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Abstract: In this study, we introduce a robust solution concept for uncertain multi-objective
optimization problems called the lexicographic tolerable robust solution. This approach is
advantageous for the practical implementation of problems in which the solution should satisfy
priority levels in the objective function and the worst performance vector of the solution obtained
by the proposed concept is close to a reference point of the considered problem, within an
acceptable tolerance threshold. Important properties of the solution sets of this introduced concept
as well as an algorithm for finding such solutions are presented and discussed. We provide the
implementation of the proposed lexicographic tolerable robust solution to improve understanding
for practitioners by relying on the data of the water resources master plan for Serbia from Simonovic,
2009. Moreover, we are also concerned with the method of updating a desirable solution for fitting
with the preferences when compromising of the multiple groups of decision makers is needed.

Keywords: uncertain multi-objective optimization; robustness concept; minmax robustness;
lexicographic tolerable robust; water resources management planning

1. Introduction

Water is an essential resource for all life on the planet. Consequently, one of the biggest concerns
for our water-based resources in the future is the sustainability of the current and future water
resources allocation, see [1]. As water becomes more scarce in the future, the importance of how it is
managed grows vastly in this research area. Finding a balance between what is needed by humans
and what is needed in the environment is an important step in the sustainability of water resources.
Of course, the goals of water resource planning usually involve balancing water demands and available
water resources, whereas many other objectives need to be achieved, depending on the particular
water system structures. Due to conflicts between multiple goal requirements, multiple criteria
decision-making techniques are useful tools to explore different management options. To handle
these kind of water resources management planning, many researchers adopted the techniques of
multi-objective optimization to solve the problem. One may see more details in [2–6]

Actually, there is much evidence that many real-world problems are multi-faceted, occurring with
multiple objectives needing to be achieved and those multiple objectives often conflict with each other,
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as illustrated in [7,8]. At the same time, relevant input data can sometimes be imprecise and unreliable,
suffering from measurement errors or involving unknown future values, see [9,10]. These two issues
have been studied in the areas of multi-objective optimization and robust optimization, respectively.
Since real world problems often involve both multiple objectives and imprecise input data concurrently,
there is need for the development of a concept that can address combinations of multi-objective
optimization problems and robust optimization problems. Some of the prominent examples of such
combinations include water resources management planning, as in [11], timetable information systems
[12–14], portfolio problems [15], and flight route planning, for an overview see [16,17].

Some of the first research done in the area of uncertain multi-objective optimization was the
solution concept introduced by Deb and Gupta [18] in 2006. They replaced the objective vector in a
given uncertain multi-objective optimization problem with the mean effective functions computed
by averaging a representative set of neighboring solutions, thereby removing the uncertainly and
converting the problem to just a deterministic multi-objective optimization problem. Then, an efficient
solution for that deterministic multi-objective optimization problem is considered as a robust solution
for the full original uncertain multi-objective optimization problem. On the other hand, instead
of using the concept of mean effective functions, Kuroiwa and Lee [19] reformulated uncertain
multi-objective optimization problems by replacing the objective vector in the original problem
with a vector consisting of the worst case scenario of each respective component in order to obtain a
deterministic multi-objective optimization problem. Kuroiwa and Lee’s approach is closely connected
to the classical minmax robustness concept for single objective optimization problems, which was
first introduced by Soyster [20] and subsequently extensively studied by Ben-Tal and Nemirovski [21],
and Ben-Tal et al. [22]. Ehrgott et al. [23] provided another interpretation of Ben-Tal and Nemirovski’s
robustness concept. In [23], for each feasible solution they looked at the set of objective vectors under
all scenarios and compared those sets to each other, by using the concept of set relations to define
minmax robustness for uncertain multi-objective optimization problems. A similar approach was
introduced by Bokrantz and Fredriksson [24], who used set relations following Ehrgott’s work, but
replaced the set of objective vectors of a feasible solution under all possible scenarios by its convex
hull. We notice that the above three concepts are concerned with minmax robustness, since they hedge
against the worst case scenarios. For more on survey and analysis of different concepts of robustness
for uncertain multi-objective optimization, ones may see in [25].

On the other hand, in the single objective setting, there are various concepts which aim to
overcome the limitations of strict conservativeness of the minmax concept. One such interesting
concept has been introduced by Snyder [26], who investigated problems of facility location,
the P-robustness solution. A solution is called P-robust if in each possible scenario, the objective
value is close to the optimal value of that scenario up to P, where P is the acceptable percentage
deviation from optimality. Recently, another alternative robustness concept has been proposed by
Kalaï et al. [27], who came up with the concept of a lexicographic α-robust solution, which can be
seen as a combination of P-robustness and minmax robustness. A lexicographic α-robust solution is
a solution whose reordered cost vector with respect to scenarios is close to the ideal vector within
a given threshold. We would like to notice that the concept of this solution reduces the degree of
conservatism of minmax robustness by introducing the tolerance threshold and considers not only the
value of the objective functions in the worst case scenario, but all scenarios, sorted from least to most
wanted. For additional details the reader may see [10].

The current paper introduces a new concept of robustness, which begins with Kalaï et al.’s [27]
lexicographic α-robust solution and extends it further, abandoning the single objective setting and
utilizing instead a multiobjective setting, which is suitable for the uncertainty set which is modeled as
discrete set. A solution according to this concept is called “lexicographic tolerable robust solution”.
After introducing the fundamentals of this new concept, properties of the solution set and also an
algorithm for finding this new kind of solution will be explained. The new concept will then be
demonstrated on a problem of multi-objective optimization of water resources planning with an
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uncertainty situation. This water resources planning problem has been selected as an example because
the problem’s structure is such that each of the multiple objectives carry a different priority.

2. Methodology

In this section, we introduce the concept of lexicographic tolerable robust solution for an uncertain
multi-objective optimization problem.

2.1. Lexicographic Robust Solutions with Respect to the Tolerance Threshold for Uncertain
Multi-Objective Optimization

An uncertain multi-objective optimization problemMP(U ) is given as a family of {MP(s)|s ∈
U} of deterministic multi-objective optimization problems

(MP(s)) min f (x, s)

subject to x ∈ X
(1)

with the objective function f : Rn ×U → Rp, feasible set X ⊆ Rn, and uncertainty set U . An element
s ∈ U indicates a particular value for the uncertain parameters belonging in an uncertainty set U .
That is, uncertainty is in the objective only, not in the constraints or X.

Before we are going to the approach of lexicographic tolerable robust solution, let us recall the
important definition of ordering the values nonincreasingly which will be used throughout this work.
We note that the specific notations which will be used throughout this work are shown in Table A1
Notations.

Definition 1. The sort function, sort(·) : Rp → Rp, is a function that reorders the component of each vector
on Rp in a nonincreasing way. That is,

sort(y) = (yσ(1), yσ(2), . . . , yσ(p)), for all y ∈ Rp (2)

where σ is a permutation on Ip such that yσ(1) ≥ yσ(2) ≥ · · · ≥ yσ(p). In this case, we will write sort(y) =:
(sort1(y), sort2(y), . . . , sortp(y)).

