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ABSTRACT
The Advanced LIGO andAdvanced Virgo gravitational wave detectors have detected a population of binary black hole mergers in
their first two observing runs. For each of these events we have been able to associate a potential sky location region represented
as a probability distribution on the sky. Thus, at this point we may begin to ask the question of whether this distribution agrees
with the isotropic model of the Universe, or if there is any evidence of anisotropy. We perform Bayesian model selection between
an isotropic and a simple anisotropic model, taking into account the anisotropic selection function caused by the underlying
antenna patterns and sensitivity of the interferometers over the sidereal day. We find an inconclusive Bayes factor of 1.3 : 1,
suggesting that the data from the first two observing runs is insufficient to pick a preferred model. However, the first detections
were mostly poorly localised in the sky (before the Advanced Virgo joined the network), spanning large portions of the sky and
hampering detection of potential anisotropy. It will be appropriate to repeat this analysis with events from the recent third LIGO
observational run and a more sophisticated cosmological model.

Key words: gravitational waves

1 INTRODUCTION

The first detection of gravitational waves byAdvanced LIGO (Abbott
et al. 2018; LIGO Scientific Collaboration 2015; Harry 2010; Abbott
et al. 2016b), revealed the existence of a detectable population of coa-
lescing stellar–mass binary black holes (BBHs). This was confirmed
by the subsequent BBH detections in the first two observing runs
( Abbott et al. (2019b), O1 (Abbott et al. 2016a), O2 (Abbott et al.
2017a; Abbott et al. 2017c; Abbott et al. 2017b)), during the latter
of which the Advanced Virgo detector joined the network (Virgo
Collaboration 2014). The location of the mergers can be determined
by performing a coherent analysis of the data from the two-or three-
detector network, using either a rapid localisation algorithm (Singer
& Price 2016) or a full parameter estimation method (Veitch et al.
2015). Although the initial detections could be constrained to only
tens to hundreds of square degrees, the addition of Advanced Virgo
to the network has resulted in improved localisation of subsequent
detections such as GW170814 (Abbott et al. 2017b).
With 10 BBH detections being announced to date from O1 and

O2, it is possible to begin to determine the properties of the source
population, such as the rate, sky and mass distribution (Abbott et al.
2016c,a, 2019c). This type of question is addressed by a hierarchical
analysis of the sources, which must include the effect of the detector
sensitivity on the detectable events. Previous studies have looked at
the variation of the selection function with mass, spin, and sidereal
time (O’Shaughnessy et al. 2010; Dominik et al. 2015; Ng et al. 2018;
Chen et al. 2017). The situation is further complicated by the large
uncertainties on the source location, particularly during O1 when
only the two LIGO detectors were operational.
Standard cosmological models are consistent with the cosmolog-
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ical principle, that the properties of the Universe are the same for
all observers when viewed on large scales. One of the two testable
consequences of this is that the matter distribution of the Universe,
and as an extension gravitational wave sources, would be distributed
isotropically. Analysis of the cosmic microwave background temper-
ature and polarisation fluctuations using Planck observations have
concluded that anisotropy is strongly disfavoured (Saadeh et al.
2016). However, gravitational wave observations provide an inde-
pendent channel through which to verify this conclusion. The largest
observed structure (defined by the spatial distribution of gamma-ray
burst events) is ∼ Gpc in size (Horvath et al. 2013) and corresponds
to the currently most distant detected BBH events. Hence, it will be
interesting to study whether the observed sky distribution of grav-
itational wave events matches that of the local structure seen via
electromagnetic channels.
In this work we address the issue of the distribution of sources

over the sky, taking into account the sky-variation of the selection
function of the detector network during the first two observing runs.
Our intent is to compare two models; an isotropic source population
and an anisotropic model that divides the sky into a finite set of
pixels.
In Section 2 we describe these models together with our analysis,

report the results in Section 3 and in Section 4 we summarise the
results, discuss the model and its astrophysical significance.

