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SUMMARY

Metal-organic frameworks (MOFs) have been proposed as biocom-
patible candidates for the targeted intracellular delivery of chemo-
therapeutic payloads, but the site of drug loading and subsequent
effect on intracellular release is often overlooked. Here, we analyze
doxorubicin delivery to cancer cells by MIL-101(Cr) and UiO-66 in
real time. Having experimentally and computationally verified
that doxorubicin is pore loaded in MIL-101(Cr) and surface loaded
on UiO-66, different time-dependent cytotoxicity profiles are
observed by real-time cell analysis and confocal microscopy. The
attenuated release of aggregated doxorubicin from the surface of
Dox@UiO-66 results in a 12 to 16 h induction of cytotoxicity, while
rapid release of pore-dispersed doxorubicin from Dox@MIL-
101(Cr) leads to significantly higher intranuclear localization and
rapid cell death. In verifying real-time cell analysis as a versatile
tool to assess biocompatibility and drug delivery, we show that
the localization of drugs in (or on) MOF nanoparticles controls deliv-
ery profiles and is key to understanding in vitro modes of action.

INTRODUCTION

Metal-organic frameworks (MOFs), coordinationnetworks ofmetal ionsor clusters linked

by organic ligands into potentially porousmaterials, are being investigated increasingly

aspotential drugdelivery systems (DDSs).1–6Theability tocontrol particle size,7–9 surface

chemistry,10 and internal porosity11,12 has led to increasingly complex MOF-based ma-

terials. These have been designed to target specific cells13 and organelles,14 transport

large specialized cargo such as oligonucleotides and proteins,15–19 release these in

response to specific stimuli,20,21 and combine drug delivery with other techniques

such as imaging22–26 or photodynamic therapy.27,28 Despite this diversification of mate-

rial, the process of postsynthetic drug loading itself is often undercharacterized; cargo is

often simply assumed to penetrate the porosity of the MOF despite potential competi-

tion from loading solvents.Additionally, bindingcargo to theexternal surfaceofparticles

is already an established strategy for the delivery of larger molecules.15 Typically, the

cytotoxicity and efficacy of drug delivery are monitored in vitro by endpoint assays, in

which a parameter, typically cell proliferation, is measured after incubation of the DDS

with cells for a particular time, therefore only capturing a snapshot of data at a single

timepoint.While theseassays canbecarriedoutoverdiffering timescales, this consumes

time andadditionalmaterials, andbynecessity each timepoint is collectedonadifferent

cell population.We showhere that real-time cell analysis (RTCA) can be applied not only

to assess the real-time biocompatibility of MOFs29,30 but also to monitor the cellular

response to drug delivery. The potential of the technique is demonstrated by
Cell Reports Physical Science 1, 100254, November 18, 2020 ª 2020 The Author(s).
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discriminating between differing mechanisms of intracellular doxorubicin (Dox) release

from two benchmark MOF DDSs, and in doing so, uncovering a potential candidate

for controlled, enhanced Dox delivery over a number of hours.

Dox is widely used in studies involving novel DDSs, as it has strong absorption (ε�104

Lmol�1cm�1 at lmax = 480 nm) and emission (lem �600 nm, F �10% over a range of

excitation wavelengths),31 allowing spectroscopic assessment of loading, release,

and intracellular accumulation, and it displays significant anticancer cytotoxicity. It

is widely used in the clinic, with liposomal formulations such as Doxil (recognized

as the first example of nanoparticulate drug delivery)32 and Myocet33 used against

breast cancer, for example. There are a significant number of studies describing

the delivery of Dox by a diverse range of MOFs—it is likely the most commonly

used drug molecule in this area—and it has allowed exemplification of strategies

such as targeted tumor uptake,34,35 stimuli-responsive release,36,37 multimodal

treatments,38,39 and theranostics.40,41 A large number of these reports focus on

the delivery of Dox from nanoparticles and composites of ZIF-8,34,38,39,42–50 in which

tetrahedral Zn2+ centers connect 2-methylimidazolate linkers into a sod net,51 and

UiO-66,34,35,52–54 in which Zr6O4(OH)4(RCO2)12 secondary building units (SBUs) con-

nect 1,4-benzenedicarboxylate (BDC) linkers into a fcu net.55 In both cases, the small

pore apertures—3.4 Å for ZIF-8 (up to 12.0 Å when flexibility56,57 is taken into ac-

count) and 6.0 Å for UiO-66—seemingly preclude penetration of the Dox molecule,

which has amaximumdiameter of 15.4 Å,58 into the porosity of theMOF.While some

reports describe in situ encapsulation of Dox during the synthesis of these smaller-

pore MOFs,38,39,42,43 the size disparity suggests it would be bound on external par-

ticle surfaces if loaded postsynthetically, which should modify release mechanisms.

