
University of Puget Sound University of Puget Sound 

Sound Ideas Sound Ideas 

Summer Research 

Summer 2020 

Replacement Policies in Semantic Database Caching Replacement Policies in Semantic Database Caching 

Colin Monaghan 
University of Puget Sound 

Follow this and additional works at: https://soundideas.pugetsound.edu/summer_research 

Recommended Citation Recommended Citation 
Monaghan, Colin, "Replacement Policies in Semantic Database Caching" (2020). Summer Research. 377. 
https://soundideas.pugetsound.edu/summer_research/377 

This Article is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in 
Summer Research by an authorized administrator of Sound Ideas. For more information, please contact 
soundideas@pugetsound.edu. 

https://soundideas.pugetsound.edu/
https://soundideas.pugetsound.edu/summer_research
https://soundideas.pugetsound.edu/summer_research?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://soundideas.pugetsound.edu/summer_research/377?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:soundideas@pugetsound.edu


Colin Monaghan

Professor David Chiu

University of Puget Sound

Thanks to Professor David Chiu from the University of Puget 
Sound and Professor Jason Sawin who helped advise and 
mentor me on this research, Manya Mutschler-Aldine who 
collaborated with me on this research, and the Agricola 
Donors for funding this research.

In future work, we could use our findings to 
determine the minimal size of cache that can 
deliver the specified database performance 
given certain quality-of-service constraints 
(such as response time or throughput) by 
creating an algorithm that alters the size of 
the cache to meet the quality of service 
constraints, (i.e. increasing the limit when the 
constraints are not met and decreasing the 
limit when the constraints are easily met).

We could also investigate possible placement 
policies for the cache system. In this 
research, every new query adds its result to 
the cache, but it may be more efficient to only 
add results that fulfill certain properties 
(such as if they bring in X amount of new 
columns to the cache).

Efficient data management is vital any organization that access databases. 
Because computers’ hard drives are slow, the more data that is stored, the longer 
it takes to access useful information. To improve the speed of data retrieval, 
caching is technique that can be used to store frequently-used results in fast 
levels of computer memory. By storing query results in a cache, we can narrow 
the search of future database queries and improve the speed of similar queries. 
However, most systems are not able to reserve large chunks of memory for this 
cache storage. A cache replacement algorithm can limit and control the amount 
of memory the cache consumes by determining which cache entries to remove 
in order to make space for new entries. This research finds the most efficient 
replacement policy for our cache that provides an acceleration to database 
queries without requiring an exorbitant amount of memory.

Databases in modern computer systems store most data on disk, the 
slowest storage device attached to a computer, so retrieving or 
searching for each query using disk takes too long. 

To speed up response times, databases using caching to store 
previously computed results in memory which is faster than disk. 
The solutions of future queries can be obtained by finding the 
cached results of previous queries. Cached result vectors may also 
partially satisfy the query. The remaining bit-vectors of the query is 
a smaller subset that will be processed faster.

Since memory is a limited resource, if the size of the cache is 
unmonitored, it will grow uncontrollably and cause thrashing. A 
computer thrashes when it spends more time managing 
memory than processing 
information. To control 
the size of the cache, we 
created a replacement 
algorithm for the cache 
so that when the cache 
is full, the replacement 
algorithm will determine 
which cache entries to 
remove in order to make 
space for new entries.

To determine the maximum size of the cache, we ran a simulation 
without any replacement to determine how large the cache would 
grow unmonitored which provided us the maximum size of the 
cache. For our experiments, we incremented portions of the 
maximum cache size (50%, 25%, 10% and 5%) to use as the fixed 
cache sizes for the cache. Each simulation processed the same 
1,000,000 queries. For each cache size, we ran each policy 5 times 
and removed the flyaway queries from our results caused by 
software interruptions like garbage collection, then the 5 results 
from were averaged together.

We applied some of the well-known policies and then created our own policies specific to this cache system.

Random 
Removes a random entry in the cache
• Simple and quick
• Does not consider if the removed entry is favorable to keep
• Does not consider temporal locality
First In, First Out (FIFO)
Removes the oldest entry in the cache
• Simple and quick
• The oldest entry might an entry that is used frequently
• Victim to Belady’s anomaly: Increasing cache size does not always increase performance
Least Frequently Used (LFU)
Removes the least frequently used entry in the cache
• Always removes an entry that doesn’t contribute to future calculations
• To keep track of the frequency, each entry requires a counter
• Every time an entry in the cache is referenced, it’s position in the cache will be updated which is a linear search
Least Recently Used (LRU)
Removes the least recently used entry
• Attempts to approximate the optimal algorithm (MIN) by using the past to predict the future
• Every time an entry in the cache is referenced, it’s position in the cache will be updated which is a linear search
Clock 
This policy uses a circular queue and a pointer to which passes through the queue. Each entry has a bit which is set to 
1 upon entry. When replacement occurs, the pointer traverses through the queue until it reaches a 0. When it lands 
on a 1, it changes the 1 to a 0. 
• Attempts to approximate LRU, picking an entry that is close enough to the least recently used
• Tends to be fast and tends to remove undesirable entries
• Even in the worst-case scenario, this policy will perform as well as FIFO
Remove Largest
Removes the entry that takes up the most space in the cache
• The goal of this policy is to limit the amount of time spent finding a replacement by removing the largest cache 

entry
• Larger entries tend have a larger coverage and took longer to compute, so this policy does not value those aspects
Columns Over Bytes
Removes the entry with the smallest Column/Bytes ratio
• Orders the entries in a priority queue based on the Column/Bytes ratio of the entries
• The Columns/Bytes ratio attempts to maximize coverage (Number of Columns the entry spans) while minimizing 

the space in the cache (the size of the entry in Bytes)\
• Every new entry needs to be sorted into the queue which is a logarithmic sort

50% Cache Size 25% Cache Size

10% Cache Size 5% Cache Size

• Clock seems to be consistently the best replacement 
policy, narrowly beating Columns/Bytes at every cache 
size except 25%. By finding the closest, less recently 
used entry, Clock can select a decent entry to remove 
quickly which is why it outperformed the other 
policies. 

• Columns/Bytes was the next best replacement policy. 
The logarithmic sort for each new entry seemed to 
slow the algorithm down just enough to be slower than 
Clock.

• The next two best policies were FIFO and Random. The 
simplicity and speed of these four policies performed 
best at large cache sizes and slowed down as the cache 
size decreased.

• LRU and LFU performed better at smaller cache sizes 
than at large cache sizes. The bookkeeping required for 
these policies weighed down the execution time.

• Remove Largest performed better at large cache sizes 
than at smaller cache sizes. At smaller cache sizes, this 
policy would only be able to keep the smallest cache 
entries, requiring the database to spend more time on 
disk patching together the gaps between the cached 
solutions. 





50% Cache Size



25% Cache Size



10% Cache Size



5% Cache Size


	Replacement Policies in Semantic Database Caching
	Recommended Citation

	Scientific poster example

