
An Efficient Triangle Mesh Slicing Algorithm for All Topologies

in Additive Manufacturing

Bethany King (1), Allan Rennie (1) , Graham Bennett (2)

(1) Lancaster University, Lancaster, UK

(2) Euriscus Ltd, Chesham, UK

Corresponding author email address: b.a.king@lancaster.ac.uk

Manuscript Click here to download Manuscript manuscript
submission.docx

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/345683895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.editorialmanager.com/jamt/download.aspx?id=1327190&guid=da3f470b-5c44-4071-aac0-5246505d3493&scheme=1
https://www.editorialmanager.com/jamt/download.aspx?id=1327190&guid=da3f470b-5c44-4071-aac0-5246505d3493&scheme=1
https://www.editorialmanager.com/jamt/viewRCResults.aspx?pdf=1&docID=60163&rev=1&fileID=1327190&msid={0CFB8646-F013-4F3B-818A-431E00D6225E}

Title: An Efficient Triangle Mesh Slicing Algorithm for All Topologies in Additive Manufacturing

Abstract

To date, slicing algorithms for additive manufacturing are most effective for favourable triangular

mesh topologies; worst case models, where a large percentage of triangles intersect each slice-plane,

take significantly longer to slice than a like-for-like file. In larger files, this results in a significant slicing

duration, when models are both worst case and contain more than 100,000 triangles. The research

presented here introduces a slicing algorithm which can slice worst case large models effectively. A

new algorithm is implemented utilising an efficient contour construction method, with further

adaptations, which make the algorithm suitable for all model topologies. Edge matching, which is an

advanced sorting method, decreases the number of sorts per edge from n total number of

intersections to two, alongside additional micro-optimisations that deliver the enhanced efficient

contour construction algorithm. The algorithm was able to slice a worst-case model of 2.5 million

triangles in 1025s. Maximum improvement was measured as 9,400% over the standard efficient

contour construction method. Improvements were also observed in all parts in excess of 1000

triangles. The slicing algorithm presented offers novel methods that address the failings of other

algorithms described in literature to slice worst case models effectively.

Key words: Additive Manufacturing; Slicing Algorithm; Efficiency; Computational Geometry; Rapid

Prototyping

Paper Type: Research paper

1 Introduction

Additive Manufacturing (AM) can be defined as a technology where a Three-Dimensional (3D) object

is constructed by the sequential creation of Two-Dimensional (2D) layers [1]. The creation of

components can be performed using a range of methods and materials, however all AM processes

consist of three distinct stages: (i) Construction of a digital model; (ii) Application of pre-processing

algorithms, converting the model into 2D layers then generating the machine toolpath [2] and (iii)

Creation of the part by either depositing or fusing material to the preceding layer. The benefits of AM

include increased design possibilities over subtractive manufacturing and increase in efficiency and

cost in small volumes [3].

Of the three primary file formats for AM (*.STL, *.AMF, *.3MF) [4-5] all construct geometry using

triangular meshes. Meshes in AM always consist of tessellated triangles which connect at the vertices,

each vertex defined as a 3D floating point coordinate and are ordered counter-clockwise when

observing the part from the outside [6], an associated outward facing normal is attributed to each

triangle, which can be utilised during slicing or when graphically rendering the part [7]. As technology

has advanced and the resolution and accuracy of machines has improved [8] the meshes in AM files

required to capture the more detailed geometric features have increased in complexity and become

finer [9]. The slicing algorithm required to convert modern AM models into 2D contours must continue

to improve, to slice what was once considered exceptionally large files efficiently.

Part models that are worst case from a slicing algorithmic perspective are those containing a large

percentage of triangles intersecting on any given layer. The slicing process consists of two operations

calculating the intersections between the triangles and the slice plane and then sorting the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

intersection into contiguous contours. Worst case parts are particularly difficult to slice due to the

sorting process, increasing in duration exponentially by each additional triangle in the layer. The

research presented here builds on the Efficient Contour Construction (ECC) method [10] that exploits

the triangular mesh format adding features that address the inability to handle worst case parts

effectively.

