
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

How Software Developers Mitigate their Errors
when Developing Code

Bhaveet Nagaria and Tracy Hall

Abstract—Code remains largely hand-made by humans and, as such, writing code is prone to error. Many previous studies have
focused on the technical reasons for these errors and provided developers with increasingly sophisticated tools. Few studies have
looked in detail at why code errors have been made from a human perspective. We use Human Error Theory to frame our exploratory
study and use semi-structured interviews to uncover a preliminary understanding of the errors developers make while coding. We look
particularly at the Skill-based (SB) errors reported by 27 professional software developers. We found that the complexity of the
development environment is one of the most frequently reported reasons for errors. Maintaining concentration and focus on a particular
task also underpins many developer errors. We found that developers struggle with effective mitigation strategies for their errors,
reporting strategies largely based on improving their own willpower to concentrate better on coding tasks. We discuss how using
Reason’s Swiss Cheese model may help reduce errors during software development. This model ensures that layers of tool, process
and management mitigation are in place to prevent developer errors from causing system failures.

Index Terms—Human error, human factors, software development.

F

1 INTRODUCTION

THE impact software defects have on transport1, bank-
ing2 and business systems3 continue to make regular

newspaper headlines around the world. At the heart of
many software defects is human error [1]. Many of those hu-
man errors are made by developers during the coding pro-
cess [2]. Such coding errors are psychological events [3] (for
example, loosing track of where you are in a programming
task) which have often been caused by a physical event
(for example, being interrupted by a colleague) and can
result in a physical fault (for example, omitting to initialise
a variable); in software engineering this physical fault may
be subsequently executed causing a system failure4. Human
error is probably endemic in all human-centred activities.
Human Error Theory (HET) [3] has been used extensively to
analyse errors and develop mitigation strategies in a range
of other disciplines, most notably in medicine and related
health disciplines (e.g., nursing and pharmacy).

The impact of human issues on coding has been previ-
ously investigated [4]. Most studies investigate developer
errors indirectly via the analysis of the physical defective
code that developers submit to repositories. Such previous
studies have typically analysed the fixes that developers
have made to repair code from a human perspective (e.g.,
Kini and Tosun studied the impact of developer experience
on defects [5]). Such repository mining has also been used in
conjunction with Sentiment Analysis and Natural Language
Processing to, for example, understand how the emotional

• B. Nagaria is with Department of Computer Science, Brunel University
London.

• T. Hall is with School of Computing and Communications, Lancaster
University.

Manuscript received Month xx, 2020; revised Month xx, 20xx.
1. British Airways: https://www.bbc.co.uk/news/uk-40069865
2. TSB bank: https://www.bbc.co.uk/news/technology-52121990
3. Facebook: https://www.bbc.co.uk/news/technology-47562281
4. https://standards.ieee.org/standard/24765-2017.html

state of developers relates to fault fixes (e.g., Ortu et al.
[6] report that sad developers take longer to fix faults
than happy developers). Most of these previous studies use
quantitative approaches to analysing repository data, but
some qualitative studies exist. Previous qualitative studies
have investigated the relationship between developers and
code faults by, for example, investigating code reviews [7]
or studying code comprehension [8].

Few studies have considered errors in terms of the de-
veloper’s psychological events during a programming task
that resulted in physical code faults. The few studies that do
focus on the psychological world of the developer include
tracking cognitive load via electrical brain waves [9]. We
take a simpler and potentially more usable approach by
considering the errors that developers make are likely to
be similar to those errors that all humans make in ‘manual’
tasks. We investigate the coding errors and deployed mit-
igation strategies reported in interviews of 27 professional
software developers. We analyse this qualitative data using
HET [3].

According to Reason [3], errors are introduced during
two phases of human cognition: planning and execution.
Mistakes are defined as planning errors. A mistake results
from lack of knowledge during the planning stage of an
activity. An example of a mistake is misdiagnosing a patient
due to lack of experience. There are two types of execution
error: slips and lapses. A slip is the result of careless or
inattentive actions, for example, fat fingering. A lapse is the
result of a failure of memory, for example, intending to do
a task but forgetting about it. Slips and lapses are further
described by Rasmussen [10] as Skill-based (SB) errors with
mistakes described as Rule-based (RB) and Knowledge-
based (KB) errors. Figure 1 shows the relationship between
error types as described by Reason [3] and Rasmussen
[10]. We focus on developer SB errors because such errors
are common and are potentially simpler to recognise and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/345683958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mitigate. Prioritising developer SB errors potentially offers
an opportunity for us to effectively reduce more coding
errors, with future work focusing on RB and KB errors.

Although Human Error was the theme of a promising
2015 ICSE Workshop5 there remain few studies of how HET
can be used in software development. The few studies that
do use HET tend to focus on errors in user requirements
[11], [12], [13], [14], [15], [16], [17], [18] (on which topic
another promising one-off workshop occurred in 20176).
One prominent piece of work looking at the use of HET
in requirements engineering presents a survey study to
understand high level human errors, the related faults and
methods of mitigation used by requirements engineers on
real projects [16]. In addition, Hu et al. [15] performed
an empirical study to determine if knowledge of human
errors can serve as a fault prevention mechanism during
requirements engineering. Hu et al. [15] also reported that
the better a developer was able to use error information to
find faults in a requirements document, the less likely that
developer was to insert faults into their own requirements.

Huang is the only researcher that we know of who
has previously looked at coding errors in relation to HET.
Huang [19] looked at requirements-based human errors in
relation to coding, concluding that there is a high likeli-
hood that developers will introduce post completion errors
while implementing software requirements which include
a post completion sub-task. Post completion errors happen
when a sub-task is omitted at the end of a task which is
not necessary for the completion of the task, for example,
omitting to collect your bank card from an Automated Teller
Machine (ATM) machine after collecting your cash. Li et al.
[20] reported that post completion errors are infrequent but
persistent. Huang and Liu [21] presented a defect preven-
tion approach which is human centered using their Defect
Prevention Based on Human Error Theories (DPeHE) frame-
work. The results of Huang and Liu’s study showed that
there are promising avenues for defect prevention beyond
conventional software process improvement approaches.

HET seems to have much potential to help understand
and devise well-founded mitigation strategies for developer
errors. This potential seems to have been under-exploited
so far in software engineering. Few studies that investigate
the use of HET in software engineering use professional
software engineers (the only studies we could find were
Huang’s studies: [22] involved 14 professionals and [21]
involved 20 professionals). HET studies predominately use
student participants to investigate human error in require-
ments engineering.

We build on and extend the small amount of previous
work to present insights into the SB human errors that
professional developers make, why these errors are made
and how developers currently mitigate their own errors.
Our study is based on semi-structured interviews with 27
professional software engineers. Although a few studies in
software engineering conduct more interviews with soft-
ware professionals (for example, Hoda et al’s [23] study
of self-organising agile teams included 58 interviews), most
software engineering studies are based on fewer interviews

5. http://humanerrorinse.org/workshops/WAHESE15/schedule.htm
6. http://humanerrorinse.org/workshops/WHERE2017/

than 27, yet are able to report important and rich human
insights into developer behaviour (for example, Smith et al’s
[24] study on developer behaviour in relation to security
vulnerabilities is based on input from five students and
five professional developers). In this study, we answer the
following research questions:

• RQ1: What Skill-based (SB) human errors do profes-
sional software developers make while performing
software development tasks?

• RQ2: How do professional software developers mit-
igate their Skill-based (SB) human errors?

In answering these research questions we contribute
new understanding of the type of SB human errors that
developers are making. In particular, we report a range of
errors that developers say are due to the complexity of their
development environment. We also contribute improved
understanding of the developer, management, tooling and
process error mitigation strategies developers report re-
duces their errors. In particular, we report that developers
feel that to reduce their errors they must largely resort to
improved willpower to concentrate and focus on tasks more
effectively. Implementing ways in which developers can be
supported to improve their concentration skills seems an
important priority.

The rest of this paper is organised as follows. Section
2 presents the background to Human Error Theory and
relevant literature. Section 3 describes the research method-
ology. Section 4 presents the results. Section 5 discusses our
findings. Section 6 discusses related work. Section 7 explains
the threats to validity. Section 8 presents our concluding
remarks.

2 HUMAN ERROR

In this section, we describe human error classification using
the Skill-Rule-Knoweldge Framework (SRK) and we discuss
the application of HET within other disciplines.