From now on, we let U = {s1, s2, . . . , sq} be the finite set of possible scenarios and f : Rn×U → Rp

be the considered vector-valued function. For each x ∈ Rn and for each i ∈ Ip, we put

c(i)(x) := ( fi(x, s1), fi(x, s2), . . . , fi(x, sq)), (3)

where fi(x, sj) is the value of the objective function for an alternative solution x under scenario sj, for
all j ∈ Iq. Subsequently, we put

ĉ(i)(x) :=
(

sort1(c(i)(x)), sort2(c(i)(x)), . . . , sortq(c(i)(x))
)

, (4)

for each i ∈ Ip and x ∈ Rn. The notation ĉ(i)(x) is used to stand for the sorted vector of a vector c(i)(x).
For the sake of simply, here we will write

ĉ(i)(x) =:
(

ĉ(i)1 (x), ĉ(i)2 (x), . . . , ĉ(i)q (x)
)

, (5)

for each i ∈ Ip. Accordingly, for each j ∈ Iq and x ∈ Rn, based on the above notations (3)–(5), the worst
performance vector can be determined as follows:

worstj( f (x,U )) :=
(

ĉ(1)j (x), ĉ(2)j (x), . . . , ĉ(p)
j (x)

)
. (6)
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Now we will introduce the concept of lexicographic robust solutions with respect to a tolerance
threshold set for the considered uncertain multi-objective optimization problem. To do this, we start by
introducing the notation inf

with lex
A which is used to stand for the infimum of a set A in Rp with respect

to lexicographic order. That is, for A ⊆ Rp, we let

xinf := inf
with lex

A if xinf ≤lex x, for all x ∈ A

where xinf ∈ Rp and the notation ≤lex is defined as in Table A1.
Here, the concept of reference point is presented.

Definition 2. The vector
(

ĉ∗1 , ĉ∗2 , . . . , ĉ∗q
)
=: ĉ∗ ∈ Rp×q is called the reference point of the problemMP(U ) if

ĉ∗j = inf
with lex

{
worstj( f (x,U ))|x ∈ X

}
,

for each j ∈ Iq.

We now present the solution concept of this paper.

Definition 3. Let MP(U ) be an uncertain multi-objective optimization problem with the reference point(
ĉ∗1 , ĉ∗2 , . . . , ĉ∗q

)
=: ĉ∗ ∈ Rp×q. For each α := (α1, α2, . . . , αq) ∈ [0, ∞)p×q, the set of lexicographic tolerable

robust solutions with respect to the tolerance threshold α, which will be denoted by LRS(α), is

LRS(α) :=
q⋂

j=1

{
x ∈ X|worstj( f (x,U )) ∈

(
ĉ∗j + αj

)
−Rp

v

}
.

2.2. Algorithm for LRS(α)

We begin this section with results on the tolerance threshold, results have been obtained to help
decision makers in finding acceptable threshold to guarantee the nonemptyness of the solution set.
In doing so, for the sake of simplicity, we use the following notations:

max(x) := max{x1, x2, . . . , xn},

and
x + ε := (x1 + ε, x2 + ε, . . . , xn + ε),

where x = (x1, x2, . . . , xn) ∈ Rn, and ε ∈ R.

Proposition 1. Let X be a feasible set andMP(U ) an uncertain multi-objective optimization problem with
the corresponding reference point

(
ĉ∗1 , ĉ∗2 , . . . , ĉ∗q

)
=: ĉ∗ ∈ Rp×q. Let α := (α1, α2, . . . , αq) ∈ Rp×q where

αj = (αinf, αinf, . . . , αinf) ∈ Rp, for all j ∈ Iq, such that

αinf := inf
x∈X

max (∆x) , (7)

and ∆x =



worst1( f (x,U ))− ĉ∗1
worst2( f (x,U ))− ĉ∗2

.

.

.
worstq( f (x,U ))− ĉ∗q


∈ Rpq.

Then, for each ε > 0, we have
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(i) LRS(α + ε) 6= ∅, and
(ii) LRS(α− ε) = ∅.

Proof. See in Appendix B.1

The next theorem provides a threshold vector α such that the solution set LRS(α) is nonempty.

Theorem 1. (Nonemptyness) Let MP(U ) be an uncertain multi-objective optimization problem with the
corresponding reference point (ĉ∗1 , ĉ∗2 , . . . , ĉ∗q) := ĉ∗ ∈ Rp×q, and fi(·, s1), fi(·, s2), . . . , fi(·, sq) be continuous
functions, for all i ∈ Ip. Let α := (α1, α2, . . . , αq) ∈ Rp×q where αj = (αinf, αinf, . . . , αinf) ∈ Rp, for all j ∈ Iq,
such that a threshold value αinf is defined as (7). If X is a compact set then LRS(α) is nonempty.

Proof. See in Appendix B.2

By considering the Proposition 1 and Theorem 1, one can see that the tolerance threshold which
is defined by (7) will be used to compute the best choice among the alternative solutions for the
solution concept in Definition 3. In other words, the solution set due to Definition 3, for the considered
uncertain multi-objective optimization problemMP(U ), is the set LRS(α) when α is computed by (7).
The following Theorem 2 will lead to a method for computing an element in the such set LRS(α).

Theorem 2. Let MP(U ) be an uncertain multi-objective optimization problem with the corresponding
reference point (ĉ∗1 , ĉ∗2 , . . . , ĉ∗q) := ĉ∗ ∈ Rp×q, where ĉ∗j :=

(
ĉ∗(1)j , ĉ∗(2)j , . . . , ĉ∗(p)

j

)
∈ Rp, for all j ∈ Iq.

Let α := (α1, . . . , αq) ∈ [0, ∞)p×q be such that αj :=
(

α
(1)
j , α

(2)
j , . . . , α

(p)
j

)
∈ Rp for all j ∈ Iq. Then, we have

⋂
(i,j)∈Ip×Iq

L(i,j) ⊆ LRS(α),

where L(i,j) =
{

x ∈ X|ĉ(i)j (x) 6 ĉ∗(i)j + α
(i)
j

}
for all i ∈ Ip and j ∈ Iq.

Proof. See in Appendix B.3

Based on Theorem 2, we now suggest a method for finding a solution to the problemMP(U ) in
the set LRS(α).

Algorithm 1: Finding a solution ofMP(U ).
Input: Uncertain multi-objective optimization problemMP(U ) .
Step.1: For each fixed j ∈ Iq, find the reference point ĉ∗j .

Step.2: Compute a tolerance threshold valued αinf of the problemMP(U ) as defined in the
Equation (7) of Proposition 1.

Step.3: For each fixed i ∈ Ip and j ∈ Iq, compute the level set L(i,j) by

L(i,j) =
{

x ∈ X|ĉ(i)j (x) 6 ĉ∗(i)j + αinf
}

,

where ĉ∗j :=
(

ĉ∗(1)j , ĉ∗(2)j , . . . , ĉ∗(p)
j

)
.

Step.4: Find an element x∗ in the set ⋂
(i,j)∈Ip×Iq

L(i,j).

Output: x∗ is an element of LRS(α), where α := (α1, α2, . . . , αq) ∈ Rp×q, such that
αj = (αinf, αinf, . . . , αinf) ∈ Rp, for all j ∈ Iq.
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Remark 1.