1.1 Data

The posterior samples containing information about the sky lo-
calisation of events were taken from the LIGO data releases via
the Gravitational-Wave Open Science Center (GWOSC) (Vallis-
neri et al. 2015), and the following events were used: GW150914,
LVT151012, GW151226, GW170104, GW170608, GW170729,
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GW170809, GW170814, GW170818 and GW170823 (Abbott et al.
2019b). In the subsequent analysis we limit each event to 5, 000 pos-
terior samples to reduce the computational complexity and weight
each event equally. Figure 1 shows a scatter plot of samples from
the sky posterior probability densities for all events, binned into 12
pixels. A large proportion of all samples is coming from a single
region of the sky (mostly due to GW170814 and GW170809 being
tightly localised), whereas some areas of the sky have almost no
samples. As for the power spectral density (PSD) curves, we sepa-
rately consider the PSD estimates at the time of event (LIGO-Virgo
Collaboration 2019) and run-averaged (Daniel Sigg 2016a,b; LIGO-
Virgo Collaboration 2018) estimates, using the publicly available
noise curves (Abbott et al. 2019b).

2 ANALYSIS

The focus of this work is to represent the distribution of BBH sources
on the sky. To do so, there are two readily available methods of
decomposing the sky into either a finite set of pixels or spherical
harmonics. In this work, for simplicity, we opt for a model that
decomposes the sky into a finite set of pixels.
In this pixelated, anisotropic model we divide the sky into 𝑁pix

pixels of equal area 4𝜋/𝑁pix steradians. Each pixel 𝑖 has a parameter
𝑎𝑖 , which is further referred to as a pixel weight. This pixel weight
describes the stellar–mass BBH merger rate per steradian, per unit
time, per unit volume within that pixel, i.e. the units of a are [a] =
Gpc−3yr−1sr−1, and both models assume homogeneous distribution
of mergers within each pixel. Given that the pixel weights give the
rate per steradian, we also infer the total rate 𝑅 ([𝑅] = Gpc−3yr−1)
as a sum over the whole sky,

𝑅 = ΔΩ

𝑁pix∑︁
𝑖

𝑎𝑖 , (1)

i.e. the sum of the product of pixel weights and pixel areas ΔΩ,
making 𝑅 conditionally dependant on a.
In case of the anisotropic model the number of pixels was chosen

to be 𝑁ani = 12, since in the subsequent analysis we work with
HEALPix maps (Górski et al. 2005) and the Python package Healpy
where 12 is the minimum number of pixels available, making the
analysis computationally inexpensive, while still ensuring the model
has freedom to detect large-scale anisotropy. For the isotropic model
we simply use 𝑁iso = 1, wherein the whole sky is described by
a single pixel, forcing a uniform distribution of the rate of BBH
mergers.
HEALPix divides the sky into 𝑁 pixels with a fixed distribution.

Therefore to allow for different angular distribution of pixels we
introduce three Euler angles φ ≡ {𝛼, 𝛽, 𝛾} to describe the reference
position and orientation of the HEALPix grid. The Euler angles φ
are used to calculate a rotation matrix to rotate the GW datasets to
accommodate for different orientations of the fixed HEALpix grid.
We perform a Bayesian analysis to estimate the pixel weights

a ≡ {𝑎𝑖} and to perform model selection between the isotropic and
anisotropic models. For a given model 𝐼 ∈ (ISO,ANISO), grav-
itational wave data sets {𝑥 𝑗 } for each of a number of detections
𝑁obs, and whereD indicates detection (described in Subsection 2.1),
the posterior on the parameters θ = {a, φ}, where a are the pixel
weights and φ the Euler angles, is given by

𝑝
(
θ | 𝑁obs, {𝑥 𝑗 },D, 𝐼

)
=

𝑝
(
𝑁obs, {𝑥 𝑗 } | θ,D, 𝐼)

)
𝑝 (θ | D, 𝐼)

𝑝
(
𝑁obs, {𝑥 𝑗 } | D, 𝐼

) .

(2)

Having obtained the expression for the posterior (Eq. 2) we calcu-
late the evidences for each model,

𝑝
(
𝑁obs, {𝑥 𝑗 } | D, 𝐼

)
=

∫
𝑝
(
𝑁obs, {𝑥 𝑗 }, | θ,D, 𝐼

)
𝑝(θ | D, 𝐼)𝑑𝑛θ.