2.1 Human Error Theory

Rasmussen [10] developed an error framework of human
cognitive mechanisms. Rasmussen’s SRK framework of hu-
man performance in terms of error is formed of three levels.
These are Skill-based (SB) level, Rule-based (RB) level and
Knowledge-based (KB) level. The SB level focuses on pat-
terns of error associated with well understood tasks. The RB
level focuses on addressing recognisable patterns of errors
which are controlled by stored rules. The KB level focuses
on unknown situations where forthcoming actions must
be planned by employing analytical processes and stored
knowledge [3]. The SB level focuses on slips and lapses e.g.,
fat fingering, while the RB and KB levels focus on mistakes
which originate from rules or knowledge.

As already mentioned, this study focused on SB errors
made by developers. Reason [3] describes eight types of SB
errors: omission, repetition, reversal, omission following in-
terruption, double-capture slip, reduced intentionality, per-
ceptual confusion and interference error. Table 1 provides
more details of each of the eight types of SB errors that we
investigate in this study.

Page 2 of 15



SB Error Type Definition Real World Example
Omission Omissions are when you conclude the process is further

along than it actually is, and, as a consequence, omit a
necessary step.

Forgetting to turn the kettle on in the tea making pro-
cess.

Repetition Repetitions are when you conclude the process has not
yet reached the point where it is further along that it
actually is and then repeat an action already done.

Setting the kettle to boil for a second time.

Reversal Checking something outside a sequence, causing you to
double back on the sequence.

I intended to take off my shoes and put on my slippers.
I took my shoes off and then noticed that a coat had
fallen off a hanger. I hung the coat up and then instead
of putting on my slippers, I put my shoes back on again.

Omission
following
interruption

Forgetting something due to an external event. I picked up my coat to go out when the phone rang. I
answered it and then went out of the front door without
my coat.

Double-capture
Slips

Unintentionally activating a strongly related action pat-
tern.

I intended only to take my shoes off, but took my socks
off as well.

Reduced Inten-
tionality

Some delay intervenes between the formulation of an
intention to do something and the time for this activity
to be executed.

I opened the fridge and stood there looking at its con-
tents, unable to remember what is was I wanted.

Perceptual Con-
fusion

Repeated tasks become automised. When conducting
these automised tasks we accept rough rather than
precise approximations for expected inputs. This degra-
dation of criteria leads to perceptual slips.

I intended to pick up the milk bottle, but actually
reached out for the squash bottle.

Interference Er-
ror

Two active plans, or two parts of a single plan can
become entangled.

I had just finished talking on the phone when some
visitors were ushered in. I got up from behind the desk
and walked to greet them with my hand outstretched
saying ‘Smith speaking’.

Table 1
Definition and Examples of Skill Based Errors [3]

Leape [25] suggested that human errors are affected
by physiological, psychological and environmental factors.
Physiological factors include fatigue, sleep loss, alcohol,
drugs and illness. Psychological factors include other ac-
tivity and emotional states e.g., boredom, fear, frustration,
anger or anxiety. Environmental factors include noise, heat,
visual stimuli and motion. Previous studies have investi-
gated the impact some of these individual psychological
and physiological factors have on the coding habits of
developers, for example, Graziotin et al. studied the impact
of mood and, particularly, happiness on the performance
of developers [26]. However we could find no study that
investigated these factors holistically within a theoretical
framework. Our study looks indirectly across all of these
factors within the established Human Error Theory. Such
an approach allows us to understand better whether these
factors generally affect developers and to prioritise the
development of mitigation mechanisms.

2.2 Human Error in Other Disciplines

Fitts and Jones’ 1947 study [27] is a classic and influential
demonstration of how important it is to analyse human
errors. Fitts and Jones conducted a series of individual and
group interviews with pilots to collect accounts of and anal-
yse pilot-errors. Fitts and Jones [27] found that the redesign
of equipment in accordance with human requirements can
eliminate a large number of pilot-error accidents. An exam-
ple error that Fitts and Jones [27] report is pilots confusing
wing flap and landing gear controls. Dekker [28] reported
the immediate wartime fix was to attach a rubber wheel
to the landing gear control and a small wedge to the flap
control. On the basis of their findings, Fitts and Jones [27]
recommended that aircraft should provide uniform shape-
coding of all control knobs which must be grasped quickly

or without looking. This wartime design solution went on
to become a certification requirement [28].

Much analysis of human error has occurred in medicine.
Leape [25] reported that there are five areas in which errors
can be prevented in medicine, these are; reduced reliance
on memory, improved information access, error proofing,
standardisation and training. Ribeiro et al. [29] identified
a variety of slips, lapses and mistakes which are made
when nurses use equipment in ICU. Ribeiro et al. [29] found
that it is mainly infusion pumps and monitoring systems
which involve unfavourable events that harm patient safety.
Common mechanisms behind these errors are memory and
attention lapses in the handling of infusion pumps; planning
failures during programming of the monitors; application of
rules and knowledge [29]. To mitigate these errors Ribeiro at
al. [29] suggested that daily checks of infusion pumps and
monitors should be performed.

Beso et al. [30] investigated drug dispensing errors. They
conducted a study in a 450 bed London teaching hospital in
which they asked pharmacists to self report any dispensing
errors. They also conducted semi-structured interviews with
the pharmacists who dispensed the medication to explore
why the error occurred. Brumby et al. [31] reported that
interruptions are disruptive, take time to recover from and
lead to an increased chance of errors being made. Beso et
al.’s [30] findings suggested that consideration should be
given to how interruptions are handled and that automated
dispensing systems may reduce many errors. Hakala et
al. [32] also reported the most common reason for drug
dosing errors is improper patient identification when a
dose is obtained from the pharmacy or when a dose is
administered. Hakala et al. [32] reported that introducing
a bar code system which links the patient dose with the
electronic information reduces the number of crucial points
for human error and provides a framework to ensure that

Page 3 of 15



the prepared dose reaches the correct patient.
We expect to exploit the approaches used by other dis-

ciplines when investigating human error. We also expect to
identify mitigation strategies for errors that occur during
coding just as other disciplines have done when errors have
been framed using Human Error Theory.

3 METHODOLOGY

Our aim was to understand professional software develop-
ers’ experiences of the SB human errors they make during
development tasks. To address this aim we used qualitative
research in the form of semi-structured interviews with 27
professional software developers. This section describes our
approach to collecting and analysing this qualitative data.
Section 3.1 describes the participants of this study and how
they were recruited. Section 3.2 presents the study design.
Section 3.3 details how we performed our data analysis.

3.1 Participants and Recruitment
Our study was conducted over a sixteen week period. Dur-
ing this time we recruited 27 industry software developers.
We focused on industry software developers because we
wanted to understand SB human errors that occur on the
job, as opposed to while learning to develop software.

These industry software developers were a convenience
sample who were contacted by word-of-mouth, email and
face-to-face. In addition, to this we shared details of the
study and issued invitations to participate on social media,
with posts on LinkedIn and Twitter.

The participants of our study comprised of four women
and 23 men of whom 14 had more than ten years of industry
experience. The majority (24 developers) worked only on
closed sourced systems. The developers worked in varied
organisations ranging from startups to multinationals. They
developed software for a variety of industries, examples
include finance, healthcare, leisure and telecommunications.
They developed software using a variety of languages,
examples include C++, Python, PHP and JAVA.

3.2 Interview Method
We used semi-structured interviews to question software
developers about their errors during coding. We also asked
developers how they mitigated their errors. Although the
interviews had predetermined questions, there were also
unstructured open ended questions that could be used
as follow-ups based on an interviewee’s answers and the
interviewer’s interpretation of those answers.

One interviewer (the first author) conducted all the
interviews and so consistency was maintained across all
interviews. The interviews were either face-to-face (21),
mostly at the developer’s workplace, and video calls using
Skype (6). The interviews lasted between 30 to 45 minutes.
All interviews have been recorded and transcribed.

The structure of the interview was as follows (a visual
representation can be seen in our Online Appendix here:
https://bit.ly/2ZKgIsj):

1) Introduction and overview of logistics.
2) Iterate through this process for each of the eight SB

errors.

a) Provide an explanation of the SB error in-
cluding a definition and a non software
engineering-related real world example. De-
tails of the eight SB errors can be found in
Table 1. Given the diversity of software de-
velopmental tasks and a participant’s experi-
ence we did not want to bias their responses
by giving software engineering related ex-
amples of each SB error.

b) Ask about their error occurrences and miti-
gation strategies for each of the eight SB error
types. Sample questions: ‘Can you provide
examples of an omission in the software
development work you perform’ or ‘For the
given example, did you employ any mitiga-
tion strategies?’