(i) For each j ∈ Iq, the vector ĉ∗j ∈ Rp is found by finding the value of lexicographic optimization of the
deterministic multi-objective mapping worstj( f (·,U )) : Rn → Rp. For information on methods for
finding the reference point as in Definition 2, one may see [28].

(ii) Observe that the computation of value αinf is finding the infimum of subset of real numbers. Thus, we can
apply many elementary existing methods of finding this value.

(iii) Under the assumptions of fi(·, sj) being continuous for all i ∈ Ip and j ∈ Iq, together with an assumption

that the feasible set X is compact, by applying Proposition A1 (see the Appendix A.1), we have ĉ(i)j (·) is

also continuous for all i ∈ Ip and j ∈ Iq. Thus, since ĉ(i)j (·) is continous, we have that the level set L(i,j) as
defined by (8) is also a closed set. Thus, in order to finding a point in Formulation (8) and complete Step 4,
we can apply many existing algorithms, we refer the reader to [29–31].

3. Case Study

In this study we consider data from [32] and solve the problem by using the lexicographic
tolerlable robust solution concept. The original problem of Water Resources Master Plan for Serbia
(WRMS) is to find a suitable plan for balancing water demands and available water resources.
This problem is concerned with the six alternative solutions and eight objectives as follows:

Decision factors:

• The need for municipal water supply (d1)

• The need for industrial water supply (d2)

• Irrigation needs (d3)

• Hydropower generation (d4)

• Flood protection (d5)

• Water quality control (d6)

Objectives:

• Regional political interest ( f1)

• Local interest (communities) ( f2)

• Negative effects on the resettlement of people ( f3)

• System reliability ( f4)

• Positive environmental effects ( f5)

• Positive effects of alternative plans on water quality ( f6)

• Total cost ( f7)

• Energy consumption ( f8)

The modelling techniques of alternative solution and the measurement of the objective function,
we refer the readers to see more details in Chapter 10 of [32]. Here, six alternative solutions were
created by considering the above specific factors in the planning process for the WRMS problem.
Thus, the decision space is X := {x1, x2, x3, x4, x5, x6} ⊆ R6 where xk := (dk

1, dk
2, dk

3, dk
4, dk

5, dk
6) for each

k ∈ I6.
Looking at the above eight objectives, one can see that the five objectives f1, f2, f4, f5, and f6,

relate to positive outcomes that the group of decision makers naturally wants to maximize. Meanwhile,
the three objectives f3, f7, and f8 relate to negative outcomes that they naturally want to minimize.
Notice that the first six objectives are qualitative, while the remaining two are quantitative. The quality
level of the first six objectives are divided by the relative scale into five levels from being bad to being
excellent as 1 to 5.

In the solution selection process, the preferences of the decision makers were collected through a
set of public meetings. Since the decision makers were not able or willing to express their preferences,
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the planning team have to generate a number of different sets of weights to cover a broad range
of decision-making positions in accordance with the relative importance of the various objectives.
Since the generation of weight sets in the WRMS is obtained from ranges of decision maker’s
preferences, it means that the weight sets are imprecise data. Hence, these imprecise data can be seen
as an uncertainty in the WRMS. So, it is reasonable to consider a robustness concept for the WRMS
that is quite sensitive to preference changes of the decision makers. Six different weight sets had
been presented in the WRMS, and here these six weight sets will be considered as scenarios. That is,
the uncertainty set is:

U := {s1, s2, . . . , s6} ⊆ R8.

Therefore, the WRMS problem is formulated as an uncertain multi-objective optimization problem
MP(U ) where MP(U ) is given as a family of {MP(sj)|sj ∈ U} of deterministic multi-objective
optimization problems:

(MP(sj)) min f (xk, sj)

subject to xk ∈ X
(8)

where f : X × U → R8, X = {x1, x2, x3, x4, x5, x6}, and U = {s1, s2, s3, s4, s5, s6}. The primary data of
the outcome for each alternative solution xk in the WRMS over all scenarios are shown in Table 1.
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Table 1. The objective function f of each alternative solution xk under all scenarios sj.

f (·, s1) f (·, s2) f (·, s3) f (·, s4) f (·, s5) f (·, s6)

f (x1, ·)



−0.70
−1.40
−1.50
−3.60
−5.50
−3.00
369.12
19.30





−0.80
−1.00
−0.90
−2.40
−6.50
−2.40
461.40
28.95





−1.00
−2.00
−3.00
−2.00
−5.00
−3.00
307.60
19.30





−1.40
−2.60
−3.00
−2.40
−1.50
−2.10
307.60
19.30





−0.70
−1.40
−1.50
−2.20
−9.00
−3.00
369.12
19.30





−0.70
−1.40
−1.50
−3.60
−5.50
−3.00
307.60
23.16



f (x2, ·)



−1.40
−1.40
−2.00
−3.60
−5.50
−3.00
376.20
17.60





−1.60
−1.00
−1.20
−2.40
−6.50
−2.40
470.25
26.40





−2.00
−2.00
−4.00
−2.00
−5.00
−3.00
313.50
17.60





−2.80
−2.60
−4.00
−2.40
−1.50
−2.10
313.50
17.60





−1.40
−1.40
−2.00
−2.20
−9.00
−3.00
376.20
17.60





−1.40
−1.40
−2.00
−3.60
−5.50
−3.00
313.50
21.12



f (x3, ·)



−3.50
−2.80
−2.50
−9.00
−3.30
−4.00
475.08
14.50





−4.00
−2.00
−1.50
−6.00
−3.90
−3.20
593.85
21.75





−5.00
−4.00
−5.00
−5.00
−3.00
−4.00
395.90
14.50





−7.00
−5.20
−5.00
−6.00
−0.90
−2.80
395.90
14.50





−3.50
−2.80
−2.50
−5.50
−5.40
−4.00
475.08
14.50





−3.50
−2.80
−2.50
−9.00
−3.30
−4.00
395.90
17.40



f (x4, ·)



−3.50
−2.10
−2.50
−7.20
−4.40
−2.00
454.80
13.70





−4.00
−1.50
−1.50
−4.80
−5.20
−1.60
568.50
20.55





−5.00
−3.00
−5.00
−4.00
−4.00
−2.00
349.00
13.70





−7.00
−3.90
−5.00
−4.80
−1.20
−1.40
379.00
13.70





−3.50
−2.10
−2.50
−4.40
−7.20
−2.00
454.80
13.70





−3.50
−2.10
−2.50
−7.20
−4.40
−2.00
379.00
16.44



f (x5, ·)



−3.50
−2.80
−2.50
−7.20
−4.40
−2.00
446.16
14.00





−4.00
−2.00
−1.50
−4.80
−5.20
−1.60
557.70
21.00





−5.00
−2.00
−5.00
−4.00
−4.00
−2.00
371.80
14.00





−7.00
−5.20
−5.00
−4.80
−1.20
−1.40
371.80
14.00





−3.50
−2.80
−2.50
−4.40
−7.20
−2.00
446.16
14.00





−3.50
−2.80
−2.50
−7.20
−4.40
−2.00
371.80
16.80



f (x6, ·)