(3)
The ratio of evidences from the two models gives the Bayes factor,
which indicates the relative support for one over the other that is
imparted by a particular set of observations. For the isotropic model
there is only pixel, hence one pixel weight 𝑎iso related to the total rate
as 𝑅 = 4𝜋𝑎iso. Moreover, the isotropic model is also independent of
the Euler angles θ. We use the nested sampling algorithm (Skilling
2006) in a Python package CPNest (Veitch et al. 2017) to sample
the posterior and obtain the evidence for the anisotropic model. The
isotropic model is evaluated analytically.

2.1 Selection function

The selection function describes the interferometer sensitivity for a
given distribution of BBH mergers as a function of sky position Ω
and luminosity distance 𝑑L. We consider both the O1 and O2 runs
separately and define the selection function as

𝑝 (D | Ω, 𝑑L, 𝐼) =
∞∫

𝜌thresh

𝑑𝜌𝑝 (𝜌 | Ω, 𝑑L,ϑ, 𝐼) 𝑝(ϑ|Ω, 𝐼)𝑝(𝑑L |𝐼),

(4)
where a signal is modelled as detected if its signal-to-noise-ratio
𝜌 is measured above a predefined threshold (Abbott et al. 2019a).
The probability of detection, conditional on the sky location, is com-
puted by marginalising over the prior ranges on the distance and the
remaining source parameters denoted by ϑ. The mass distribution
of the primary is assumed to be a power-law 𝑝 (𝑚1) ∝ 𝑚−2.35

1 , with
a minimum mass of 5𝑀� , and the secondary to be uniformly dis-
tributed, being always less massive than the primary. A constraint is
placed on the sum of the primary and secondary to be always less than
100𝑀� . This choice of BBHmass distribution is consistent with the
estimated distribution following the O1 observing run (Abbott et al.
2016a).
Since we are interested in anisotropy, we must consider the direc-

tional sensitivity of the detectors. The detectors are most sensitive to
sources positioned directly above and below the detector (Anderson
et al. 2001). As the Earth rotates, the antennae response function is
smeared out in right-ascension, but as noted in Chen et al. (2017),
there is a tendency for the detector sensitivity to vary over the course
of the day due to human activity near the sites as well. This, there-
fore, produces a selection function which is specific to the observing
conditions during a particular observing run. A full treatment of this
would need to use the actual noise power spectra as a function of
time throughout the observing run, but we approximate this by tak-
ing the power spectrum at the time of detections and the run-averaged
power spectrum. Integrating the antenna response function over side-
real time, using a weight of one when the detector was taking science
quality data, we obtain the run-averaged selection function (Vallisneri
et al. 2015). We show this averaged selection for both observing runs
in Fig. 4. The ratio of the maximum andminimum averaged selection
function in Fig. 4 is about 1.5 and 1.4 for O1 and O2, respectively,
indicating that in the O2 run the detectors showed marginally less
preference for certain directions. This can be explained by the in-
creased up-time of the O2 run, which reduces the overall variation in
right ascension.
Fig. 2 shows the resulting selection functions (probability of de-

tection) for O1 and O2, plotted as a function of distance for various
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Figure 1. A sky map divided into 12 pixels of equal area. The colour scale indicates the number of events per pixel (calculated by counting the number of
posterior samples in each pixel, normalised by the total number of samples per event). About ∼ 2.2 events are assigned to the highest density pixel as GW170814
and partially GW170809 are tightly localised to that pixel. Some pixels contain almost no samples; the pixel with the largest fraction of events contains ∼ 15
times more samples than the pixel with the smallest fraction.

sky positions. This shows the effect described above, with anisotropic
sensitivity variations favouring the latitudes directly above the LIGO
detectors, but with the response function smeared out in right ascen-
sion by the Earth’s rotation. Nonetheless, there is still some variation
in right ascension, which is more pronounced for the O1 run. Com-
paring the two panels also shows the overall increase in detection
sensitivity in the O2 run.

Marginalising out the luminosity distance we obtain the proba-
bility of detection as a function of right ascension and declination.
To calculate the probability of detection at the time of events we
use the PSD estimate at the time of the BBH merger. This, along
with the merger time, fully specifies the orientation of the network
geometry in an Earth-fixed coordinate system which rotates in time
along with the Earth. Examples of the probability of detection func-
tion for GW151226 and GW170104 are shown in Fig. 3. The figure
also shows the brights spots of high probability from which a detec-
tion would be expected, given the antenna pattern, and the relative
increase in sensitivity (about one order of magnitude) between the
two runs. The probability of detection maps are rendered on a higher
resolution map (3, 072 pixels) compared to the 12-pixel map of pixel
weights, which describe the BBH merger rate in the anisotropic
model.