3) Close, Demographic Data and thanks.

Figure 1. Reason’s [3] Slips, Lapses, Mistakes mapped to Rasmussen’s
[10] Skill-based (SB), Rule-based (RB) and Knowledge-based (KB) error
types

3.3 Data Analysis

Below we explain the data analysis process as depicted
in Figure 2. Once the interviews were performed, each
interview audio recording was then transcribed manually
by the first author to allow for coding and analysis.

We identified themes for errors and mitigation strategies
by identifying high level groupings of key concepts in the
transcripts using Thematic Analysis [33]. Our approach was
very similar to that used by Meyer et al. [34] in their analysis
of reflective goal setting by developers. We extensively
discussed commonalities between the low level themes and
noticed that these themes for mitigation strategies related
well to the generic high level concepts identified by Grazi-
otin et al. [26]. These high level themes were: management,
tools, processes and the developer. Graziotin et al.’s scheme
seemed a useful high level clustering of the mitigation
strategies themes we extracted and so we adopted this
high level structure and organised our low level mitigation
strategy themes within it.

Structuring interviews around the eight SB error types
meant that all interview data was also already organised
into those eight SB error headings.

We open coded each reported error and mitigation strat-
egy based on direct quotes from transcripts against the
low level themes established. To ensure that coding was
conducted reliably both authors extensively discussed each

Page 4 of 15



Figure 2. Data Analysis Process

error type prior to performing any coding to ensure their un-
derstanding was the same. Then each author independently
coded interview transcripts. When coding the transcripts we
looked to:

1) Code themes and supporting evidence for a given
SB error.

2) Code themes and supporting evidence for a given
mitigation strategy.

3) SB Errors and mitigation strategies were coded
against one low level theme and not multiple low
level themes.

We noticed that the error themes which emerged from
the interview data were not all psychological events, i.e.,
were not errors in the true HET sense. Some of the themes
which emerged from the data were the reasons that errors
had occurred, while other themes were the consequences of
errors having occurred. Although this spread of data across
the three aspects of error (reason, error and consequence)
was not what we had expected, it seemed to us that what
developers reported was nevertheless important. Conse-
quently, we also labelled each developer reported ‘error’ as
either: a reason for error, an error or the consequence of an
error.

As recommended by Kitchenham et al. [35] where any
disagreement on classification occurred between the authors
extensive discussion of the issues ensued and a decision
made on a categorisation for that data or an update to the
set of themes was made. Errors and mitigation strategies
that did not fit well with the current set of themes were
discussed extensively and in some cases the set of themes
updated. This was an iterative process.

Theme categorisation was documented using a custom
kanban style board using Trello7. Cards were created with

7. https://trello.com/en

themes to support a SB error type or a mitigation strategy.
The cards were assigned labels to show which participant
transcript supports the theme. Evidence to support a theme
was highlighted on the transcripts and given a reference
number. This reference number was added to the appropri-
ate Trello card.

4 RESULTS

In this section, we present the findings that arose in the
interviews. We present the data for both error and error mit-
igation in separate sub-sections related to the two research
questions posed.

4.1 RQ1: What Skill-based (SB) human errors do pro-
fessional software developers make while performing
software development tasks?

The 27 interviews elicited 57 themes of errors across eight
SB error types. Table 38 shows the number of error and
mitigation strategies broken down by SB error type. Table
3 shows that Perceptual Confusion errors were mentioned
most frequently with developers giving examples of errors
stemming from being on auto pilot. These autopilot errors
relate to a range of error causes (e.g., complexity of devel-
oper environment) which we discuss next. Some SB error
types (e.g., double capture and interference errors) were not
mentioned often (4 and 5 mentions respectively), which may
mean that these errors do not happen as often but more
research is needed to establish this.

We also considered the errors mentioned by developers
in terms of low level error themes as shown in Table 2 with

8. All participants were asked about each SB error type, however, not
every participant was able to provide an example, for every SB error
type.

Page 5 of 15



Low Level
Theme

Explanation Reason,
Error,
Conse-
quence

Mentions

Complexity of
Development
Environment

Too many things
going on in devel-
opment space

R 16

Concentration Lacking concentra-
tion

E 13

Duplications Repeating tasks C 10
Requirements
Problems

Poor requirements
engineering

R 8

Context Switch-
ing

Switching tasks R 6

Rabbit Hole Going down the
rabbit hole while
performing a task

C 4

Testing Not testing as well
as they could have
/ lacking test au-
tomation coverage

C 4

Distractions Variety of distrac-
tions e.g., noise

R 4

Work Pressure Increased work
pressure to deliver
tasks

R 4

Understanding Lack of understand-
ing of the task

R 2

Table 2
Developer Error Themes (in ranked order)

Skill Based Error Type Error Themes Mitigation
Strategy
Themes

Omission 9 18
Repetition 8 18
Reversal 6 8
Omission following In-
terruption

6 23

Double capture slips 4 12
Reduced Intentionality 6 15
Perceptual Confusion 13 13
Interference Error 5 6

Table 3
Number of Theme Occurrences of each Skill Based Error Type

more details of each error theme in Table 2 (which also in-
cludes a classification of each theme in terms of whether the
theme is an error reason, an error or the consequence of an
error). Our results suggest that developers focus more on the
reasons for errors and their consequences, than the errors
themselves (see Table 2). The psychological event that is
the error (e.g. lost concentration) seems no more important
to developers than the reasons and consequences of errors.
Table 2 suggests developers believe that many errors are as
a result of the complexity of the development environment
that they work with. In particular, knowledge of multiple
languages, multiple tools, multiple views and dependencies
between these needs to be maintained and context switched
during programming tasks. Complex programming tasks
themselves have a significant cognitive load [36], but per-
forming programming tasks within a complex development
environment is likely to increase this cognitive load still
further. For example, Participant 17 told us that errors
occurred when

‘...running some queries or SQL on the database,
when you don’t realise you are on QA or Live.’

Participant 12 said

‘typing commands into the wrong window’
caused errors and Participant 10 said that

‘...using a JavaScript based templating language
we wrote an if statement with an end condition
in and I used the python way of writing the end
which meant at the next step the whole thing didn’t
render.’

Table 2 shows that developers also recognise that a
frequent human error is their own concentration being im-
paired. Issues surrounding concentration, context switching,
work pressure, rabbit hole9, understanding and distractions
were cited regularly by developers which suggests that it is
easy for developers to lose their awareness of a given task:

• Participant 26
‘You go and reply to the email and by the time
you come back you have forgotten what you
were going to do.’

• Participant 13
‘Very often what I found is you can just go
down blind alleys, but also you can go into
this reversal thing where you can’t see why you
made a certain change in a certain area of the
code...’

• Participant 16
‘It is to do with the nature of the speed of when
you have to deliver...’ ‘...someone comes in at
5pm and says I need that for tomorrow. So you
are under a lot of pressure and that is when a lot
of errors can occur.’

• Participant 22
‘...its like I am jedi, its all flowing out of the
fingers and it will be like that for several hours
and suddenly I will think oh I am really hungry
or oh I need a wee. But it could be anything,
it could be like the phone ringing and because
you are kind of there in the moment, quite often
you have fingers in many different pies all at the
same time. And you have got a model you are
holding in your head, pulling you out of that
flow means that occasionally you drop some of
that model on the floor. I mean you usually find
it again at bit later, but yeah it has caused some
disruption to me in the past.’

• Participant 16
‘...I do SSRS reports and uploading them is a
repetitive task. So you could easily upload the
wrong report, if you don’t concentrate on what
you are doing...’

Duplications are mentioned 10 times by developers as
the consequence of an error. Duplicate code is a well-known
bad smell so it is interesting that developers recognise
duplications as an outcome of human error. Requirements
problems also feature in the list of reasons for errors. Re-
quirements problems are well-known as a source of failure

9. Going down a rabbit hole is a metaphor commonly used to
indicate someone has gone into a situation or started a process which
is particularly difficult, complex or chaotic, especially one that becomes
increasingly so as it develops or unfolds

Page 6 of 15



Low Level
Theme

Developer Process Tools Management

Focus
Concentration
Use Headphones
Awareness
Discipline
Lean
Checklist
Code Reviews
Testing
Note Taking
Communication
Documentation
Pull Requests
Automation
Git
Compiler
Where are you
Planning
Best Practices
Prioritisation
Well formed, low
level processes
Awareness
Total Instances 58 57 28 10

Table 4
Mapping High to Low Level Mitigation Strategy Themes

throughout the development process (for example, the Lon-
don Ambulance System failure [37]), so it is not surprising
that developers say these problems underpin some of the
errors they make.

