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Asteroid deflection by leveraging rotational self-energy

Andrea Viale ∗, Colin McInnes †, Gilles Bailet ‡ and Matteo Ceriotti §

University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom

A novel concept for the deflection of rotating asteroids is presented, based on the conversion

of the asteroid rotational kinetic energy into translational kinetic energy. Such conversion is

achieved using an orbital siphon, a tether-connected chain of masses, arranged vertically from

the asteroid surface, which exploits the rotation of the asteroid for the delivery of mass from

the asteroid to escape. Under the conditions to be discussed, the siphon can be initiated to

ensure self-sustained flow of mass from the asteroid to escape. This mechanism is proposed

to use a fraction of the asteroid as reaction mass, with the asteroid rotational kinetic energy

leveraged to deliver the mass to escape and hence impart a reaction on the asteroid itself. Key

parameters, such as velocity change, deflection duration, tension requirements and siphon

length, are discussed. Deflection effectiveness is assessed for different release strategies. It is

shown that typical velocity changes on the order of 1 cm s−1 can be achieved within a time

window of a decade.

Nomenclature

𝐺 gravitational constant

𝑀 primary mass

𝑚 secondary mass

𝑅 primary radius

𝑟 secondary radius

𝜔 angular velocity

𝜔𝑐 critical angular velocity

𝐷 distance between primary and secondary center-of-mass

𝐿 siphon length

𝐿𝑒𝑞 siphon equilibrium length

𝜏 tether tension
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𝐼 inertia

𝑣 siphon radial velocity

𝐹 siphon radial force

𝜇 siphon linear density

𝜌 asteroid density

𝑥 distance from primary center-of-mass

𝑡 time

Δ𝑣 velocity change

𝑋,𝑌 CW coordinates

𝐸 mechanical energy

𝑈 gravitational energy

𝐾 kinetic energy

Δ𝑚 secondary mass collected before release

Δ𝑡 time to collect Δ𝑚

𝑚 𝑓 total released mass

𝐴 siphon cross section

Subscripts:

�𝑏 center-of-mass

�0 initial value

�𝑝 primary

�𝑠 secondary

Superscripts:

�̄ non-dimensional variable

Abbreviations:

SR single release

MR multiple release

CW Clohessy-Wiltshire

I. Introduction
Interest in near-Earth asteroids has grown over the past decade for two main reasons. They are abundant in useful

resources that could be exploited in the context of asteroid mining, revolutionizing the future of space exploration [1].

On the other hand, a fraction of the near-Earth asteroids have been classified as potentially hazardous, due to their close
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approaches to the Earth. The threat posed by a catastrophic asteroid collision with the Earth has stimulated research on

possible impact avoidance methods. Most proposed approaches are characterized by momentum exchange between

the asteroid and a reaction mass, in order to alter the asteroid trajectory so that it will miss Earth. The most discussed

deflection solutions include kinetic impactor, nuclear detonation, gravity tractor, ion-beam shepherd, asteroid thrusting,

mass drivers, methods based on changes on the thermo-optical properties of the surface and tether-based methods.

The kinetic impactor method consists in impacting a spacecraft onto the asteroid surface [2]. Due to the small mass

of the spacecraft with respect to the asteroid, the momentum exchanged is mainly due to the high relative velocity

between the spacecraft and the target asteroid. Better performances can be achieved with impact from retrograde orbits,

in terms of impact speed and required mass [3]. Deflection via nuclear detonation is achieved by a nuclear explosion at

a given standoff distance from the asteroid surface. The explosion causes local ablation of the asteroid surface and the

momentum due to the expelled ejecta induces a modification of the asteroid trajectory. This method has proven to be

especially effective for large asteroids and short lead times [4]. However, possible fracturing of the asteroid may cause

unwanted outcomes and, therefore, knowledge of the shape and composition of the asteroid is crucial for this method.

Moreover, the use of nuclear detonation in space is still controversial [5]. With the gravity tractor technique, a spacecraft

(or a spacecraft formation) hovers in proximity to the asteroid using low-thrust propulsion, causing an acceleration

of the center-of-mass of the asteroid-spacecraft system [6]. The ion-beam shepherd concept perturbs the asteroid

using a collimated beam of plasma [7]. A second propulsion system is required to offset the momentum transferred

to the asteroid. For small asteroids (with a diameter smaller than 100 m) the required spacecraft mass is one order of

magnitude smaller than the gravity tractor [7], whereas comparable performances is observed for asteroids larger than

2 km. With direct thrusting [8] the entire asteroid is turned into a spacecraft, with a set of thrusters positioned on the

asteroid surface applying continuous thrust. This method requires that the asteroid is firstly de-spun, to avoid a periodic

change of the applied force direction. Clearly, the required thrust level scales with the asteroid size, thus making this

method suitable only for smaller asteroids. In Ref. [9] it is proposed to modify the thermo-optical properties of the

asteroid using the Yarkovsky effect. This effect is caused by the anisotropic emission of photons which produces a

slight force with magnitude proportional to the temperature contrast across the asteroid. Changing the albedo of the

asteroid surface (e.g., by means of paints) changes the intensity of such acceleration. This method requires timescales

on the order of 100 years to achieve significant deflections [9]. Another proposed deflection method is based on mass

drivers [10]. In this case, material collected from the asteroid is used as a reaction mass to be accelerated and released

to escape to induce a velocity change on the asteroid. A significant advantage of this method is that the reaction mass is

provided in situ therefore significantly reducing the launched mass of the deflection system. Based on this concept, it is

proposed in Ref. [11] to achieve deflection by multiple ejection of boulders from the asteroid. Another class of methods

for deflection is based on the use of tethers. Reference [12] proposes to connect a long tether and ballast to the asteroid

to alter the center-of-mass of the system and therefore its orbit. Diversion can be enhanced by cutting the tether at an

3



appropriate time after attachment to the asteroid [13].

The methods described can be divided into two main categories. Kinetic impactor and nuclear detonation are

single-event deflection methods, as the entire momentum transfer is applied a single time. Although the intensity of the

momentum transfer can be very large (such as in the nuclear detonation method), there is a single opportunity for the

deflection: in case of failure (e.g., insufficient velocity change, unwanted asteroid fragmentation) a new mission has to

be rescheduled. In contrast, all the other methods permit continuous corrections, even though they might require longer

timeframes for implementation. Moreover, many of the proposed methods will likely require a large mass of propellant

or reaction mass to be delivered from Earth.

A new deflection method is proposed here which can be adapted to be both single-event and multiple-event and uses

asteroid material as reaction mass. The method is based on the conversion of the rotational kinetic energy of the asteroid

into translational kinetic energy. This technique has its foundation on the orbital siphon concept, devised by Davis, and

elaborated in Ref. [14]. The orbital siphon is a chain of tether-connected payloads (here, the asteroid material) arranged

vertically from the surface of the asteroid equator. If the siphon is long enough, the centrifugal-induced forces on the

chain due to the body’s spin overcome the gravitational forces and a net orbital siphon effect is initiated [15–18]: new

payloads can be connected to the chain while top payloads are released. The delivery of payloads from the anchoring

position to orbit does not require any external work to be done, as the force needed to overcome the gravity of the body

is provided by the asteroid rotational kinetic energy. Here, it is proposed to collect the material lifted by the siphon and

use it as a reaction mass to be released to change the asteroid velocity. If material is raised to a sufficient altitude, its

mechanical energy overcomes the threshold value required for escape, therefore simple release of the collected mass

without any additional energy is sufficient to induce a variation of the asteroid velocity. As with other mass driver

methods, this technique calls for robotic rovers to transfer asteroid material to the siphon. However this paper will not

directly address the surface activities of such rovers, but rather will focus on the siphon operation and performances.

The main scope of this paper is therefore to investigate what are the conditions to maximize the change in velocity

(e.g., length of the siphon, mass throughput, time window) depending on the physical characteristics of the asteroid, in

particular its rotational period and its density, under simplifying assumptions.

The paper is structured as follows. The orbital siphon model is firstly introduced and key parameters to evaluate the

siphon performance are derived, in particular siphon radial velocity, the siphon equilibrium configurations, the time

required to lift an arbitrary amount of mass and the reduction of the asteroid angular velocity resulting from siphon

operation. Then, criteria to assess asteroid deflection are discussed, in terms of velocity change Δ𝑣 and displacement

from the original orbit, under two different scenarios: single mass release and multiple mass release.
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Fig. 1 Orbital siphon model.

II. Model
The system is composed of four main elements: the asteroid to be deflected (primary), the orbital siphon, the

collected mass (secondary), and the support tether (Fig. 1). The asteroid is modelled as sphere with uniform density 𝜌,

radius 𝑅, rotating with angular velocity 𝜔, with the spin axis normal to the asteroid orbital plane. The secondary body is

the material collected at the top of the siphon. It is assumed that the material is held together by a net-like or deformable

structure which expands as material is collected. Detailed modelling of the secondary, including its shape, is outside the

scope of this paper; here, for simplicity, the secondary is treated as a sphere.

A support tether connects the secondary to the primary and provides the necessary tension to prevent the secondary

from escaping. The support tether is anchored at a point on the equator of the asteroid and it is assumed to be massless

and inextensible.

The orbital siphon is the chain of tether-connected payloads that can slide without friction over the support

tether. Here the mass of the tether connecting consecutive payloads is neglected and the total mass of the siphon is

homogeneously spread over its length 𝐿. The siphon is therefore modelled as a continuous mass distribution with linear

density 𝜇.