2 Review of related works

Slicing is the process of converting the 3D model into a series of layers containing the 2D perimeter

boundaries characterised by a closed loop of connected points [11]. Xu et al. [12] offer a basic

description of the stages involved in the slicing process (Figure 1), consisting of calculating all the

intersections for one slice plane then sorting them into a continuous contours method that works

very well for simple geometries but becomes highly inefficient as complexity increases, due to the

consideration of triangles that don’t intersect with the slice plane. Tian et al [13] describe a method

where pre-grouping triangles according to whether they fall into a collection of slice planes using a

binary search to reduce such considerations. Whilst a significant increase in efficiency can be

observed, it would be better if consideration of redundant triangles could be eliminated entirely.

In the standard slicing model (Figure 1), sorting of the generated intersections relies on comparison

of end points of the generated line segment when intersecting the triangle with the slice plane, as

described by Steuben et al. [14] taking the form of a connected graph search [15] causing false

matches due to models where more than two triangles converge on one point (Figure 2). This causes

the algorithm to either fall into a continuous loop or produce a failed output, for which a better

method of sorting is required.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: Basic slicing algorithm flowchart

Figure 2: Mesh with shared point

Typically, layer thickness is constant during the slicing process however, there are a number of

examples for adaptive slicing [16-18] where the layer height is decreased when slicing regions of high

detail or increased when there are less geometric features to be captured. These methods can

increase the efficiency of the slicing process; however, use is only appropriate where one model is

produced per build cycle. In larger AM machines, such as Selective Laser Sintering (SLS),

Stereolithography (SL) or Selective Laser Melting (SLM), where conventionally, multiple models are

tessellated into the build area. Increasing or decreasing the slice depth for one model will likely be to

the detriment of other models on the layer. Li & Xu [19] acknowledge that adaptive slicing is primarily

useful for Fused Deposition Modelling (FDM) and can therefore not be considered suitable for a

universally efficient slice engine.

Several slicing algorithms produce an optimal output for specific methods of AM. Ding et al. [20]

suggests slicing in multiple orientations for wire-feed based AM, primarily with the goal of increasing

part integrity and minimising support structures. There is similar research attempting to optimise the

slicing process for powder bed fusion technology [21] however similar, more significant improvements

in this regard can be seen in the optimising model orientation and arrangement [22-24]and should

therefore not be the responsibility of the slicing algorithm.

Combining the slicing algorithm with tool path generation [25] can improve the efficiency of the

overall process by removing the need to write to an intermediary slice file, but limits the possibilities

of the output of the algorithm to the specific application, due to the varying nature of the toolpath

input format. There have been a number of efforts to compensate for low quality models, containing

errors or incorrect geometric features using the slicing process; Zhao et al. [26] aimed to reduce the

error caused by discretising the CAD model into the triangular mesh file using contour approximation

and Luo & Wang [27] similarly aimed to minimise the impact of defects such as cracks and overlapping

edges in the model during the slicing process.

Zhang’s [10] ECC algorithm presents a comprehensive universal slicing algorithm that is both time and

memory efficient; their method which exploits the clockwise nature of a triangular mesh, allowing for

only one intersection per slice plane per triangle to be computed, reducing the memory requirement

of the slicing algorithm by half. Additionally, the dynamic sorting method is utilised where

intersections are inserted directly into the contour as they are calculated rather than using an

intermediary data structure to hold the unsorted line segments, again reducing the memory

requirement of the algorithm. The sorting method enables lines to be connected so that only the start

and end of the connected line segments need to be checked, drastically reducing the number of sorts

and therefore the amount of time taken for sorting than the end-to-end line segment sort detailed in

Figure 1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 3 Methods

3.1 ECC algorithm implementation

Zhang et al. [10] offers a robust ECC algorithm, which is efficient for some part geometries. The

algorithm relies on calculating the intersections for each triangle from top to bottom along either the

longest edge, or the two shorter edges (Figure 3). The decision is reliant on the order the vertices of

the longest edge appear in each triangle. On calculation of the intersection, it is stored in an

Intersection Node (IN), which contains the 2D coordinates of the intersection, an Edge Pointer (EP)

containing the memory address of the vertices of the two edges of the triangle intersecting the slice

plane, and next and previous pointer, which locates a following or preceding IN in the list respectively

(Figure 4). A series of linked INs are held in an Intersection Linked List (ILL) data structure, which

contains a pointer to the subsequent ILL and a pointer to the first and last element in the list.

