task. Motivated by these issues, this paper presented a 
RASM control approach for a wash produce system while the sys­
tem states were estimated using a HEKF and the noise statistics 
were identified by a NI algorithm. The resulting structure stabi­
lized the FC concentration in the wash water and minimized the 
pathogen levels both in the wash water and on produce in the 
wash tank as fresh-cut produce was continually introduced to the 
wash tank. Stability of the proposed system was proved by the Lya­
punov framework and the Barbalat’s lemma, and the steady state 
pathogen levels were successfully predicted. In addition, simula­
tion studies demonstrated that using the proposed algorithm, the 
system states are successfully estimated and FC concentration ac­
curately tracks the desired FC level. According to the results, no 
E. coli O157:H7 was detected when the FC level was targeted at 



15 mg/L. Two robustness analyses showed that the proposed con­
troller is able to compensate for possible chlorine actuator fail­
ures and system parameter uncertainties. In addition, simulation 
results illustrated that the proposed controller outperforms the 
baseline constant-gain controller providing a stronger robustifica- 
tion in the presence of chlorine actuator failure. Finally, our mod- 
eling/control approach provides cross-contamination management 
insight regarding the prevalence and mean pathogen levels of in­
coming pre-wash lettuce with respect to regulating FC levels in the 
wash tank at 15 mg/L.

6.2. Future work

In terms of future studies, the following items will be consid­
ered:

(1) In this paper, the FC concentration in the wash water was 
stabilized in the presence of unknown actuator failures and 
unmodeled dynamics. In order to enhance the model for 
the control structure, unmodeled neglected dynamics, such 
as breakpoint phenomena as well as the concentrations of 
chlorine by-products would be important to include explic­
itly. However, direct experimentation is needed to inform 
these dynamics (at near commercial scale) as well as the 
anti-microbial capacity of observed chlorine by-products.

(2) Although the FC concentration was controlled in this paper, 
minimization of the required FCIR has not been taken into 
account. In future work, optimization will be conducted to 
search for the optimal FCIR to achieve several specifications 
at the same time: FC concentration stabilization, optimiza­
tion of the FC injection rate to the water tank, and mini­
mization of the pathogen levels in the water and thus min­
imization of pathogen transfer (via water) to lettuce during 
washing.

(3) This paper estimated the system states with the assumption 
of Gaussian noise, for which the EKF is optimal. However, 
this notion may not hold during actual washing, so future 
studies will involve the estimation of system states in the 
presence of unknown non-Gaussian noise.

(4) Although the results showed that the proposed controller 
enables the system to manage the effect of potential actua­
tor failure on FC levels in the wash water, the pathogen lev­
els exceeded the detection levels (0.36 MPN/ml in water and 
0.36 MPN/g on lettuce) as illustrated in  Future work 
is planned to design a controller such that the pathogens are 
maintained below such detection levels even when actuator 
failures are encountered. This task promises to create a safe 
control structure in the sense that E. coli O157:H7 levels are 
consistently kept below a specified detection level.

 Fig. 8.

(5) Finally, we discuss the need for specific data collection un­
der the headings in the following two sections.

Management insight to minimize cross-contamination
Given Cd= 15 (mg/L), Fig. 10 illustrates that if the pair (ρ, σ) 

is below the ßws = 68.25 curve, pathogen binding (via water) to 
uncontaminated pre-wash lettuce is effectively eliminated. Note 
that in general, ρ (fraction of pre-wash lettuce that is contami­
nated) and σ (average pathogen level of pre-wash contaminated 
lettuce), will vary in time. In this context, however, the results in 
Fig. 10 still hold as long as (ρ(t), σ(t)) remains in the region below 
the ßws = 68.25 curve, and thus provide key management thresh­
olds for addressing cross-contamination during washing.

In addition, it is important to mention that the shed rate b 
(1/min) used in Eq. (58) was determined from data at the bench- 
top scale [21]. It may be that this is an underestimate for b as one 
would expect shear forces in commercial wash processes to ex­
ceed the manual agitation used in [21] . This suggests the import 

of conducting pilot scale wash studies to determine the shed rate 
of pathogens from produce in the context of a variety of pathogen­
produce pairs. This data combined with our model and chlorine 
control law will provide a further measure of validation for using 
the results in Fig. 10 to inform cross-contamination management.

6.2.1. pH control
Industry leaders that utilize high volume fresh-cut produce 

washing processes understand that pH is a critical control point 
for eliminating cross-contamination. Fundamentally, this is based 
on the fact that the concentration of hypochlorous acid, the most 
effective form of FC in terms of pathogen elimination, is highest 
when the pH < 6.5 [45]. Notice that the results in this paper rely 
on data and model forms in the context of wash water that has 
pH close to 6.5 during the 36 min wash process [37]. However, 
controlling pH in a commercial, high volume wash setting is still 
a technical challenge. For instance, in a recent commercial scale 
produce wash study by Lόpez-Gάlvez et al. [46], the pH ranged be­
tween 4.2 and 8.3 across all data sets. Because the concentration 
of hypochlorous acid depends on the pH (and temperature) of the 
wash water, an effective FC control law should explicitly account 
for pH dynamics. However, more research is needed in terms of 
mathematically describing the chemistry involved in the interplay 
between FC and pH dynamics with regards to various fresh-cut 
produce commodities.
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