Contrary to previous modelling approach as [15, 17], here the mass of the secondary is allowed to increase to

non-negligible values, allowing the center-of-mass to be displaced significantly.

In general, the motion of the siphon will induce Coriolis forces, causing oscillations of the support tether in the

equatorial plane [16]. However, it can be shown that if the mass of the secondary is (at least) two orders of magnitude

larger than the mass of the siphon, then the torque generated by the centrifugal-induced force acting on the secondary

counteracts the torque generated by the Coriolis force and it is reasonable to assume that the siphon is aligned with

the local vertical. (see AppendixA). To justify the alignment between the siphon and the local vertical it can then be

assumed that part of the secondary mass (100𝜇𝐿) is not used as reaction mass for the asteroid deflection but its instead

retained as counterweight mass.

It is also assumed that the support tether and the secondary are within the gravitational sphere of influence of the
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primary throughout the siphon operation. The radius of the sphere of influence of the asteroid is defined by [19]

𝑟SOI ≈ 𝑎

(
𝑀

𝑀�

)2/5
(1)

where 𝑎 is the semimajor axis of the asteroid orbit, 𝑀 is the primary mass and 𝑀� is the the mass of the Sun. For a

spherical body orbiting at one astronomical unit from the Sun, with a radius of 500 m the asteroid mass is O(1012) kg,

which yields a sphere of influence radius on the order of O(104) m. As it will be shown, the typical siphon length

requirements are smaller than this value, hence it is reasonable to assume that the secondary lies within the sphere of

influence of the primary and Sun gravitational perturbation can be neglected.

A. Force on the siphon

Let 𝑀 and 𝑚 represent the primary and secondary mass at some point during siphon operation. Let 𝑑𝑚 be an

infinitesimal element of mass of the siphon, 𝑥 its distance from the primary and 𝑑𝑥 its length. Within an asteroid-fixed

reference frame, the element 𝑑𝑚 is subjected to gravitational and centrifugal-induced forces. The gravitational force

acting on 𝑑𝑚 can be written as:

𝑑𝐹𝑔 = 𝐺

(
𝑚

(𝐷 − 𝑥)2
− 𝑀

𝑥2

)
𝜇𝑑𝑥 (2)

where 𝐺 = 6.67 × 10−11 m3 kg−1 s−2 is the gravitational constant and 𝐷 = 𝑅 + 𝐿 + 𝑟 is the distance between primary and

secondary center-of-mass. Note that the first positive component is due to the attraction towards the secondary, which

enhances the siphon effect. Likewise, the centrifugal-induced force acting on the same mass element can be written as

𝑑𝐹𝑐 = 𝜔2 (𝑥 − 𝑥𝑏)𝜇𝑑𝑥 (3)

where 𝑥𝑏 is the distance between the center-of-mass of the system and the center of the primary:

𝑥𝑏 =
𝑚𝐷

𝑀 + 𝑚 (4)

From this point, the subscript “0” appended to a variable represents the state of that variable at the beginning of siphon

operation. Hence, for instance, 𝑅0 and 𝑀0 represent the initial radius and mass of the asteroid, respectively. The

two forces can be written in non-dimensional form by scaling masses, distances and angular velocity by 𝑀0, 𝑅0 and√
4/3𝐺𝜋𝜌 respectively, giving:

𝑑𝐹̄𝑔 =

(
𝑚̄

(𝐷̄ − 𝑥)2
− 𝑀̄

𝑥2

)
𝜇̄𝑑𝑥 (5)

𝑑𝐹̄𝑐 = 𝑚̄𝜔̄2 (𝑥 − 𝐷̄) 𝜇̄𝑑𝑥 (6)
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where the upper bar indicates a non-dimensional variable. The angular velocity scale factor corresponds to the rotational

angular velocity of the asteroid at which gravitational and centrifugal-induced forces for a particle at the asteroid equator

are balanced. As in previous work [15], this scale factor is called critical angular velocity and it is indicated with the

symbol 𝜔𝑐 . Under the current assumption of a spherical asteroid, this parameter only depends on the asteroid density.

For example, taking a density 𝜌 = 2 g cm−3 results in a critical period 2𝜋/𝜔𝑐 = 2.3 hours. If 𝜔 > 𝜔𝑐 then material at

the asteroid equator can be lifted to orbit or escape, unless cohesion is preventing particles from being displaced or the

asteroid is a monolithic body [20]. Although only a small fraction of the known asteroid population is characterized by

spin rates larger than the critical angular velocity [21], here 𝜔 > 𝜔𝑐 is allowed for the sake of generality. The factor

𝜇̄ = 𝜇/(4/3𝜋𝑅2
0
) can be interpreted as the ratio between the mass of the siphon and the asteroid mass, taking a siphon

length 𝐿 = 𝑅0. The resulting force scaling factor is 𝑀0𝜔
2
𝑐𝑅0 (see Table 1 for a list of scale factors used in this paper).

Then, the total force acting on the siphon is the integral

𝐹̄ =
∫ 𝑅̄+𝐿̄

𝑅̄
(𝑑𝐹̄𝑔 + 𝑑𝐹̄𝑐) (7)

which admits the solution:

𝐹̄ = 𝜇̄

[
𝐿̄(1 − 𝑅̄3)2/3

𝐿̄ + (1 − 𝑅̄3)1/3 − 𝐿̄ 𝑅̄2

𝐿̄ + 𝑅̄
+ 1

2
𝐿̄
[
𝐿̄ + 2𝑅̄ + 2(𝑅̄3 − 1) ( 𝐿̄ + 𝑅̄ + (1 − 𝑅̄3)1/3)

]
𝜔̄2

]
(8)

Due to the continuous mass distribution hypothesis, the siphon is effectively treated as a rigid body and the force 𝐹̄ is

applied at its center-of-mass. Note that, Eq. (8) can also be written as a function of the secondary mass by applying the

substitution

𝑅̄ = (1 − 𝑚̄)1/3 (9)

where the mass is scaled by 𝑀0. Equation (9) follows from the conservation of mass 𝑀̄ + 𝑚̄ = 1.

To enable siphon operation the force 𝐹̄ must be positive, i.e., directed towards the secondary:

𝐹̄ > 0 (10)

The siphon length 𝐿̄𝑒𝑞 that leads to 𝐹̄ = 0 is the equilibrium length and corresponds to the minimum length to guarantee

the siphon effect. Figure 2 shows the equilibrium length as a function of the asteroid angular velocity 𝜔̄0 and the

secondary mass 𝑚̄. The black curve, corresponding to the case 𝑚̄ = 0 is the same equilibrium curve found in [15] for a

siphon without a secondary mass. It is apparent from Fig. 2 that a larger secondary mass decreases the equilibrium

length for a given angular velocity. Note that if 𝑚̄ = 0.5, the condition 𝐹̄ = 0 is verified for any 𝐿̄. In fact, the condition

𝑚̄ = 0.5 implies that the system is symmetric with respect to its rotation axis.

7



Table 1 Scale factors for non-dimensional variables

Scale factors

Distance 𝑅0

Mass 𝑀0

Time 𝜔−1
𝑐

Angular velocity 𝜔𝑐

Velocity 𝜔𝑐𝑅0

Force 𝑀0𝜔
2
𝑐𝑅0

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 2 Siphon equilibrium length as a function of the angular velocity for a range of secondary masses.
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B. Support tether tension

The tension on the support tether can be found by considering the equilibrium of the forces at one of its ends. It

must be stressed that here the support is modelled as a massless, inextensible tether and therefore its tension is constant

over its length. The equilibrium of forces acting on the anchor point of the primary can be written as (the same result is

obtained by considering the equilibrium on the attachment to the secondary):

𝑀𝜔2𝑥𝑏 − 𝐺
𝑀𝑚

𝐷2
− 𝜏 = 0 (11)

where the tension force 𝜏 is considered positive when the tether is in tension. The first term appearing in Eq. (11) is the

centrifugal-induced force due to the rotation of the primary with respect to the center-of-mass of the system and the

second term is the gravitational attraction between the primary and the secondary. Clearly, a larger angular velocity

will increase the tension in the tether, whereas a larger gravitational attraction between the primary and the secondary

will reduce it. Solving Eq. (11) for 𝜏 and dividing both sides by the force scale factor (see Table 1 ), the resulting

non-dimensional tension becomes:

𝜏 = 𝑚̄(1 − 𝑚̄)
(
𝜔̄2𝐷̄ − 1

𝐷̄2

)
(12)

The condition 𝜏 > 0 must be verified to ensure the tether is always in tension. Such a requirement can be translated

into a lower bound for the angular velocity:

𝜔̄ >

√
1

𝐷̄3
(13)

It will be shown that Eq. (13) is a necessary condition to enable insertion of the secondary mass to escape.

C. Conservation of angular momentum

If the inequalities (10) and (13) are verified, material is transferred from the primary to the secondary. Conservation

of angular momentum can be invoked to evaluate the variation of angular velocity of the system in response to the

transfer of a given amount of mass Δ𝑚 from the primary to the secondary. Then, let the subscripts 1 and 2 refer to a

variable before and after the transfer of material, respectively. Neglecting the mass of the siphon, the inertia of the

system in the two states can be written as:

𝐼𝑖 =
2

5
(𝑀𝑖𝑅

2
𝑖 + 𝑚𝑖𝑟

2
𝑖 ) + 𝑀𝑖𝑥

2
𝑏,𝑖 + 𝑚𝑖 (𝑅𝑖 + 𝐿 + 𝑟𝑖 − 𝑥𝑏)2, 𝑖 = 1, 2 (14)

being

𝑀1 = 𝑀; 𝑀2 = 𝑀 − Δ𝑚;

𝑚1 = 𝑚; 𝑚2 = 𝑚 + Δ𝑚;

(15)
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0

0.2

0.4

0.6

0.8

1

Fig. 3 Angular velocity ratio 𝜔̄1/𝜔̄2 as a function of the secondary mass for a range of siphon lengths 𝐿̄.