Overall our results in response to RQ1 suggest that
developers blame their own lack of focus and concentra-
tion errors for many faults. With many errors reported
by developers to be caused by the complex development
environment in which software development occurs.

4.2 RQ2: How do professional software developers mit-
igate their Skill-based (SB) human errors?
We have classified the mitigation strategies mentioned by
developers into four high level themes which are the de-
veloper, processes, tools and management. Table 4 presents
these high level themes and shows the number of times each
theme was mentioned by developers during interviews.
Table 4 shows that developers see themselves as highly
influential in mitigating errors, suggesting that developers
seem to take a great deal of personal responsibility for trying
to prevent errors.

Table 5 shows the low level themes of the developer
mitigation strategies. Table 5 suggests that a large number
of themes relate to the developers’ cognitive issues such
as focus, concentration, discipline, attention, understanding
and awareness. Most of these issues were discussed by
developers in terms of them using willpower to improve
their coding behaviour. For example, developers said:

• Participant 10
‘...being very disciplined if you know you have
a context you know you need to restore...’

• Participant 16

‘So you take responsibility by checking your
work to ensure you are filtering out the one
record...’

• Participant 12
‘... awareness is there and developers should be
aware all the time...’

• Participant 16
‘...focusing on what you are delivering as op-
posed to meeting the deadline...’

• Participant 12
‘Just by remembering.’

These quotes suggest that developers believe that by
being more self controlled they could reduce coding errors.
Increased willpower and self discipline is notoriously hard
to achieve without structured support. In addition, external
factors such as those mentioned previously (e.g., fatigue,
illness, boredom, frustration, noise, heat, etc.) can hamper
willpower and self discipline.

Although Table 5 shows a variety of developer-based
mitigation strategies, it is surprising that reducing tiredness
and taking breaks was not explicitly mentioned more fre-
quently by developers. The impact of tiredness on errors
seems conventional wisdom. It is unclear why tiredness
did not feature more directly in our results. It is clear that
tiredness etc. can be a reason for developers to lose their
focus on a task [38] so it is surprising that developers did not
mention this more often. Similarly it is surprising that inter-
ruptions were not mentioned more explicitly by developers.
Interruptions are widely thought to underpin errors [39] but
were not mentioned much in our study. Bailey and Konstan
[40] report that interruptions have a disruptive impact on
completion time and error rate. Where interruptions were
mentioned it was indirectly, with developers talking about
mitigation for errors like using headphones and turning
emails off.

Mitigation strategies related to processes were frequently
mentioned by developers. Most of these strategies are based
on detecting the consequences of errors in terms of spotting
faults in code. Table 6 suggests that many process themes are
related to getting faster feedback on whether work is likely
to contain faults. For example, ‘testing’, ‘code reviews’ and
‘pull requests’ all enable early checking of work products in
relation to faults. For example, some developers mentioned:

• Participant 13
‘And the pull request is a deliberate, these are
my commits and this is my change set, I’m going
to review it myself and someone will also peer
review and only then will it become consequen-
tial. And that’s really important because you will
always pick up issues.’

• Participant 19
‘...first of all from a developer point of view any
change must be documented. No one is allowed
to make any changes before documenting the
change and running it by a senior developer
first.’

Table 7 suggests that automation is an important element
of mitigating developer errors. Developers seem to rely on

Page 7 of 15



automation tools or tools that have elements of automation
to aid in reducing their errors. For example, some develop-
ers mentioned:

• Participant 20
‘...generally the pattern is we have automated
something that would have been a human error
before and you can’t always do that but its nice
when you can.’

• Participant 7
‘Usually I stash all of them for instance if I am
on some branch, something urgent, imminent
comes up and they say you need to fix this one,
this is very urgent one.’

Although management did not feature hugely in miti-
gation strategies, Table 8 suggests that management need
to better plan workloads, promote and provide training
for developers to use best practises. For example, some
developers mentioned:

• Participant 11
‘...to be aware of how you prioritise things and
to switch to these new tasks only if it is really
urgent. So it takes some effort to do that. Priori-
tisation’

• Participant 10
‘...we have always had someone from a more
product-y perspective or the user or client or
whoever, looking at a staging server or a ver-
sion of the code running, making sure that the
functional requirements were being fulfilled.’

The mitigation strategies cited by developers are not
very surprising. Developers seem to know what errors they
make and what they need to do to mitigate errors and
to detect the consequential faults. Despite this knowledge
developers seem to struggle to implement these mitigation
strategies themselves. Taking personal responsibility for er-
ror mitigation may not be the most effective route to reduce
errors. Supporting developers in effective error mitigation is
likely to depend on better tools, management and processes.

Overall in response to RQ2 our results suggest that de-
velopers predominately rely on trying to improve their own
willpower to mitigate errors. Developers use a variety of
strategies to retain their focus and concentration in order to
reduce the number of errors they make. Developers also use
mitigation strategies within the development process, often
to detect faults (e.g., checklists), tools (e.g., automation) and
management (e.g., planning).

5 DISCUSSION

Our results suggest that developer-based mitigation strate-
gies are the most frequently reported ways to reduce human
errors. We find this interesting as we had believed that
developers may have leaned more towards using tool au-
tomation or reliance on process based mitigation strategies.
Developers seem to think that they individually should
stop making errors that get through to production. Other
disciplines, for example, health [41], have shown that a

Theme Explanation Mentions
Focus To give special attention to a

specific task.
10

Concentration To think intensely about a spe-
cific task.

8

Use head-
phones

Use headphones to reduce back-
ground distractions.

7

Planning Appropriately plan the task. 6
Awareness Develop an awareness of the

project and task, so you can ad-
dress potential issues.

5

Discipline To follow a series of rules or a
code of practice.

4

Learn Learn about the project, soft-
ware tools, language etc.

3

Other Example Ignore emails when
conducting tasks

15

Table 5
Themes of Developer Mitigation Strategies

Theme Explanation Mentions
Checklist Use checklists to verify process

flow has been conducted.
12

Code Reviews Use code reviews to peer review
work prior to committing.

9

Testing Have better test coverage to en-
sure more cases are covered.

8

Note taking Don’t rely on memory, keep
physical/typed notes to serve
as a prompt.

6

Communication Promote communication within
the team.

6

Documentation Create and use code documen-
tation.

6

Pull Requests Use pull requests to peer review
work prior to committing.

3

Other Example Complete refactoring
tasks separately

7

Table 6
Themes of Processes Mitigation Strategies

human-based approach is likely to have limited success
without the embedded support of tools and processes.

The majority of the mitigation strategies cited could be
described as psychological, and ‘internal’ to a developer
(e.g., developers saying that they need to concentrate more).
Many of the process, tool and management strategies could
be described as ‘external’ to a developer, and mostly focused
on detecting consequential physical code faults. These exter-
nal strategies are likely to aid developers in implementing
internal strategies to prevent the error. Figure 4 shows how

Theme Explanation Mentions
Automation Where appropriate automate

routine tasks.
9

Git Utlise the full power of Git so
slip of the finger errors cannot
be commited.

5

Compiler Utilise the power of the com-
piler to pick up on syntax er-
rors.

4

Navigation
Helper

Provide developers a clear indi-
cation of where they are within
an application(s) and or code
base.

2

Other Example Utilise helpers that are
ingrained in the IDE

8

Table 7
Themes of Tools Mitigation Strategies

Page 8 of 15



Theme Explanation Mentions
Planning Appropriately planning the

workflow of developers.
3

Training Provide formal and informal
training opportunities to devel-
opers.

2

Best Practices Actively encourage and pro-
mote the use best practices in all
developmental activities.

2

Prioritisation Appropriately prioritise devel-
opmental tasks, so as to min-
imise interruptions to develop-
ers.

1

Well formed,
low level
processes

Ensure work units are small,
measurable and achievable.

1

Awareness Having a global awareness of
the project to ensure tasks like
planning and prioritisation can
be done correctly.

1

Table 8
Themes of Management Mitigation Strategies

Figure 3. James Reasons’s Swiss Cheese Model [42] adapted from [43]

the developer is likely to be central to all mitigation strate-
gies. The developer is closely supported by process and
tool mitigation strategies and more widely by management
mitigation strategies. Indeed we suggest that the commonly
mentioned mitigation strategies of using tools (e.g., automa-
tion) and processes (e.g., checklists) can support developers
to implement internal mitigation strategies (e.g., staying
focused).

