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1 |  INTRODUCTION

Visual symmetry has been studied extensively (Bertamini, 
Silvanto, Norcia, Makin, & Wagemans, 2018; Cattaneo, 2017; 
Treder, 2010). Symmetry is an important cue for object rec-
ognition and figure-ground segmentation (Driver, Baylis, 

& Rafal,  1992; Koffka,  1935). Here we consider reflec-
tional (mirror) symmetry only, although it not the only type 
(Mach, 1886). In reflectional symmetry, there is a correlation 
between element position on either side of the axis (Barlow 
& Reeves, 1979). Therefore models of symmetry perception 
consider how local element position signals are integrated to 
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Abstract
It is known that the extrastriate cortex is activated by visual symmetry. This activa-
tion generates an ERP component called the Sustained Posterior Negativity (SPN). 
SPN amplitude increases (i.e., becomes more negative) with repeated presentations. 
We exploited this SPN priming effect to test whether the extrastriate symmetry re-
sponse is gated by element luminance polarity. On each trial, participants observed 
three stimuli (patterns of dots) in rapid succession (500 ms. with 200 ms. gaps). The 
patterns were either symmetrical or random. The dot elements were either black or 
white on a grey background. The triplet sequences either showed repeated lumi-
nance (black > black > black, or white > white > white) or changing luminance 
(black > white > black, or white > black > white). As predicted, SPN priming was 
comparable in repeated and changing luminance conditions. Therefore, symmetry 
with black elements is not processed independently from symmetry with white ele-
ments. Source waveform analysis confirmed that this priming happened within the 
extrastriate symmetry network. We conclude that the network pools information 
across luminance polarity channels.
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form a global gestalt (van der Helm & Leeuwenberg, 1996; 
Wagemans, Van Gool, Swinnen, & Vanhorebeek, 1993).

Early vision can be conceptualized as a retinotopic array 
of spatial frequency and orientation tuned filters (Campbell 
& Robson, 1968). Building on this foundation, filter models 
presume that the first stage in symmetry perception involves 
low-pass filtering of the image. This extracts midpoint-co-
linear blobs that are aligned orthogonally to any axes of 
reflection. Symmetry discrimination can then proceed by 
estimating blob alignment (Dakin & Hess,  1997; Dakin & 
Watt, 1994; Osorio, 1996). Dakin and Hess (1998) suggest 
that symmetry is extracted in this way from a narrow inte-
gration window elongated about the axis. Julesz and Chang 
(1979) found that participants can ignore noise masks as long 
as they differ in spatial frequency from the underlying sym-
metrical pattern. Likewise, Rainville and Kingdom (2000) 
found that participants can ignore noise masks with different 
orientations. These considerations suggest specific symmetry 
representations are linked to specific spatial frequency filters. 
Therefore, different symmetry representations may not over-
lap and perceptually interfere with each other.

Reflected elements can vary in their low-level visual prop-
erties, such luminance or colour. To accommodate these vari-
ations, filter models sometimes incorporate a full or half wave 
rectification stage at the front end (e.g. Dakin & Hess, 1997). 
Among other things, such rectification eliminates the dif-
ference between black and white elements on a grey back-
ground. Global integration can then utilize contrast signals 
rather than luminance signals. Early half-wave rectification is 
also incorporated into some influential shape detection mod-
els (Poirier & Wilson,  2010; Wilson & Wilkinson,  2002). 
These considerations suggest that there should be complete 
overlap between symmetry representations with different lu-
minance polarity (even if there is no overlap between symme-
try representations with different spatial frequencies).

Furthermore, Glass pattern (Glass, 1969) aftereffects are 
known to transfer perfectly between black and white exem-
plars (Clifford & Weston,  2005). This again suggests that 
some types of global structure are coded independently of 
element luminance polarity. This could be true of reflectional 
symmetry as well.