Note that 𝑅𝑖 and 𝑥𝑏,𝑖 can be written as a function of Δ𝑚 through Eqs.(4) and (9). Conservation of angular momentum

therefore requires that

𝐼1𝜔1 = 𝐼2𝜔2 (16)

Setting 𝑀 = 𝑀0, it follows Δ𝑚 = 𝑚 and Eq. (16) can be further simplified and written in non-dimensional form:

𝜔̄2

𝜔̄1

=
2

5
(
𝑚̄(1 − 𝑚̄) (𝐿 + 𝑚̄1/3 + (1 − 𝑚̄)1/3)2 + 2

5

(
𝑚̄5/3 + (1 − 𝑚̄)5/3) ) (17)

Equation (17) describes the variation of the angular velocity of the system from the initial condition 𝑀̄1 = 1, 𝑚̄2 = 0 to

the final condition 𝑀̄2 = 1 − 𝑚̄, 𝑚̄2 = 𝑚̄ as a function of the secondary mass. Note that, if the secondary mass is small

(𝑚 → 0), linearization of Eq. (17) reduces to the angular velocity ratio found in [15] for an orbital siphon releasing

material to orbit:

𝜔̄2

𝜔̄1

≈ 1 − 5

(
1

6
+ 5𝐿 + 𝐿2

2

)
𝑚̄ (18)

Figure 3 shows the angular velocity ratio 𝜔̄2/𝜔̄1 as a function of the secondary mass 𝑚̄ ∈ [0, 1] for a range of siphon

lengths. As expected, the ratio strictly decreases for 𝑚̄ ∈ [0, 0.5]. Clearly, the plot is symmetric with respect to 𝑚̄ = 0.5,

i.e., if the secondary mass could be increased beyond 𝑀0/2, the system would recover its initial angular velocity 𝜔0

when the entire asteroid mass is transferred to the secondary.

Substituting Eq. (17) into Eq. (8) with 𝜔2 = 𝜔 and 𝜔1 = 𝜔0 allows the change of the siphon force as a function of
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Fig. 4 Siphon force as a function of the secondary mass, for a range of initial angular velocities, taking 𝐿̄ = 0.5.

the asteroid initial angular velocity 𝜔0, the siphon length 𝐿 and the extracted mass 𝑚̄ to be seen. As an example, Fig. 4

shows the variation of the non-dimensional siphon force (here divided by 𝜇̄) as a function of the secondary mass for a

range of initial angular velocities 𝜔0 and taking 𝐿̄ = 0.5. When the siphon force is zero, the system has reached its

equilibrium, thus arresting the siphon effect (unless the siphon length is changed, however variable length siphons are

not consider here). Clearly, larger initial angular velocities permits the collection of a larger mass on the secondary. It

can be verified that, if 𝜔0 is large enough to reach 𝑚̄ = 0.5, then 𝐹 < 0, for any 𝑚̄ ∈ [0.5, 1]. Therefore, self sustaining

mass flow from the primary to the secondary is not allowed for 𝑚̄ > 0.5.

D. Siphon operation and radial velocity

Siphon operation for a continuous mass distribution can be modelled by the three-step sequence shown in Fig. 5.

If a net force 𝐹 > 0 is acting on the siphon, it will accelerate in the direction of the secondary (from step (a) to step

(b) in Fig.5). The term radial velocity will be used to indicate the velocity of the siphon with respect to the system

barycentre. Upon raising by an infinitesimal amount 𝑑𝑥 ≈ 0 a mass 𝑑𝑚 = 𝜇𝑑𝑥 is released to the secondary while an

equal mass 𝑑𝑚 is connected at the bottom of the siphon (from step (b) to step (c) in Fig. 5. Let 𝑑𝑣𝑎𝑏 = 𝑣𝑏 − 𝑣𝑎 and

𝑑𝑣𝑏𝑐 = 𝑣𝑐 − 𝑣𝑏 be the change in siphon velocity from step (a) to (b) and from step (b) to (c) respectively, where 𝑣𝑎, 𝑣𝑏 ,

𝑣𝑐 are the velocities of the siphon at step (a), (b) and (c) respectively. Then, the overall change in velocity 𝑑𝑣𝑎𝑐 from

step (a) to (c) can be written as:

𝑑𝑣𝑎𝑐 = 𝑑𝑣𝑎𝑏 + 𝑑𝑣𝑏𝑐 (19)
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Fig. 5 Siphon operation sequence
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The sequence is then iteratively repeated.

In the following, the values of 𝑑𝑣𝑎𝑏 and 𝑑𝑣𝑏𝑐 will be found by invoking the work-energy theorem and the conservation

of linear momentum.

• From step (a) to step (b). The work per unit mass 𝑑𝑊 done by the gravitational and centrifugal-induced forces on

the siphon to raise it by the amount 𝑑𝑥 is by definition:

𝑑𝑊 =
𝐹

𝜇𝐿
𝑑𝑥 (20)

Moreover, from the work-energy theorem:

𝑑𝑊 =
(𝑣𝑎 + 𝑑𝑣𝑎𝑏)2

2
− 𝑣2

𝑎

2
(21)

By neglecting higher order terms and further simplifying, Eq. (21) can be written as:

𝑑𝑊 = 𝑣𝑎𝑑𝑣𝑎𝑏 (22)

Then, equating Eq. (20) and (22) yields:

𝑑𝑣𝑎𝑏 =
𝐹

𝜇𝐿

𝑑𝑥

𝑣
(23)

• From step (b) to step (c). The connection of the mass 𝑑𝑚 is modelled as an instantaneous inelastic collision. In

reality, for siphons modelled as a discrete chain of tether connected payloads, each payload connection will cause

some radial oscillations in the chain, that will be damped depending on the tether properties. However, it was

shown in [15] that modelling the connection as an inelastic collision leads to similar equivalent result. Under this

hypothesis the total linear momentum of the siphon is conserved between steps (b) and (c):

𝜇𝐿𝑣𝑏 = 𝜇𝑑𝑥𝑣𝑏 + 𝜇𝐿𝑣𝑐 (24)

Note that the first term on the right hand side is the momentum of the mass released to the secondary. Then,

𝑑𝑣𝑏𝑐 = 𝑣𝑐 − 𝑣𝑏 can be written as:

𝑑𝑣𝑏𝑐 =
𝑑𝑥

𝐿
𝑣𝑎 (25)

where the substitution 𝑣𝑏 = 𝑣𝑎 + 𝑑𝑣𝑎𝑏 is used and the higher order terms are neglected.

Substituting Eq. (23) and (25) into (19) yields:

𝑑𝑣𝑎𝑐 =
𝐹

𝜇𝐿

𝑑𝑥

𝑣𝑎
− 𝑑𝑥

𝐿
𝑣𝑎 (26)
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Dividing both sides by the infinitesimal time 𝑑𝑡 required to raise the siphon by 𝑑𝑥 and further simplifying yields

𝑑𝑣

𝑑𝑡
+ 𝑣2

𝐿
=

𝐹

𝜇𝐿
(27)

where the subscripts have been removed. Equation (27) is the differential equation governing the radial velocity of a

siphon modelled as a continuous mass distribution. Note the damping term proportional to the square of the siphon

velocity. As a new mass element dm is added to the chain it must be accelerated to speed 𝑣. However, the rate at which

new masses are being added scales as 𝑣, hence it can be shown that there is an apparent drag term which his quadratic in

𝑣.

Taking a siphon starting from 𝑣(0) = 0, Equation (27) admits the closed form solution:

𝑣(𝑡) =
√
𝐹

𝜇
tanh

(√
𝐹

𝜇

𝑡

𝐿

)
(28)

Using the non-dimensional scale factors in Table 1, Equation (28) can be written in non-dimensional form as:

𝑣̄ =

√
𝐹̄

𝜇̄
tanh

(
𝑡

𝐿̄/
√
𝐹̄/𝜇̄

)
(29)

Therefore, the siphon asymptomatically approaches the steady state radial velocity
√
𝐹/𝜇̄. The transient behavior

depends on the factor 𝐿̄/
√
𝐹̄/𝜇̄ which represents the time required to reach 0.76% of the steady state velocity. For

example, taking an asteroid with 𝜔̄ = 0.85, 𝐿̄ = 1 with 𝑚̄ = 0, the siphon reaches 76% of its asymptotic velocity after

𝑡 = 1.3 and 99% of its asymptotic velocity after 𝑡 = 2.64 corresponding to 𝑡 = 0.5 h and 𝑡 = 1.3 h respectively, for an

asteroid with density 𝜌 = 2 g cm−3. As will be shown in the next sections, the time-scales required for siphon operation

are on the order of years and therefore the effect of the transient can be reasonably neglected.

