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Title:  An Efficient Triangle Mesh Slicing Algorithm for All Topologies in Additive Manufacturing  

 

Abstract 

To date, slicing algorithms for additive manufacturing are most effective for favourable triangular 

mesh topologies; worst case models, where a large percentage of triangles intersect each slice-plane, 

take significantly longer to slice than a like-for-like file. In larger files, this results in a significant slicing 

duration, when models are both worst case and contain more than 100,000 triangles. The research 

presented here introduces a slicing algorithm which can slice worst case large models effectively. A 

new algorithm is implemented utilising an efficient contour construction method, with further 

adaptations, which make the algorithm suitable for all model topologies. Edge matching, which is an 

advanced sorting method, decreases the number of sorts per edge from n total number of 

intersections to two, alongside additional micro-optimisations that deliver the enhanced efficient 

contour construction algorithm. The algorithm was able to slice a worst-case model of 2.5 million 

triangles in 1025s. Maximum improvement was measured as 9,400% over the standard efficient 

contour construction method. Improvements were also observed in all parts in excess of 1000 

triangles. The slicing algorithm presented offers novel methods that address the failings of other 

algorithms described in literature to slice worst case models effectively.  

Key words: Additive Manufacturing; Slicing Algorithm; Efficiency; Computational Geometry; Rapid 

Prototyping  
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1 Introduction  

Additive Manufacturing (AM) can be defined as a technology where a Three-Dimensional (3D) object 

is constructed by the sequential creation of Two-Dimensional (2D) layers [1]. The creation of 

components can be performed using a range of methods and materials, however all AM processes 

consist of three distinct stages: (i) Construction of a digital model; (ii) Application of pre-processing 

algorithms, converting the model into 2D layers then generating the machine toolpath [2] and (iii) 

Creation of the part by either depositing or fusing material to the preceding layer. The benefits of AM 

include increased design possibilities over subtractive manufacturing and increase in efficiency and 

cost in small volumes [3].  

Of the three primary file formats for AM (*.STL, *.AMF, *.3MF) [4-5] all construct geometry using 

triangular meshes. Meshes in AM always consist of tessellated triangles which connect at the vertices, 

each vertex defined as a 3D floating point coordinate and are ordered counter-clockwise when 

observing the part from the outside [6], an associated outward facing normal is attributed to each 

triangle, which can be utilised during slicing or when graphically rendering the part [7]. As technology 

has advanced and the resolution and accuracy of machines has improved [8] the meshes in AM files 

required to capture the more detailed geometric features have increased in complexity and become 

finer [9]. The slicing algorithm required to convert modern AM models into 2D contours must continue 

to improve, to slice what was once considered exceptionally large files efficiently.  

Part models that are worst case from a slicing algorithmic perspective are those containing a large 

percentage of triangles intersecting on any given layer. The slicing process consists of two operations 

calculating the intersections between the triangles and the slice plane and then sorting the 
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intersection into contiguous contours. Worst case parts are particularly difficult to slice due to the 

sorting process, increasing in duration exponentially by each additional triangle in the layer.  The 

research presented here builds on the Efficient Contour Construction (ECC) method [10] that exploits 

the triangular mesh format adding features that address the inability to handle worst case parts 

effectively.  

2 Review of related works  

Slicing is the process of converting the 3D model into a series of layers containing the 2D perimeter 

boundaries characterised by a closed loop of connected points [11]. Xu et al. [12] offer a basic 

description of the stages involved in the slicing process (Figure 1), consisting of calculating all the 

intersections for one slice plane then sorting them into a continuous contours  method that works 

very well for simple geometries but becomes highly inefficient as complexity increases, due to the 

consideration of triangles that don’t intersect with the slice plane. Tian et al [13] describe a method 

where pre-grouping triangles according to whether they fall into a collection of slice planes using a 

binary search to reduce such considerations. Whilst a significant increase in efficiency can be 

observed, it would be better if consideration of redundant triangles could be eliminated entirely.  