Without referring to filter models directly, Tyler and 
Hardage (1996) also addressed these topics. They distin-
guished first-order (luminance) mechanisms, which only find 
symmetrical correspondences between elements of the same 
luminance polarity (and operate over short distances), and 
second-order (contrast) mechanisms, which can find sym-
metrical correspondences between elements of opposite lumi-
nance polarity (and can operate over long distances spanning 
the whole visual field). Tyler and Hardage (1996) measured 
symmetry sensitivity while varying density and eccentricity. 
If second-order mechanisms dominate, then symmetry sen-
sitivity should improve at low densities, and this was indeed 

the case. Tyler and Hardage (1996) also compared matched 
luminance polarity conditions (black regions paired with 
black, and white paired with white) and opposite luminance 
polarity conditions (white paired with black, and black paired 
with white). Symmetry detection could tolerate opposite lu-
minance polarity when density was low. This again empha-
sises the role of second-order mechanisms. In light of these 
findings, Tyler and Hardage (1996) concluded that long-
range, second-order mechanisms predominate in symmetry 
detection. This account again suggests reflectional symmetry 
is coded independently of element luminance polarity.

Opposite luminance polarity symmetry is often termed 
anti-symmetry. Symmetry and anti-symmetry are sometimes 
perceptually equivalent, as found by Tyler and Hardage (1996). 
However, there are many cases where anti-symmetry is per-
ceptually weaker. For instance, anti-symmetry discrimination 
declines at high element density, when multiple greyscale lev-
els are used, and when elements are presented in the periphery 
(Mancini, Sally, & Gurnsey, 2005; Wenderoth, 1996). It seems 
that global symmetry detection mechanisms are sensitive to lu-
minance polarity (mis)matching across the axis. Apparently, 
early filter-rectification and/or second order mechanisms do 
not always render black and white elements informationally 
identical and thereby abolish all anti-symmetry costs.

Following these themes, Gheorghiu, Kingdom, Remkes, Li, 
and Rainville (2016) tested whether symmetry perception is se-
lective for low-level properties: For example, are symmetrical 
arrangements of black dots coded by one neural mechanism, 
and symmetrical arrangements of white dots coded by another 
neural mechanism? In other words, we can ask whether sym-
metry perception mechanisms are gated by luminance polar-
ity. Wright, Mitchell, Dering, and Gheorghiu (2018) presented 
evidence against selectivity. They claimed that “symmetry de-
tection mechanisms pool both luminance-polarities into one 
channel, and thus, extrastriate visual areas sensitive to sym-
metry are not gated by luminance polarity” (page 487). This 
non-selectivity hypothesis is partially anticipated by the work 
mentioned above, such as the second-order predominance ac-
count of Tyler and Hardage (1996), and filter models with an 
early rectification stage (Dakin & Hess, 1997). For simplicity, 
we use the term non-selectivity hypothesis to refer to this fam-
ily of related ideas.

The current project tested the non-selectivity hypothe-
sis. We measured an established ERP called the Sustained 
Posterior Negativity (SPN): After 200  ms, amplitude is 
lower at posterior electrodes when participants view sym-
metrical compared to asymmetrical stimuli. This pos-
terior negativity was first identified by Norcia, Candy, 
Vildavski, and Tyler (2002), and has been replicated many 
times (Jacobsen & Höfel, 2003; Makin, Rampone, Morris, 
& Bertamini,  2020; Makin, Wilton, Pecchinenda, & 
Bertamini, 2012; Makin et al., 2016). Source localization 
shows that the SPN is generated in the extrastriate cortex. 
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This is consistent with fMRI work, which has identified 
symmetry activations in a network of extrastriate regions, 
including V4 and the shape-sensitive Lateral Occipital 
Complex (LOC). This extrastriate symmetry response 
was first found in an fMRI study by Tyler et  al.  (2005), 
and then replicated by others (Keefe et al., 2018; Kohler, 
Clarke, Yakovleva, Liu, & Norcia, 2016; Sasaki, Vanduffel, 
Knutsen, Tyler, & Tootell,  2005; Van Meel, Baeck, 
Gillebert, Wagemans, & Op de Beeck, 2019). SPN local-
ization is also consistent with TMS research, which has 
found that disruption of the LOC impairs symmetry de-
tection (Bona, Cattaneo, & Silvanto, 2015; Bona, Herbert, 
Toneatto, Silvanto, & Cattaneo, 2014).