When calculating the probability of detection we only consider
the LIGO Hanford-Livingston detector network since these were
the only detectors used to determine detection in the O1 and O2
runs (Abbott et al. 2019b). The Advanced Virgo detector joined at
the end of the O2 run and was only used for the subsequent parameter
estimation (Acernese et al. 2014), not to determine detections. Con-
sequently, the probability of detection calculation does not include
the Advanced Virgo. Nevertheless, despite Virgo’s lower sensitiv-
ity during O2 compared to the LIGO detectors, addition of its data
for some of the later O2 events (such as GW170814) yielded sig-
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Figure 2. Comparison of survival functions for the O1 (top panel) and O2
(bottom panel) runs, where each line is the survival function sampled at a
discrete sky position. The detectors are most sensitive towards directions
above and below, and least sensitive to directions in the plane of the detector.
There is a significant increase in sensitivity between the two runs.
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0h4h8h12h 16h20h

0 0.00017Probability of detection

(a) 𝑝 (D | Ω, 𝐼 ) at the time of GW151226.

0h4h8h12h 16h20h

0 0.00035Probability of detection

(b) 𝑝 (D | Ω, 𝐼 ) at the time of GW170104.

Figure 3. Probability of detection maps at the time of GW151226 (a) from O1 run and GW170104 from O2 run (b), with the respective posterior samples
scattered over. The maps were calculated with the PSD at the time of event detection and marginalising the selection function over luminosity distance. While
the pattern is the same due to presence of only two LIGO detectors, the magnitude of the detection probability increases for GW170104 as the detectors were
more sensitive during the O2 run.

Pixel weight 𝑎𝑖 [0, 25] Gpc−3yr−1sr−1
Total astrophysical rate 𝑅

[
10−5, 750

]
Gpc−3yr−1

First Euler angle about the 𝑧-axis 𝛼 [0, 2𝜋 ]
Second Euler angle about the 𝑦-axis cos 𝛽 [0.75, 1]
Third Euler angle about the 𝑧-axis 𝛾 [0, 2𝜋 ]

Table 1. Prior ranges on the inferred parameters θ and the total rate 𝑅.

nificantly better sky localisation estimates compared to the earlier
detections (Abbott et al. 2017b).

2.2 Prior

In the isotropic model, the only free parameter of the model is 𝑅, the
overall rate of BBH mergers (Eq. 1). We choose a Jeffreys prior,

𝑝 (𝑅 | ISO) ∝ 𝑅−1/2, (5)

which allows a direct comparison with rate estimates published by
the LIGO-Virgo Collaboration using sophisticated measurements of
sensitive time-volume and models of the source population (Abbott
et al. 2019c).
In the anisotropic model with 𝑁pix equal-area pixels, we have

parameters 𝑎1, . . . , 𝑎𝑁pix . Sincewewish to compare it to the isotropic
model, we specify the prior on the overall rate 𝑅 to have the same
Jeffreys form as Eq. 5, so

𝑝 (𝑅 | ANISO) ∝ 𝑅−1/2 ∝
∫

𝑝 (𝑅 | a) 𝑝 (a | ANISO) 𝑑𝑁pixa.
(6)

Since we do not favour any particular pixel a-priori, the prior should
be symmetric under 𝑎𝑖 ↔ 𝑎 𝑗 . The following prior fulfils this criteria,
while being uniform on the 𝑁 − 1-simplex of possible as for a
particular 𝑅,

𝑝( ®𝑎 |ANISO) ∝ 𝑅−(2𝑁pix−1)/2 =
©­« 4𝜋𝑁pix

𝑁pix∑︁
𝑖

𝑎𝑖
ª®¬
−(2𝑁pix−1)/2

. (7)