The localization of Dox on MOF nanoparticle surfaces would also have a significant

impact on external surface modifications, which are often used to induce targeting

or stimuli-responsive release mechanisms, but this is rarely discussed.35,49,50

In this study, we probe Dox (in the form of doxorubicin hydrochloride) loading and

release using UiO-66, which has been studied intensely for drug delivery,59 as a small-

pore MOF (ZIF-8 has been shown to have poor stability to pH < 760 and in certain bio-

logical buffers61,62) and MIL-101(Cr), in which BDC linkers connect trimeric

Cr3O(RCO2)6(H2O)2X (X=amonoanion)SBUs into themtn topologywithporeapertures

of 12.0, 14.7, and16.0 Å indiameter,63 asa large-poreMOF.Therearea small numberof

studies intoDoxuptakeanddeliverybyMIL-101(Fe)andderivatives,34,64–66oneofwhich

is clearly indicative of pore loading,67 but none intoMIL-101(Cr). While there is a stigma

regarding cytotoxicity associated with Cr, it is thought to be at the very least a nutrition-

ally or pharmacologically beneficial factor or even an essential nutrient,68 and a small

number of in vitro30,69,70 and in vivo71 studies onMIL-101(Cr) suggest good biocompat-

ibility. Combined with its renowned chemical stability, which will preserve pore struc-

ture, it is an excellent candidate for these mechanistic studies. Using these two MOFs

asDDSs,weshowthatRTCAcandiscriminatebetween thediffering releasemechanisms

that result from contrasting Dox loading locations (external surface versus internal

porosity), revealing Dox@MIL-101(Cr) as a potential controlled release chemothera-

peutic andhighlighting theneed formultiple complementary in vitroexperiments rather

than endpoint assays in the development of novel DDSs.
RESULTS AND DISCUSSION

MIL-101(Cr) and UiO-66 Nanoparticles’ Biocompatibility Assessment

UiO-66 andMIL-101(Cr) were obtained (Supplemental Experimental Procedures and

Figures S1–S6) as crystalline nanoparticles after minor alterations to established
2 Cell Reports Physical Science 1, 100254, November 18, 2020
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literature procedures.63,72 The MOFs were highly crystalline and thermally stable

(Figure S1), while size and external surface morphology characterization indicated

that both MOFs were nanoparticulate (Figure S4). After synthesis and characteriza-

tion, the biocompatibility of the bare MOF nanomaterials was studied in vitro using

three established experimental cell cultures comprising healthy primary human

dermal fibroblasts (HDFs), immortalized human embryonic kidney (HEK-293) cells,

and human breast adenocarcinoma (MCF-7) cells (Table S1 and Figures S7 and S8).

Initially, RTCA was used to investigate MOF biocompatibility using the xCELLigence

RTCA instrument and E-Plate VIEW 96-well plates. These 96-well electronic microtiter

plates are covered with gold microelectrodes at the bottom of the wells, which allow

an electrical signal, generated by the instrument, to pass through the electrodes. The

presence of adherent cells at the bottom of the wells impedes the electrical signal; the

higher the electrical impedance, the more cells are present. Noninvasive electrical

impedance monitoring allows quantification of an instrument-generated cell index

parameter, which reflects the surface area of the bottom of the well that is covered by

cells and essentially the relative number of cells present. The cellswere seeded inE-Plate

VIEW 96-well plates, incubated at 37�C for 24 h, and the MOF nanoparticles were then

administered as a suspension in complete cell culture media in a series of increasing

doses (1, 10, and 50 mg mL�1). The cells were incubated in the presence of MOFs at

37�C,andcell proliferation, cell loss, cytostatic effects,morphologychanges, andattach-

ment quality following MOF addition were measured label-free and in real time for

3 days. Control experiments showed that the MOFs themselves did not interfere with

the impedance measurements (Figure S7).

Examples of the real-time data collected for HDF growth are given in Figure 1A (MIL-

101(Cr)) and Figure 1B (UiO-66). Rather than compare individual cell growth plots, the

RTCA data from these experiments and analogs using MCF-7 and HEK-293 cells (see

Supplemental Information for RTCA traces) are interpreted using slope analysis from

24 to 96 h, to quantify cell proliferative capacity following MOF administration as a

biocompatibility measure (Figures 1C–1E). Following MIL-101(Cr) administration, cell

growth was found to be significantly inhibited only when the highest dose was adminis-

tered inHDFs, andnot at all inHEK-293orMCF-7 cells. The cell growth ratematched that

of the controls for all of the concentrations tested in HEK-293 andMCF-7 cells, suggest-

ing that MIL-101(Cr) is not cytotoxic against these cell lines. For the HDF cells, MIL-

101(Cr) did not affect proliferation when 1 and 10 mg mL�1 were administered, and

cell growth was not significantly different from the untreated controls (Figure 1C). How-

ever, aMIL-101(Cr) concentration of 50 mgmL�1 had a slightly negative effect on the cell

index.

Treatment of HDFs with UiO-66 nanoparticles did not cause any adverse effect at 1 mg

mL�1, but treatment with higher doses (10 and 50 mgmL�1) resulted in a statistically sig-

nificant decrease in cell proliferative capacity. Interestingly, in HEK-293 cells, the cell in-

dex was found to be increased after 1 and 10 mg mL�1 MIL-101(Cr) were administered

and a significant increase in cell growth rate was calculated (Figure 1D). This was also

observed in MCF-7 cells, following the addition of 1 mg mL�1 UiO-66 (Figure 1E). We

believe this observation, however, is not due to the increased cell number, but is the

result of changes in cell morphology, as we elucidate later in this study through flow cy-

tometry experiments. More specifically, the size of these cells increases when nanopar-

ticles are internalized and thus impede the electrical signal at a higher rate.