Recently, we found that SPN amplitude increases (that is, 
becomes more negative) with repeated presentation of sym-
metrical patterns (Bertamini, Rampone, Oulton, Tatlidil, & 
Makin,  2019). We term this repetition enhancement effect 
SPN priming. Following an established research strategy (e.g. 
Kim, Biederman, Lescroart, & Hayworth,  2009; Kourtzi & 
Kanwisher, 2001), our recent work has exploited SPN priming 
to assess the independence of different symmetry representa-
tions (Makin, Tyson-Carr, Rampone, Derpsch, & Bertamini, 
2020). Experiment 1 of Makin, Tyson-Carr, et al. (2020) found 
SPN priming with repeated presentation of different exemplars, 
but not repeated presentation of identical exemplars (Figure 1). 
Other experiments in Makin, Tyson-Carr, et al. (2020) demon-
strated that SPN priming survives changes in regularity type, 
but not changes in retinal location, or unpredictable changes in 
axis orientation. In the current work, we tested whether SPN 
priming would survive changes in element luminance polarity, 
as predicted by the non-selectivity account.

We used different exemplars (Figure  2), known to pro-
duce SPN priming (red wave in Figure 1). Following Makin, 
Tyson-Carr, et al. (2020), we used a secondary task that 
was unrelated to symmetry: Our participants discriminated 

between normal sequences with three patterns, and oddball 
sequences, with a blank in the middle (Figure 2b).

In the Repeated luminance condition, polarity was held 
constant across the three presentations in a trial (e.g. 
black > black > black or white > white > white). Conversely, 
in the Changing luminance condition, polarity alternated 
(e.g. black > white > black or white > black > white). The 
non-selectivity account predicts that SPN priming should be 
equivalent in both Repeated and Changing luminance con-
ditions. These predictions were pre-registered (https://aspre 
dicted.org/2rh7e.pdf).1

2 |  METHOD

2.1 | Participants

Twenty-two participants were involved (mean age 20, range 
18–50, 2 males, 1 left-handed). The pre-registered aim of 
testing 24 participants was abandoned prematurely due to the 
COVID19 pandemic. The experiment had local ethics com-
mittee approval and was conducted in accordance with the 
Declaration of Helsinki (2008).

2.2 | Apparatus

Participants sat 57  cm from a 29  ×  51  cm LCD monitor, 
updating at 60Hz. A chin rest was used for head stabiliza-
tion. EEG data was recorded continuously at 512 Hz from 
64 scalp electrodes (BioSemi Active-2 system, Amsterdam, 
Netherlands). Horizontal and Vertical EOG external chan-
nels were used to monitor excessive blinking and eye move-
ments. The experiment was programmed in Python using 
open source PsychoPy libraries (Peirce, 2007).

 1We also ran an Identical exemplars experiment on a different group of 22 
participants. Here all three presentations were the same in terms of element 
position. This experiment was also pre-registered. We predicted that there 
would be no SPN priming, either in the Repeated or Changing luminance 
conditions. However, the results were inconclusive. There was no SPN 
priming when analysing the electrode cluster chosen a priori. However, 
there was evidence of SPN priming in both Repeated and Changing 
luminance conditions when a larger posterior cluster was used. There was 
also SPN priming in the source waveforms. These results reduce our 
confidence in the claim that SPN priming is eliminated when exemplars are 
identical (i.e. the result shown in Figure 1). However, they do not 
contradict in our claim that SPN priming is independent of luminance 
polarity, which is the main result reported in this paper.