Our results resonate with Reason’s [44] Swiss Cheese
model of accident causation. The Swiss Cheese model
(shown in Fig. 3) is an approach to building effective or-
ganisational defences against failure. The aim of the model
is to enable a system-centric rather than a human-centric
approach to reducing failures. The model shows that layers
of barriers are needed to block errors from slipping through
to cause major failures. Reason’s Swiss Cheese model has
been used extensively to manage the prevention of medical
errors and reduce accidents in engineering settings (e.g., in
the oil field industry10). Taking such an approach to error by
building defensive tooling, process and management layers
around the developer is likely to be effective in preventing
developer errors from causing major system problems. More
work is needed to adapt and evaluate the Swiss Cheese
approach in software development contexts.

10. https://www.oilfieldtechnology.com/special-
reports/23042015/rallying-against-risk/

Figure 4. Mitigation Strategies

Few of the errors reported by developers are previously
unknown. For example, it is not a surprise that complexity,
requirements or concentration underpin developer errors.
Similarly, many of the mitigation strategies identified by
developers are also previously known approaches. For ex-
ample, using testing, pull-requests and well formed pro-
cesses to mitigate errors are all known to be helpful. It is
more surprising that these errors continue to be problematic,
suggesting that the existing mitigation strategies do not
seem to be working effectively. More work is needed to
understand why established approaches do not seem to,
either be effectively embedded in software development
practice, or, if they are embedded, not effectively reducing
developer errors.

5.1 Improving Situation Awareness

Our results suggest that situation awareness is a problem for
developers. Endsley [45] describes situation awareness as
maintaining an understanding of what is going on around
you while you perform a task so that you can predict what
is likely to happen next. Many of the error causes given by
developers suggest lost situation awareness. For example,
Participant 12 says

‘...start trying to do something and you find some
kind of annoyance gets in your way and it makes it
impossible or more difficult than it ought to be so
you kind of fix that and maybe end up going down
a bit of a rabbit hole that is more complicated than
you expected. I can recognise the feeling of just
kind of having fought my way through that and
not remember why I was doing that in the first
place.’

Situation awareness is also a problem in other disci-
plines. Procidas [46] discusses how the Air France 447 crash

Page 9 of 15



resulted from the pilot’s lack of situation awareness. The
pilot was unable to see that the actions performed would
lead to the aircraft stalling (aerodynamic loss of lift that
occurs when an airfoil exceeds its critical angle). The pilot
lost situational awareness and was not aware of everything
going on around him. Other domains use maintaining
situation awareness as an approach to reducing human
errors, for example; autonomous driving [47], medicine [48],
transportation [49] and cyber security [50].

In software development coding on ‘autopilot’ can lead
to the loss of situation awareness which can lead to develop-
ers going down rabbit holes. The unplanned refactoring of
code is usually such a rabbit hole. Developers should prob-
ably resist temptation to refactor while working on other
development tasks and/or in an ad-hoc manner, as it is
difficult to predict what else they will encounter while they
make these additional refactoring changes. We recommend
that developers conduct refactoring tasks as part of planned
work rather than embedded in other tasks.

Participant 9 explains a mitigation strategy to prevent
going down rabbit holes

‘Discipline in one sense. Experience teaches you
that not all code is perfect. You have to accept other
people might write code in other ways so you have
to have a pragmatic style of programming to look
at code. Understanding is most important, thing
for me is understanding the intention of the code
rather than how it was written.’

Our results suggest that developers understand the dan-
gers of losing situation awareness and also know some mit-
igation strategies for this. These mitigation strategies seem
to be based on their own willpower. Using only willpower
is likely to have limited success. Approaches to support
developers in recognising when situation awareness is being
lost need to be developed, perhaps in the form of training
for developers as such training in situational awareness
is common in health and medical practice. Brennan et al.
[51] report that improving surgeons’ ability to manage their
awareness levels is an essential requirement to reducing
medical error.

5.2 Improving Cognitive Skills
Our results suggest that cognitive skills such as remaining
focused, remembering, maintaining self discipline and at-
tention all affect developers. These cognitive skills also im-
pact a developer’s ability to maintain situational awareness.
Developers indicated that these were skills they wanted to
improve. Related to this, our results also show that many
developers said they need to concentrate better, pay more
attention, focus more. Participant 24 says

‘...you have to be 100% concentrated on the job
otherwise you wouldn’t succeed.’

Participant 16 says
‘...if I am not giving 100% attention then I take a
break’.

The working environment and time pressure is likely to
impact on how developers are affected by cognitive issues.
For example, Participant 16 says

‘...it’s actually detaching yourself from the urgency
and focusing on what you’re actually doing...’

Developers also seem to take personal responsibility
for their ability to deploy effective cognitive skills. The
underlining assumption being that developers just need
more self-discipline and willpower. More work is needed
to investigate the impact of training in existing approaches
to improved cognitive skills. For example, training in using
the Orient-Observe-Decide-Act Loop (OODA) [52] is often
a part of military training and may prove worthwhile in
helping developers improve their cognitive skills.

5.3 Using Checklists
Our results suggest that developers find checklists to be a
useful mitigation strategy. Reducing the reliance to remem-
ber every step can aid in reducing human errors. Ely et al.
[53] report that checklists provide an alternative to reliance
on intuition and memory in clinical problem solving. For
example, Participant 21 says

‘Checklist. I basically tried to checklist for instance
when you are implementing code and you have
a use case instance, you check if you have done
everything.’

This suggests that developers may use materials they al-
ready have as a checklist to aid the prevention of human
errors. Checklists are the most frequently occurring process
related mitigation strategy reported by developers we in-
terviewed. This is a theme consistent with other industries
where checklists have been used in many different situa-
tions. For example, in aviation pilots must complete a series
of checklists during each flight stage [54]. Checklists have
also been used in software development, for example, in
risk management and extensively in software inspection
[55]. Given the value of checklists that developers we inter-
viewed reported in mitigating errors, more work is required
to understand whether embedding the comprehensive use
of checklists throughout the development process could
reduce human error.

5.4 Tool use
Our results suggest that using software tools can provide
developers with greater support. Tool related mitigation
strategies were ranked second out of the four high level
themes by the developers we interviewed. Table 7 shows
the specific tools and types of tools which developers men-
tioned they used to mitigate errors. For example:

Participant 9 says
‘...the application helper is there to say you know.
Start, finish in effect and when you finish you kind
of end your transaction scope.’

This suggests that a developer uses a feature of their IDE to
aid them in their code generation process. Such use can help
with reducing omissions and repetitions as the application
helper will identify that specific structures are missing or
repeated.

Participant 18 says
‘...it [a specific tool] might be better if it was quiet
maybe, that it says building. Doesn’t give out all
that information so at least if I come back to it, it
will just have nothing there. And if it went wrong
there would be something there.’

Page 10 of 15



This quote suggests that the developer feels bombarded
with information which is not clearly useful. By making
small adjustments to tools it might be possible to make them
more useful to developers.

Some developers also indicated that they commit code
as they worry about machine failure and losing code. If
this is not managed properly part completed code could be
pushed to the master branch and lead to merge conflicts.
For example, Participant 7 says ‘So if I tried to push a
WIP, Git would hook it and say that you are not allowed
to do it...’. This simple solution suggests that thoughtful
tool configurations might benefit developers. Following the
lead of the aviation industry, standardising the interaction of
tools with developers could help across multiple platforms
and languages.

5.5 Faster feedback loops
Developers mentioned process related mitigation strategies
(see Table 6) many of which seem to relate to getting fast
feedback on code faults (e.g., reviews, testing and pull
requests). Our results suggest that the quicker developers
can get feedback on the consequences of their error, the
quicker they can make improvements.

Pair programming is a well established approach to
developers getting instant feedback on their code [56], [57].
Participant 20 says of pair programming:

‘...comparing it to for example, code reviews, it’s
just a very simple benefit. It’s just faster feedback
loops is all it is.’

Pair programming allows for developers to detect and
remove faults in code caused by SB errors very quickly. The
second developer’s cognition is independent of the primary
developer, therefore they are likely to be able to see the
consequences of SB human errors in the code that have
being written by the primary developer.

Pull requests seem to be an increasingly important way
to get feedback on code. Participant 9 says

‘so the majority of time we would pick it up in pull
requests and you’re basically reviewing someone
else’s code...’