To compare RTCA with an endpoint assay and to study the effect of MOF adminis-

tration on the metabolic activity of the three different cell lines, the Alamar blue
Cell Reports Physical Science 1, 100254, November 18, 2020 3



Figure 1. Biocompatibility Assessment of MOFs

(A and B) Real-time cell analysis (RTCA) screening of (A) MIL-101(Cr) and (B) UiO-66 in HDFs. Cells were seeded at 0 h and MOFs were administered at

24 h. Cell growth was then monitored until 96 h. The data are presented as means G SDs (n = 6).

(C–E) The cell proliferative capacity was assessed by slope analysis of RTCA data from 24 to 96 h for (C) HDF, (D) HEK-293, and (E) MCF-7 cells. The data

are presented as means G SEMs. One-way ANOVA with Dunnett’s test (n = 3).

(F–H) Direct comparison with cell metabolic activity, evaluated with Alamar blue assay, for (F) HDF, (G) HEK-293, and (H) MCF-7 cells, 72 h post-MOFs

administration. Data are presented as means G SEMs; One-way ANOVA with Dunnett’s test (n = 3).

*p % 0.05, **p % 0.01, ***p % 0.001, and ****p % 0.0001.
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assay was used (Figures 1F–1H). This assay is very similar to the widely used MTT/

MTS assays, as it is based on the NAD(P)H-dependent metabolism of a reagent to

generate a spectroscopic reporter; however, it is fluorescence based, whereas

MTT/MTS assays are colorimetric, therefore precluding the possibility of interfer-

ence by absorption from sedimented MOF particles. MIL-101(Cr) did not inhibit

the metabolic activity of any of the 3 cell lines tested, while UiO-66 showed a statis-

tically significant reduction in metabolic activity inMCF-7 cells when the highest con-

centration (50 mg mL�1) was administered (Figure 1H). In general, there was good

correlation in biocompatibility between RTCA and the Alamar blue measurements

for HEK-293 (Figures 1D and 1G) and MCF-7 cells (Figures 1E and 1H). In HDFs,
4 Cell Reports Physical Science 1, 100254, November 18, 2020
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however, the RTCA and subsequent slope analysis (Figure 1C) demonstrated some

negative MOF-associated effects on cell growth that the Alamar blue assay (Fig-

ure 1F) failed to report. The metabolic assay did not show any significant adverse ef-

fects following MOF treatment, whereas the more sensitive RTCA indicated signifi-

cant disturbances in cell growth. Overall, the results are broadly comparable,

showing that MIL-101(Cr) seems to be better tolerated across the cell lines than

UiO-66 under these conditions, and confirming that doses of 1 mg mL�1 (UiO-66)

and 10 mg mL�1 (MIL-101(Cr)) are suitable for further drug delivery experiments.

They do, however, highlight the power and sensitivity of RTCA in assessing biocom-

patibility, validating its efficacy, and confirm thatmultiple techniques should be used

to assess in vitro cytotoxicity of nanomaterials rather than standard, single-point

assays.

MOFs Are Internalized by Cells and Enhance the Delivery of Calcein

The internalization of MOFs by HEK-293 and MCF-7 cells was investigated by flow

cytometry, 24 and 72 h post-administration, using samples that had been calcein

(Cal) stained using established protocols73,74 (Figures S9–S12; Tables S2 and S3).

Both Cal@UiO-66 (4.8 wt% calcein loading) and Cal@MIL-101(Cr) (6.7 wt% calcein

loading) were internalized by both cell types and with dose dependence, which is

indicative of successful MOF internalization (Figure S13). In HEK-293 cells, higher

levels of internalization were observed after 24 h of treatment compared to 72 h (Fig-

ures 2A and 2B), indicating that either the MOFs or their calcein cargo are being

externalized over time, an effect that suggests the potential of the low bio-

accumulation of MOFs in healthy tissue. In MCF-7 cells, higher internalization levels

were observed after 72 h of treatment. This was attributed to the enhanced meta-

bolism of cancer cells, an observation that makes MOFs very promising candidates

for use in drug delivery, as higher cargo (i.e., drug) concentrations can be internal-

ized over time (Figures 2C and 2D). In general, both calcein-loaded MOFs resulted

in higher cargo internalization compared to the free calcein molecule; improved

cargo internalization is essential in drug delivery, as lower drug doses can be

used, minimizing unwanted side effects and off-target toxicity. Cal@MIL-101(Cr)

outperformed Cal@UiO-66 at concentrations >10 mg mL�1, while their calcein deliv-

ery efficiency was similar for 1 mg mL�1, and the enhanced uptake compared to free

calcein was more pronounced after 24 h, suggestive of rapid nanoparticle endocy-

tosis by different mechanisms to the free molecule.