−3.50
−2.10
−2.50
−9.00
−3.30
−5.00
471.72
14.70





−4.00
−1.50
−1.50
−6.00
−3.90
−4.00
589.65
22.05





−5.00
−1.50
−5.00
−5.00
−3.00
−5.00
393.10
14.70





−7.00
−3.90
−5.00
−6.00
−0.90
−3.50
393.10
14.70





−3.50
−2.10
−2.50
−5.50
−5.40
−5.00
471.72
14.70





−3.50
−2.10
−2.50
−9.00
−3.30
−5.00
393.10
17.64



4. Result Analysis

We will classify the above eight objectives into three groups. Group 1 concerns people (G1 :=
( f1, f2, f3)); Group 2 concerns the environment (G2 := ( f4, f5, f6)); Group 3 concerns financial matters
(G3 := ( f7, f8)). In each group, we will also consider the priority of the objectives in the group, for
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example in the group G1, the regional interest ( f1) is considered as the most important one, the local
interest (communities) ( f2) is considered as the second most important one, and the negative effects on
the resettlement of people ( f3) is considered as the least important one of the group G1. In this problem,
we show the computation of the objective group (G1, G2, G3). By applying Algorithm 1, we can obtain a
lexicographic tolerable robust solution for the WRMS. Table 2 shows the information of function ĉ(·)(xk)

of each alternative solution xk which is obtained from sorting the vector of component function ĉ(i)(xk)

in nonincreasing way over all scenarios sj, for each i ∈ Ip. Table 3 presents the jth worst performance
vector of all alternative solutions and the reference point of this problem is (ĉ∗1 , ĉ∗2 , . . . , ĉ∗6) ∈ R8×6.
According to Theorem 1, we obtain the tolerance threshold αinf = 0. Therefore, the resulting set of
lexicographic robust solutions with respect to α := (α1, α2, . . . , α6) is:

LRS(α) = {x3},

where αj = (αinf, αinf, . . . , αinf) ∈ R8, for all j ∈ Iq.

4.1. Solution Sets of Different Objective Priorities

In Table 4, the solution sets of the problem which are corresponding to each group of the ordered
objective function are presented. One may observe that, different values for the priorities yield different
solution sets.

Remark 2.

(i) An important point to note is that by using the most robust compromise solution concept which was
discussed in [32], the solution will be x5. This means that the output from the lexicographic tolerable
robust solution and the output from the most robust compromise solution concept can be quite different.
Furthermore, note that the solution set derived from the most robust compromise concept will remain the
same, regardless of the permutations of the components of the objective function.

(ii) Another solution concept is the robust efficiency, which was introduced by Ehrgott et al. [23]. Based on the
data, which are considered in the WRMS problem, and following the concept of the robust efficiency concept
we can see that the solution set is {x1, x2, x3, x4, x5, x6}=S . In fact, in [23], each element of the solution
set S can be found by applying the weighted sum scalarization method:

(MP(U ))wl min max
j∈{1,2,...,6}

8

∑
i=1

w(i)
l fi(xk, sj)

subject to xk ∈ X,

(9)

where wl := (w(1)
l , w(2)

l , . . . , w(8)
l ) ∈ R8

�. One may use the following weight sets to consider the above
single objective optimization problem (MP(U ))wl :
w1 = (691.0782, 458.1161, 165.2403, 249.0968, 91.5001, 221.3457, 484.6561, 455.7014),

w2 = (831.0456, 43.0179, 48.2109, 258.1919, 29.4128, 526.5054, 264.536, 716.3191),

w3 = (224.5293, 605.5699, 649.4945, 864.5647, 341.5705, 106.62, 8.2109, 291.8441),

w4 = (299.4271, 397.7614, 868.3355, 286.74, 781.3634, 129.4872, 9.4937, 891.1759),

w5 = (952.469, 440.2029, 336.5277, 328.4372, 902.203, 627.7193, 22.8332, 125.6362),

w6 = (733.3956, 693.8117, 796.0924, 198.2816, 8.0612, 979.1434, 37.3021, 228.8411),
and find that the corresponding solutions of weights w1, w2, w3, w4, w5, and w6 are x1, x2, x3, x4, x5, and
x6, respectively.
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Table 2. The sorted vector, ĉ(i)(·), of vector c(i)(·).

ĉ(·)(x1) ĉ(·)(x2) ĉ(·)(x3) ĉ(·)(x4) ĉ(·)(x5) ĉ(·)(x6)

ĉ(1)(·)


−0.70
−0.70
−0.70
−0.80
−1.00
−1.40




−1.40
−1.40
−1.40
−1.60
−2.00
−2.80




−3.50
−3.50
−3.50
−4.00
−5.00
−7.00




−3.50
−3.50
−3.50
−4.00
−5.00
−7.00




−3.50
−3.50
−3.50
−4.00
−5.00
−7.00




−3.50
−3.50
−3.50
−4.00
−5.00
−7.00



ĉ(2)(·)


−1.00
−1.40
−1.40
−1.40
−2.00
−2.60




−1.00
−1.40
−1.40
−1.40
−2.00
−2.60




−2.00
−2.80
−2.80
−2.80
−4.00
−5.20




−1.50
−2.10
−2.10
−2.10
−3.00
−3.90




−2.00
−2.80
−2.80
−2.80
−4.00
−5.20




−1.50
−2.10
−2.10
−2.10
−3.00
−3.90



ĉ(3)(·)


−0.90
−1.50
−1.50
−1.50
−3.00
−3.00




−1.20
−2.00
−2.00
−2.00
−4.00
−4.00




−1.50
−2.50
−2.50
−2.50
−5.00
−5.00




−1.50
−2.50
−2.50
−2.50
−5.00
−5.00




−1.50
−2.50
−2.50
−2.50
−5.00
−5.00




−1.50
−2.50
−2.50
−2.50
−5.00
−5.00



ĉ(4)(·)


−2.00
−2.20
−2.40
−2.40
−3.60
−3.60




−2.00
−2.20
−2.40
−2.40
−3.60
−3.60




−5.00
−5.50
−6.00
−6.00
−9.00
−9.00




−4.00
−4.40
−4.80
−4.80
−7.20
−7.20




−4.00
−4.40
−4.80
−4.80
−7.20
−7.20




−5.00
−5.50
−6.00
−6.00
−9.00
−9.00



ĉ(5)(·)


−1.50
−5.00
−5.50
−5.50
−6.50
−9.00




−1.50
−5.00
−5.50
−5.50
−6.50
−9.00




−0.90
−3.00
−3.30
−3.30
−3.90
−5.40




−1.20
−4.00
−4.40
−4.40
−5.20
−7.20




−1.20
−4.00
−4.40
−4.40
−5.20
−7.20




−0.90
−3.00
−3.30
−3.30
−3.90
−5.40



ĉ(6)(·)


−2.10
−2.40
−3.00
−3.00
−3.00
−3.00




−2.10
−2.40
−3.00
−3.00
−3.00
−3.00




−2.80
−3.20
−4.00
−4.00
−4.00
−4.00




−1.40
−1.60
−2.00
−2.00
−2.00
−2.00




−1.40
−1.60
−2.00
−2.00
−2.00
−2.00




−3.50
−4.00
−5.00
−5.00
−5.00
−5.00



ĉ(7)(·)


461.40
369.12
369.12
307.60
307.60
307.60




470.25
376.20
376.20
313.50
313.50
313.50




593.85
475.08
475.08
395.90
395.90
395.90




568.50
454.80
454.80
379.00
379.00
379.00




557.70
446.16
446.16
371.80
371.80
371.80




589.65
471.72
471.72
393.10
393.10
393.10



ĉ(8)(·)