v_max

v_med

v_min

Point
(X,Y) EP

N
ex

t
po

in
te

r

P
re

v
po

in
te

r
Points to

 Edge 1: p1,p2
Edge 2: p3,p4

Figure 3: Mesh triangle with slice planes Figure 4: Graphical representation

of IN data structure

Following the creation of the IN, it must be inserted into an ILL. All the existing ILLs first and last

element’s edge pointers are compared with the edge pointer of the IN for insertion. The IN is then

inserted according to the following senarios:

1. There are no existing ILLs, the IN is the first calculated intersection on that layer, the IN is

inserted in a new ILL;

2. One match is found with the first IN in an ILL, the IN is inserted at the front of the list;

3. One match is found with the last IN in an ILL, the IN is inserted at the back of the list;

4. Two matches are found, in separate lists, at the first element in one ILL and the last element

in a second ILL, the IN connects the two lists, and the second list is deleted;

5. Two matches are found in the same list, the IN is inserted at the back of the matched list, this

indicates the matched list has been completed;

6. No match is found in any of the existing ILLS, the IN is inserted in a new ILL.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Once the IN has been inserted into an ILL, the following intersection on the edge is calculated and

sorted. Once all the intersections on the triangle have been computed and inserted into ILLs, the

subsequent triangle is considered until all triangles in the mesh have been considered and slicing

reaches completion. The data in the ILLs can then be written into a slice file format, or the ILL list

format can be used directly for generation of the toolpath.

a)

b)

Figure 5: a) Test sheet with 100 holes with 102812 triangles and dimensions 265x265x3mm; b)

same test sheet rotated 90o

Upon implementation of the ECC algorithm and a traditional strategy based on the flowchart detailed

in Figure 1 [12], in the C++ language comprehensive testing was performed on the *.STL files shown

in Figures 5 and 6, the results are given in Table 1. The ECC algorithm shows improvements over the

conventional slicing method between 9000-1150% for all three parts. The result was especially

impressive for Figure 6, taking under 575ms to slice the part. However, in both the conventional and

the ECC method there is a disparity between the slice duration for Figure 5a and Figure 6 despite

consisting of a similar number of triangles, took in excess of 237,000ms and 2,752,181ms for the ECC

and conventional algorithms respectively – 413 times longer to slice for the ECC method and 494 times

longer for the conventional algorithm.

Figure 5b slice time is 20.9 and 19.2 times less than that of Figure 5a for the ECC and conventional

algorithm respectively, indicating the direction of slicing interacting with the topology of the part has

a significant impact on the effectiveness of the both algorithms. A possible solution is to analyse parts

and orient them in a way that is optimal for the slicing algorithm, however this does not present a

good result as the optimal orientation for slicing is unlikely to be the optimal orientation for building

the part [28] An algorithm capable of slicing the parts efficiently, regardless of the orientation, is

essential.

Analysis of the topology of Figure 5a indicated the average percentage of triangles intersecting on

each layer is 33% equating to 34,000 triangles, meaning the part can be identified as worst case,

whereas for Figure 5b an average of less than 2% or 2056 triangles, intersect on each layer. The total

number of intersections of the entire part remains the same for both cases. It can be derived that the

sorting procedure when a large number of triangles are present per layer is the cause of inefficiency.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 6: Chess Rook containing 93,930 triangles, dimensions: 31.75 x 31.75 x 53.15mm

Table 1: Performance of ECC and traditional slicing algorithm, all parts were sliced at 0.1mm slice

thickness on a 64 bit system

Model Size (L, W, H mm) Triangles Conventional Slicing
algorithm (ms)

ECC Time (ms)

Test sheet with 100

holes (Figure 5a)
256 x 256 x 3 102,812 2,752,181 237,582

Test sheet with 100

holes rotated (Figure

5b)

256 x 3 x 256 102,812 143,587 11,371

Rook (Figure 6) 31.75 x 31.75 x

53.15

93,930 5,573 575

3.2 Edge Matching

The sorting process in the ECC algorithm relies on comparing the edge pointer at the start and end of

each list of connected vertices for a match with the current IN. This process can be further optimised

using the fact that triangular meshes can only be matched edge to edge and vertex to vertex, therefore

one triangle only shares edges with exactly three others, one on each edge. Consequently, once a

match has been made for one intersection on an edge, it’s matched triangle will be the same for the

rest of that edge (Figure 7). The standard ECC algorithm was adjusted to account for this to reduce

the number of sorting procedures required for each edge from n, total number of intersections of the

edge to one.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Point
Float x,y EP