As calcein is not toxic to the cells (confirmed by the flow cytometry experiments with

free calcein and previous work73,74) cell viability could also be determined using the

flow cytometry data, through live cell number measurements. These values correlate

well with the RTCA data and support the hypothesis that the increase in cell index

measured by the technique was due to an increase in cell size, rather than an increase

in the number of cells (Figures 2E and 2F). Following UiO-66 administration of 1 and

10 mg mL�1 in both HEK-293 and MCF-7 cells, the number of cells remained the

same as that of the controls, indicating that there was no increase in proliferation

rate, despite the apparent increase in growth rate by RTCA. In both cell lines,

50 mg mL�1 UiO-66 caused a significant reduction in cell viability and increase in

cell loss from as early as 24 h post-treatment. The cell cultures did not recover fully,

and this effect was still observable after 72 h (Figures 2E and 2F). MIL-101(Cr), how-

ever, did not significantly affect cell viability. For both cell lines and for all of the con-

centrations that were tested, cell viability matched that of the controls at both time

points of investigation. An increase in cell size as a result of MOF internalization was

again observed with RTCA in these two cell types following MIL-101(Cr) administra-

tion, but this did not produce statistically significant changes in the overall cell
Cell Reports Physical Science 1, 100254, November 18, 2020 5



Figure 2. Cal@MIL-101(Cr) and Cal@UiO-66 Are Internalized by Cells and Enhance the Delivery of Calcein

(A–D) Flow cytometry of free calcein versus Cal@MOF in HEK-293 cells, for (A) Cal@MIL-101(Cr) and (B) Cal@UiO-66, and in MCF-7 cells, for (C) Cal@MIL-

101(Cr) and (D) Cal@UiO-66, measured 24 and 72 h post-administration. The concentration that was used for free calcein corresponds to the amount of

calcein loaded in Cal@MIL-101(Cr) and Cal@UiO-66, respectively. The data are presented as means G SEMs; 1-way ANOVA with Sidak’s test (n = 3).

(E and F) Cell viability assessed with flow cytometry in (E) HEK-293 and (F) MCF-7 cells, 24 and 72 h post-MOF administration with Cal@MIL-101(Cr) and

Cal@UiO-66. The data are presented as means G SEMs; 1-way ANOVA with Dunnett’s test (n = 3).

*p % 0.05, **p % 0.01, ***p % 0.001, and ****p % 0.0001.
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growth rate calculation (Figures 1D and 1E). Overall, the flow cytometry data at these

two time points correlate well with the RTCA data, further validating its use for as-

sessing biocompatibility.

Dox Loading in UiO-66 and MIL-101(Cr)

After the biocompatibility, internalization, and efficacy of cargo delivery by MIL-

101(Cr) and UiO-66 were studied, their drug delivery potential and modes of action

were tested. Dox was chosen as the chemotherapeutic agent, due to its clinical use

against a broad spectrum of cancers, and it is also one of the few anticancer drugs

currently administered as part of a DDS.32,33 Both MOFs were postsynthetically

loaded with Dox by immersion in a solution in Tris-buffered saline, to yield Dox@-

MIL-101(Cr) and Dox@UiO-66 (Figures S14–S20; Tables S4–S8). Successful drug

loading was indicated by a change in nanoparticle color, from white to red for

UiO-66 and from green to red for MIL-101(Cr) (Figure S14). Although some minor

peak broadening was observed in the powder X-ray diffraction (PXRD) patterns for

both MOFs, no extra peaks were observed, confirming that Dox did not co-crystal-

lize with the MOF nanoparticles (Figures 3A and 3B).

The Dox loading for each MOF was calculated by ultraviolet-visible light (UV-vis)

spectroscopic analysis of supernatants, and the drug-loading capacity of the
6 Cell Reports Physical Science 1, 100254, November 18, 2020



Figure 3. Characterization of Dox@MOF Nanoparticles

(A and B) PXRD patterns of (A) UiO-66 and (B) MIL-101(Cr) MOF nanoparticles, before and after Dox loading.

(C) N2 adsorption isotherm (77 K) of UiO-66 and Dox@UiO-66.

(D) Pore size distribution plots taken from these isotherms, with a scaled-up trace for Dox@UiO-66 given as an inset (carbon, slit pore, quenched solid

density functional theory [QSDFT], equilibrium calculation model).

(E) N2 adsorption isotherm (77 K) of MIL-101(Cr) and Dox@MIL-101(Cr).

(F) Pore size distribution plots taken from these isotherms (N2@77 carbon cylinder pores, multi-wall nanotube [MWNT], non-local DFT [NLDFT]

calculation model).

(G–J) SEM images of (G) UiO-66, (H) Dox@UiO-66, (I) MIL-101(Cr), and (J) Dox@MIL-101(Cr). Scale bars represent 500 nm.
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materials was calculated based on grams of drug per grams of drug-loaded material

(wt%). This was calculated at 58 wt% for UiO-66 and 10 wt% for MIL-101(Cr), and the

difference in loading values clearly indicates different loading mechanisms. The

value for MIL-101(Cr) is commensurate with previous work on MIL-101(Fe) and deriv-

atives (11–13 wt%),64,65 while similar very high Dox-loading values have also been

reported for UiO-66,52 even on samples with previously modified external sur-

faces.35 By thermogravimetric analysis (TGA) analysis, an increase in the organic con-

tent was obvious in both cases, indicative of successful drug loading (Figure S16).