Boundaries found in Table 1 are applied to the inferred parameters.
Note that the boundary on the total rate 𝑅 is well outside of the range

found by the O1 and O2 run (Abbott et al. 2019c). The Euler angles
rotate the angular distribution of pixels, however without restricting
the range of rotations the posteriorwould become strongly degenerate
as multiple combinations of the Euler angles would correspond to the
identical orientation of the HEALpix grid. Our intent in setting the
boundaries for the Euler angles is twofold. First, we choose a uniform
rotation prior over the ranges as shown in Table 1. Second, to avoid
degeneracy of the likelihood we enforce a condition wherein no pixel
centre can be rotated beyond its original boundary. An example of
this degeneracy is rotating the pixel grid about the 𝑧-axis by an angle
that corresponds to the angular separation of two nearby pixel centres
that lie in in the 𝑥−𝑦 plane. The range of cos 𝛽was restricted (Table 1)
as values outside this range would violate the aforementioned second
condition.

2.3 Likelihood

In our specific problem, the likelihood 𝑝(𝑁obs, {𝑥 𝑗 } | θ, 𝐼) depends
on the data for each detected event (yielding estimates of their sky
position, distance, masses and detection time) and the selection func-
tion. The likelihood can be split into the so-called number and event
likelihood respectively,

𝑝
(
𝑁obs, {𝑥 𝑗 } | θ,D, 𝐼

)
= 𝑃 (𝑁obs | θ,D, 𝐼) 𝑝

(
{𝑥 𝑗 } | θ,D, 𝐼

)
, (8)

where D indicates detection and the use of the interferometers’
PSDs (Mandel et al. 2019).
If we divide the observation time into 𝑛 segments, and assume the

probability of detection to be constant over the segment duration, then
we can write the probability of detecting 𝑁obs events as a Poisson
binomial distribution, that is

𝑃 (𝑁obs | θ,D, 𝐼) =
(

𝑛

𝑁obs

) 𝑁obs∏
𝑗=1

𝑝
(
𝑁 > 1 | θ,D 𝑗 , 𝐼

)
×

𝑛−𝑁obs∏
𝑘=1

𝑃 (𝑁 = 0 | θ,D𝑘 , 𝐼) ,

(9)

so that D 𝑗 ,𝑘 is the probability of detection evaluated in the 𝑗-th
segment. We define success as drawing 1 or more events within a

MNRAS 000, 1–8 (2020)



Are BBH mergers isotropically distributed? 5

0h4h8h12h 16h20h

GW150914

GW151012

GW151226

0 3e-05Probability of detection

(a) Mean 〈𝑝 (D | Ω, 𝐼 ) 〉 for the O1 run
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Figure 4.Mean probability of detection maps for the O1 (a) and O2 (b) runs, with posterior samples for events from O1 and O2 scattered over. The maps were
calculated with the average PSD for each run, marginalising the selection function over distance and time averaging the 𝑝 (D | Ω, 𝑡 , 𝐼 ) , where 𝑡 is the GPS time,
over the times the detectors were operational.

segment and a failure as drawing no events,

𝑝 (𝑁 = 0 | θ,D𝑘 , 𝐼) = exp
[
−𝑁̂𝑘

]
, (10)

where 𝑁̂𝑘 is the expected number of detections from the 𝑘-th segment
and 𝑝 (𝑁 > 1 | θ,D𝑘 , 𝐼) = 1 − 𝑝 (𝑁 = 0 | θ,D𝑘 , 𝐼). In the limit of
large 𝑛 (equivalently 𝑁̂ 𝑗 � 1), we may approximate Eq. (9) as

𝑃 (𝑁obs | θ,D, 𝐼) ∝ ©­«
𝑁obs∏
𝑗=1

𝑁̂ 𝑗
ª®¬ exp

[
−

𝑛∑︁
𝑘=1

𝑁̂𝑘

]
. (11)

The number of expected detections in the 𝑗-th time segment of du-
ration d𝑡 is the convolution of the differential rate and the probability
of detection:

𝑁̂ 𝑗 = d𝑡𝑉L
∫
d𝑅
dΩ

𝑝
(
D 𝑗 | Ω, 𝐼

)
dΩ. (12)