In the standard slicing model (Figure 1), sorting of the generated intersections relies on comparison 

of end points of the generated line segment when intersecting the triangle with the slice plane, as 

described by Steuben et al. [14] taking the form of a connected graph search [15] causing false 

matches due to models where more than two triangles converge on one point (Figure 2). This causes 

the algorithm to either fall into a continuous loop or produce a failed output, for which a better 

method of sorting is required.     
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Figure 1: Basic slicing algorithm flowchart  
 

Figure 2: Mesh with shared point 

 

Typically, layer thickness is constant during the slicing process however, there are a number of 

examples for adaptive slicing [16-18] where the layer height is decreased when slicing regions of high 

detail or increased when there are less geometric features to be captured. These methods can 

increase the efficiency of the slicing process; however, use is only appropriate where one model is 

produced per build cycle. In larger AM machines, such as Selective Laser Sintering (SLS), 

Stereolithography (SL) or Selective Laser Melting (SLM), where conventionally, multiple models are 

tessellated into the build area. Increasing or decreasing the slice depth for one model will likely be to 

the detriment of other models on the layer. Li & Xu [19] acknowledge that adaptive slicing is primarily 

useful for Fused Deposition Modelling (FDM) and can therefore not be considered suitable for a 

universally efficient slice engine.  

Several slicing algorithms produce an optimal output for specific methods of AM. Ding et al. [20] 

suggests slicing in multiple orientations for wire-feed based AM, primarily with the goal of increasing 

part integrity and minimising support structures. There is similar research attempting to optimise the 

slicing process for powder bed fusion technology [21] however similar, more significant improvements 

in this regard can be seen in the optimising model orientation and arrangement [22-24]and should 

therefore not be the responsibility of the slicing algorithm.  

Combining the slicing algorithm with tool path generation [25] can improve the efficiency of the 

overall process by removing the need to write to an intermediary slice file, but limits the possibilities 

of the output of the algorithm to the specific application, due to the varying nature of the toolpath 

input format.  There have been a number of efforts to compensate for low quality models, containing 

errors or incorrect geometric features using the slicing process; Zhao et al. [26] aimed to reduce the 

error caused by discretising the CAD model into the triangular mesh file using contour approximation 

and Luo & Wang [27] similarly aimed to minimise the impact of defects such as cracks and overlapping 

edges in the model during the slicing process.  

Zhang’s [10] ECC algorithm presents a comprehensive universal slicing algorithm that is both time and 

memory efficient; their method which exploits the clockwise nature of a triangular mesh, allowing for 

only one intersection per slice plane per triangle to be computed, reducing the memory requirement 

of the slicing algorithm by half. Additionally, the dynamic sorting method is utilised where 

intersections are inserted directly into the contour as they are calculated rather than using an 

intermediary data structure to hold the unsorted line segments, again reducing the memory 

requirement of the algorithm. The sorting method enables lines to be connected so that only the start 

and end of the connected line segments need to be checked, drastically reducing the number of sorts 

and therefore the amount of time taken for sorting than the end-to-end line segment sort detailed in 

Figure 1.  
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  3 Methods 

3.1 ECC algorithm implementation  

Zhang et al. [10] offers a robust ECC algorithm, which is efficient for some part geometries.  The 

algorithm relies on calculating the intersections for each triangle from top to bottom along either the 

longest edge, or the two shorter edges (Figure 3). The decision is reliant on the order the vertices of 

the longest edge appear in each triangle. On calculation of the intersection, it is stored in an 

Intersection Node (IN), which contains the 2D coordinates of the intersection, an Edge Pointer (EP) 

containing the memory address of the vertices of the two edges of the triangle intersecting the slice 

plane, and next and previous pointer, which locates a following or preceding IN in the list respectively 

(Figure 4). A series of linked INs are held in an Intersection Linked List (ILL) data structure, which 

contains a pointer to the subsequent ILL and a pointer to the first and last element in the list.   
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Figure 3: Mesh triangle with slice planes  Figure 4: Graphical representation 

of IN data structure 

 

Following the creation of the IN, it must be inserted into an ILL. All the existing ILLs first and last 

element’s edge pointers are compared with the edge pointer of the IN for insertion. The IN is then 

inserted according to the following senarios:  

1. There are no existing ILLs, the IN is the first calculated intersection on that layer, the IN is 

inserted in a new ILL;  

2. One match is found with the first IN in an ILL, the IN is inserted at the front of the list;  

3. One match is found with the last IN in an ILL, the IN is inserted at the back of the list; 

4. Two matches are found, in separate lists, at the first element in one ILL and the last element 

in a second ILL, the IN connects the two lists, and the second list is deleted; 

5. Two matches are found in the same list, the IN is inserted at the back of the matched list, this 

indicates the matched list has been completed; 