The value of code review [58] is reiterated by Participant 1:
‘...sometimes you do not check for some errors and
it just ends up sitting in the code base. It comes up
in code review...’

Pull requests and code reviews both provide external
feedback on code. Ideally, both should be used to identify
developer errors in the form of code defects. Pull requests
are not available in all tools used by developers, but where
they are, we encourage the setting up of repositories so that
pull request use is mandatory on top of code reviews. This
intervention adds another layer of defence against errors
translating into production code defects.

Overall our results suggest that developers value mech-
anisms where code is checked for defects, which have
occurred as a consequence of their errors, and feedback
quickly provided to them.

5.6 Tiredness
In some other industries, tiredness can be a serious cause
of error for which mitigation is embedded in the processes

used. For example, in the transportation industry drivers
must not exceed driving a given number of hours in a
day and must have a break at set intervals. This is tracked
through the systematic use of a tacograph. Sugden et al.
[59] report that tiredness will affect decision-making, com-
plex mental tasks and awareness. Our results suggest that
tiredness does not seem to be a high cause of errors in soft-
ware development. This is surprising to us as we expected
tiredness to be more problematic to software developers.
Participant 11 says

‘...it is a sign that I’m tired...’ and ‘...it’s a matter of
relaxing a little bit or resting for a few minutes or
grabbing a coffee.’

This suggests that developers may recognise that they are
fatigued but can deploy their own mitigation strategies to
combat tiredness.

6 RELATED WORK

Although there is limited work looking at HET in software
development, some previous studies could be reconsid-
ered in terms of HET. For example, LaToza et al.’s [60]
early interview study found that the three most frequent
problems reported by developers were ‘understanding the
rationale behind a piece of code’, ‘having to switch tasks
often because of requests from my teammates or manager’
and ‘being aware of changes to code elsewhere that impact
my code’. These problems could be categorised as slip,
lapse or mistake, as for example, dealing with frequently
switching tasks could lead to lapses and being unaware of
significant changes in other parts of the code could lead to
mistakes. Each of LaToza et al.’s [60] three problems have
been subsequently studied with [61], [62] and [7] providing
more understanding of the rationale behind a piece of code,
[63] and [64] further investigating the impact of switching
tasks and [65], [66] and [67] reporting on code change
impact. Our results are consistent with both LaToza et al.’s
[60] original and subsequent studies, and we confirm that,
for example, context switching remains a source of human
error for developers. Our results suggest that since LaToza
et al.’s 2006 [60] study was published, despite attracting
600 google scholar citations, these causes of human error
continue to be problematic for developers. Indeed it is
likely that the proliferation of tools and languages together
with the increasing sophistication of software means that
the problems reported in 2006 may be worse now, though
further work is needed to confirm this.

Huang et al., [22] and Hu et al., [15] are among the
few previous researchers to have looked directly at HET in
software development. Huang et al. developed taxonomies
to help classify various types of error made by developers
in terms of HET. On the basis of which, Huang and Liu [21]
subsequently proposed a human centered defect preven-
tion approach using their DPeHE framework. The DPeHE
method focuses on the cognitive ability of the developer
for error prevention. This framework is made up of three
key stages namely knowledge training (stage 1), regulation
training (stage 2) and continuous improvement (stage 3)
[21]. Huang and Liu [21] concluded that approaches which
go beyond conventional software process improvement are
needed to prevent human errors. Our findings corroborate

Page 11 of 15



Huang and Liu’s [21] conclusions by highlighting the need
for methods to improve the cognitive skills of developers.

A variety of previous studies have looked specifically
at the impact and mitigation of specific causes of human
error during coding. Many of these studies have focused
on interruptions. For example, Züger et al. [68] reported
on FlowLight, a tool developed to help developers reduce
their interruptions. Züger et al. [68] reported that interrup-
tions were reduced by 46% when using FlowLight. Such
tools could be a useful mitigation strategy if transferred
into professional practice. Our results suggested that the
mitigation strategies developers report include many aimed
at reducing interruptions, so it is possible that interruptions
are now more understood, recognised and controlled by
developers.

Previous work has looked at HET in relation to re-
quirements errors. Anu et al. [12] used two taxonomies
to understand errors in requirements, the first is Require-
ments Error Taxonomy (RETa) and the second is Human
Error Taxonomy (HETa). The RETa categorises errors at
a high level in terms of people (communication), process
(elicitation) and documentation (specification) errors. The
HETa categorises errors at a high level using Reason’s slips
(lack of consistency in the requirement specification), lapses
(accidentally overlooking requirements), and mistakes (not
having clear distinction between client and users) categories
[12]. Our approach builds on and complements this pre-
vious work by introducing a finer grained classification of
skill-based errors for coding tasks. Walia and Carver [18] de-
veloped a taxonomy by identifying and classifying software
requirement faults. Hu et al. [17] reported prevention and
mitigation methods within software requirements.

Huang [19] also reported on human errors in software re-
quirements, looking specifically at post-completion errors.11

Huang [19] concluded that there is a high likelihood of post-
completion errors in software requirements. Although we
did not look explicitly at requirements errors, our results
show that developers continue to identify requirements
problems as the reason for some errors.

7 THREATS TO VALIDITY

As with any empirical research our study has several threats
to validity. Below we explore these as construct validity,
internal validity, external validity and repeatability.

7.1 Construct Validity
Construct validity assesses our ability to measure an ‘object’
we intend measuring. The responses given to us by a
developer have been processed by the developer, therefore,
we can not be certain the data is accurate. Interviewees may
distort their responses to influence the impression of them-
selves they are presenting. Accuracy is a common threat to
validity in all interview and questionnaire studies. We also
need to consider participants’ reactions to the researcher
presence. We have tried to address this by allowing par-
ticipants to volunteer their time to the study and schedule

11. As mentioned previously, post-completion errors are when a sub-
task is omitted at the end of a task but is not necessary for the
completion of the task, an example, would be removing your bank
card from an ATM machine prior to your cash being issued.

interviews on days/times that suit them best. In order to
reduce the observer bias we recorded and transcribed the
interviews. In addition we investigate only a subset of all
human errors i.e. SB errors. Future work will investigate RB
and KB errors.

7.2 Internal Validity
Internal validity assesses whether all elements of the study
have been designed and executed correctly. Interviewer bias
is a common internal validity threat to interview studies. It
is difficult to mitigate interviewer bias, however, we used
the same interviewer throughout the study. This allowed us
to ensure all interviews had been conducted in the same
way and the approach to asking questions to probe and
clarify were uniform throughout. Two other aspects of the
interview design may have introduced unintentional bias:

1. The focus of the interviews was developer errors.
This focus may have biased interviewee answers such that
they over-reported developer-based mitigation strategies
and under-reported tool, process and manager mitigation.
Further research is needed to explore mitigation strategies
which most effectively prevent developer errors becoming
system failures.

2. Our interviews required developers to discuss the his-
toric errors that they had made. The accurate recall of these
errors relied on memory. Reliance on retrospective reporting
has been shown [69] to not necessarily be reliable and to
be systematically biased towards particularly memorable
events.

These two potential biases are intrinsic to most interview
studies and hopefully do not detract from the value of the
exploratory results that we report.

7.3 External Validity
External validity assesses the ability to generalise our re-
sults. Our sample size of industry software developers is
relatively small and it is not a random sample. So it is
difficult to claim generalisabity to the wider population. In
addition our sample of developers may have been biased,
as participants may have already had an interest in the
research or they were hoping to learn something about
the topic. On the other hand, over half of our respondents
have been practicing in industry for over 10 years and
the qualitative data provided by these developers during
the semi-structured interviews was very detailed. So the
insights reported are hopefully authentic and potentially
useful. In addition, lack of generalisability is almost always
the case in empirical research in software engineering so our
study is not an exception to the norm.

7.4 Repeatability
Repeatability assesses whether if this study were to be
repeated by another they would get the same results. We
provide a replication package (see our online appendix:
https://bit.ly/2ZKgIsj) which contains a description of how
participants have been recruited, interviews have been per-
formed and analysis has been conducted. We encourage
the replication of this study with a wider group of partici-
pants. Recruiting a similar group of participants could prove

Page 12 of 15



difficult as each researcher’s social media, email, word of
mouth outreach to potential participants is different. The
demographics of the group recruited is important, as the
type of SB human errors may vary based on a developer’s
experience.