F I G U R E  1  Selective SPN priming effect when novel exemplars are shown. Data from Makin, Tyson-Carr, et al. (2020). Participants viewed a 
sequence of three reflectional symmetries (left). The sequence could involve different reflections (red outline) or identical reflections (blue outline). 
The SPN was the difference between reflection and random waves (middle). SPN amplitude increased (i.e. became more negative) with repeated 
presentations of different reflections (red) but not with repeated presentations of the same reflection (blue). This is shown in the bar chart on the 
right (error bars = 95% CI)

https://aspredicted.org/2rh7e.pdf
https://aspredicted.org/2rh7e.pdf
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2.3 | Stimuli

Patterns were comprised of 160 non-overlapping black or 
white Gabor elements on a circular grey background. The 
circular disk was 8° in diameter. The regions where the ele-
ments could fall was 7.14° diameter. The visible dot at the 
centre of each circular Gabor was approximately 0.25 de-
grees diameter. In PsychoPy RGB coordinates (which vary 
from −1 to 1), the background was dark grey [−0.25, −0.25, 
−0.25], the circular region mid-grey [0, 0, 0], the black ele-
ments were black [−1, −1, −1] and the white elements were 
white [1, 1, 1]. Stimuli were generated offline and saved as 
PNG files. The reflection patterns had horizontal and verti-
cal axes. We used 2-fold reflection in this study to increase 
signal strength (SPN amplitude almost doubles as we go up 
from 1 to 2 folds, e.g. Makin et al., 2016). All experiments 
used the same set of images, but these were shuffled so they 
played a different role in for each participant.

2.4 | Procedure

The timeline of a single trial was based on Makin, Rampone, 
Morris, et al. (2020). The 1,500 ms fixation baseline was fol-
lowed by three 500 ms patterns with 200 ms gaps. In 80% of 
trials, all three presentations in the sequence were reflection 
or random patterns (Figure  2b top row). In the remaining 
20% there was blank oddball between two random patterns 
(Figure 2b bottom row). The participant's task was to dis-
criminate normal from oddball trials (by pressing buttons 
labelled “All patterns” or “Blank in the middle”). The re-
sponse mapping switched between trials, so sometimes the 
left (A) key was used to report ‘Blank in middle’ and some-
times the right (L) key was used to report “Blank in middle.”

Each participant completed 600 trials in total. 480 were 
normal trials, 120 were oddball trials. Only the normal trials 
were analysed. Of the 480 trials, there were 60 in each of the 8 
triplet types shown in Figure 2a. There were thus 120 trials in 

F I G U R E  2  (a) Triplet sequences 
used in this experiment. Colour coding 
matches the ERP results in Figures 4 and 
5. These are just examples, in the real 
experiment, every trial involved different 
patterns. (b) Example trial structure. The 
participant's task was to discriminate 
common “all pattern” trials, (top row, 80%) 
from infrequent “blank in the middle” trials 
(bottom row, 20%)
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the 4 crucial conditions [(Reflection, Random) X (Repeated 
luminance, Changing luminance)]. The experiment was bro-
ken into 30 blocks of 20 trials. Within each block, conditions 
were presented in a randomized order. A single practice block 
was presented before the experiment began.

2.5 | ERP analysis (sensor level)

Pre-processing conventions were chosen a-priori and pre-
registered. EEG data from 64 channels was analysed of-
fline using EEGLAB 13.3.4b toolbox in Matlab (Delorme & 
Makeig, 2004). The data were re-referenced to the scalp aver-
age, low pass filtered at 25Hz, downsampled to 128 Hz and 
segmented into −0.5 to +2.1 s epochs with a −200 ms pre-
stimulus baseline. Eye blinks and other large artefacts were 
removed using Independent Components Analysis (Jung 
et al., 2000). An average of 10.05 (min 4, max 16) compo-
nents were removed. Trials where amplitude exceeded ±100 
microvolts were removed from all analysis (11%–12%). 
Oddball trials were not included in the ERP analysis. We did 
not remove ERP trials if participants entered an incorrect re-
sponse because these infrequent mistakes probably happen 
during response entry and excluding error trials would make 
only a negligible difference to ERP waveforms.

The SPN was computed as the difference between reflec-
tion and random waves at posterior electrode cluster [PO7, 
O1, O2 and PO8]. SPN in the Repeated luminance condition 
was defined as Repeated luminance reflection – Repeated 
luminance random (averaging over black  >  black  >  black 
and white > white > white sequences). SPN in the Changing 
luminance condition was defined as Changing luminance 
reflection – Changing luminance random (averaging over 
black > white > black and white > black > white sequences). 
Three windows were chosen a-priori for statistical analysis 
of SPN priming: First window = 250–600 ms, Second win-
dow = 950–1300 ms, Third window = 1650–2000 ms.