For Dox@UiO-66, thermal degradation was observed at a lower temperature than

the non-loaded MOF, a general trend that has been observed for surface function-

alized MOFs.72,75 It is hypothesized that, due to the added organic functionality at

the external surface having a lower thermal stability, combustion is initiated at a

lower temperature, and that triggers earlier thermal decomposition of the material

as a whole. For Dox@MIL-101(Cr) however, thermal decomposition began almost

at the same stage as MIL-101(Cr), but the overall MOF degradation occurred at a
Cell Reports Physical Science 1, 100254, November 18, 2020 7
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slightly higher temperature. We hypothesize that this observation is indicative of

different modes of Dox loading across the two MOFs; MIL-101(Cr) has large enough

pores to accommodate the Dox cargo, and having loaded pores could contribute

extra thermal stability to the structure.

To further understand the drug-loading mechanism in each instance, the Brunauer-

Emmett-Teller (BET) surface area of the drug-loaded materials was measured from

N2 adsorption isotherms at 77 K and compared against their non-loaded counter-

parts. In the case of Dox@UiO-66, the BET surface area showed a dramatic

decrease from 1,324 m2 g�1 for the empty nanoparticles to 95 m2 g�1 for the

drug-loaded MOFs (Figure 3C). Bearing in mind that 58 wt% of the Dox@UiO-66

is non-porous Dox, and therefore a significant decrease in gravimetric surface

area would be expected in any case, it is clear that the majority of the porosity

is blocked by the accumulation of Dox on the external surface of UiO-66; pore

loading to this extent would completely remove any residual porosity. This was

further validated by examination of the pore size distribution plot (Figure 3D).

The average primary pore diameter for the unloaded material was 13 Å and for

the secondary pore it was �9 Å, correlating well with the theoretical values of

11 and 8 Å, respectively. For Dox@UiO-66, however, while the experimental

pore size volume of this material was essentially zero, a small trace with similar

pore dimensions could be observed, suggestive of blocking access to the majority

of pores rather than modifying their geometry through occupation and further vali-

dating that Dox molecules have blocked the porosity of UiO-66 by covering its

external surface. For MIL-101(Cr), a decrease in its BET surface area from 3,041

to 623 m2 g�1 was observed after drug loading (Figure 3E). The fact that a signif-

icant proportion of the internal porosity is still accessible after drug loading sug-

gests that, for Dox@MIL-101(Cr), Dox did not completely cover the external sur-

face of the nanoparticles and block pore access, but penetrated the porosity

without completely filling it, although some external surface deposition cannot

be ruled out. This correlates with the TGA observations, and is further confirmed

by the pore size distribution graph of Dox@MIL-101(Cr), where the main peak at

26 Å (representative of the 25 Å pore) in the bimodal distribution disappears

and smaller residual peaks appear (Figure 3F), again suggestive of Dox localization

within the pores.

A difference in drug-loading mode between the two materials is suggested by the

physical characterization data and is also evident by scanning electron microscopy

(SEM). The octahedral morphology of UiO-66 (Figure 3G) changes dramatically on

loading, with Dox forming visible layers on the external surfaces of the UiO-66 nano-

particles (Figure 3H). For MIL-101(Cr), the MOF morphology (Figure 3I) was main-

tained on the formation of Dox@MIL-101(Cr), with Dox being mostly encapsulated

inside the pores and not notably visible on the external surface of the material (Fig-

ure 3J). This is a plausible physicochemical characteristic for such MOFs, as the Dox

molecule is too large (maximum diameter 15 Å)58 to fit the pores of UiO-66 (pore

window 6 Å). Therefore, any attachment to the nanoparticles occurs on their external

surfaces, but can penetrate MIL-101(Cr), whose largest pore window is 16.0 Å in

diameter, and thus Dox internalization is possible. In addition, the high affinity of

Dox for the surface of UiO-66 could be a consequence of electrostatic interactions

between the negatively charged surface of UiO-66, as confirmed by zeta potential

measurement (Figure S6), and a cargo that would be expected to have residual pro-

tonation at neutral pH. In contrast, MIL-101(Cr) was measured to have a positive sur-

face potential. We hypothesize that this major difference in drug-loading modes
8 Cell Reports Physical Science 1, 100254, November 18, 2020
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could result in different drug delivery and cytotoxic efficiency mechanisms between

the two systems.

To validate our hypothesis, we used grand canonical Monte Carlo (GCMC) simula-

tions to investigate Dox loading (see Supplemental Experimental Procedures).76

When exploring Dox loading in a UiO-66 model devoid of crystalline defects

and completely activated, we observed zero uptake as a consequence of the

size mismatch between the adsorbate and the pore cavities (i.e., Dox molecules

do not fit inside the microporosity of UiO-66). Importantly, a GCMC simulation

cannot distinguish between open and closed porosity since the molecules are in-

serted inside the pores and do not need to be transported, unlike in experiments,

though the pore windows. This observation strongly suggests that the loading

must occur through adsorption on the external surface of the UiO-66 particles.