N
ex

t
po

in
te

r

p
re

v
po

in
te

r

e
d

ge
 li

n
k

Figure 7: Example slice plane intersecting with

matched triangles

Figure 8: Modified IN to include the edge link

The IN data structure was modified to contain an edge link pointer (Figure 8), holding the memory

location address which points to the ILL containing the IN of the subsequent intersection on the

triangle. The procedure of using the edge link is described in the flowchart in Figure 9. The first

intersection is inserted into the ILL using the method for the standard ECC algorithm and following

this, the subsequent IN (INi) is inserted into the ILL under four cases depending on the outcome of the

sorting of the previous IN (INprev):

1. If the INprev is inserted into a new ILL, the current IN for consideration INi will also be inserted

into a new ILL, the address of the ILL containing INi will be saved as INprev’s edge link pointer;

2. If INprev is inserted at the back of a list, INi will be inserted into the back of the list that is located

at the edge pointer of the last IN in the list that INprev connected to;

3. If INprev is inserted at the front of a list, INi will be inserted into the front of the list that is

located at the edge pointer of the first IN in the list that INprev connected to;

4. Finally, if INprev connected two lists, INi will connect the two lists contained in the edge pointers

of the last IN in the ILL that INprev follows and the first IN that INprev precedes once connected.

In cases 1 to 3, the memory location address of the ILL that INi has been inserted into is assigned as

the edge link of the INprev. In case 4 it is unnecessary to assign the edge link, as INprev is on the middle

of an ILL and therefore will not be checked in future IN insertions. The impact of implementing the

edge link pointer into the algorithm is that the number of intersections that undergo the checking

process per triangle is reduced from n (the total number of intersections on the triangle) to one. The

values recorded in counter temporarily implemented within each algorithm detailing the number of

times the matching process of the standard ECC has undergone for each algorithm is given in Table 2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 2: Reduction in the number of matching processes from ECC to EECC

Model Total number of

sorts per part

ECC

Average number

of sorts per layer

Total number of

sorts EECC

Percentage

reduction from

ECC to EECC

Test sheet with 100

holes (Figure 5a)
1,562,144 52,071 53,555 2,916%

Test sheet with 100

holes rotated (Figure

5b)

2,380,123 898 53,555 44,446%

Rook (Figure 6) 3,949,700 7,452 81,435 4,850%

Start: Input Triangle

Calculate intersection (I)

Decide which edge or
edges to slice

Is I first after v_min or v_med?

Run standard ECC IN
insertion procedure

Insert IN using the edge
link of the previous ILL(s)

Assign the edge link of the
previous IN to the

memory location address
of the current ILL

Return the edge link(s) of
the ILL(s) that the IN has

been attached to

All intersections considered ?

End

Yes
No

Yes

No
Increment
slice depth

Figure 9: EECC algorithm flowchart

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 10: Dodecahedra model consisting of
2,074 triangles, 157.81 x 133.62 x 165.15mm

Figure 11: A calibration model consisting of 316
triangles, 165.1 x 165.1 x 25.4mm

3.3 Additional Modifications and edge matching

Transferring completed ILLs from the active sorting CLL to a separate CLL containing only completed

lists, was expected to increase efficiency by reducing the number of sorts. In some cases, all the

triangles in one connected multi-shell triangular mesh appear successively in the file; therefore, the

contour or contours associated with that shell will be completed first, consequently, any further INs

generated by the remaining shells will check the completed ILL on each search iteration. On

initialisation of the algorithm, two versions of the CLL are created; the standard CLL where all sorting

and IN insertions take place and a second complete CLL where ILLs are transferred by modifying the

memory location pointers, when the IN is found to match in the same list twice.