28.95
23.16
19.30
19.30
19.30
19.30




26.40
21.12
17.60
17.60
17.60
17.60




21.75
17.40
14.50
14.50
14.50
14.50




20.55
16.44
13.70
13.70
13.70
13.70




21.00
16.80
14.00
14.00
14.00
14.00




22.05
17.64
14.70
14.70
14.70
14.70





Sustainability 2020, 12, 7582 11 of 21

Table 3. The jth worst performance vector of each alternative solution xk and the ideal point ĉ∗j .

worst1( f (·,U)) worst2( f (·,U)) worst3( f (·,U)) worst4( f (·,U)) worst5( f (·),U)) worst6( f (·,U))

worst(·)( f (x1,U ))



−0.70
−1.00
−0.90
−2.00
−1.50
−2.10
461.40
28.95





−0.70
−1.40
−1.50
−2.20
−5.00
−2.40
369.12
23.16





−0.70
−1.40
−1.50
−2.40
−5.50
−3.00
369.12
19.30





−0.80
−1.40
−1.50
−2.40
−5.50
−3.00
307.60
19.30





−1.00
−2.00
−3.00
−3.60
−6.50
−3.00
307.60
19.30





−1.40
−2.60
−3.00
−3.60
−9.00
−3.00
307.60
19.30



worst(·)( f (x2,U ))



−1.40
−1.00
−1.20
−2.20
−1.50
−2.10
470.25
26.40





−1.40
−1.40
−2.00
−2.20
−5.00
−2.40
376.20
17.60





−1.40
−1.40
−2.00
−2.40
−5.50
−3.00
376.20
17.60





−1.60
−1.40
−2.00
−2.40
−5.50
−3.00
313.50
17.60





−2.00
−2.00
−4.00
−3.60
−6.50
−3.00
313.50
17.60





−2.80
−2.60
−4.00
−3.60
−9.00
−3.00
313.50
17.60



worst(·)( f (x3,U ))



−3.50
−2.00
−1.50
−5.00
−0.90
−2.80
593.85
21.75





−3.50
−2.80
−2.50
−5.50
−3.00
−3.20
475.08
17.40





−3.50
−2.80
−2.50
−6.00
−3.30
−4.00
475.08
14.50





−4.00
−2.80
−2.50
−6.00
−3.30
−4.00
395.90
14.50





−5.00
−4.00
−5.00
−9.00
−3.90
−4.00
395.90
14.50





−7.00
−5.20
−5.00
−9.00
−5.40
−4.00
395.90
14.50



worst(·)( f (x4,U ))



−3.50
−1.50
−1.50
−4.00
−1.20
−1.40
568.50
20.55





−3.50
−2.10
−2.50
−4.40
−4.00
−1.60
454.80
16.44





−3.50
−2.10
−2.50
−4.80
−4.40
−2.00
454.80
13.70





−4.00
−2.10
−2.50
−4.80
−4.40
−2.00
379.00
13.70





−5.00
−3.00
−5.00
−7.20
−5.20
−2.00
379.00
13.70





−7.00
−3.90
−5.00
−7.20
−7.20
−2.00
379.00
13.70



worst(·)( f (x5,U ))



−3.50
−2.00
−1.50
−4.00
−1.20
−1.40
557.70
21.00





−3.50
−2.80
−2.50
−4.40
−4.00
−1.60
444.16
16.80





−3.50
−2.80
−2.50
−4.80
−4.40
−2.00
446.16
14.00





−4.00
−2.80
−2.50
−4.80
−4.40
−2.00
371.80
14.00





−5.00
−4.00
−5.00
−7.20
−5.20
−2.00
371.80
14.00





−7.00
−5.20
−5.00
−7.20
−7.20
−2.00
371.80
14.00



worst(·)( f (x6,U )



−3.50
−1.50
−1.50
−5.00
−0.90
−3.50
589.65
22.05





−3.50
−2.10
−2.50
−5.50
−3.00
−4.00
471.72
17.64





−3.50
−2.10
−2.50
−6.00
−3.30
−5.00
471.72
14.70





−4.00
−2.10
−2.50
−6.00
−3.30
−5.00
393.10
14.70





−5.00
−3.00
−5.00
−9.00
−3.90
−5.00
393.10
14.70





−7.00
−3.90
−5.00
−9.00
−5.40
−5.00
393.10
14.70



ĉ∗j



−3.50
−2.00
−1.50
−5.00
−0.90
−2.80
593.85
21.75





−3.50
−2.80
−2.50
−5.50
−3.00
−3.20
475.08
17.40





−3.50
−2.80
−2.50
−6.00
−3.30
−4.00
475.08
14.50





−4.00
−2.80
−2.50
−6.00
−3.30
−4.00
395.90
14.50





−5.00
−4.00
−5.00
−9.00
−3.90
−4.00
395.90
14.50





−7.00
−5.20
−5.00
−9.00
−5.40
−4.00
395.90
14.50
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Table 4. The LRS(α) solution set for the WRMS problem in each ordered objective group where
α := (α1, α2, . . . , α6) and αj = (αinf, αinf, . . . , αinf) ∈ R8 for all j ∈ Iq.

The Ordered Objective Groups The LRS(α) Solution

(G1, G2, G3) x3

(G1, G3, G2) x5

(G2, G1, G3) x6

(G2, G3, G1) x6

(G3, G1, G2) x1

(G3, G2, G1) x1

4.2. Further Discussion

4.2.1. Ranking of Solution

In practice, the process of selecting a final solution for the considered problem usually involves
multiple decision makers. Furthermore, there may occur the situation that some decision makers
are not satisfied with the solution found by the lexicographic tolerable robust solution concept.
Consequently, we may need to find more desirable solutions to offer those decision makers.
Reasonably, in order to update the solution for fitting the preference or requirements of those decision
makers, the monotonicity of the solution set is a vital property that the presented solution concept
must satisfy. The following statement describes the monotonicity property of the solution set LRS(α).

Property 1 (Monotonicity). The set LRS(α) is monotonic in the tolerance threshold set. That is,
for α := (α1, . . . , αq), β := (β1, . . . , βq) ∈ Rp×q such that αj w β j, for all j ∈ Iq, we have

LRS(α) ⊆ LRS(β).

Proof. The proof directly follows from Definition 3.

Remark 3. Property 1 means that once the tolerance threshold set has been adjusted using small tolerance
threshold values it will also function correctly with larger tolerance threshold values. In other words,
a lexicographic robust solution correctly adjusted with low tolerance threshold values will remain a lexicographic
robust solution even when the tolerance threshold values are high.

Continuing from above discussion, in order to update the solution sets, the ranking concept needs
to be considered. Here, we consider the common natural idea for the ranking of different sets as we
shall begin with computing the smallest tolerance threshold such that the set LRS(α) is nonempty (see
Theorem 1) and define it to be a tolerance threshold set of the first ranking of solution set. After that,
the next ranking of the solution set can be computed by removing all elements that belong to the first
ranking of solution set from the feasible set. This mentioned idea is encouraged by the following
Theorem 3, which we present in the suitation that the feasible solution set X is finite.