E. Timescale for mass transfer

The mass element 𝑑𝑚 released to the secondary in the time 𝑑𝑡 can be written as a function of the siphon linear

density 𝜇 and the siphon velocity 𝑣:

𝑑𝑚 = 𝜇𝑣𝑑𝑡 (30)

To guarantee conservation of mass, if an element 𝑑𝑚 is released to the secondary, the primary mass must decrease by

the same amount. For simplicity, it is assumed that the primary and the secondary retains spherical symmetry upon

removal or release of mass, using the same approach as in Ref. [15]. Therefore, the removal of a mass element 𝑑𝑚 from
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the primary implies the removal of its outer shell with radius 𝑑𝑅 such that:

𝑑𝑚 = 4𝜌𝜋𝑅2𝑑𝑅 (31)

Equating Eq. (31) and (30) and solving for 𝑑𝑡 yields:

𝑑𝑡 =
4𝜌𝜋𝑅2𝑑𝑅

𝜇𝑣
(32)

Dividing both sides by the timescale factor 𝜔−1
𝑐 and noting that 𝑑𝑚̄ = 𝑅̄2𝑑𝑅̄:

𝑑𝑡 =
𝑑𝑚̄

𝜇̄𝑣̄
(33)

Equation (33) can eventually be integrated to find the total time 𝑡 required to increase the secondary mass from 0 to 𝑚̄ 𝑓 :

𝑡 =
1

𝜇̄

∫ 𝑚̄ 𝑓

0

𝑑𝑚̄

𝑣̄
(34)

where the siphon linear density is assumed constant during operation and therefore has been taken out from the integral.

Neglecting the siphon radial velocity transient phase, 𝑣̄ =
√
𝐹̄/𝜇̄ (Eq. (29)). Then, using conservation of angular

momentum, the integrand of Eq. (34) can be written as a function of 𝑚̄, the initial angular velocity of the asteroid 𝜔̄0

and the siphon length 𝐿̄. The resulting integral does not admit closed-form solution, therefore numerical integration

must be used to evaluate an approximated solution.

III. Primary deflection
In this section the variation of the kinetic and potential energy of the system before and after detachment of the

secondary from the support tether is considered, to study the fraction of rotational kinetic energy of the primary that can

be converted into translational kinetic energy. Let 𝐸0, 𝐸−, 𝐸+ and 𝐸∞ represent the total energy of the system before

the siphon operation starts (0), after collection of a mass 𝑚 on the secondary (−), after release of mass 𝑚 from the

secondary (+) and, when the secondary has reached the sphere of influence of the primary after its release (∞).

The total energy of the system in the initial state 0 can be written as

𝐸0 =
1

2

(
2

5
𝑀0𝑅

2
0

)
𝜔2

0 −
3

5

𝐺𝑀2
0

𝑅0

(35)

where the first term is the total rotational kinetic energy of the primary while the second term is the gravitational

self-energy of the primary. Upon delivery of mass 𝑚 to the secondary, the total energy becomes (neglecting the mass of
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the siphon)

𝐸− = 𝐾−
𝑟 +𝑈−

𝑠𝑒𝑙 𝑓 , 𝑝 +𝑈−
𝑠𝑒𝑙 𝑓 ,𝑠 +𝑈−

𝑚𝑢𝑡𝑢𝑎𝑙 (36)

where 𝐾−
𝑟 is the total rotational kinetic energy of the system (including primary and secondary),𝑈−

𝑠𝑒𝑙 𝑓 , 𝑝 and𝑈−
𝑠𝑒𝑙 𝑓 ,𝑠 are

the gravitational self-energies of the primary and the secondary respectively whereas𝑈−
𝑚𝑢𝑡𝑢𝑎𝑙 is the mutual gravitational

potential energy between two masses. The rotational kinetic energy can be written as:

𝐾−
𝑟 =

1

2

(
2

5
𝑀2𝑅2 + 𝑀𝑥2

𝑏 + 2

5
𝑚2𝑟2 + 𝑚(𝐷 − 𝑥𝑏)2

)
(𝜔−)2 (37)

The angular velocity 𝜔− is obtained via conservation of angular momentum (Eq. (17)). The mutual gravitational

potential 𝑈−
𝑚𝑢𝑡𝑢𝑎𝑙 is:

𝑈−
𝑚𝑢𝑡𝑢𝑎𝑙 = −𝐺 𝑀𝑚

𝐷
(38)

It can be verified that 𝐸− − 𝐸0 < 0. In fact, part of the kinetic energy of material reaching the top of the siphon is lost

due to the inelastic impact with the secondary.

Upon detachment of the secondary from the siphon, the primary and the secondary are released with velocity

magnitudes Δ𝑣+𝑝 and Δ𝑣+𝑠 , such that the total angular momentum before and after release is conserved:

(
2

5
𝑀𝑅2 + 𝑀𝑥2

𝑏 + 2

5
𝑚𝑟2 + 𝑚(𝐷 − 𝑥𝑏)2

)
𝜔− =

2

5
𝑀𝑅2𝜔+

𝑝 + 𝑥𝑏𝑀Δ𝑣+𝑝 + 2

5
𝑚𝑟2𝜔+

𝑠 + (𝐷 − 𝑥𝑏)𝑚Δ𝑣+𝑠 (39)

The angular momentum is evaluated with respect to the axis passing through the system center-of-mass and normal to

the orbital plane. The variables 𝜔+
𝑝 and 𝜔+

𝑠 represent the angular velocity of the primary and the secondary after release.

Eq. (39) is verified if

𝜔+
𝑝 = 𝜔− (40a)

𝜔+
𝑠 = 𝜔− (40b)

and

Δ𝑣+𝑝 = 𝜔−𝑥𝑏 (41a)

Δ𝑣+𝑠 = 𝜔−(𝐷 − 𝑥𝑏) (41b)

Equations (40a), (40b) dictate that the two bodies will spin about their respective center-of-mass with angular velocity

𝜔−, i.e., the same angular velocity about the system center-of-mass before release. The total energy of the system after
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release is then:

𝐸+ = 𝐾+
𝑟 , 𝑝 + 𝐾+

𝑟 ,𝑠 + 𝐾+
𝑡 , 𝑝 + 𝐾+

𝑡 ,𝑠 +𝑈+
𝑠𝑒𝑙 𝑓 , 𝑝 +𝑈+

𝑠𝑒𝑙 𝑓 ,𝑠 +𝑈+
𝑚𝑢𝑡𝑢𝑎𝑙 (42)

where

𝐾𝑟 , 𝑝 =
1

2

(
2

5
𝑀𝑅2

)
(𝜔+

𝑝)2, 𝐾𝑟 ,𝑠 =
1

2

(
2

5
𝑚𝑟2

)
(𝜔+

𝑠 )2 (43)

are the rotational kinetic energies of the primary and secondary after release respectively, and

𝐾𝑡 , 𝑝 =
1

2
𝑀 (Δ𝑣+𝑝)2, 𝐾𝑡 ,𝑠 =

1

2
𝑚(Δ𝑣+𝑠 )2 (44)

are the corresponding translational kinetic energy. Substituting Eq. (40) and (41) into Eq. (42) yields 𝐸+ = 𝐸−, i.e., in

absence of the energy losses during detachment, the total energy of the system is conserved.

Assuming two body dynamics after release, the total energy of the system is conserved. In particular, 𝐸∞ = 𝐸+.

Since the rotational kinetic energies and self-energies of the two bodies play no role in the subsequent dynamical

evolution of the system (their value is conserved and they cannot be further exchanged into other forms of energy within

the system) let 𝐸 = 𝐸+ −𝐾+
𝑟 , 𝑝 −𝐾+

𝑟 ,𝑠 −𝑈+
𝑠𝑒𝑙 𝑓 , 𝑝 −𝑈+

𝑠𝑒𝑙 𝑓 ,𝑠 be the sum of tranlsational kinetic energy and mutual potential

upon release, which is conserved and regulates the subsequent orbital behavior of the two bodies. In particular, if 𝐸 > 0

primary and secondary will have enough energy to escape each other. Conservation of the energy 𝐸 from state + to ∞
yields:

1

2
𝑀 (Δ𝑣+𝑝)2 + 1

2
𝑚(Δ𝑣+𝑠 )2 − 𝐺

𝑀𝑚

𝐷
=

1

2
𝑀 (Δ𝑣∞𝑝 )2 + 1

2
𝑚(Δ𝑣∞𝑠 )2 (45)

where Δ𝑣∞𝑝 and Δ𝑣∞𝑠 are the velocity magnitudes or the primary and the secondary with respect to the system center-

of-mass when the two bodies are sufficiently far apart, i.e., at the the sphere of influence. The value Δ𝑣∞𝑝 represents

the effective change in velocity imparted to the primary due to the release of 𝑚, taking into account the gravitational

interaction between the two bodies within the sphere of influence. In order to solve Eq. (45) for Δ𝑣∞𝑝 , conservation of

linear momentum is invoked ∗:

Δ𝑣+𝑠 =
𝑀

𝑚
Δ𝑣+𝑝 (46)

Inserting Eq. (46), (41) and (4) into Eq. (45), after some algebraic manipulation, the magnitude of the primary hyperbolic

escape velocity can be written in non-dimensional form as:

Δ𝑣̄∞𝑝 = 𝑚̄

√
(𝜔̄+)2𝐷̄2 − 2

𝐷̄
(47)

As expected, Δ𝑣∞𝑝 is proportional to 𝑚̄, suggesting that the collection of a larger secondary mass will increase the

∗It is emphasized that Eq. (46) is relating the magnitudes of the velocities. From a vectorial point of view Δv𝑠 = −𝑀
𝑚 Δv𝑝 . Note that Eq. (46)

clearly holds also for Eqs. (41)

17



momentum exchange between the two bodies, thus contributing to a larger change in velocity of the primary. However,

a larger 𝑚̄ also implies a larger reduction of the asteroid angular velocity at release (Eq. (17)), thus reducing Δ𝑣̄∞𝑝 .