SPN was analysed with repeated measures ANOVAs. There 
were 2 within subject factors [Sequence position (first, second 
third) X 2 Sequence type (Repeated luminance, Changing lumi-
nance)]. The assumption of sphericity was met (Mauchly's test 
p > .159) and none of SPNs in this analysis violated the assump-
tion of normality according to Shapiro Wilk test (p > .366).

2.6 | Source waveform analysis (source level)

Source waveform analysis (implemented in BESA v. 7.0, 
MEGIS GmbH, Munich, Germany) was used to investigate the 
spatiotemporal dynamics of the SPN priming effect. Accurate 
localisation of cortical sources requires data with a large signal-
to-noise ratio. Hence, the average difference wave (symme-
try—random) was computed across the repeated and changing 

luminance conditions, thus producing the average waveform 
representing symmetry-specific activity.

The construction of a source dipole model requires that 
equivalent current dipoles (ECDs) are fitted to describe the 
3-dimensional source currents from cortical regions contrib-
uting maximally to the observed data. To identify the num-
ber of contributing sources, principle component analysis 
(PCA) was used. In accordance with previous fMRI literature 
identifying the extrastriate cortex as being the origin of the 
SPN response (Keefe et al., 2018; Kohler et al., 2016; Sasaki 
et al., 2005; Tyler et al., 2005; Van Meel et al., 2019), two 
ECDs were fitted bilaterally within the extrastriate cortices. 
Classical LORETA analysis recursively applied (CLARA) 
was used as an independent source localisation method to 
confirm and adjust the locations of the ECDs. A source di-
pole model including bilateral ECDs within the extrastriate 
cortices explained 91.9% of the variance in the observed 
data. Since the PCA identified no other significantly con-
tributing sources, no further ECDs were fitted. Finally, the 
orientation of the ECDs had to be determined. Due to differ-
ences in gyral anatomy between subjects, ECD orientation 
was determined on an individual subject basis but with the 
constraint of fixed ECD location between subjects. A 4-shell 
ellipsoid head volume conductor model was employed using 
the following conductivities (S/m  =  Siemens per meter): 
Brain = 0.33 S/m; Scalp = 0.33 S/m; Bone = 0.0042 S/m, 
Cerebrospinal Fluid  =  1  S/m. Source waveforms for each 
experiment and condition were exported and analysed using 
repeated-measures ANOVAs.

3 |  RESULTS

3.1 | ERP analysis (sensor level)

Grand average ERP waves are shown in Figure 3a. SPN dif-
ference waves are shown in Figure 3b. SPN amplitude in the 
three intervals are shown in Figure 3c.

All six SPNs in Figure  3c constitute significant brain 
responses to symmetry (amplitude < 0, one sample t tests, 
p <  .001). As expected, SPN amplitude increased over the 
three presentations in both Repeated and Changing lumi-
nance conditions. Repeated measures ANOVA found a main 
effect of Sequence position (F(2,42)  =  3.624, p  =  .035, 
ηp

2  =  0.147, linear contrast, F(1,21)  =  4.722, p  =  .041, 
ηp

2 = 0.184), but no effect of Sequence type (F < 1), and no 
interaction (F < 1).

Additional analysis found no difference between SPNs 
generated by black and white reflections (collapsing over 
Sequence position and Sequence type, −1.89 vs. −1.97 mi-
crovolts, t (21) = 0.427, p = .674). This replicates previous 
work, where SPN amplitude was independent of luminance, 
contrast and colour, at least when magnitudes are matched in 
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reflected locations (Martinovic, Jennings, Makin, Bertamini, 
& Angelescu, 2018; Wright et al., 2018).