Micro-optimisation in the order that case variables are assessed in the IF / ELSE-case loop provided a

noticeable time saving. The order the case variables appear were restructured to ensure that the most

likely case arises first. To test which case is the most likely, a series of integer values were created to

count the number of times each case variable appeared. Table 3 shows the number of occurrences of

each case recorded using integer counters when running the ECC algorithm with edge matching.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 3: EECC number of case occurrences per part

Model No
matching
list

Insert at
front of list

Insert at
back of list

Link two lists Requires
Sorting

Test sheet with 100 holes
(Figure 5a)

733,700 174 11,600 733,700 54,036

Test sheet with 100 holes
rotated (Figure 5b)

377,964 256,360 25,639 800,658 72,589

Test sheet with 1225 holes
(Figure 12)

17,904,600 174 497,350 17,904,600 1,288,736

Test sheet with 225 holes
(Figure 15)

3,288,600 174 91,350 3,288,600 236,736

Test sheet with 484 holes
(Figure 13)

7,074,144 174 19,504 7,074,144 509,204

Test sheet with 729 holes
(Figure 14)

10,655,064 174 295,974 10,655,064 766,944

Dodecahedra (Figure 10) 4,850 7,810 1,386 4,693 567

Calibration model (Figure 11) 69,540 123,906 51,421 68,144 81,459

Rook (Figure 6) 30,379 83,907 82,258 26,514 9,077

Figure head (Figure 16) 159,372 194,935 202,963 15,906 511,004

Table 4 shows that the most dominant case is largely dependent on the topology of the triangles in

the mesh, revealed by a comparison of the rotated test sheets in Figure 5 presenting differing case

occurrences despite having triangles of identical geometry and connections. Table 5 contains the

average likelihood of a case occurring for all models considered in this paper. It was determined that

the order of the automatic insertion processes in the IF / ELSE loop would follow the most probable

to the least probable occurrence outlined in Table 4.

Table 4: Average percentage case occurrences of the EECC sorting result on 50 test parts

No matching list
(%)

Insert at front of
list (%)

Insert at back
of list (%)

Links two list (%)

26.91 29.89 20.79 22.40

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 12: Test sheet containing 1,225 holes,

2,513,751 triangles of dimension
250x250x3mm

Figure 13: Test sheet containing 484 holes,
993,180 triangles of dimension 250x250x3mm

Figure 14: Test sheet containing 729 holes,
1,495,920 triangles of dimension

250x250x3mm

Figure 15: Test sheet containing 225 holes,
461,712 triangles of dimension 250x250x3mm

4 Results, Analysis and Discussion

The modifications to the ECC algorithm create the Enhanced Efficient Contour Construction (EECC)

algorithm, to assess the successfulness of this method, several parts were sliced using the standard

ECC algorithm, the ECC algorithm with edge matching, and the completed EECC algorithm, the results

are shown in Table 5. The most impactful improvement is shown in the identified worst-case parts

(Figures 12 to 15). In the largest worst-case model that could be sliced using the ECC algorithm (Figure

15), the EECC algorithm is 9,400% faster than the standard ECC algorithm. Of the parts tested, only

models containing under 1,000 triangles witnessed a significant percentage increase in comparison to

the original slicing time of 180% for Figure 10. This is an acceptable increase due to the imperceptible

slicing times both with the ECC and EECC algorithm and can be explained due to the implementation

of edge point testing taking more time than its saves; only a negligible decrease is seen in Figure 11

for the same reason.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 5: Enhanced ECC algorithm efficiency test results, all parts were sliced at 0.1mm slice thickness

on a 64 bit system

Part name #Triangles
#Layer
s

Time
conventional
algorithm (s)

Time
 ECC (s)

Time ECC+
edge
matching (s)

Time
enhance
d ECC (s)

Test sheet with 100 holes
(Figure 5a) 102,812 30 2752.181 237.582 10.029 8.241

Test sheet with 1225 holes
(Figure 12) 2,513,712 30 -1 -1 1025.81 302.8

Test sheet with 225 holes
(Figure 15) 461,712 30 -1 4775.382 70.884 50.3

Test sheet with 484 holes
(Figure 13) 993,180 30 -1 -1 202.745 111.3

Test sheet with 729 holes
(Figure 14) 1,495,920 30 -1 -1 380.788 169.1

Dodecahedra (Figure 10) 2,074 1,653 2.582 0.41 0.685 0.654

Calibration model (Figure
11) 316 255 1.573 0.031 0.066 0.058

Rook (Figure 6) 93,930 533 34.81 2.855 2.452 2.29

Figure head (Figure 16) 467,882 814 788.698 65.695 8.091 7.59

Lattice sole (Figure 17) 862,014 545 -1 -1 186.351 95.876

For Figures 11, 12 and 13, which represent the largest of the files tested using the standard ECC

algorithm, underwent the slicing process for over 4 hours, but never reached completion due to the

program being terminated after this time, as it was unacceptably long. This indicated that these parts

would have seen even larger improvements than those witnessed in Figure 14, if completion was

indeed possible

Figure 16: Figure head containing 467,882 triangles, dimensions of 141.61 x 111.27 x 81.29mm