It is instructive to observe that the condition of secondary escape 𝐸 > 0 can also be expressed as a lower bound for

the angular velocity at release:

𝜔̄ >

√
2

𝐷̄3
(48)

where the superscript + has been removed from 𝜔 for simplicity. By comparing Eq. (48) and (13), it is apparent that the

condition of secondary escape 𝐸 > 0 is sufficient to guarantee positive tension of the support tether 𝜏 > 0.

Moreover, by comparing Eq. (47) with (41a), the primary hyperbolic excess velocity can be written as a function of

its release velocity:

Δ𝑣̄∞𝑝 = (Δ𝑣̄𝑝)+
(
1 − 2

𝐷̄3𝜔̄2

)
(49)

The factor 2

𝐷̄3 𝜔̄2 can be interpreted as a gravitational dragging coefficient, written as a function of the distance between

the two bodies and the angular velocity of the system at release. When 𝐷̄3𝜔̄2 = 2 (i.e., when 𝐸 > 0, see Eq. (48) )

Δ𝑣̄∞𝑝 = 0, and the secondary is inserted in bound motion around the primary.

Figure 6 shows in green the region of secondary escape (𝐸 > 0), as a function of 𝜔̄ and 𝐿̄, for 𝑚̄ = 0, 𝑚̄ = 0.01,

𝑚̄ = 0.05 and 𝑚̄ = 0.12. The orange region is associated with the secondary being inserted into a bound orbit around

the primary 𝐸 < 0. The red region represents the combination of 𝜔̄ and 𝐿̄ leading to an inverted mass flow, from

the secondary to the primary (𝐹 < 0, Eq. (8)). For larger 𝑚̄ the 𝐸 < 0 region gradually shrinks and for 𝑚̄ > 0.12

the secondary can only be released to escape. The black contour on the 𝐸 > 0 regions represents the value of the

gravitational dragging factor. The black dotted line indicates the condition for zero tension on the support tether (𝜏 = 0,

Eq. (11)). The region with 𝐹 > 0 is also characterized by a positive support tether tension 𝜏 > 0.

In the following sections, the superscript ∞ is removed and the hyperbolic excess velocity of the primary is simply

indicated indicated with Δ𝑣̄𝑝 .

A. Upper bound for Δ𝑣̄𝑝

It is instructive to observe that the velocity change of the primary Δ𝑣̄𝑝 admits a theoretical upper bound due to

energy conservation. In fact, assuming that the entire rotational kinetic energy could be converted into translational

kinetic energy:

1

2

(
2

5
𝑀0𝑅

2
0

)
𝜔2

0 =
1

2
𝑀0Δ𝑣

2
max (50)

where Δ𝑣max is the maximum Δ𝑣̄𝑝 achievable under these conditions and the term between brackets on the left hand

side is the asteroid moment inertia. Then:

Δ𝑣̄max =

√
2

5
𝜔̄0 (51)
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Fig. 6 Regions of secondary escape (green), release to bound orbit (orange) and siphon with negative force
(red), as a function of the asteroid velocity 𝜔̄ and the siphon length 𝐿̄.
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Fig. 7 CW reference frame.

For example, an asteroid with density 𝜌 = 2 g cm−3, radius 𝑅0 = 250 m and period 4 h admits a Δ𝑣̄max = 0.069 m s−1.

This theoretical upper bound will be compared with Δ𝑣𝑝 to assess the performance of the orbital siphon deflection.

B. Deflection distance

The Clohessy-Wiltshire (CW) equations [22] are used to assess the primary diversion achieved through release of the

secondary mass. Here it is assumed that the initial heliocentric orbit of the primary is circular with zero inclination. The

CW equations describe the motion of a chaser (in this case, the primary) with respect to a target reference frame (in this

case, the unperturbed position of the primary before any manipulation occurs). Let 𝑋 −𝑌 be a reference frame centered

on the target with the 𝑋-axis parallel to the Sun-asteroid direction and the 𝑌 -axis in the direction of motion (Fig. 7). Let

𝑋𝑝 , 𝑌𝑝 be the position of the primary in this frame and �𝑋𝑝 , �𝑌𝑝 its velocity. Analogous variables are defined for the

secondary, with subscript 𝑠. Then, the CW equations for the two masses upon secondary release can be written as

�𝑋𝑖 = 3𝑛2𝑋𝑖 + 2𝑛 �𝑌𝑖 + 𝑎𝑖,𝑋 , 𝑖 = 𝑝, 𝑠 (52a)

�𝑌𝑖 = −2𝑛 �𝑋𝑖 + 𝑎𝑖,𝑌 , 𝑖 = 𝑝, 𝑠 (52b)

where 𝑛 = 2𝜋/𝑇rev, being 𝑇rev the heliocentric orbit period of the asteroid, and 𝑎𝑖,𝑋 , 𝑎𝑖,𝑌 are the additional accelerations

caused by the mutual gravitational interaction between the two masses. Here, the mutual gravitational terms are

neglected and the primary is assumed to be released with the appropriate velocity magnitude at the sphere of influence

(Eq. (47)). Thereby, Eqs. (52) can be solved in closed-form to find the state of the the primary as a function of time [22].
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Using the scaling factors in Table 1:

�������������

𝑋̄𝑝 (𝑡)

𝑌𝑝 (𝑡)
�̄𝑋𝑝 (𝑡)
�̄𝑌𝑝 (𝑡)

�������������
=

�������������

4 − 3 cos 𝑛̄𝑡 0 1
𝑛̄ sin 𝑛̄𝑡 2

𝑛̄ (1 − cos 𝑛̄𝑡)

6(sin 𝑛̄𝑡 − 𝑛̄𝑡) 1 −2
𝑛̄ (1 − cos 𝑛̄𝑡) 1

𝑛̄ (4 sin 𝑛̄𝑡 − 3𝑛̄𝑡)

3𝑛̄ sin 𝑛̄𝑡 0 cos 𝑛̄𝑡 2 sin 𝑛̄𝑡

−6𝑛(1 − cos 𝑛̄𝑡) 0 −2 sin 𝑛̄𝑡 4 cos 𝑛̄𝑡 − 3

�������������

�������������

𝑋̄0, 𝑝

𝑌0, 𝑝

�̄𝑋0, 𝑝

�̄𝑌0, 𝑝

�������������
(53)

where ( 𝑋̄0, 𝑝 , 𝑌0, 𝑝 ,
�̄𝑋0, 𝑝 ,

�̄𝑌0, 𝑝) is the initial state of the primary. The parameter

√
𝑋̄𝑝 (𝑡)2 + 𝑋̄𝑠 (𝑡)2 therefore represents

the total diversion of the primary at the time 𝑡. As stated, it is assumed that
√ �̄𝑋2 + �̄𝑌2 = Δ𝑣𝑝 . As regards the direction

of the velocity vector and the position 𝑋0, 𝑝 , 𝑌0, 𝑝 it is assumed that: (i) the velocity at the sphere of influence is parallel

to the release velocity and (ii) the position vector (𝑋0, 𝑝 , 𝑌0, 𝑝) coincides with the release position. It will be shown that

the primary trajectory resulting from these approximations does not differ significantly from that obtained by numerical

integration of Eq. (52), thus making assumptions (i) and (ii) valuable approximations for this preliminary analysis.

The primary release position is therefore completely defined by the angle 𝜃 between siphon and the 𝑋-axis. Here, it

is chosen to release the secondary when 𝜃 = 0 to ensure that the direction of Δ𝑣𝑝 is parallel to the 𝑌 -axis, i.e., to the

direction orbital motion. This changes the period of the resulting orbit and therefore increases the long-term drift with

respect to the unperturbed path [10, 23]. Note that, using this model, 𝜃 = 𝜋 would lead to an equivalent diversion

trajectory, but symmetric with respect to the 𝑋-axis.

C. Diversion scenarios

Two diversion scenarios are considered: single (SR) and multiple (MR) secondary release. In the first case, a

secondary mass Δ𝑚 is collected at the secondary and released once. The secondary mass Δ𝑚 and siphon length are

selected in order to maximize the effective release velocity of the primary Δ𝑣𝑝 . In the second case a smaller Δ𝑚 (to be

chosen) is collected and released multiple times, until the siphon reaches its equilibrium (𝐹̄ = 0, Eq. (8)). The siphon

length is chosen in order to maximize the total Δ𝑣𝑝 , taken as the sum of the primary hyperbolic excess velocities at each

release. In both cases the total deflection that can be achieved in a given time window 𝑡window is calculated, for a given

asteroid initial angular velocity 𝜔̄0, siphon linear density 𝜇 and heliocentric orbital period (that defines the parameter 𝑛̄).

For a SR release scenario (see Fig. ??):

1) The time Δ𝑡 required to collect the secondary mass Δ𝑚 is computed via Eq. (34).

2) If 𝜃 ≠ 0 at the end of mass collection the system rotates by an additional phasing time 𝑡phasing, until the siphon is

aligned with the 𝑋-axis of the CW frame.

3) If Δ𝑡 + 𝑡phasing ≥ 𝑡window, the siphon cannot raise the required secondary mass within the allocated time window
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and the total displacement of the primary is zero. Similarly, if Δ𝑡 + 𝑡phasing ≤ 𝑡window the secondary mass is

released and the deflection is computed using Eq. (53).