In contrast, simulations on MIL-101(Cr) yielded a theoretical maximum loading of

1.16 g of Dox per 1 g MOF, which is �10 times higher than what we observed

experimentally, confirming that the pore adsorption of Dox is possible in MIL-

101(Cr). It should be noted that, when running these simulations, we did not

take into account competing solvents. Although previous simulations showed

that not including the solvent in similar systems had a negligible effect,76,77 this

could explain why experimental loading values are lower than the theoretical

maximum. In any case, it is also noteworthy that the Dox theoretical maximum

loading only occupies 58% of the available pore volume in MIL-101(Cr) due to inef-

ficient packing of the rigid Dox molecule. This suggests that, in Dox@MIL-101(Cr),

only 5.3% of the total pore volume is occupied, explaining the sizeable remaining

porosity observed in its N2 adsorption isotherm. These simulations clearly support

the hypothesis of external surface loading in Dox@UiO-66 and pore loading in

Dox@MIL-101(Cr).

Delivery Profiles of Dox@MIL-101(Cr) and Dox@UiO-66

For the drug delivery evaluation experiments, the highest completely non-toxic con-

centration of each MOF was used, 1 and 10 mg mL�1 for UiO-66 and MIL-101(Cr),

respectively. This entailed concentrations of 2.38 mg mL�1 Dox@UiO-66 and

11.1 mg mL�1 Dox@MIL-101(Cr) being used. In a similar manner, the concentrations

of equivalent amounts of free Dox were calculated to be 1.38 mgmL�1 for Dox@UiO-

66 and 1.1 mg mL�1 for Dox@MIL-101(Cr). Therefore, due to the significantly lower

drug-loading capacity of Dox@MIL-101(Cr) compared to Dox@UiO-66, both sys-

tems could essentially transfer a similar amount of Dox to the cells at these concen-

trations. To identify the mode of action of the different DDSs, the effect of Dox@-

MOFs administration over time was monitored by RTCA for 72 h in 3 different

cancer cell lines, comprising MCF-7, HepG2, and human ovarian carcinoma

(A2780ADR) (see Supplemental Experimental Procedures).

The administration of free Dox inhibited cell growth quickly, at �4–12 h after addi-

tion depending on cell line, and killed all the cells present in the cultures (Figure 4).

Dox@MIL-101(Cr) treatment, in comparison to free Dox, exhibited a small delay of

10–16 h before cytotoxicity was observed (Figures 4A–4C). After an immediate

decrease in the cell index due to the agitation of the well plates upon the addition

of material, which occurs in all of the experiments, an initial small increase in the

cell index following Dox@MIL-101(Cr) administration was observed, which closely

matched that of the empty MIL-101(Cr) control. This can be attributed to cells inter-

nalizing the drug-loaded nanoparticles and causing an increase in cell size, as well as

uninhibited cell growth before Dox release. Hence, the observed delay in cytotox-

icity is explained by the necessity for the release of the Dox cargo inside the cells
Cell Reports Physical Science 1, 100254, November 18, 2020 9



Figure 4. Dox@MIL-101(Cr) and Dox@UiO-66 Are Therapeutically Efficacious and Have Different Dox Delivery Profiles

(A–C) RTCA of 3 cancer cell lines treated with empty MIL-101(Cr), Dox@MIL-101(Cr), and free Dox. The cancer cell lines were allowed to grow for 24 h

after the initial cell seeding at time point 0. Treatment administration took place at 24 h. The data are presented as means G SDs (n = 6).

(D–F) RTCA of 3 cancer cell lines treated with empty UiO-66, Dox@UiO-66, and free Dox. The cancer cell lines were allowed to grow for 24 h after the

initial cell seeding at time point 0. Treatment administration took place at 24 h. The data are presented as means G SDs (n = 6).
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and the subsequent delay in its transfer into the cell nucleus, where Dox is active.

Nevertheless, once sufficient amounts of the Dox reached the cell nucleus, cell death

ensued and the cell index quickly returned to a profile aligned with that of free Dox,

or below it.

In contrast, Dox@UiO-66 demonstrated a significantly longer delay in mediating

cytotoxicity in all of the cancer cell lines tested (Figures 4D–4F), compared to both

free Dox and Dox@MIL-101(Cr). After the addition of Dox@UiO-66, the cell index

continued to increase for 14–20 h, depending on the cell line, similar to the controls.

This increased uninhibited cell growth period could be attributed to a slower release

rate of Dox. The initial cell growth was eventually followed by inhibition, a subse-

quent cytotoxicity-associated decrease in cell index, and finally, cell death. The

cell index profiles returned to track those of free Dox after �36 h incubation for

MCF-7 (Figures 4A and 4D) and A2780ADR (Figures 4B and 4E) cells, and after

�24 h incubation for HepG2 cells (Figures 4C and 4F). It is notable that the difference

in cytotoxicity onset time between the two Dox-loaded MOFs is less significant for

HepG2 cells, but still apparent, and both drug-loaded MOFs induce cytotoxicity

faster overall compared to free Dox. Complete cell death takes �24–26 h for Dox@-

MIL-101(Cr) and 34–36 h for Dox@UiO-66. Single-point assays are typically

measured 24 and 72 h after incubation with DDSs; it is, therefore, worthwhile to

note that, in this case, assays after 24 h of incubation would suggest some cell-
10 Cell Reports Physical Science 1, 100254, November 18, 2020
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specific selectivity in anticancer efficacy for Dox@UiO-66, despite this not being true

overall, and if assessing cytotoxicity after 72 h this difference in behavior between

Dox@UiO-66 and Dox@MIL-101(Cr) would not have been apparent. Nevertheless,

both materials were therapeutically efficacious in facilitating cancer drug delivery

and cytotoxicity toward cancer cells.