1 Slice time was in excess of four hours, process was terminated

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 6 offers a comparison of open source slicers with the enhanced ECC algorithm, slicing was

precisely timed by downloading the open source software and including timing modifications. The

EECC algorithm was at least twice as fast for all instances.

Table 6: Comparison of the enhanced ECC algorithm with Slic3r and Cura, sliced at 0.1mm slice

thickness with 0% infill

File Name Ultimaker Cura(1) (s) Slic3r(2) (s) Enhanced ECC (s)

Dodecahedra
(Figure 10)

7.674 9.125 0.654

Test Sheet with 225
holes (Figure 15)

128.360 -2 50.3

Rook (Figure 6) 5.341 6.31 2.29

4.1 Space and Time Complexity

The standard ECC sort procedure can be defined under three cases: worst case, best case and average

case, if there are k number of lists in the CLL, m intersections per triangle and n triangles in the model

– the complexity of the sorting algorithm is detailed in Table 7.

Table 7: Time complexity of the standard ECC sorting algorithm

Case Number of checks per
intersection

Number of checks per
triangle

Number of checks per
model

Best O(1) O(m) O(mn)

Worst O(k) O(km) O(kmn)

Average O(k/2) O(km/2) O(kmn/2)

The introduction of the Enhanced ECC algorithm reduces the number of sorts per triangle from m

intersections on the triangle to 2 in all cases and therefore the time complexity become O(2n), O(2kn)

and O(kn) for best, worst and the average case respectively. This demonstrates that the improvements

to the ECC algorithm has the greatest impact on the worst case triangular meshes, and the least on

the best case. The worst case sort procedure can be differentiated from previously identified worst

case models where the k value would be very large, up to 67% of the total number of triangles n, when

compared to a best case model where k would be less than 1% of the total number of triangles.

There was a slight increase in space complexity in the enhanced ECC algorithm in comparison to the

standard ECC algorithm due to the implementation of the edge link pointer, where each pointer is

eight bytes on a 64-bit system. The total space requirement for one intersection is four bytes each for

the X and Y coordinate of the intersection and five pointers, two edge pointers, one edge link pointer

and the two pointers which link the contour together, which is a total of 48 bytes per intersection, an

increase of eight bytes or 16.67% over the standard ECC algorithm. As there are m intersections per

triangle and n triangles in the model, the total RAM requirement can be defined as 48nm bytes. This

slight increase in space complexity can be justified by the improvements in efficiency.

2 Slicing could not complete without program terminating

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.2 Industrial Context

Lattice structures have been identified as offering significant advantages over solid infill products,

design dependent they can offer the same or better material properties e.g. tensile and compressive

strength at a considerably reduced part weight and volume. These types of parts have seen significant

advantages in areas where a high strength to weight ratio is desirable, examples include aerospace

and sports performance products. Lattice structure models can often be categorised as worst-case

models, especially when the lattice is in one layer running from top to bottom in the direction of

construction.

One industrial example of lattice structures in AM is 3D printed shoes [31], Figure 17 shows the Adidas

Alphaedge 4D shoes currently available on the mass market, featuring a lattice structure on the sole

of the shoe. Increasingly these shoes are manufactured custom to a scan of the wearers foot, meaning

that each CAD model is different and will need to be sliced individually, resulting in overall very lengthy

slice times. Figure 18 shows a model of the sole of shoe intended that is intended for production using

additive manufacturing. This part can be considered both worst case, with an average of 24% triangles

intersecting on each layer and a large *.stl file. The results in Table 5 demonstrate enhanced ECC

algorithm offers significant advantage on this part that would be manufactured in an industrial

application. The part shows an improvement of over 100% on the standard ECC algorithm and an

improvement of at least 15,200% over the traditional end to end line sort algorithm.