8 CONCLUSION

In this paper we presented our preliminary study on the
SB errors 27 industry software developers report they make
and how developers mitigate these errors. We answer the
following Research Questions:

RQ1: What SB human errors do industry software devel-
opers make while performing software development tasks?
Our results suggest that developers blame their lack of focus
and concentration errors for many faults. With many errors
reported by developers caused by the complex development
environment in which software development occurs.

RQ2: How do industry software developers mitigate
these SB human errors? Our results suggest that devel-
opers predominately rely on trying to improve their own
willpower to mitigate errors. Developers use a variety of
strategies to retain their focus and concentration in order to
reduce the number of errors they make. Developers also use
mitigation strategies within the development process (e.g.,
checklists), tools (e.g., automation) and management (e.g.,
planning) to detect the code faults that are the consequence
of their errors.

Our study raises interesting tensions around develop-
ers taking personal responsibility for errors as opposed to
development processes effectively blocking the inevitable
code faults that results from the human errors made by
developers. We identify the need for a more systematic
approach to developer errors being prevented from causing
serious failures. Software development is likely to benefit
from adopting a Swiss Cheese approach which has success-
fully been used in other disciplines to prevent errors causing
major accidents and failures.

ACKNOWLEDGMENTS

The authors would like to thank all the study participants.
This study has has been approved by Brunel University
Ethics Committee reference 12218-LR-Jul/2018-13605-1. The
study was partly funded by the UK’s Engineering and
Physical Sciences Research Council (EP/S005730/1).

REFERENCES

[1] F. Huang and B. Liu, “Systematically improving software reliabil-
ity: considering human errors of software practitioners,” in 23rd
Psychology of Programming Interest Group Annual Conference (PPIG
2011), 2011.

[2] F. Huang, B. Liu, Y. Song, and S. Keyal, “The links between
human error diversity and software diversity: Implications for
fault diversity seeking,” Science of Computer Programming, vol. 89,
no. PART C, pp. 350–373, 2014.

[3] J. Reason, Human Error. New York; Cambridge [England]: Cam-
bridge University Press, 1990.

[4] L. Pirzadeh, “Human Factors in Software Development: A Sys-
tematic Literature Review,” Master’s thesis, 2010.

[5] S. Ozcan Kini and A. Tosun, “Periodic developer metrics in soft-
ware defect prediction,” in 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2018,
pp. 72–81.

[6] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and
R. Tonelli, “Are bullies more productive? empirical study of af-
fectiveness vs. issue fixing time,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. IEEE, 2015, pp. 303–313.

[7] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in
code reviews: Reasons, impacts, and coping strategies,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 49–60.

[8] J. Siegmund, “Program comprehension: Past, present, and future,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 5. IEEE, 2016, pp. 13–
20.

[9] L. Goncales, K. Farias, B. da Silva, and J. Fessler, “Measuring
the cognitive load of software developers: A systematic mapping
study,” in 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), 2019, pp. 42–52.

[10] J. Rasmussen, “Skills, rules, and knowledge; signals, signs, and
symbols, and other distinctions in human performance models,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13,
no. 3, pp. 257–266, May 1983.

[11] V. Anu, G. Walia, W. Hu, J. Carver, and G. Bradshaw, “Effective-
ness of human error taxonomy during requirements inspection:
An empirical investigation,” in Proceedings of the International Con-
ference on Software Engineering and Knowledge Engineering, SEKE,
vol. 2016-Janua, 2016, pp. 531–536.

[12] V. Anu, G. Walia, W. Hu, J. C. Carver, and G. Bradshaw, “Using
a Cognitive Psychology Perspective on Errors to Improve Re-
quirements Quality: An Empirical Investigation,” in Proceedings
- International Symposium on Software Reliability Engineering, ISSRE.
IEEE, 2016, pp. 65–76.

[13] V. Anu, G. Walia, and G. Bradshaw, “Incorporating Human Error
Education into Software Engineering Courses via Error-based
Inspections,” in Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’17. New
York, NY, USA: ACM, 2017, pp. 39–44.

[14] W. Hu, J. Carver, V. Anu, G. Walia, and G. Bradshaw, “Detection of
Requirement Errors and Faults via a Human Error Taxonomy: A
Feasibility Study,” in International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’16, vol. 08-09-Sept. New
York, NY, USA: ACM, 2016, p. 30:10.

[15] W. Hu, J. C. Carver, V. Anu, G. Walia, and G. Bradshaw, “Defect
Prevention in Requirements Using Human Error Information: An
Empirical Study,” pp. 61–76, 2017.

[16] W. Hu, J. C. Carver, G. Walia, and V. Anu, “Understanding Human
Errors In Software Requirements : An Online Survey,” REFSQ
Workshops, 2017a.

[17] W. Hu, J. C. Carver, V. Anu, G. S. Walia, and G. L. Bradshaw,
“Using human error information for error prevention,” Empirical
Software Engineering, vol. 23, no. 6, pp. 3768–3800, 2018.

[18] G. S. Walia and J. C. Carver, “A systematic literature review to
identify and classify software requirement errors,” Information and
Software Technology, vol. 51, no. 7, pp. 1087–1109, 2009.

[19] F. Huang, “Post-completion Error in Software Development,” Pro-
ceedings of the 9th International Workshop on Cooperative and Human
Aspects of Software Engineering, pp. 108–113, 2016.

[20] S. Y. W. Li, A. Blandford, P. Cairns, and R. M. Young, “The effect
of interruptions on postcompletion and other procedural errors:
An account based on the activation-based goal memory model.”
Journal of Experimental Psychology: Applied, vol. 14, no. 4, pp. 314 –
328, 2008.

[21] F. Huang and B. Liu, “Software defect prevention based on human
error theories,” Chinese Journal of Aeronautics, 2017.

[22] F. Huang, B. Liu, and B. Huang, “A Taxonomy System to Identify
Human Error Causes for Software Defects,” Proceedings of the 18th
International Conference on Reliability and Quality in Design, ISSAT
2012, pp. 44–49, 2012.

[23] R. Hoda, J. Noble, and S. Marshall, “Self-organizing roles on
agile software development teams,” IEEE Transactions on Software
Engineering, vol. 39, no. 3, pp. 422–444, 2013.

[24] J. Smith, B. Johnson, E. R. Murphy-Hill, B. Chu, and H. Lipford,
“How developers diagnose potential security vulnerabilities with
a static analysis tool,” IEEE Transactions on Software Engineering,
vol. 45, pp. 877–897, 2019.

[25] L. L. Leape, “Error in medicine,” Jama, vol. 272, no. 23, pp. 1851–
1857, 1994.

[26] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On the

Page 13 of 15



unhappiness of software developers,” CoRR, vol. abs/1703.04993,
2017. [Online]. Available: http://arxiv.org/abs/1703.04993

[27] P. M. Fitts and R. E. Jones, Analysis of factors contributing to 460”
pilot-error” experiences in operating aircraft controls. Aero Medical
Laboratory Wright-Patterson Air Force Base, OH, 1947.

[28] S. Dekker, Ten questions about human error: a new view of human
factors and system safety. Mahwah, N.J: Lawrence Erlbaum Asso-
ciates, 2005.

[29] G. d. S. R. Ribeiro, R. C. d. Silva, M. A. d. A. A. A. Ferreira, and
G. R. d. Silva, “Slips, lapses and mistakes inthe use of equipment
by nurses in an intensive care unit,” Revista da Escola de Enfermagem
da USP, vol. 50, pp. 419 – 426, 06 2016.

[30] A. Beso, B. D. Franklin, and N. Barber, “The frequency and
potential causes of dispensing errors in a hospital pharmacy,”
Pharmacy World and Science, vol. 27, no. 3, pp. 182–190, 2005.

[31] D. P. Brumby, A. L. Cox, J. Back, and S. J. J. Gould, “Recover-
ing from an interruption: Investigating speedaccuracy trade-offs
in task resumption behavior.” Journal of Experimental Psychology:
Applied, vol. 19, no. 2, pp. 95 – 107, 2013.

[32] J. L. Hakala, J. C. Hung, and E. A. Mosman, “Minimizing human
error in radiopharmaceutical preparation and administration via
a bar code–enhanced nuclear pharmacy management system,”
Journal of nuclear medicine technology, vol. 40, no. 3, pp. 183–186,
2012.

[33] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[34] A. N. Meyer, G. C. Murphy, T. Fritz, and T. Zimmermann, Devel-
opers’ Diverging Perceptions of Productivity. Berkeley, CA: Apress,
2019, pp. 137–146.