6. No match is found in any of the existing ILLS, the IN is inserted in a new ILL. 
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Once the IN has been inserted into an ILL, the following intersection on the edge is calculated and 

sorted. Once all the intersections on the triangle have been computed and inserted into ILLs, the 

subsequent triangle is considered until all triangles in the mesh have been considered and slicing 

reaches completion. The data in the ILLs can then be written into a slice file format, or the ILL list 

format can be used directly for generation of the toolpath. 

a) 

 

 

 

b) 

 

Figure 5: a) Test sheet with 100 holes with 102812 triangles and dimensions 265x265x3mm; b) 

same test sheet rotated 90o  

Upon implementation of the ECC algorithm and a traditional  strategy based on the flowchart detailed 

in Figure 1 [12], in the C++ language comprehensive testing was performed on the *.STL files shown 

in Figures 5 and 6, the results are given in Table 1. The ECC algorithm shows improvements over the 

conventional slicing method between 9000-1150% for all three parts. The result was especially 

impressive for Figure 6, taking under 575ms to slice the part. However, in both the conventional and 

the ECC method there is a disparity between the slice duration for Figure 5a and Figure 6 despite 

consisting of a similar number of triangles, took in excess of 237,000ms and 2,752,181ms for the ECC 

and conventional algorithms respectively – 413 times longer to slice for the ECC method and 494 times 

longer for the conventional algorithm. 

Figure 5b slice time is 20.9 and 19.2 times less than that of Figure 5a for the ECC and conventional 

algorithm respectively, indicating the direction of slicing interacting with the topology of the part has 

a significant impact on the effectiveness of the both algorithms. A possible solution is to analyse parts 

and orient them in a way that is optimal for the slicing algorithm, however this does not present a 

good result as the optimal orientation for slicing is unlikely to be the optimal orientation for building 

the part [28] An algorithm capable of slicing the parts efficiently, regardless of the orientation, is 

essential.    

Analysis of the topology of Figure 5a indicated the average percentage of triangles intersecting on 

each layer is 33% equating to 34,000 triangles, meaning the part can be identified as worst case, 

whereas for Figure 5b an average of less than 2% or 2056 triangles, intersect on each layer. The total 

number of intersections of the entire part remains the same for both cases. It can be derived that the 

sorting procedure when a large number of triangles are present per layer is the cause of inefficiency.  
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Figure 6: Chess Rook containing 93,930 triangles, dimensions: 31.75 x 31.75 x 53.15mm 

 

Table 1: Performance of ECC and traditional slicing algorithm, all parts were sliced at 0.1mm slice 

thickness on a 64 bit system 

Model Size (L, W, H mm) Triangles Conventional Slicing 
algorithm (ms) 

ECC Time (ms) 

Test sheet with 100 

holes (Figure 5a) 
256 x 256 x 3 102,812 2,752,181 237,582 

Test sheet with 100 

holes rotated (Figure 

5b) 

256 x 3 x 256 102,812 143,587 11,371 

Rook (Figure 6) 31.75 x 31.75 x 

53.15 

93,930 5,573 575 

 

3.2 Edge Matching   

The sorting process in the ECC algorithm relies on comparing the edge pointer at the start and end of 

each list of connected vertices for a match with the current IN.  This process can be further optimised 

using the fact that triangular meshes can only be matched edge to edge and vertex to vertex, therefore 

one triangle only shares edges with exactly three others, one on each edge. Consequently, once a 

match has been made for one intersection on an edge, it’s matched triangle will be the same for the 

rest of that edge (Figure 7).  The standard ECC algorithm was adjusted to account for this to reduce 

the number of sorting procedures required for each edge from n, total number of intersections of the 

edge to one.  
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Figure 7: Example slice plane intersecting with 

matched triangles 

Figure 8: Modified IN to include the edge link 

 

The IN data structure was modified to contain an edge link pointer (Figure 8), holding the memory 

location address which points to the ILL containing the IN of the subsequent intersection on the 

triangle. The procedure of using the edge link is described in the flowchart in Figure 9. The first 

intersection is inserted into the ILL using the method for the standard ECC algorithm and following 

this, the subsequent IN (INi) is inserted into the ILL under four cases depending on the outcome of the 

sorting of the previous IN (INprev): 

1. If the INprev is inserted into a new ILL, the current IN for consideration INi will also be inserted 

into a new ILL, the address of the ILL containing INi will be saved as INprev’s edge link pointer; 

2. If INprev is inserted at the back of a list, INi will be inserted into the back of the list that is located 

at the edge pointer of the last IN in the list that INprev connected to; 

3. If INprev is inserted at the front of a list, INi will be inserted into the front of the list that is 

located at the edge pointer of the first IN in the list that INprev connected to; 

4. Finally, if INprev connected two lists, INi will connect the two lists contained in the edge pointers 

of the last IN in the ILL that INprev follows and the first IN that INprev precedes once connected.  