Figure 17: Adidas AlphaEdge 4D [31]

Figure 18: Lattice sole of AM manufactured
shoe, containing 862,014 triangles, dimensions
of 324 x 125 x 54mm

5 Conclusion

The objective of this research was to generate a slicing algorithm for AM that is capable of efficiently

slicing worst case geometric parts, defined as triangular mesh models where a high percentage of the

parts triangles intersect on each layer. An adaption of the ECC algorithm, including reduction in the

number of sorts for each triangle, and micro-optimisations through structuring, formed the enhanced

ECC algorithm. Efficiency tests were conducted on a set of *.STL files (however, any other triangular

mesh files could be used in the algorithm) and found a maximum improvement of 9,400% on the

largest worst-case file. It was also found that *.STL files that were previously too time inefficient to

complete slicing using the standard ECC algorithm took less than 300s to slice.

The enhanced ECC algorithm addresses the failings of the other algorithms to slice very large worst-

case parts, which are becoming more prevalent in the AM sector [29] in reproduction of scanned real-

world objects [30] or highly detailed, large scale AM components. Improvements to the slicing process

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

will have to evolve as the models grow in complexity and size; whilst the Enhanced ECC algorithm may

be able to slice all parts efficiently now, further developments will be necessary in the future.

Declarations

Ethical Approval: This study complies with the ethical standards set out by springer

Consent to Participate: Not applicable

Consent to Publish: Not applicable

Author Contributions: BK undertook the development of the algorithm presented in this paper,

supervised by AR. Models for testing were supplied by GB

Funding: This study part funded by the Low Carbon in Lancashire Hub grant reference 19R16P01012

and Euriscus Ltd.

Competing interests: This research is sponsored by Euriscus Ltd of which Graham Bennett is the CTO

Availability of Data and materials: Not applicable.

References

[1] Gibson, I., Rosen, D. & Stucker, B. (2014) Additive Manufacturing Technologies: 3D Printing, Rapid

Prototyping, and Direct Digital Manufacturing. 2nd ed.: Springer, New York.

[2] King, B., Bennett, G.R. and Rennie, A.E.W. (2017). Comparison of Galvanometer and Polygon Scanning

Systems on Component Production Rates in Selective Laser Sintering, Proceedings of the 15th Rapid Design,

Prototyping & Manufacturing Conference (RDPM2017), Newcastle, UK, ISBN 978-1-5272-2153-6.

[3] Mohsen, A. (2017) The rise of 3-D printing: The advantages of additive manufacturing over traditional

manufacturing. Business Horizons 30(5):677-688.

[4] Garden, J. (2016) Additive manufacturing technologies: state of the art and trends, International Journal of

Production Research, 54(10):3118-3152

[5] Paul R & Anand S, “A new Steiner patch-based file format for Additive Manufacturing Processes”, Computer-

Aided Design 63 (2015) 86-100.

[6] Cătălin I., Daniela I. & Alin S. (2010) From Cad Model To 3d Print Via “Stl” File Format. Fiabilitate şi

Durabilitate, l 1(5):73-80.

[7] Adnan, F.A., Romlay, F.R.M. & Shafiq, M. (2018) Real-time slicing algorithm for Stereolithography (STL) CAD

model applied in additive manufacturing industry, IOP conference series Materials Science and Engineering, Vol.

342(1):012016.

[8] Engstrom, D., Porter, B., Pacios, M. & Bhaskaran, H. (2014) Additive nanomanufacturing - A review. J. Mater.

Res., , 29(17):1792-1816.

[9] Zha, W. & Anand, S. (2015) Geometric approaches to input file modification for part quality improvement in

additive manufacturing. Journal of Manufacturing Processes, , 20 :465-477.

[10] Zhang, Z. & Joshi, S. (2015) An improved slicing algorithm with efficient contour construction using STL

files. The International Journal of Advanced Manufacturing Technology, , 80(5-8): 1347.

[11] Brown, A.C. & De Beer, D. (2013) Development of a stereolithography (STL) slicing and G-code generation

algorithm for an entry-level 3-D printer, 2013 AFRICON, 1-5.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[12] Xu, H., Jing, W., Li, M. & Li, W (2016) A slicing model algorithm based on STL model for additive

manufacturing processes. IEEE Advanced Information Management, Communicates, Electronic and Automation

Control Conference (IMCEC) : 1607-1610.