Theorem 3. Let X be a finite set and fi(·, s1), fi(·, s2), . . . , fi(·, sq) be continuous functions for all i ∈ Ip.
For each m ∈ {2, 3, . . . , q}, let αm defined by

αm := min
x∈X\LRS((αm−1,...,αm−1),...,(αm−1,...,αm−1))

max(∆x), (10)

where α1 := min
x∈X

max(∆x). Then, for any β ∈ [αm, αm+1), we have

LRS((β, . . . , β), . . . , (β, . . . , β)) = LRS((αm, . . . , αm), . . . , (αm, . . . , αm)).

Proof. See in Appendix B.4
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It should be noted that the lexicographic tolerable robust solution depending on the choice of
tolerance threshold α. Theorem 3 provides a sufficient condition on how to choose the effective
tolerance threshold for classifying the ranking on the solution set. The resulting solution set will
remain the same set as the previous ranking of the solution set if a tolerance threshold does not reach
to at least a value which was computed by (10). For more understanding on Theorem 3, we illustrate
with the following remark.

Remark 4. Considering again the data of the WRMS problem and suppose the situation that the solution choice
x3 does not satisfy the group of decision makers. Note that the alternative solution x3 is considered as the first
ranking of solution set. The other rankings of solution set are presented in the following Table 5.

We now describe the computations for obtaining the results which are presented in Table 5. The value of the
tolerance threshold for each ranking of solution set is computed according to Theorem 3. The tolerance threshold
α2

j (j ∈ {1, 2, . . . , 6}) for computing the second ranking is

α2
j = (1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3) ∈ R8, for all j ∈ {1, 2, . . . , 6}.

Subsequently, the solution set that is associated to the tolerance threshold α2, where α2 :=
(α2

1, α2
2, . . . , α2

6) ∈ R8×6 is {x3, x6}. Thus, as discussed above, we will say that the solution set of the second
ranking is {x6}.

Next, using again the Theorem 3, we can found that

α3
j = (2, 2, 2, 2, 2, 2, 2, 2) ∈ R8, for all j ∈ {1, 2, . . . , 6}.

Furthermore, the corresponding solution set of this tolerance threshold is {x3, x4, x5, x6}. So, we say that the
third ranking of solution set is {x4, x5}. By continuing this idea, the rest of rankings of solution set can be
computed and obtained as showing in Table 5.

Table 5. The set LRS(αi) for the (G1, G2, G3) objective group with respect to different tolerence
threshold sets where αi := (αi

1, αi
2, . . . , αi

6).

Tolerence Threshold Set LRS(αi)

{α1
j = (0, 0, 0, 0, 0, 0, 0, 0)|∀j = 1, . . . , 6} {x3}

{α2
j = (1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3)|∀j = 1, . . . , 6} {x3} ∪ {x6}
{α3

j = (2, 2, 2, 2, 2, 2, 2, 2)|∀j = 1, . . . , 6} {x3} ∪ {x6} ∪ {x4, x5}
{α4

j = (5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4)|∀j = 1, . . . , 6} {x3} ∪ {x6} ∪ {x4, x5} ∪ {x2}
{α5

j = (7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2)|∀j = 1, . . . , 6} {x3} ∪ {x6} ∪ {x4, x5} ∪ {x2} ∪ {x1}

4.2.2. Refinement of the Tolerance Threshold

By choice of tolerance threshold α3, the corresponding solution set of the third ranking is
{x4, x5}, which was shown in Table 5., one may wonder whether {x4, x5} are really in the same
rank. Here, we consider the idea to sharpen the ranking of the solution.

It is worth to remind that the lexicographic robust solutions sets depend on the considered
tolerance threshold. Moreover, by Theorem 3, it has been asserted that there is no solution set that
properly lies between the LRS(αi) and LRS(αi+1) when these αi are computed by the method presented
in Proposition 1. Here, the computation of tolerance threshold to determine a sub-rank among elements
in the ith ranking of the solution set is presented. The first sub-rank of the ith ranking can be determined
by computing the following formulation of the tolerance threshold :

αi1 := inf
with lex

{
(αi1

1 (x), αi1
2 (x), . . . , αi1

q (x)) ∈ Rp×q|x ∈ LRS(αi) \ LRS(αi−1)
}

, (11)
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where

αi1
j (x) =

(
max{ĉ(1)j (x)− ĉ∗(1)j , 0}, max{ĉ(2)j (x)− ĉ∗(2)j , 0}, . . . , max{ĉ(p)

j (x)− ĉ∗(p)
j , 0}

)
∈ Rp,

and ĉ∗j :=
(

ĉ∗(1)j , ĉ∗(2)j , . . . , ĉ∗(p)
j

)
∈ Rp, for all j ∈ Iq. The resulting solution set LRS(αi1) corresponding

to a tolerance threshold αi1 is considered as a robust solution in the first sub-rank of the ith ranking of
the solution set.

The process of computing a tolerance threshold to determine the second sub-rank of the ith ranking
of the solution set will be continued if the remaining solution set LRS(αi) \ {LRS(αi1) ∪ LRS(αi−1)} is
nonempty. Consequently, the second sub-rank of the ith ranking of the solution set can be determined
by computing the following formulation of the tolerance threshold:

αi2 := inf
with lex

{
(αi2

1 (x), αi2
2 (x), . . . , αi2

q (x)) ∈ Rp×q|x ∈ LRS(αi) \ {LRS(αi−1) ∪ LRS(αi1)}
}

, (12)

where

αi2
j (x) =

(
max{ĉ(1)j (x)− ĉ∗(1)j , 0}, max{ĉ(2)j (x)− ĉ∗(2)j , 0}, . . . , max{ĉ(p)

j (x)− ĉ∗(p)
j , 0}

)
∈ Rp,

where j ∈ Iq. The resulting solution set LRS(αi2) corresponding to the tolerance threshold αi2 is
considered as a robust solution in the second sub-rank of the ith ranking of the solution set.

We will continue this process of computing the third sub-rank if LRS(αi) \ {LRS(αi1)∪ LRS(αi2)∪
LRS(αi−1)} is nonempty. The third sub-rank of the ith ranking of the solution set is determined by the
following tolerance threshold:

αi3 := inf
with lex

{
(αi3

1 (x), αi3
2 (x), . . . , αi3

q (x)) ∈ Rp×q|x ∈ LRS(αi) \ {LRS(αi−1) ∪ LRS(αi1 ) ∪ LRS(αi2 )}
}

, (13)

where

αi3
j (x) =

(
max{ĉ(1)j (x)− ĉ∗(1)j , 0}, max{ĉ(2)j (x)− ĉ∗(2)j , 0}, . . . , max{ĉ(p)

j (x)− ĉ∗(p)
j , 0}

)
∈ Rp,

where j ∈ Iq. We do continue the process of computing the next sub-rank until there is m ∈ N such that

LRS(αi) = LRS(αi1) ∪ LRS(αi2) ∪ · · · ∪ LRS(αim).