In cases 1 to 3, the memory location address of the ILL that INi has been inserted into is assigned as 

the edge link of the INprev. In case 4 it is unnecessary to assign the edge link, as INprev is on the middle 

of an ILL and therefore will not be checked in future IN insertions. The impact of implementing the 

edge link pointer into the algorithm is that the number of intersections that undergo the checking 

process per triangle is reduced from n (the total number of intersections on the triangle) to one. The 

values recorded in counter temporarily implemented within each algorithm detailing the number of 

times the matching process of the standard ECC has undergone for each algorithm is given in Table 2. 
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Table 2: Reduction in the number of matching processes from ECC to EECC 

Model Total number of 

sorts per part 

ECC 

Average number 

of sorts per layer  

Total number of 

sorts EECC 

Percentage 

reduction from 

ECC to EECC  

Test sheet with 100 

holes (Figure 5a) 
1,562,144 52,071 53,555 2,916% 

Test sheet with 100 

holes rotated (Figure 

5b) 

2,380,123 898 53,555 44,446% 

Rook (Figure 6) 3,949,700 7,452 81,435 4,850% 
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been attached to

All intersections considered ?

End

Yes
No

Yes

No
Increment 
slice depth

 

Figure 9:  EECC algorithm flowchart 
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Figure 10: Dodecahedra model consisting of 
2,074 triangles, 157.81 x 133.62 x 165.15mm 

Figure 11: A calibration model consisting of 316 
triangles, 165.1 x 165.1 x 25.4mm 

 

3.3 Additional Modifications and edge matching  

Transferring completed ILLs from the active sorting CLL to a separate CLL containing only completed 

lists, was expected to increase efficiency by reducing the number of sorts. In some cases, all the 

triangles in one connected multi-shell triangular mesh appear successively in the file; therefore, the 

contour or contours associated with that shell will be completed first, consequently, any further INs 

generated by the remaining shells will check the completed ILL on each search iteration. On 

initialisation of the algorithm, two versions of the CLL are created; the standard CLL where all sorting 

and IN insertions take place and a second complete CLL where ILLs are transferred by modifying the 

memory location pointers, when the IN is found to match in the same list twice.  

Micro-optimisation in the order that case variables are assessed in the IF / ELSE-case loop provided a 

noticeable time saving. The order the case variables appear were restructured to ensure that the most 

likely case arises first. To test which case is the most likely, a series of integer values were created to 

count the number of times each case variable appeared. Table 3 shows the number of occurrences of 

each case recorded using integer counters when running the ECC algorithm with edge matching.   
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Table 3: EECC number of case occurrences per part 

Model  No 
matching 
list  

Insert at 
front of list 
 

Insert at 
back of list 
 

Link two lists  Requires 
Sorting  

Test sheet with 100 holes   
(Figure 5a) 

733,700 174 11,600 733,700 54,036 

Test sheet with 100 holes 
rotated (Figure 5b) 

377,964 256,360 25,639 800,658 72,589 

Test sheet with 1225 holes 
(Figure 12) 

17,904,600 174 497,350 17,904,600 1,288,736 

Test sheet with 225 holes 
(Figure 15) 

3,288,600 174 91,350 3,288,600 236,736 

Test sheet with 484 holes 
(Figure 13) 

7,074,144 174 19,504 7,074,144 509,204 

Test sheet with 729 holes 
(Figure 14) 

10,655,064 174 295,974 10,655,064 766,944 

Dodecahedra (Figure 10) 4,850 7,810 1,386 4,693 567 

Calibration model (Figure 11) 69,540 123,906 51,421 68,144 81,459 

Rook (Figure 6)  30,379 83,907 82,258 26,514 9,077 

Figure head (Figure 16) 159,372 194,935 202,963 15,906 511,004 

  

Table 4 shows that the most dominant case is largely dependent on the topology of the triangles in 

the mesh, revealed by a comparison of the rotated test sheets in Figure 5 presenting differing case 

occurrences despite having triangles of identical geometry and connections.  Table 5 contains the 

average likelihood of a case occurring for all models considered in this paper. It was determined that 

the order of the automatic insertion processes in the IF / ELSE loop would follow the most probable 

to the least probable occurrence outlined in Table 4.  