The MR case is analogous, with steps 1 to 3 being iteratively repeated with the selected Δ𝑚, until the siphon reaches its

equilibrium (see Fig. ?? for more details).

input: 𝜔̄0, 𝑛̄, 𝜇̄

output: deflection

begin
(𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝) = (0, 0, 0, 0) ;

Δ𝑡 ← time to collect Δ𝑚 ;

if mod (𝜃, 2𝜋) ≠ 0 then
𝑡phasing ← phasing time required to reach mod (𝜃, 2𝜋) = 0;

Δ𝑡 = Δ𝑡 + 𝑡phasing;

end
if Δ𝑡 < 𝑡window then

(𝑋0, 𝑝 , 𝑌0, 𝑝 , �𝑋0, 𝑝 , �𝑌0, 𝑝) = (𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝) + (−𝑥𝑏 , 0, 0, 𝑣𝑝,∞);
(𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝) ←Eq. (53) ← (𝑋0, 𝑝 , 𝑌0, 𝑝 , �𝑋0, 𝑝 , �𝑌0, 𝑝);

end
deflection =

√
𝑋2
𝑝 + 𝑌2

𝑝;

end

Fig. 8 Single Release deflection

As an example, Figures 10 shows the deflection trajectory in the CW frame for an asteroid with 𝜔̄0 = 0.65,

𝜇̄ = 2.87 × 10−7 (this corresponds to a siphon with linear density 150 kg m−1 on an asteroid with radius 250 m) and

𝑛̄ = 2.66 × 10−4 (corresponding to an asteroid with density 𝜌 = 2000 kg m−3 with orbital period of 1 year), for a SR (a)

and MR case (b). For the SR, the total Δ𝑚̄ that maximizes the primary release velocity is Δ𝑚̄ = 0.027. In the MR case,

Δ𝑚 = 2 × 10−3 is chosen. In each case, the initial part of the secondary trajectory is included for completeness.

Figures 11 shows the difference between the diversion trajectory calculated using Eq. (53) and by numerical

integration of Eq. (52) taking into account the mutual acceleration terms. Note that the end points are very close in both

cases. The same degree of accuracy can be verified by choosing different values of 𝜔̄0, 𝜇̄ and 𝑛̄.

IV. Results
Figure 12 shows the quantity of mass that can be collected at the secondary 𝑚̄ 𝑓 , given the siphon length 𝐿̄ and

the initial angular velocity of the primary 𝜔̄0. Each region represents the states (𝑚̄ 𝑓 , 𝐿̄) that can be reached for the

indicated initial angular velocity intervals. For example, the point (𝑚̄ 𝑓 , 𝐿̄) = (0.1, 1) lies within the region 𝜔̄0 > 1,

meaning it is not possible to collect 10% of the initial asteroid mass if the primary is spinning below the critical angular

velocity (𝜔̄0 = 1). As expected, a larger initial angular velocity is needed to collect larger secondary masses. For an

asteroid spinning at its critical angular velocity, (𝜔̄0 = 1), the maximum mass fraction that can be collected at the
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input: 𝜔̄0, 𝑛̄, 𝜇̄

output: deflection

begin
doIterate = True;

(𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝) = (0, 0, 0, 0) ;

while doIterate do
𝐹end ← siphon force after collection of Δ𝑚;

if 𝐹end < 0 then
Reduce Δ𝑚 such that 𝐹end = 0;

doIterate = False;

end
Δ𝑡 ← time to collect Δ𝑚 ;

if mod (𝜃, 2𝜋) ≠ 0 then
𝑡phasing ← phasing time required to reach mod (𝜃, 2𝜋) = 0;

Δ𝑡 = Δ𝑡 + 𝑡phasing;

end
if Δ𝑡 < 𝑡window then

(𝑋0, 𝑝 , 𝑌0, 𝑝 , �𝑋0, 𝑝 , �𝑌0, 𝑝) = (𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝) + (−𝑥𝑏 , 0, 0, 𝑣𝑝,∞);
(𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝) ←Eq. (53) ← (𝑋0, 𝑝 , 𝑌0, 𝑝 , �𝑋0, 𝑝 , �𝑌0, 𝑝);

else
doIterate = False;

end
end
if Δ𝑡 < 𝑡window then

(𝑋0, 𝑝 , 𝑌0, 𝑝 , �𝑋0, 𝑝 , �𝑌0, 𝑝) = (𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝);
(𝑋𝑝 , 𝑌𝑝 , �𝑋𝑝 , �𝑌𝑝) ←Eq. (53) ← (𝑋0, 𝑝 , 𝑌0, 𝑝 , �𝑋0, 𝑝 , �𝑌0, 𝑝);

end
deflection =

√
𝑋2
𝑝 + 𝑌2

𝑝

end

Fig. 9 Multiple Release deflection
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Fig. 10 Single (a) and multiple (b) release deflection
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Fig. 11 Comparison between primary trajectory obtained using Eq. (53) (black) with respect to numerical
solution of Eq. (52) (red).

secondary is 𝑚̄ 𝑓 = 0.08, which is consistent with the results found in Ref. [15]. The minimum angular velocity required

for collecting half of the asteroid mass 𝑚̄ 𝑓 = 0.5 is approximately 1.56. Therefore, an asteroid should spin to more

than 56% of its critical angular velocity to enable separation of half of its mass using the orbital siphon. Assuming an

asteroid density of 𝜌 = 2 g cm−3 this is equivalent to a rotation period of 1.5 h.

Figure 13 shows the primary velocity change Δ𝑣̄𝑝 as a function of the released secondary mass 𝑚̄ 𝑓 and the siphon

length for 𝜔̄0 = 0.7 (a), 𝜔̄0 = 1.56 (b), in a SR release scenario. In general, a larger secondary mass (and a larger

siphon length) enables a larger Δ𝑣̄𝑝 , since the displacement between the primary and the system barycenter increases.

At the same time, however, a larger secondary mass (or longer siphon) implies a lower angular velocity of the system

𝜔̄ at the end of the siphon manipulation, thus increasing the gravitational dragging factor (see Eq. (49)). Then, the

maximum Δ𝑣̄𝑝 is a tradeoff between these two opposite effects and, in general, the siphon length required to maximize

Δ𝑣̄𝑝 does not match that required to maximize 𝑚̄ 𝑓 . For example, in the case 𝜔̄0 = 1.56, the siphon length needed to

approach the half mass separation point (𝑚̄ 𝑓 = 0.5) progressively decreases, thus increasing the gravitational dragging

effect at release and reducing Δ𝑣̄𝑝: the optimal Δ𝑣̄𝑝 is reached for a siphon length 𝐿̄ ≈ 0.5, with a total collected mass

𝑚̄ 𝑓 = 0.22.

The black and red contour show the non-dimensional time and maximum support tension respectively. Here 𝑡 is

multiplied by the factor 𝜇̄ to eliminate dependence on the siphon linear density (see Eqs (34), (11)). As expected, both

time and tension are maximized at the largest 𝑚̄ 𝑓 allowed for the given 𝜔̄0.

Figure 14 compares Δ𝑣̄𝑝 (a), time (b), total released mass (c) and final angular velocity (d) between SR and MR

(taking Δ𝑚̄ = 1 × 10−4 for MR), in the condition of max Δ𝑣̄𝑝. It is apparent that the MR scheme enables a larger

velocity change in a shorter time. This is due to the fact that, by releasing smaller masses multiple times, rather than a

single larger mass a single time, the gravitational dragging effect is reduced and, even though the total released mass is
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Fig. 14 Primary Δ𝑣̄ (a), time (b), released mass (c) and siphon length (d) as a function of the asteroid non-
dimensional angular velocity 𝜔̄0.

smaller in the MR case (Fig. 14c), the overall achievable Δ𝑣̄𝑝 is larger. Note that, in both cases, Fig. 14(b) refers to the

total time required to extract the mass shown in Fig. 14c. The blue dotted line in Fig. 14a represents Δ𝑣̄𝑚𝑎𝑥 (Eq. (51)),

i.e., the theoretical primary velocity change that would be obtained if the rotational kinetic energy of the asteroid could

be entirely converted into transitional kinetic energy. For example, at 𝜔̄0 = 1 the Δ𝑣̄𝑝 obtained by a SR siphon is only

0.11Δ𝑣̄max. This difference is due to two unavoidable limits of the proposed mechanism: the gravitational dragging at

release, and the residual angular velocity of the asteroid at the end of the manipulation process (Fig. 14d). In particular,

with a fixed length siphon, the asteroid will always retain a final non-zero rotational kinetic energy at the end of the

release process, (between 40 and 60 percent of the initial angular velocity, depending on the release scenario and the

initial angular velocity) that cannot be further exploited, since the siphon has reached its equilibrium state (𝐹̄ = 0,

Eq. (8)).
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Figure 15 illustrates the dimensional values of the primary Δ𝑣𝑝 (a), time (b), tension (c) and siphon length (d)

as a function of the asteroid initial rotation period, taking an asteroid density 𝜌 = 2 g cm−3 with radius 250 m (black

curves), and 500 m (red curves). Again, each plot refers to the condition of maximum Δ𝑣𝑝. For an asteroid with

radius 250 m, Δ𝑣𝑝 varies between 1.5 and 0.3 cm s−1 when its period ranges form 2.3 and 6 hours with the time

requirements below 8 years. Note that, from the definition of the scale factors, Δ𝑣𝑝 ∝ 𝑅0 and 𝑡 ∝ 𝑅2
0
. Therefore,

although a larger Δ𝑣𝑝 is permitted for larger asteroids, the time scale increases quadratically with the radius. Moreover,

Δ𝑣𝑝 ∝ 𝜔𝑐 ∝ √
𝜌 and 𝑡 ∝ 𝜔−1

crit ∝ 1/√𝜌, i.e., a larger asteroid density increases the Δ𝑣 of the primary while also

increasing the time requirements. Figure 15c indicates that the support tether tension can vary by several orders of

magnitude when comparing SR and MR methods. For example, an asteroid with radius 𝑅0 = 250 m requires a support

tether tension 𝜏 = O(105) N for a SR case which drops to O(103) N in a MR case. In general, 𝜏 increases with smaller

rotational periods and this becomes more noticeable for a larger asteroid radius. Note from the force scaling that

𝜏 ∝ 𝑀0𝜔
2
𝑐𝑅0 ∝ 𝜌2𝑅4

0
, hence the tension is strongly influenced by the asteroid density and its size. Figure 15d shows

that the siphon length in the MR case is slightly smaller with respect to the SR case. Moreover, in both cases, 𝐿 is

smaller than the radius of the sphere of influence (represented with a dotted line in Fig. 15d) and, in general, it can be

verified that this holds true even for larger asteroid radii. Therefore, the siphon is always within the sphere of influence

of the asteroid thus justifying the choice of neglecting the solar gravitational perturbations in this preliminary analysis.