In general, the above formulation of computing the tolerance threshold to determine the kth

sub-rank of the ith ranking can be expressed as follows:

αik := inf
with lex

{
(αik

1 (x), αik
2 (x), . . . , αik

q (x)) ∈ Rp×q|x ∈ LRS(αi) \ {LRS(αi−1) ∪ LRS(αi1 ) ∪ · · · ∪ LRS(αik−1 )}
}

(14)

where

α
ik
j (x) =

(
max{ĉ(1)j (x)− ĉ∗(1)j , 0}, max{ĉ(2)j (x)− ĉ∗(2)j , 0}, . . . , max{ĉ(p)

j (x)− ĉ∗(p)
j , 0}

)
∈ Rp,

where k ∈ N and j ∈ Iq.

Remark 5. Observe that in Remark 4 by taking a tolerance threshold, α3
j = (2, 2, 2, 2, 2, 2, 2, 2), for all j ∈ Iq,

there are two members in the third ranking of solution set that are x4 and x5. By applying the formulation (14)
to refine the tolerance threshold to classify the sub-rank between x4 and x5, we obtain the corresponding sub-rank
of the 3rd ranking of the solution set as follows:

LRS(α31) = {x5}
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and
LRS(α32) = {x4}.

These imply that the alternative solution x5 is considered as a robust solution in the first sub-rank and
the alternative solution x4 is considered as a robust solution in the second sub-rank of the third ranking of the
solution set, respectively. This means that x5 is more desirable than x4.

Observe that in Remark 5, the resulting solution sets with respect to the tolerance thresholds α31

and α32 which was computed by (14) are both singleton sets. This may raise an important question by
the decision makers is that the refinement tolerance threshold as computed by (14) always provides
a singleton solution set. The following example will provide an affirmative conclusion that this
observation does not hold in general.

Example 1. Let X = {x1, x2, x3}, and the vector-valued function f under two possible scenarios s1 and s2 of
each alternative solution xk be presented as Table 6.

The sort function of each component function fi and the jth worst performance vector of each alternative
solution xk are provided in Table 7.

According to Theorem 3, the first ranking of the solution set and the second ranking of the solution set are
LRS(α1) = {x1}, and LRS(α2) = {x2, x3}, where α1 := ((0, 0), (0, 0)) and α2 := ((4, 4), (4, 4)). To refine
the tolerance threshold α2, we can now apply the formulation (14) and so the tolerance threshold for determining
the first sub-rank of the 2nd ranking of the solution set is:

α21 := ((1, 0), (1, 4)).

Notice that

worst1( f (x2,U )) ∈ (ĉ∗1 + (1, 0)) +R2
v and worst2( f (x2,U )) ∈ (ĉ∗2 + (1, 4)) +R2

v,

and
worst1( f (x3,U )) ∈ (ĉ∗1 + (1, 0)) +R2

v and worst2( f (x3,U )) ∈ (ĉ∗2 + (1, 4)) +R2
v.

This mean that the first sub-rank of the 2nd ranking of the solution set is the set LRS(α21) = {x2, x3}.
Therefore, we can conclude that by using the tolerance threshold which is computed by the formulation (14),
cannot guarantee the corresponding singleton solution set of the sub-rank.

Table 6. The objective function f = ( f1, f2) for each alternative solution xk under all scenarios sj.

Objective Function

Alternatives f1(·, s1) f1(·, s2) f2(·, s1) f2(·, s2)

x1 5 6 11 2
x2 7 6 8 6
x3 6 7 6 7

Table 7. The function ĉ(i)(·) and worstj( f (·,U )).

Alternatives ĉ(1)(·) ĉ(2)(·) worst1( f (·,U)) worst2( f (·,U))

x1 (6, 5) (11, 2) (6, 11) (5, 2)
x2 (7, 6) (8, 6) (7, 8) (6, 6)
x3 (7, 6) (7, 6) (7, 7) (6, 6)

ĉ∗j ĉ∗1 = (6, 11) ĉ∗2 = (5, 2)
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The observation from Example 1 is that even we refine the tolerance threshold by using the
formulation (14), the corresponding solution set with respect to such tolerance threshold can sometime
be not singleton set. Indeed, the robust solutions which belong to the kth sub-rank of the ith ranking of
the solution set are indifferent because the quality of these robust solutions which are computed by the
lexicographic tolerable robust solution concept are the same, mean that the worst performance vectors
of these robust solutions are located in an acceptable area corresponding to the tolerance threshold αik .

Remark 6. Notice that by choice of αi and the formulation (14), of computing kth sub-rank of the ith ranking,
we can see that αik w αi.

5. Conclusions

This research has extended the concept of lexicographic α-robustness proposed by Kalai et al. [27]
from its original use for uncertain single objective optimization problems to new uses for uncertain
multi-objective optimization problems. This new concept of lexicographic robust solution works in
situations of uncertainty in which the uncertainty is modelled on a discrete set of scenarios. This new
approach is introduced to overcome drawbacks of the minmax robustness approach in the sense of
limiting the degree of conservatism of the minmax robustness approach by introducing a tolerance
threshold α := (α1, α2, . . . , αq). Accordingly, the resulting solution set is obtained from the proposed
approach can be guaranteed the immunization of the solution when the decision-making facing of
uncertainty and also each performance vector is close to the reference point within the acceptable
tolerance threshold.

A numerical example, in water resources management planning based on [32] was shown to
illustrate the implementation of a lexicographic tolerable robust approach to practical problems.
This new approach of robust solution can be represent the actual needs of the decision makers by
applying priorities to objectives, according to their priorities. Obviously, the solution sets obtained by
the proposed approach depend on the order of the priority which we put on each objective. As we
have seen in Section 2, the results derived from the implementation of different approaches to the
same data are often provide different of solution sets.

In real world problems, the process of selecting a final solution is usually involves several decision
makers. To obtain a satisfactory solution for all decision makers, the ranking of solution should
be considered. Conceptually, the implementation of how to apply the mathematical formulation
of computing and defining the ranking of solution set was shown in Section 4.2.1. This result of
lexicographic tolerable robust solution approach could be helping the decision makers to obtain
a cooperative solution in the discussions around negotiation table. In future research, it would
be interesting to study the property and analysis of the performance of a lexicographic tolerable
robust solution. Furthermore, the comparison between the proposed approach and other existing
robustness approaches.
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Appendix A

Table A1. Notations.

Notation Meaning

Ip The index set {1, 2, . . . , p}, for each p ∈ N
Rp The vector space with p dimension
N Set of natural numbers
X Feasible set in Rn

U Set of uncertianty set
f Objective function
x ∈ Rp A vector x with p coordinates, that is x = (x1, x1, . . . , xp)
x w y xi 6 yi for all i ∈ Ip
x 4 y xi 6 yi for all i ∈ Ip and x 6= y
x ≺ y xi < yi for all i ∈ Ip
x ≤lex y xm < ym where m = min{k|xk 6= yk}
Rp
v {x ∈ Rp|x v 0}

Rp
< {x ∈ Rp|x < 0}

Rp
� {x ∈ Rp|x � 0}

Rp
≥lex

{x ∈ Rp|x ≥lex 0}
A ⊆ Rp A subset A of vector space Rp

sup
with lex

A The supremum of a set A with respect to a lexicographic order;

xsup := sup
with lex

A if xsup ≥lex x, for all x ∈ A.

Appendix A.1 The Mathematical Results

Proposition A1. Let U = {s1, s2, . . . , sq} and f : Rn × U → R be a single objective function such that
f (·, sj) : Rn → R is continuous on X, for each j ∈ Iq. Then, for each j ∈ Iq, the function ĉj(·) : Rn → R is
continuous on X.