Table 4: Average percentage case occurrences of the EECC sorting result on 50 test parts   

No matching list 
(%) 

Insert at front of 
list (%) 

Insert at back 
of list (%) 

Links two list (%) 

26.91 29.89 20.79 22.40 
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Figure 12:  Test sheet containing 1,225 holes, 

2,513,751 triangles of dimension 
250x250x3mm 

 
 

Figure 13:  Test sheet containing 484 holes, 
993,180 triangles of dimension 250x250x3mm 

 

 
 

Figure 14: Test sheet containing 729 holes,  
1,495,920 triangles of dimension 

250x250x3mm 

Figure 15: Test sheet containing 225 holes, 
461,712 triangles of dimension 250x250x3mm 

 

4 Results, Analysis and Discussion  

The modifications to the ECC algorithm create the Enhanced Efficient Contour Construction (EECC) 

algorithm, to assess the successfulness of this method, several parts were sliced using the standard 

ECC algorithm, the ECC algorithm with edge matching, and the completed EECC algorithm, the results 

are shown in Table 5. The most impactful improvement is shown in the identified worst-case parts 

(Figures 12 to 15). In the largest worst-case model that could be sliced using the ECC algorithm (Figure 

15), the EECC algorithm is 9,400% faster than the standard ECC algorithm. Of the parts tested, only 

models containing under 1,000 triangles witnessed a significant percentage increase in comparison to 

the original slicing time of 180% for Figure 10. This is an acceptable increase due to the imperceptible 

slicing times both with the ECC and EECC algorithm and can be explained due to the implementation 

of edge point testing taking more time than its saves; only a negligible decrease is seen in Figure 11 

for the same reason.     
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Table 5: Enhanced ECC algorithm efficiency test results, all parts were sliced at 0.1mm slice thickness 

on a 64 bit system 

Part name  #Triangles 
#Layer
s  

Time 
conventional 
algorithm (s) 

Time 
 ECC (s) 

Time ECC+ 
edge 
matching (s)  

Time 
enhance
d ECC (s) 

Test sheet with 100 holes 
(Figure 5a)  102,812 30 2752.181 237.582 10.029 8.241 

Test sheet with 1225 holes 
(Figure 12) 2,513,712 30 -1 -1 1025.81 302.8 

Test sheet with 225 holes 
(Figure 15) 461,712 30 -1 4775.382 70.884 50.3 

Test sheet with 484 holes 
(Figure 13) 993,180 30 -1 -1 202.745 111.3 

Test sheet with 729 holes 
(Figure 14) 1,495,920 30 -1 -1 380.788 169.1 

Dodecahedra (Figure 10) 2,074 1,653 2.582 0.41 0.685 0.654 

Calibration model (Figure 
11) 316 255 1.573 0.031 0.066 0.058 

Rook (Figure 6)  93,930 533 34.81 2.855 2.452 2.29 

Figure head (Figure 16) 467,882 814 788.698 65.695 8.091 7.59 

Lattice sole (Figure 17) 862,014 545 -1 -1 186.351 95.876 

 

For Figures 11, 12 and 13, which represent the largest of the files tested using the standard ECC 

algorithm, underwent the slicing process for over 4 hours, but never reached completion due to the 

program being terminated after this time, as it was unacceptably long.  This indicated that these parts 

would have seen even larger improvements than those witnessed in Figure 14, if completion was 

indeed possible  

 
Figure 16: Figure head containing 467,882 triangles, dimensions of 141.61 x 111.27 x 81.29mm 

 

                                                           
1 Slice time was in excess of four hours, process was terminated  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 6 offers a comparison of open source slicers with the enhanced ECC algorithm, slicing was 

precisely timed by downloading the open source software and including timing modifications.  The 

EECC algorithm was at least twice as fast for all instances.  

Table 6: Comparison of the enhanced ECC algorithm with Slic3r and Cura, sliced at 0.1mm slice 

thickness with 0% infill   

File Name Ultimaker Cura(1) (s) Slic3r(2) (s) Enhanced ECC (s) 

Dodecahedra 
(Figure 10) 

7.674 9.125 0.654 

Test Sheet with 225 
holes (Figure 15) 

128.360 -2 50.3 

Rook  (Figure 6) 5.341 6.31 2.29 

 

4.1 Space and Time Complexity 

The standard ECC sort procedure can be defined under three cases: worst case, best case and average 

case, if there are k number of lists in the CLL, m intersections per triangle and n triangles in the model 

– the complexity of the sorting algorithm is detailed in Table 7.  