First, because in the anisotropic model we allow the astrophysical
merger rate to vary with sky position, we cannot fully separate it
when considering the number of detections from a given time seg-
ment in Eq. (12). Second, for both models we assume homogeneity,
therefore 𝑉L, the luminosity volume, can be taken outside the inte-
gral in Eq. (12) as long as 𝑉L matches the volume over which we
marginalised out the probability of detection function. Because the
detection probability vanishes at sufficiently high distances, our re-
sult will be independent of the choice of 𝑉L, provided we consider a
volume much larger than the observable one.
For this analysis we have assumed a simple distance prior, in-

dependent of sky location, 𝑝 (𝑑L) ∝ 𝑑2L, which is consistent with a
static, Euclidean universe. Similarly, we have also assumed an under-
lying astrophysical rate that is constant with distance (and therefore
with redshift). As our primary aim is to test anisotropy, and not ho-
mogeneity, coupled with the fact that the detections are positioned
in the local Universe, we expect that the impact of these assump-
tions (which are shared by both models) to be a second order effect.
The probability density function of a sky position 𝑝 (Ω | θ) is taken
to be uniform within each pixel, proportional to its weight 𝑎𝑖 and
time-independent.
An underlying assumption of our models is that the sky can be

pixelated and that the astrophysical rate and probability of detection
are uniform over each pixel (we render the probability of detection
on a higher-resolution basis). Thus, the differential rate d𝑅/dΩ is

equal to the pixel’s weight, and Eq. (12) simplifies to

𝑁̂ 𝑗 = 𝑉L
𝑇

𝑛

𝑁pix∑︁
𝑘=1

𝑎𝑘 𝑝
(
D 𝑗 | Ω𝑘 , 𝐼

)
ΔΩ, (13)

where 𝑎𝑘 ,Ω𝑘 , and ΔΩ indicate the 𝑘-th pixel’s weight, sky location,
and angular area, respectively. We also set the segment duration to be
d𝑡 = 𝑇/𝑛, with 𝑇 being the observing run duration and 𝑛 the number
of segments.
In Eq. (11) we require the sum of the expected number of detec-

tions over all segments: 𝑁̂ =
∑𝑛

𝑗=1 𝑁̂ 𝑗 . Since we assume the pixel
weights to be time-independent, the sum over individual segments
then simplifies to

𝑁̂ = 𝑉L𝑇

𝑁pix∑︁
𝑘=1

𝑎𝑘 〈𝑝 (D | Ω𝑘 , 𝐼)〉ΔΩ, (14)

where 〈𝑝 (D | Ω𝑘 , 𝐼)〉 = 1/𝑛∑𝑛
𝑗=1 𝑝

(
D 𝑗 | Ω𝑘 , 𝐼

)
is the probability

of detection as a function of sky position averaged over the times
when the interferometers were operating. The expected number of
events is evaluated separately for O1 andO2, as the selection function
and observation times differ for each run.
The event likelihood in Eq. (8) can be split into a product over all

events, assuming they are independent of each other,

𝑝
(
{𝑥 𝑗 } | θ,D 𝑗 , 𝐼

)
=

𝑁obs∏
𝑗=1

𝑝
(
𝑥 𝑗 | θ,D 𝑗 , 𝐼

)
.

This can be further expanded using the Bayes’s theorem, noting that
the likelihood 𝑝

(
D 𝑗 | 𝑥 𝑗 , θ, 𝐼

)
= 1 for detections:

𝑝
(
𝑥 𝑗 | θ,D 𝑗 , 𝐼

)
=

𝑝
(
𝑥 𝑗 | θ, 𝐼

)
𝑝
(
D 𝑗 | θ, 𝐼

)
=

∬
dΩd𝑑L𝑝

(
𝑥 𝑗 | Ω, 𝑑L, 𝐼

)
𝑝 (Ω, 𝑑L | θ, 𝐼)∫

dΩ𝑝
(
D 𝑗 | Ω, 𝐼

)
𝑝 (Ω, | θ, 𝐼)

.