Proof. We will prove by induction. The result is true for the case q = 2, since ĉ1(·) =

max{ f (·, s1), f (·, s2)}, and ĉ2(·) = min{ f (·, s1), f (·, s2)}.
Next, we assume that f (·, s1), f (·, s2), . . . , f (·, sk) are also continuous functions on Rn such that

their corresponding sorting functions, ĉ1(·), ĉ2(·), . . . , ĉk(·), are also continuous. Now, let f (·, sk+1) be
a continuous function on Rn.

Let us define the function gi : Rn → R by

g1(·) = max{ĉ1(·), f (·, sk+1)} and gi(·) = max{ĉi(·), min{ĉi−1(·), f (·, sk+1)}}, for each i ∈ {2, 3, . . . , k}

and
gk+1(·) = min{ĉk(·), f (·, sk+1)}.

Observe that we have

g1(x) ≥ g2(x) ≥ · · · ≥ gk(x) ≥ gk+1(x),

for all x ∈ Rn. This means {g1(·), g2(·), . . . , gk(·), gk+1(·)} is the set of sort functions for
f (·, s1), f (·, s2), . . . , f (·, sk), f (·, sk+1). Moreover, from the induction hypothesis together with the
continuity of f (·, sk+1), we have gi is a continuous function for all i ∈ {1, 2, . . . , k, k+ 1}. This completes
the proof.
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Appendix B

Appendix B.1

Proof of Proposition 1. (i) Let ε > 0 be given. By the definition of αinf, there exists xε ∈ X such that

αinf ≤ max(∆xε) < αinf + ε.

For each j ∈ Iq, we write ĉ∗j =
(

ĉ∗(1)j , ĉ∗(2)j , . . . , ĉ∗(p)
j

)
. It follows that,

max
i∈Ip

{
ĉ(i)j (xε)− ĉ∗(i)j

}
< αinf + ε,

for each j ∈ Iq. Subsequently, for each j ∈ Iq, we have

ĉ(i)j (xε)− ĉ∗(i)j < αinf + ε, for all i ∈ Ip.

This implies that,
worstj( f (xε,U )) w ĉ∗j + (αj + ε), for all j ∈ Iq.

This shows that, xε ∈ LRS(α + ε), and the item (i) is proved.

(ii) Let x ∈ X be arbitrary but fixed. By definition of αinf, we know that

αinf ≤ ĉ(i)j (x)− ĉ∗(i)j , for all j ∈ Iq and i ∈ Ip.

Thus, for each ε > 0, we must have

αinf − ε < ĉ(i)j (x)− ĉ∗(i)j ,

for all j ∈ Iq and i ∈ Ip. This implies that x /∈ LRS(α− ε). Since x is an arbitary element of X, we can
conclude that the item (ii) is proved.

Appendix B.2

Proof of Theorem 1. Let n ∈ N be fixed. By choosing a threshold valued αinf as (7), we can find xn ∈ X
such that

αinf ≤ max(∆xn) < αinf +
1
n

.

For each j ∈ Iq, we write ĉ∗j =
(

ĉ∗(1)j , ĉ∗(2)j , . . . , ĉ∗(p)
j

)
. It follows that,

max
i∈Ip

{
ĉ(i)j (xn)− ĉ∗(i)j

}
< αinf +

1
n

,

for each j ∈ Iq. Accordingly, for each j ∈ Iq, we have

ĉ(i)j (xn)− ĉ∗(i)j < αinf +
1
n

, for all i ∈ Ip. (A1)

This means that,

worstj( f (xn,U )) w ĉ∗j + (αj +
1
n
), for all j ∈ Iq.

It follows that,

xn ∈ LRS(αinf +
1
n
), for all n ∈ N.
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Moreover, since X is compact and {xn} ⊆ X, we let x̃ ∈ X and a subsequence {xnk} of {xn} be such
that xnk → x̃, as k→ ∞.

Since, for each i ∈ Ip, we have fi(·, s1), fi(·, s2), . . . , fi(·, sq) are continuous functions, we know

that ĉ(i)j (·) are also continuous functions, for each j ∈ Iq (see; Appendix A.1 The Mathematical Results).
These imply,

ĉ(i)j (xnk )→ ĉ(i)j (x̃) as k→ ∞, (A2)

for all i ∈ Ip and j ∈ Iq. Using this one together with the continuity of maximum function, in view of
(A1), we have

max
j∈Iq

max
i∈Ip

{
ĉ(i)j (xnk )− ĉ∗(i)j

}
→ αinf, as k→ ∞.

Thus by (A2), we obtain that

max
j∈Iq

max
i∈Ip

{
ĉ(i)j (x̃)− ĉ∗(i)j

}
= αinf.

This guarantees that x̃ ∈ LRS(α). This completes the proof.

Appendix B.3

Proof of Theorem 2. Let x ∈ ⋂
(i,j)∈Ip×Iq

L(i,j). This means that,

x ∈ {z ∈ X|ĉ(i)j (z) 6 ĉ∗(i)j + α
(i)
j }, for all i ∈ Ip and j ∈ Iq.

This implies that,

x ∈ {z ∈ X|worstj( f (z,U )) w ĉ∗j + αj}, for all j ∈ Iq.

Thus, it follows directly that x ∈ LRS(α) and the theorem is proved.

Appendix B.4

Proof of Theorem 3. By the monotonicity of a solution set, the “⊇” inclusion is obvious. So, we need
to show that

LRS((β, . . . , β), . . . , (β, . . . , β)) ⊆ LRS((αm, . . . , αm), . . . , (αm, . . . , αm)).

Suppose on the contrary, there is x̄ ∈ LRS((β, . . . , β), . . . , (β, . . . , β)), but

x̄ /∈ LRS((αm, . . . , αm), . . . , (αm, . . . , αm)).

It means that x̄ ∈ X\LRS((αm, . . . , αm), . . . , (αm, . . . , αm)) and by the definition of αm+1,

αm+1 6 max(∆x̄). (A3)

This implies that, there are j0 ∈ Iq and i0 ∈ Ip such that

max(∆x̄) = ĉ(i0)j0
(x̄)− ĉ∗(i0)j0

.

Since x̄ ∈ LRS((β, . . . , β), . . . , (β, . . . , β)),

worstj0( f (x̄,U )) ∈ ĉ∗j0 + (β, β, . . . , β)−Rp
v.
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By the definition of Rp
v, it follows that,

worstj0( f (x̄,U )) w ĉ∗j0 + (β, β, . . . , β).

This implies that, for any i ∈ Ip,

ĉ(i)j0
(x̄) 6 ĉ∗(i)j0

+ β.

So, for fixed i0 ∈ Ip,

ĉ(i0)j0
(x̄) 6 ĉ∗(i0)j0

+ β. (A4)

From Equations (A3) and (A4), it follows that

αm+1 6 ĉ(i0)j0
(x̄)− ĉ∗(i0)j0

6 β.

Which leads to a contradiction with the definition of β. Therefore, we obtain the inclusion and so

LRS((β, . . . , β), . . . , (β, . . . , β)) = LRS((αm, . . . , αm), . . . , (αm, . . . , αm)).
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