Note that the asteroid density does not influence the siphon length required to maximize Δ𝑣̄𝑝 and, from the distance

scale factor, 𝐿 ∝ 𝑅0.

Figure 16 shows the siphon linear density required to divert an asteroid by 1 Earth radius within a time window

of 5 years (first row), 10 years (second row), 15 years (third row), as a function of the asteroid period, for a range of

asteroid radii 𝑅0 = 250 m (first column), 𝑅0 = 500 m (second column), 𝑅0 = 1000 m (third column) , for SR case (black

line) and MR case (with Δ𝑚̄ = 5 × 10−3 (red line) and Δ𝑚̄ = 1 × 10−4 (blue line)). The range of allowed 𝜇 has been

limited to 2 × 103 kg m−1, thus any scenario requiring a larger 𝜇 is not represented here. It is apparent that a MR scheme

significantly reduces the minimum 𝜇. Moreover, lower values of Δ𝑚̄ further reduce the siphon linear density. For a fixed

requirement on the total diversion, larger 𝜇 are needed in the SR case to increase the mass throughput to the secondary

and achieve the required deflection within the given time window. At the same time, however, if the collected mass

is too large, the gravitational dragging effect might reduce the overall Δ𝑣̄𝑝. This explains why the minimum 𝜇 can

significantly increase for shorter periods in the SR case. In general, lower values of siphon linear density are allowed for

smaller asteroids. It is interesting to observe that for a given time window and radius there is an upper bound on the

asteroid period at which 𝜇 → ∞. For example, it is impossible to deflect a 250 m by 1 Earth radius in 5 years if its

initial period is longer then 3 hours (not even using an hypothetical siphon with infinite linear density). Such upper

bounds on the asteroid period approaches the critical period (i.e., 2𝜋/𝜔𝑐) for smaller asteroids.

Figure 17 shows the isocurves of minimum siphon linear density to deflect an asteroid by 1 Earth radius (black)
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Fig. 15 Primary Δ𝑣̄𝑝 , time, support tether tension and siphon length as a function of the asteroid period, using
dimensional units.
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Fig. 16 Required siphon linear density to divert an asteroid by 1 Earth radius, for different asteroid radii and
time windows.
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Time window: 10 years
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Fig. 17 Isocurves for siphon linear density (black), Δ𝑣𝑝 (red) and siphon length (blue) as a function of the
asteroid radius and period, for a MR release scenario, with Δ𝑚̄ = 1 × 10−4 and asteroid density 𝜌 = 2 g cm−3.

as a function of the asteroid radius and period, combined with the isocurves of primary release velocity (red) and

siphon length (blue), for a 10 (a) and 20 (b) years deflection. Note that regions with lower 𝜇 are also characterized by a

smaller siphon length. Figure 17 clearly shows that smaller and fast rotating asteroids are preferred candidates for such

deflection method, with smaller siphon linear density and siphon length requirements.

The siphon linear density is also related to the cross section of the siphon, with larger 𝜇 being associated to larger

cross sections. In particular, the total mass of the siphon 𝜇𝐿 can be expressed as a function of the siphon cross section

𝐴 as

𝜇𝐿 = 𝐴𝐿𝜌 (54)

thus:

𝐴 =
𝜇

𝜌
(55)

Then,
√
𝐴 provides the width of the siphon, modelled as a continuous mass distribution with squared cross section. For

siphon linear density ranging from 20 to 400 kg/m,
√
𝐴 ranges from 10 cm to 45 cm. Nevertheless, a siphon modelled

as a discrete chain of payloads will clearly have a larger cross section, depending on the distance 𝜆 between consecutive

payloads. Assuming that payloads are stored within buckets of cubical shape, it can be shown that the size of the

payloads is 3
√
𝜇𝜆/𝜌, where, to avoid superposition of consecutive payloads, 𝜆 ≥

√
𝜇/𝜌. For example, taking a distance

between payloads of 𝜆 = 0.5 m, for the same range of 𝜇, the size of the payload ranges from 17 cm to 46 cm. The total

number of payloads then depends on the length of the chain.
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Table 2 Relevant dimensional parameters for the deflection of the asteroid 263976 (2009 KD5) (radius 393 m,
period 2.66 hours) by 1 Earth radius in 10 and 20 years, using a MR strategy, with Δ𝑚̄ = 1 × 10−4.

10 years 20 years

Siphon linear density [kg/m] 118 24

Total Δ𝑣𝑝 [cm/s] 1.15 0.63

Average Δ𝑣𝑠 [cm/s] 60 54

Average mass rate [kg/s] 34 8

Number of releases 214 106

Released mass % 0.0213 0.0105

Siphon length [m] 670 670

Max tension [kN] 8.4 8.4

A. Case study and discussion

Table 2 shows relevant parameter in dimensional units, referred to the MR deflection of the potentially hazardous

asteroid 263976 (2009 KD5) (radius 393 m, period 2.66 hours †) in 10 years and 20 years by 1 Earth radius, assuming

an asteroid density 𝜌 = 2 g cm−3. Figure 18 also shows the trajectory in the CW frame for the 10 years deflection case.

The siphon linear density drops by about one order of magnitude when the time windows is doubled. This implies a

reduction of both the siphon cross section and the mass rate of material being lifted on the siphon, taken as the ratio

between the total released mass and the time window. The required mass rates range from 8 to 34 kg s−1 for the scenario

presented. Such rates clearly depend upon the technology of the mining units transferring material from the surface of

the asteroid to the siphon and the physical properties of the asteroid. For example, surface irregularities, boulders or

cavities might interfere with the motion of surface rovers. Furthermore, locomotion speeds of wheeled or hopping

rovers are limited by the escape velocity of the asteroid, on the order of 17 cm s−1 for case presented. An efficient

solution to this issue, as discussed in [18] is to use a tethered network of cables fixed on the asteroid surface, acting as a

“railway” for rover locomotion. Rovers would use these tethered network to move at arbitrary speeds on the asteroid

surface and quickly move between the mining location and the siphon base. Additionally, use of multiple siphons,

anchored at different points on the asteroid equator, would significantly reduce the overall travel distance of surface

rovers, thus enabling larger mass throughputs. In any case, the required mass flow rate significantly decreases for larger

time windows or, in general, when the Δ𝑣 decreases. In cases where an asteroid has a close approach to Earth followed

by a later return, the required change in velocity needed may be orders of magnitude smaller than 1 cm s−1 [6], thus

significantly reducing the required mass flow rate.

The maximum support tether tension is 8.4 kN in both cases. A Kevlar tether (density 1.44 g cm−3, maximum tensile

strength 3.6 GPa [24]) with cross section of 1 cm2 can withstand such tension, with a total tether mass of approximately

10 kg. It must be stressed that the tether tension can vary significantly depending on the asteroid radius, period and the

†From, https://ssd.jpl.nasa.gov/sbdb.cgi, accessed on 14th May 2020
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Fig. 18 Primary trajectory for a 10 years deflection of asteroid 263976 (2009 KD5) by 1 Earth radius.

released mass Δ𝑚. Therefore a range of very different scenarios and requirements might emerge depending on the

asteroid physical characteristics.

The total released mass is approximately 2% and 1% of the asteroid initial mass for a 10 and 20 year deflection

scenario respectively. This corresponds to about 5 × 106 and 1 × 107 tonnes of material. This reaction mass is much

larger than that required by other deflection methods. However, it must be emphasized that the reaction mass is entirely

collected in situ and that is one of the main advantages of the orbital siphon deflection method.

An estimate of the size of the buckets can be made using the equations described in the previous section. For

example, assuming cubic buckets and 1 m distance between them, each cubic bucket would have a side length of

approximately 39 cm for the 10 years deflection scenario and 23 centimeters for the 20 years deflection scenario. The

mass of the buckets will depend on the selected material and the thickness of each bucket face. However, depending on

the average grain size of the asteroid material, buckets can be designed as a wire mesh thus significantly decreasing their

mass and therefore the siphon structural mass to be launched from Earth.

Typical secondary escape velocities are between 54 and 60 cm s−1, much larger than the total Δ𝑣 of the primary.

Considering the secular term only in the CW equations, the total secondary displacement in the time Δ𝑡 is 3Δ𝑣𝑠Δ𝑡.

Therefore a secondary released with escape velocity Δ𝑣𝑠 = 54 cm s−1 would be displaced by about 8 Earth radii per year.