(15)

We expand both the prior (numerator) and the evidence (denomi-
nator) on the first line of Eq. (15) using the marginalisation rule.
Furthermore, in Eq. (15) the prior can be Monte Carlo approximated
over the GWOSC posterior samples (indexed by 𝑖). The GWOSC
posterior samples assume a uniform prior over component masses,
whereas in our probability of detection calculation we assumed a

MNRAS 000, 1–8 (2020)
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Figure 5. Example of a posterior sample for the anisotropic model, corre-
sponding to the maximum likelihood probability. The GW event samples are
rotated relative to the original coordinate system (Fig. 1).

power-law distribution. To correct for this, we add our component
mass prior to the GWOSC samples. The evidence in Eq. (15) does
not depend on the GWOSC samples, only on the run-averaged prob-
ability of detection and so can be marginalised over distance. With
this in mind the final approximate expression for Eq. (15) becomes

𝑝
(
𝑥 𝑗 | θ,D 𝑗 , 𝐼

)
≈

∑𝑁 𝑗

𝑖=1 𝑝
(
Ω𝑖

𝑗
𝑑𝑖L, 𝑗 | θ, 𝐼

)
𝑝

(
𝑚𝑖
1, 𝑗 , 𝑚

𝑖
2, 𝑗 | 𝛼

)
/𝑁 𝑗∑𝑁pix

𝑘=1 ΔΩ𝑝
(
D 𝑗 | Ω𝑘 , 𝐼

)
𝑝 (Ω𝑘 | θ, 𝐼)

,

(16)
where 𝑝 (𝑚1, 𝑚2 | 𝛼) is our component mass prior and 𝑁 𝑗 is the
number of posterior samples for the 𝑗-th detection. The selection
function 𝑝(D 𝑗 | Ω, 𝐼) is evaluated at the time of detection of the 𝑗-th
event with the event’s PSD. Furthermore, in the final expression for
the likelihood, the denominator of Eq. (16) cancels with 𝑁̂ 𝑗 (Eq. 12)
as 𝑝 (Ω𝑘 | θ) ∝ 𝑎𝑘 .

3 RESULTS

The isotropic model is parametrised by a single pixel covering the
entire sky, making it invariant under the angular distribution of pix-
els and independent of the Euler angles. On the other hand, the
anisotropic model spans a 15-dimensional parameter space. Each
posterior sample in the anisotropic model contains a set of 12 pixel
weights and its associated Euler angles describing the orientation
of the HEALPix grid. It follows then that in each sample the pixels
correspond to different locations on the sky, which is accounted for
before averaging the pixel weights. In Fig. 5 we show the maximum
likelihood sample for the anisotropic model. To average the pixel
weights, the original 12 pixels are split into a set of 49, 152 pixels
which map the samples onto a finer basis, while preserving their
respective values. This larger set is rotated and then averaged out
as this corresponds to returning to the original coordinate system,
resulting in a smoothing of the original 12-dimensional pixel basis
and rendering the mean pixel weights on a higher resolution map.
The averaged pixel map of posterior samples for the anisotropic

model is shown in Fig. 8. Two parts of the sky have above average
values of rate density, corresponding to the areas with the highest
density of samples (Fig. 1). However, the ratio of the maximum to
the minimum rate densities is ∼ 3, while the ratio of the maximum
to the minimum number of GW event posterior samples per pixel is
∼ 15 (Fig. 1), illustrating how the selection functions differs between
our posterior and a simple samples count.

Anisotropic model total rate 𝑅ani 60.5+33.4−25.4 Gpc
−3yr−1

Isotropic model total rate 𝑅iso 58.9+42.4−23.0 Gpc
−3yr−1

LVC total rate 𝑅LVC 53.2+58.5−28.8 Gpc
−3yr−1

Bayes factor ZISO/ZANISO 1.3 : 1

Table 2. Comparison of the total rate of our models with the LVC result and
the Bayes factor ratio of the isotropic and anisotropic model.
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Figure 6. Posterior probability distributions on the rate 𝑅 of BBH merg-
ers, assuming the isotropic and anisotropic models. The isotropic model is
consistent the LVC estimate of the total rate 53.2+58.5−28.8 Gpc

−3yr−1 of BBH
mergers.