[13] Tian, R., Liu, S. & Zhang, Y. (2018) Research on fast grouping slice algorithm for STL model in rapid

prototyping J. Phys.: Conf. Ser. 1074 012165

[14] Steuben, J., Iliopoulos, A., Michopoulos, J. Implicit slicing for functionally tailored additive manufacturing.

Computer Aided Design. , 77: 107-119

[15] Hopcroft, J., Tarjan, R. (1973) Efficient algorithms for graph manipulation Commun ACM,16 (6) : 372-378,

[16] Hu, B., Jin, G. & Sun, L. (2018) A Novel Adaptive Slicing Method for Additive Manufacturing, CSCWD, Nanjing,

2018, : 218-223.

[17] Wang, W., Chao, H., Tong, J., Yang, Z., Tong, X., Li, H., Liu, X. & Liu, L. (2015) Saliency‐Preserving Slicing

Optimization for Effective 3D Printing. Computer Graphics Forum 34(6) :148-160.

[18] Pan, X., Chen, K., Zhang, Z., Chen, D. & Li, T. (2013) Adaptive slicing algorithm based on STL model, Applied

Mechanics and Materials 288:241-245.

[19] Li, Q. & Xu, X. Y. (2015) Self-adaptive slicing algorithm for 3D printing of FGM components. Materials

Research Innovations 19(S5): 635-641.

[20] Ding, D., Pan, Z., Cuiuri, D., Li, H., Larkin, N. & Van Duin, S. (2016) Automatic multi-direction slicing algorithms

for wire based additive manufacturing. Robotics and Computer Integrated Manufacturing, 37:139-150.

[21] Singhal, S.K., Jain, P.K. & Pandey, P.M. (2008) Adaptive Slicing for SLS Prototyping. Computer-Aided Design

and Applications 5(1-4) : 412-423.

[22] Pereira, S., Vaz, A. & Vicente, L. (2018) On the optimal object orientation in additive manufacturing. The

International Journal of Advanced Manufacturing Technology 98(5) :1685-1694.

[23] Golmohammadi, A.H. & Khodaygan, S. (2019) A framework for multi-objective optimisation of 3D part-build

orientation with a desired angular resolution in additive manufacturing processes. Virtual and Physical

Prototyping, 14(1) :19-36.

[24] Yang, G., Liu, W., Wang, W. & Qin, L. (2010) Research on the rapid slicing algorithm based on STL topology

construction. Advanced Materials Research 97-101 : 3397-3402.

[25] Eragubi, E. (2013) Slicing 3D Model in STL Format and Laser Path Generation. International Journal of

Innovation, Management and Technology 4(4) :410-413.

[26] Zhao, G., Ma, G., Feng, J. & Xiao, W. (2018) Nonplanar slicing and path generation methods for robotic

additive manufacturing.(Report). The International Journal of Advanced Manufacturing Technology, 96(9-12) :

3149.

[27] Luo, N. & Wang, Q. (2016) Fast slicing orientation determining and optimizing algorithm for least ,umetric

error in rapid prototyping, The International Journal of Advanced Manufacturing Technology 83(5):1297-1313

[28] Zhang, Y., De Backer, W., Harik, R. & Bernard, A. (2016) Build Orientation Determination for Multi-material

Deposition Additive Manufacturing with Continuous Fibers, Procedia CIRP 50, :414-419.

[29] Barnett, E. & Gosselin, C. (2015) Large-scale 3D printing with a cable-suspended robot. Additive

Manufacturing 7(C) :27-44.

 [30] Tóth, T. & Živčák, J. (2014) A Comparison of the Outputs of 3D Scanners, Procedia Engineering 69, :393-401.

[31] Cătălin A. , Zapciu A. , & Popescu D. (2019). 3D-Printed shoe last for bespoke shoe manufacturing. MATEC

Web of Conferences, 290, 4001.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[32] Perry A. (2018) 3D-printed apparel and 3D-printer: exploring advantages, concerns, and purchases,

International Journal of fashion design and innovation, 11(1), 95-103

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