Since both materials are very efficiently internalized by cells (Figure 2), their different

time-dependent cytotoxicities could be attributed to different Dox release mecha-

nisms. The apparent faster drug release from Dox@MIL-101(Cr) compared to Dox@-

UiO-66 is likely a consequence of the different mode of drug loading in each system.

In the instance of Dox@UiO-66, Dox is deposited primarily on the outer surface of

the nanoparticles. The particles, therefore, present an external surface layer of insol-

uble, aggregated Dox, which is likely to be difficult to digest once inside the cells, as

this process would involve disassociation/dissolution of the strongly aggregated

drug molecules. For Dox@MIL-101(Cr), Dox is primarily located inside the porosity

of the framework and presumably well dispersed, as it only takes up a small fraction

of the pore volume,making its release easier and faster, either through desorption or

intracellular digestion of the MOF. To test this hypothesis, we used time-dependent

confocal microscopy to monitor the intracellular release and subsequent nuclear

localization of Dox from Dox@MIL-101(Cr) and Dox@UiO-66 in MCF-7 cells.

Dox@MIL-101(Cr) Enhances Delivery and Subsequent Release of Dox inMCF-7

Cells

Quantification of the intracellular and intranuclear fluorescence intensity of Dox by

confocal microscopy (see Supplemental Experimental Procedures), following

administration in MCF-7 cells as a free agent or as part of the MIL-101(Cr) drug de-

livery system, was performed at both 4 and 8 h post-administration, as RTCA demon-

strated that significant cytotoxicity becomes apparent at �12 h after incubation. Af-

ter 4 h of treatment, the intracellular concentration of Dox was equivalent for both

the free molecule and the DDS (Figure 5A). Nuclear quantification at 4 h revealed

that intranuclear Dox was significantly higher for the free molecule, co-localizing

with the DAPI stain, while Dox@MIL-101(Cr) could be seen in both cytoplasmic

and nuclear localization. The red emission is visually more diffuse across the cell

for Dox@MIL-101(Cr) compared to free Dox, but this is not directly reflected in our

quantified data, as the intensity of Dox fluorescence only from the cytoplasm cannot

be measured with a high level of confidence by our experimental protocol. This is

consistent with Dox being held within the nanocarrier in the cell cytoplasm and

then migrating to the nucleus on release, and in keeping with a thesis of an immedi-

ate cytotoxic effect for the free drug, supporting our hypothesis that a drug-release

step delays Dox@MIL-101(Cr)-mediated cytotoxicity. At 8 h post-treatment, both

intracellular and intranuclear Dox concentrations were significantly higher for Dox@-

MIL-101(Cr), outperforming the free molecule (Figure 5B). The exceptional internal-

ization capacity of MIL-101(Cr), along with the relatively rapid intracellular Dox

release, result in higher amounts of Dox reaching the nucleus when administered

as part of the DDS compared to free molecule administration. This suggests that

lower concentrations of Dox could be used, and therefore its intrinsic off-target

toxicity could be minimized or avoided.

Dox@UiO-66 Delays the Delivery and Subsequent Release of Dox in MCF-7

Cells

As with Dox@MIL-101(Cr), quantification of the intracellular and intranuclear Dox

levels in MCF-7 cells after incubation with Dox@UiO-66 was achieved by calculation

of the fluorescence intensity of Dox after co-localization with the cytoplasmic or
Cell Reports Physical Science 1, 100254, November 18, 2020 11



Figure 5. Dox@MIL-101(Cr) Enhances the Delivery and Subsequent Release of Dox in MCF-7 Cells

Confocal microscopy and fluorescence quantification of free Dox and Dox@MIL-101(Cr) delivery in MCF-7 cells (A) 4 and (B) 8 h post-treatment

administration. The concentration that was used for free Dox corresponds to the amount of Dox loaded in Dox@UiO-66. Green: cell membrane stain,

red: Dox, blue: nuclear DAPI stain. Scale bars, 50 mm. Quantification of Dox delivery capacity through measurements of total intracellular and

intranuclear fluorescence. The data are presented as means G SDs; Student’s t test (n = 10).

*p % 0.05, **p % 0.01, ***p % 0.001, and ****p % 0.0001 (comparison between Dox and Dox@MIL-101(Cr) treatments).
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nuclear dye, respectively (see Supplemental Experimental Procedures). After 4 h,

the absolute intracellular fluorescence value of free Dox was significantly

higher when administered as a free drug compared to the DDS (Figure 6A).

However, after 12 (Figure 6B) and 24 h (Figure 6C) of treatment (times based on

the delay and onset of cytotoxicity by RTCA), there was no statistical difference in

Dox fluorescence between the free drug and Dox@UiO-66. This indicates that

prolonged incubation times yield equally potent intracellular Dox concentrations

as the free drug.