It is therefore reasonable to assume that the secondaries will always miss Earth. More accurate analysis, taking into

account orbital eccentricity and inclination, is left for future work.
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Fig. 19 Orbital siphon not aligned with the local vertical. Also shown are the forces acting on an element of
mass of the chain and on the secondary.

V. Conclusion
Results from this preliminary analysis have demonstrated that the orbital siphon effect can be in principle exploited

to deflect an asteroid by leveraging its rotational kinetic energy.

In particular, it has been shown that better performances are achieved when the asteroid mass is released in multiple

small fractions, rather than a single release of a larger mass. This allows a reduction of the density of material being

transported on the siphon and the tether tension for a given time window and diversion distance. A smaller siphon

linear density implies a smaller siphon bulk mass and a smaller tension reduces the anchor force on the primary. The

multiple mass release scenario also enables a reduction of the overall volume of the mass collected at the top of the

siphon making the problem of handling the collected material easier. Secondly, although not directly considered here,

the repeatability offered by the multiple release scheme offers more margin in case of errors in the release direction

Typical Δ𝑣 on the order of 1 cm/s can be achieved in a time window of a decade, with siphon linear densities on

the order of 100 kg/m. Larger Δ𝑣 can be obtained for fast-rotators and larger asteroid, as they contain more rotational

kinetic energy. However, the asteroid size has a direct impact on the time requirements, i.e., larger asteroids can be

deflected by a larger Δ𝑣𝑝 but within a longer time window.

A. Siphon alignment with local vertical
The purpose of this section is to show that, if the secondary mass is large enough, it is reasonable to assume that the

siphon is aligned with the local vertical. Similar to Ref. [16], the idea is to evaluate the angular displacement of the

siphon from the local vertical (the angle 𝜃 in Fig. 19), imposing the equilibrium of the torques acting on the siphon with

respect to the anchor point on the primary, and to show that 𝜃 is small. Note that, if 𝜃 ≠ 0, the centrifugal-induced and

gravitational forces acting on the chain and on the counterweight will generate a net torque with respect to the anchor

point, due to the misalignment between the direction of those forces and the direction of the siphon (see Fig. 19). For

simplicity it is assumed that 𝑟 ≈ 0, i.e., the secondary is treated as a point mass. ‡. Also, the center-of-mass of the

‡Note that this is a conservative assumption. If 𝑟 > 0 then the distance between the secondary and the anchor further increases, thus increasing

the centrifugal-induced torque on the secondary (and also decreasing the gravitational torque in the opposite direction on the secondary), whereas the
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system is here conservatively assumed to be coincident with the center-of-mass of the primary.

Assume that the angle 𝜃 between the siphon and the local vertical is not zero, as shown in Fig. 19 (with 𝜃 > 0 in the

configuration shown). The torque caused by the centrifugal-induced force acting on the secondary with respect to the

anchor point on the primary can be written as:

𝑇 𝑠
cent = 𝑚𝜔2𝑙𝐿 sin 𝛽 (56)

where 𝑙 is the distance between the center-of-mass of the primary and the secondary whereas 𝛽 is the angle between the

segments 𝑂𝐶 and 𝐴𝐶 (see Fig. 19). Torques are considered positive when they induce a rotation in the same direction

as the asteroid rotation. Similarly, the torque caused by the gravitational force acting on the secondary can be written as:

𝑇 𝑠
grav = −𝐺𝑀

𝑙2
𝑚𝐿 sin 𝛽 (57)

The torque due to the centrifugal-induced forces acting on the chain can be found via the integral:

𝑇𝑐
cent =

∫ 𝐿

0

𝜔2
(
𝑅2 + 𝜉2 + 2𝑅𝜉 cos 𝜃

)1/2
𝜉𝜇 sin 𝛽𝑑𝜉 (58)

where 𝜉 is the distance between the differential element of mass of the siphon and the anchor point 𝐴, found using the

cosine theorem. Similarly, the torque due to the gravitational forces on the chain is given by

𝑇𝑐
grav = −

∫ 𝐿

0

𝐺𝑀

𝑅2 + 𝜉2 + 2𝑅𝜉 cos 𝜃
𝜉𝜇 sin 𝛽𝑑𝜉 (59)

where the gravitational attraction between the chain and the secondary is conservatively neglected. Finally, the torque

induced by the Coriolis forces is:

𝑇Cor = −
∫ 𝐿

0

2𝜔𝑣𝜇𝜉𝑑𝜉 (60)

with 𝑣 the radial velocity of the chain. The angle 𝛽 can be written as a function of 𝜃 using the sine theorem applied to

the triangle OAC

𝑅

sin 𝛽
=

𝑙

sin 𝜃
(61)

such that:

sin 𝛽 =
𝑅

𝑙
sin 𝜃 (62)

Coriolis torque would remain unchanged, thus increasing 𝜃𝑒𝑞 (Eq. (67))
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Using the approximation 𝜃 ≈ 0, Eq. (62) can be written as:

sin 𝛽 ≈ 𝛽 =
𝑅

𝑅 + 𝐿
𝜃 (63)

where

𝑙 ≈ 𝑅 + 𝐿 (64)

Also, it is assumed that the siphon radial velocity for 𝜃 ≈ 0 is that given by Eq. (29) (the transitory effect is here

conservatively not taken into account, hence the radial velocity is taken at its maximum value, which is the steady state

𝑣 =
√
𝐹/𝜇). Substituting Eqs. (64) and (63) into Eqs. (56), (57),(58), (59), (60) and further simplifying yields:

𝑇 𝑠
cent = 𝑚𝜔2𝐿𝑅𝜃 (65a)

𝑇 𝑠
grav = − 𝐺𝑀

(𝑅 + 𝐿)3
𝑚𝑅𝐿𝜃 (65b)

𝑇𝑐
cent =

1

6
𝜔2 𝑅𝐿

2 (2𝐿 + 3𝑅)
𝑅 + 𝐿

𝜇𝜃 (65c)

𝑇𝑐
grav = −𝐺𝑀

(
ln
𝐿 + 𝑅

𝑅
− 𝐿

𝐿 + 𝑅

)
𝑅

𝐿 + 𝑅
𝜇𝜃 (65d)

𝑇Cor = −𝜔𝑣𝐿2𝜇 (65e)

Under static conditions, the sum of all the toques with respect to the anchor point is zero:

𝑇 𝑠
cent + 𝑇 𝑠

grav + 𝑇𝑐
cent + 𝑇𝑐

grav + 𝑇Cor = 0 (66)

Then, solving Eq. (66) for 𝜃 and further simplifying yields §:

𝜃𝑒𝑞 =

𝑣̄

𝜔̄𝑚∗

1 − 1

𝜔̄(1 + 𝐿̄)3
+ 1

6

3 + 2𝐿̄

1 + 𝐿̄

1

𝑚∗ −
(
ln(1 + 𝐿̄) − 𝐿̄

1 + 𝐿̄

)
1

(1 + 𝐿̄) 𝐿̄2

1

𝜔̄2𝑚∗

(67)

The angle 𝜃𝑒𝑞 therefore represents the siphon angle 𝜃 at which all torques acting on the chain with respect to the anchor

point are balanced. Note that 𝜃𝑒𝑞 can be expressed as a function of the asteroid non-dimensional angular velocity 𝜔̄,

the siphon non-dimensional length 𝐿̄ and 𝑚∗ = 𝑚/(𝜇𝐿) which is the mass of the secondary scaled with respect to the

mass of the siphon ¶. Figure 20 shows the equilibrium angle for a range of siphon lengths and angular velocities, and

for 𝑚∗ = 50 (a) and 𝑚∗ = 100 (b). It is apparent that the equilibrium angle is on the order of 1 deg and, as expected,

it decreases for a larger secondary mass. For example, for the candidate asteroid discussed in Sect. IV.A, using the

§Equation (67) can be easily obtained by dividing both sides of Eq. (66) by 𝑇 𝑠
cent and then solving for 𝜃

¶The asterisk superscript is used to distinguish the mass scale factor used here from the nominal mass scale factor used in the paper (Table 1).
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Fig. 20 Equilibrium angle 𝜃𝑒𝑞 as a function of the non-dimensional siphon length 𝐿̄ and the non-dimensional
asteroid angular velocity 𝜔̄, for two different values of the secondary mass scaled with respect to the mass of the
siphon (𝑚∗). The black cross represents the case for the candidate asteroid discussed in Sect. IV.A.

optimal siphon length for the primary deflection reported in Table 2, 𝜃𝑒𝑞 = 1.85 deg for 𝑚∗ = 50 and 𝜃𝑒𝑞 = 0.92 deg for

𝑚∗ = 100. Note that, if 𝑚∗ is large then 𝑇𝑐
cent and 𝑇𝑐

grav become negligible with respect to the other terms and Eq. (67)

admits the approximation

𝜃𝑒𝑞 ≈ 𝑣̄

𝑚∗
1

𝜔̄ − 1

(1 + 𝐿̄)3

(68)

and so 𝜃𝑒𝑞 ∝ 1/𝑚∗. Therefore, for a large secondary mass, the equilibrium angle is well approximated by parameters

depending only on 𝑇 𝑠
cent, 𝑇

𝑠
grav and 𝑇Cor. To justify the assumption of alignment between the siphon and the local vertical

it can therefore be assumed that part of the secondary mass is not used as reaction mass for the asteroid deflection but its

retained on the secondary as counterweight mass, such that the centrifugal-induced torque acting on the secondary is

always large enough to counteract the Coriolis torque due to the siphon effect.
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