[35] B. Kitchenham, D. I. K. Sjøberg, O. P. Brereton, D. Budgen,
T. Dybå, M. Höst, D. Pfahl, and P. Runeson, “Can we evaluate the
quality of software engineering experiments?” in Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’10. New York, NY, USA:
Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1852786.1852789

[36] N. Peitek, J. Siegmund, S. Apel, C. Kästner, C. Parnin, A. Beth-
mann, T. Leich, G. Saake, and A. Brechmann, “A look into
programmers’ heads,” IEEE Transactions on Software Engineering,
vol. 46, no. 4, pp. 442–462, 2020.

[37] P. Beynon-Davies, “Human error and information systems fail-
ure: the case of the london ambulance service computer-aided
despatch system project,” Interacting with Computers, vol. 11, no. 6,
pp. 699–720, 1999.

[38] S. Sarkar and C. Parnin, “Characterizing and predicting mental
fatigue during programming tasks,” in 2017 IEEE/ACM 2nd In-
ternational Workshop on Emotion Awareness in Software Engineering
(SEmotion), 2017, pp. 32–37.

[39] E. R. Sykes, “Interruptions in the workplace: A case study to re-
duce their effects,” International Journal of Information Management,
vol. 31, no. 4, pp. 385–394, 2011.

[40] B. P. Bailey and J. A. Konstan, “On the need for
attention-aware systems: Measuring effects of interruption
on task performance, error rate, and affective state,”
Computers in Human Behavior, vol. 22, no. 4, pp. 685
– 708, 2006, attention aware systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S074756320500107X

[41] J. Abimanyi-Ochom, S. Bohingamu Mudiyanselage, and M. Catch-
pool, “Strategies to reduce diagnostic errors: a systematic review.”
BMC Med Inform Decis Mak, vol. 19, no. 1, p. 174, 2019.

[42] J. T. Reason, The human contribution: unsafe acts, accidents and heroic
recoveries. Burlington, VT;Farnham, England;: Ashgate, 2008.

[43] J. Carthey, “Understanding safety in healthcare: The system evo-
lution, erosion and enhancement model,” Journal of public health
research, vol. 2, p. e25, 12 2013.

[44] J. Reason, “Human error: models and management,” BMJ: British
Medical Journal, vol. 320, no. 7237, p. 768, 2000.

[45] M. R. Endsley, “Situation awareness global assessment technique
(sagat),” in Proceedings of the IEEE 1988 national aerospace and
electronics conference. IEEE, 1988, pp. 789–795.

[46] D. Procida, “Fighting the controls: Madness and tragedy in
programming,” 2017, djangoCon Europe 2017. [Online]. Available:
https://www.youtube.com/watch?v=qI7NZV-rak0

[47] L. Petersen, L. Robert, J. Yang, and D. Tilbury, “Situational Aware-
ness, Driver’s Trust in Automated Driving Systems and Secondary
Task Performance,” SAE International Journal of Connected and
Autonomous Vehicles, Forthcoming, 2019.

[48] M. C. Wright, J. M. Taekman, and M. R. Endsley, “Objective mea-
sures of situation awareness in a simulated medical environment,”
BMJ Quality & Safety, vol. 13, no. suppl 1, pp. i65–i71, 2004.

[49] C. D. Wickens, “Situation awareness and workload in aviation,”
Current directions in psychological science, vol. 11, no. 4, pp. 128–133,
2002.

[50] G. Ioannou, P. Louvieris, and N. Clewley, “A Markov Multi-phase
Transferable Belief Model for Cyber Situational Awareness,” IEEE
Access, 2019.

[51] P. A. Brennan, D. A. Mitchell, S. Holmes, S. Plint, and D. Parry,
“Good people who try their best can have problems: recognition
of human factors and how to minimise error,” British Journal of
Oral and Maxillofacial Surgery, vol. 54, no. 1, pp. 3–7, 2016.

[52] J. Boyd, “A discourse on winning and losing [briefing slides],”
Maxwell Air Force Base, AL: Air University Library.(Document No.
MU 43947), 1987.

[53] J. W. Ely, M. L. Graber, and P. Croskerry, “Checklists to reduce
diagnostic errors,” Academic Medicine, vol. 86, no. 3, pp. 307–313,
2011.

[54] R. Clay-Williams and L. Colligan, “Back to basics:
checklists in aviation and healthcare,” BMJ Quality &
Safety, vol. 24, no. 7, pp. 428–431, 2015. [Online]. Available:
https://qualitysafety.bmj.com/content/24/7/428

[55] B. Brykczynski, “A survey of software inspection checklists,” ACM
SIGSOFT Software Engineering Notes, vol. 24, no. 1, p. 82, 1999.

[56] L. Williams, E. M. Maximilien, and M. Vouk, “Test-driven de-
velopment as a defect-reduction practice,” in 14th International
Symposium on Software Reliability Engineering, 2003. ISSRE 2003.
IEEE, 2003, pp. 34–45.

[57] J. E. Tomayko, “A comparison of pair programming to inspections
for software defect reduction,” Computer Science Education, vol. 12,
no. 3, pp. 213–222, 2002.

[58] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in Proceedings
of the 40th International Conference on Software Engineering:
Software Engineering in Practice, ser. ICSE-SEIP ’18. New
York, NY, USA: ACM, 2018, pp. 181–190. [Online]. Available:
http://doi.acm.org/10.1145/3183519.3183525

[59] C. Sugden, T. Athanasiou, and A. Darzi, “What are the effects of
sleep deprivation and fatigue in surgical practice?” in Seminars in
thoracic and cardiovascular surgery, vol. 24, no. 3. Elsevier, 2012,
pp. 166–175.

[60] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental
Models: A Study Of Developer Work Habits,” in Proceeding of the
28th international conference on Software engineering - ICSE ’06, ser.
ICSE ’06. New York, NY, USA: ACM, 2006, p. 492.

[61] Amit Seal Ami and M. S. Islam, “An efficient approach for provid-
ing rationale of method change for object oriented programming,”
in 2014 International Conference on Informatics, Electronics Vision
(ICIEV), 2014, pp. 1–6.

[62] A. Sutherland and G. Venolia, “Can peer code reviews be exploited
for later information needs?” in 2009 31st International Conference
on Software Engineering - Companion Volume, 2009, pp. 259–262.

[63] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Bräunlich,
“Developers’ code context models for change tasks,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. New York, NY, USA:
Association for Computing Machinery, 2014, p. 7–18. [Online].
Available: https://doi.org/10.1145/2635868.2635905

[64] K. Kevic, B. Walters, T. Shaffer, B. Sharif, D. Shepherd, and T. Fritz,
“Eye gaze and interaction contexts for change tasks – observations
and potential,” Journal of Systems and Software, vol. 128, pp. 252 –
266, 2017.

[65] H. Cai and R. Santelices, “A comprehensive study of the predictive
accuracy of dynamic change-impact analysis,” Journal of Systems
and Software, vol. 103, pp. 248–265, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121215000424

[66] S. Jiang, C. McMillan, and R. Santelices, “Do programmers do
change impact analysis in debugging?” Empirical Software Engi-
neering, vol. 22, no. 2, pp. 631–669, 2017.

[67] H. Cai, R. Santelices, and S. Jiang, “Prioritizing Change-Impact
Analysis via Semantic Program-Dependence Quantification,”
IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1114–1132, 2016.

[68] M. Züger, C. Corley, A. N. Meyer, B. Li, T. Fritz, D. Shepherd,
V. Augustine, P. Francis, N. Kraft, and W. Snipes, “Reducing
interruptions at work: A large-scale field study of flowlight,”
in Proceedings of the 2017 CHI Conference on Human Factors

Page 14 of 15



in Computing Systems, ser. CHI ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 61–72. [Online].
Available: https://doi.org/10.1145/3025453.3025662

[69] K. A. Ericsson and H. A. Simon, Protocol analysis: Verbal reports as
data. the MIT Press, 1984.

PLACE
PHOTO
HERE

Bhaveet Nagaria is working toward the
PhD degree with Brunel University London.
His research interests include human
factors and software engineering. Contact
him at bhaveet.nagaria@brunel.ac.uk;
http://www.brunel.ac.uk/bhaveet-nagaria

PLACE
PHOTO
HERE

Tracy Hall is a professor with Lancaster Uni-
versity. Her research interests include software
engineering, ode analysis and defect prediction.
Contact her at tracy.hall@lancaster.ac.uk;
https://www.lancaster.ac.uk/scc/about-
us/people/tracy-hall

Page 15 of 15