Table 7: Time complexity of the standard ECC sorting algorithm 

Case Number of checks per 
intersection 

Number of checks per 
triangle 

Number of checks per 
model 

Best O(1) O(m) O(mn) 

Worst O(k) O(km) O(kmn) 

Average  O(k/2) O(km/2) O(kmn/2) 

 

The introduction of the Enhanced ECC algorithm reduces the number of sorts per triangle from m 

intersections on the triangle to 2 in all cases and therefore the time complexity become O(2n), O(2kn) 

and O(kn) for best, worst and the average case respectively. This demonstrates that the improvements 

to the ECC algorithm has the greatest impact on the worst case triangular meshes, and the least on 

the best case. The worst case sort procedure can be differentiated from previously identified worst 

case models where the k value would be very large, up to 67% of the total number of triangles n, when 

compared to a best case model where k would be less than 1% of the total number of triangles.  

There was a slight increase in space complexity in the enhanced ECC algorithm in comparison to the 

standard ECC algorithm due to the implementation of the edge link pointer, where each pointer is 

eight bytes on a 64-bit system. The total space requirement for one intersection is four bytes each for 

the X and Y coordinate of the intersection and five pointers, two edge pointers, one edge link pointer 

and the two pointers which link the contour together, which is a total of 48 bytes per intersection, an 

increase of eight bytes or 16.67% over the standard ECC algorithm. As there are m intersections per 

triangle and n triangles in the model, the total RAM requirement can be defined as 48nm bytes. This 

slight increase in space complexity can be justified by the improvements in efficiency.   

  

                                                           
2 Slicing could not complete without program terminating  
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4.2 Industrial Context  

Lattice structures have been identified as offering significant advantages over solid infill products, 

design dependent they can offer the same or better material properties e.g. tensile and compressive 

strength at a considerably reduced part weight and volume. These types of parts have seen significant 

advantages in areas where a high strength to weight ratio is desirable, examples include aerospace 

and sports performance products. Lattice structure models can often be categorised as worst-case 

models, especially when the lattice is in one layer running from top to bottom in the direction of 

construction.  

One industrial example of lattice structures in AM is 3D printed shoes [31], Figure 17 shows the Adidas 

Alphaedge 4D shoes currently available on the mass market, featuring a lattice structure on the sole 

of the shoe. Increasingly these shoes are manufactured custom to a scan of the wearers foot, meaning 

that each CAD model is different and will need to be sliced individually, resulting in overall very lengthy 

slice times. Figure 18 shows a model of the sole of shoe intended that is intended for production using 

additive manufacturing. This part can be considered both worst case, with an average of 24% triangles 

intersecting on each layer and a large *.stl file. The results in Table 5 demonstrate enhanced ECC 

algorithm offers significant advantage on this part that would be manufactured in an industrial 

application. The part shows an improvement of over 100% on the standard ECC algorithm and an 

improvement of at least 15,200% over the traditional end to end line sort algorithm. 

 

 
Figure 17: Adidas AlphaEdge 4D [31] 

 
Figure 18: Lattice sole of AM manufactured 
shoe, containing 862,014 triangles, dimensions 
of 324 x 125 x 54mm   

  

5 Conclusion  

The objective of this research was to generate a slicing algorithm for AM that is capable of efficiently 

slicing worst case geometric parts, defined as triangular mesh models where a high percentage of the 

parts triangles intersect on each layer. An adaption of the ECC algorithm, including reduction in the 

number of sorts for each triangle, and micro-optimisations through structuring, formed the enhanced 

ECC algorithm. Efficiency tests were conducted on a set of *.STL files (however, any other triangular 

mesh files could be used in the algorithm) and found a maximum improvement of 9,400% on the 

largest worst-case  file. It was also found that *.STL files that were previously too time inefficient to 

complete slicing using the standard ECC algorithm took less than 300s to slice.   

The enhanced ECC algorithm addresses the failings of the other algorithms to slice very large worst-

case parts, which are becoming more prevalent in the AM sector [29] in reproduction of scanned real-

world objects [30] or highly detailed, large scale AM components. Improvements to the slicing process 
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will have to evolve as the models grow in complexity and size; whilst the Enhanced ECC algorithm may 

be able to slice all parts efficiently now, further developments will be necessary in the future.  
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