In addition, at all time points, free Dox was found primarily in the cell nucleus,

strongly co-localizing with the nuclear stain, while Dox from Dox@UiO-66 was

seen in both the nucleus and the cytoplasm of the cells, with a diffuse red emission

similar to Dox@MIL-101(Cr), and indicative of Dox being associated with the nano-

carrier in the cytoplasm before or during release. These observations suggest

that Dox@UiO-66 releases Dox slowly into the cytoplasm, notably slower than

Dox@MIL-101(Cr), further strengthening our hypothesis that the delayed cytotoxic

effects observed with RTCA are associated with the drug-release profile of the

material in question. The difference in intracellular Dox release kinetics points to

different release mechanisms for the two MOFs, which reflects the fact that

Dox is loaded in the internal porosity of Dox@MIL-101(Cr) and on the external

surface of Dox@UiO-66. Moreover, at all time points, Dox demonstrated
12 Cell Reports Physical Science 1, 100254, November 18, 2020



Figure 6. Dox@UiO-66 Delays the Delivery and Subsequent Release of Dox in MCF-7 Cells

(A–C) Confocal microscopy and fluorescence quantification of free Dox and Dox@UiO-66 delivery in MCF-7 cells (A) 4, (B) 12, and (C) 24 h post-treatment

administration. The concentration that was used for free Dox corresponds to the amount of Dox loaded in Dox@UiO-66. Green: cell membrane stain,

red: Dox, blue: nuclear DAPI stain. Scale bars, 50 mm. Quantification of Dox delivery capacity through measurements of total intracellular and

intranuclear fluorescence. The data are presented as means G SDs; Student’s t test (n = 10).

*p % 0.05, **p % 0.01, ***p % 0.001 (comparison between Dox and Dox@UiO-66 treatments).
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higher nuclear internalization when administrated as a free molecule than as part of

Dox@UiO-66, explaining the faster cytotoxic effect observed previously with the

RTCA experiments.

By using a suite of complementary in vitro techniques, we have shown that RTCA is a

highly informative technique for assessing the biocompatibility of nanoscale MOFs.

Proof-of-concept work has shown that MIL-101(Cr) and UiO-66 have excellent

biocompatibility, internalization efficiency, and significantly enhanced calcein cargo

delivery across a series of cell types. Dox was chosen as a chemotherapeutic probe
Cell Reports Physical Science 1, 100254, November 18, 2020 13
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for drug delivery, and was found to attach to the external surface of UiO-66 nanopar-

ticles, forming layers on top of them, while the larger pore cavities of MIL-101(Cr) al-

lowed for penetration to the internal porosity. RTCA was used to monitor drug de-

livery, demonstrating that these differences in loading have a direct effect on the

drug-release rate within cancer cells, affecting cytotoxic efficacy in a time-depen-

dent manner that could easily be missed by the single-point assays commonly

used to probe cytotoxicity. Confocal fluorescence microscopy confirmed different

intracellular Dox release rates that closely corresponded to the RTCA measure-

ments. Due to the Dox loading mode of Dox@UiO-66, drug release more likely

resembles the dissolution of a Dox nanoparticle than the degradation of the

MOF carrier, subsequently delaying the release of the drug and its cytotoxic

action. Conversely, Dox@MIL-101(Cr) nanoparticles display a more rapid drug

release, occurring via a combination of Dox desorption and degradation of the

MOF carrier, leading to a significantly large intracellular accumulation of Dox

compared to the free drug. The characterization of drug loading in MOFs rarely

extends to pinpointing its locality; our data indicate that the relationship between

drug-loading mode and MOF-mediated drug delivery clearly must be taken into

consideration in the development of therapeutically efficacious MOF DDSs, and

that surface loading Dox on MOF nanoparticles may explain slow release trends

observed previously.

This more controlled killing effect of Dox@MOFs, in contrast to the immediate effect

of the free cancer drug, makes the translatability of these materials very promising

for use as DDSs. As current DDSs do not typically achieve enhanced Dox efficiency,

MIL-101(Cr) is a very promising candidate for this type of application, as higher levels

of Dox internalization can be achieved. This indicates that a lower drug concentra-

tion could be used, allowing for the development of a therapeutic strategy with

the potential to limit the undesirable off-target acute toxicity of chemotherapy. It

is also compatible with locoregional drug administration strategies, such as in

head and neck cancers, where it may enable the sustained local release of a chemo-

therapeutic while limiting collateral damage to surrounding healthy tissue. While

these proof-of-concept mechanistic experiments have been carried out on bare

MOFs, the pore loading of Dox in MIL-101(Cr) is also compatible with further func-

tionalization to enhance targeting and biodistribution as we move toward in vivo ex-

periments to assess clinical translatability.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Prof. Ross Forgan (ross.forgan@glasgow.

ac.uk).

Materials Availability

All solvents and reagents were purchased from Alfa Aesar, Acros Organics, Sigma-

Aldrich, Merck, Tokyo Chemical Industry, Thermo Fisher Scientific, and Zymo

Research USA, and used without further purification (see Supplemental Experi-

mental Procedures).

Data and Code Availability

All of the data are presented within the article and Supporting Information and are

available to download from https://dx.doi.org/10.5525/gla.researchdata.1072.
14 Cell Reports Physical Science 1, 100254, November 18, 2020

mailto:ross.forgan@glasgow.ac.uk
mailto:ross.forgan@glasgow.ac.uk
https://dx.doi.org/10.5525/gla.researchdata.1072


ll
OPEN ACCESSArticle
Synthesis and Characterization

All of the experimental procedures are listed in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.xcrp.

2020.100254.
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