Furthermore, we obtain estimates of the total rate 𝑅 (defined in
Eq. 1), as in our analysis the merger rate is proportional to the sum of
the pixel weights. In Fig. 6 we show a histogram of the total rate for
the two models and quote our results with 90% credibility intervals
in Table 2.
The confidence intervals we obtain are tighter than the LVC es-

timate of the total rate (Abbott et al. 2019c). This distinction can
be attributed to a number of differing assumptions between the LVC
analysis and our own. These include, but are not limited to the facts
that our analysis makes different prior assumptions about the black
hole mass distribution, and that we do not marginalise over un-
certainty in the mass power law index and our model assumes a
maximum total mass. In addition, we have not used a realistic cos-
mological model for our redshift distribution, we have considered
only the inspiral component of the signal waveform as opposed to
the full inspiral, merger, and ringdown, and our selection function
is computed analytically and not empirically from simulated signal
injections into real non-Gaussian detector noise.
To determine whether the BBH mergers are distributed isotrop-

ically on the sky, we calculate a Bayes factor between the two hy-
potheses (defined in Eq. 3). We arrive at a Bayes factorZISO/ZANI
of 1.3 : 1, indicating that the 10 events from O1 and O2 runs show
no statistically significant preference for either model.
Lastly, we test our model by replacing all the observed events from

O1 and O2 with 𝑛 = 1, 2, . . . , 10 copies of GW170814 and record
the Bayes factors ZISO/ZANISO as a function of 𝑛. This is shown
in Fig. 7. We observe an exponential dependence on 𝑛, with isotropy
being preferred for low values of 𝑛 but gradually showing strong
support for anisotropy as 𝑛 increases.

MNRAS 000, 1–8 (2020)
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Figure 7. Bayes factor ZISO/ZANISO when all events from O1 and O2 runs
are replaced with 𝑛 = 1, 2, . . . , 10 copies of GW170814. Initially, for low
values of 𝑛, the data prefers the isotropic model but as 𝑛 increases and more
events are added into the same location the confidence in the anisotropic
model exponentially grows.

4 CONCLUSION

We perform a Bayesian model selection, comparing an isotropic
model to a particular pixelated anisotropic model of the BBH as-
trophysical merger rate. We demonstrate that the 10 detected BBH
events from O1 and O2 runs show comparable support for both mod-
els. This result was expected, the underlying distribution of BBH
mergers is thought to be isotropic, but with only 10 events forming
our dataset a strong statement about isotropy should not be expected.
The anisotropic model is described with 15 parameters which give

a very large parameter space for the model, most of which is in-
compatible with the data. Since we made a decision to use a pixel
basis, and the minimum number of pixels a HEALpix map supports
is 12, it was not possible to easily switch to a lower or higher di-
mensional basis. Thus, one of the future extensions of this project
would be to to perform this analysis in a spherical harmonics basis.
A spherical harmonic basis would allow for a lower dimensional
parameter space, for example, the simplest anisotropic spherical har-
monics model would have 4 weight parameters (polynomial degree
𝑙max = 1). Such spherical harmonic approaches could be readily used
to model different anisotropy models, providing us with an alterna-
tive representation with which to compare the benchmark isotropic
model. This approach is taken by Payne et al. (2020), which also
finds that the GWTC-1 data-set weakly favours the isotropic model,
although their analysis differs from ours in other respects.
In this analysis the prior probability density function (PDF) on

luminosity distance is consistent with that of a simple, static Eu-
clidean universe. As the interferometers are being upgraded in terms
of sensitivity it would be reasonable to include a cosmological model
of an expanding universe since some events are already at signifi-
cant redshifts. However, we do not expect this to change the result
dramatically, rather it should result in scaling the selection func-
tion and providing us with better tools that could be used in further
applications.
Finally, and potentially most importantly, at the time of writing,

only ten events (from O1 and O2) have been published by the LIGO-
Virgo Collaboration. The recently finished O3 run lived up to expec-
tations and provided ∼ 60 additional candidates and the O3 events
are generally better localised due to sensitivity improvements at the
Virgo site (LIGO-Virgo Collaboration 2020). Such additional data

will only serve to strengthen the analysis presented here and we are
eager to use these events to compare our BBH distribution models.
In the future we predict that this work can be used to significantly
strengthen our belief in the isotropicmodel over an anisotropicmodel
as the number of detections increases. Alternatively, the analysis can
be interpreted as an important probe for finding anisotropies, should
they exist. In the limit of a large number of detections, if BBH sources
trace the large scale structure of the Universe we might expect that
a general anisotropic model might be favoured over isotropy. This
scenario would allow us to meaningfully compare our results to the
distribution of visible matter in the Universe.
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