3.2 | Individual participant level analysis, 
effect size and power

The left column in Figure 3 shows ERP data in a standard 
format. The right column in Figure 3 shows the same ERP 
data, but with a richer visualization of between participant 
variation, as recommended by Rousselet, Foxe, and Bolam 
(2016). Note individual subject waves behind grand averages 
in Figure 3a (and the necessarily extended vertical scale to ac-
commodate), 95% CI around difference waves in Figure 3b, 
and violin plots which represent distribution of individual-
participant SPNs in Figure 3c.

Depending on condition, between 19/22 and 21/ 22 par-
ticipants had an SPN (reflection  <  random). This is sig-
nificantly more than the 11/22 = 0.5 expected by chance 
(p =  .001, binomial test). Just 16/22 participants demon-
strated an SPN priming effect (defined by a negative se-
quence position slope). This was only marginally greater 
than 0.5 (p = .052, binomial test). This marginal non-para-
metric effect suggests that our experiment was statistically 
underpowered. Furthermore, observed power for the sig-
nificant parametric main effect of Sequence position was 
just 0.638, while the observed power of the linear contrast 
was just 0.545. However, SPN priming was replicated by 
Makin, Tyson-Carr, et al. (2020) in all the expected con-
ditions (plus some unexpected conditions) across five ex-
periments with 48 participants in each. Here effect size 
ranged from 0.110 to 0.290. We are thus confident that 

F I G U R E  3  ERP results. Left and right 
columns show the same data; however, 
the right column has enriched visual 
representation of between-participant 
variability. (a) Left: Grand average ERP 
waves from posterior electrode cluster [PO7, 
O1, O2 and PO8]. Right: individual waves 
are presented behind the grand averages, 
and scale is expanded to accommodate 
this variance. (b) Left: SPN as a difference 
wave. The three intervals when the pattern 
was presented are marked. Right: 95% CI 
waves are presented behind the difference 
waves (dashed lines). (c) Left: SPN in first, 
second and third intervals (Error bars = 95% 
CI based on procedure of Morey, 2008). 
Right: a violin plot which represents density 
of individual participant data points. Black 
horizontal dashed lines indicate repeated 
and changing condition averages. SPN 
priming manifests as the widest bulge of the 
violin moving from above to below the line. 
Note that amplitude increases by around 
0.5 microvolts in both repeated luminance 
(red) and changing luminance (green) 
conditions
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SPN priming is a real effect, although future research that 
exploits SPN priming should obtain larger samples than 
our 22.

3.3 | Source waveform analysis (source level)

As discussed in Makin, Tyson-Carr, et al. (2020), the SPN 
priming effect is ambiguous when analysed at the sen-
sor level. Does the increase in amplitude reflect increase 
in activation at extrastriate sources (as we assume) or later 
activation of additional dipoles elsewhere in the cortex? 
As in Makin, Tyson-Carr, et al. (2020), we ran additional 
source-level analysis to confirm that the observed SPN 
priming effect does indeed reflect increasing amplitude of 
the extrastriate symmetry response itself. This analysis also 
allowed us to assess hemispheric differences. This is impor-
tant, because previous work has reported some right later-
alization of the extrastriate symmetry response (Bertamini & 
Makin, 2014; Bona et al., 2015; Verma, Van der Haegen, & 
Brysbaert, 2013; Wright, Makin, & Bertamini, 2015).

A source dipole model was constructed comprised of two 
bilateral ECDs within the extrastriate regions. This model 
explained 91.9% of variance in the average difference wave 
across the repeated and changing conditions. Both the left 
ECD1 (Brodmann area 19; Talairach – x = −27.7, y = −61.9, 
z = 9.9) and the right ECD2 (Brodmann area 19; Talairach 
– x = 31.2, y = −61.8, z = −7.2) were located within the fu-
siform gyrus (see Figure 4a). The source waveforms for each 
ECD are illustrated in Figure 4b. It can be seen that the SPN 
priming effect is bilateral, and comparable in Repeated and 
Changing luminance conditions.

A three-way repeated measures ANOVA [Sequence type 
(Repeated luminance; Changing luminance) X Sequence 
position (First; Second; Third) X Hemisphere (Left ECD1; 
Right ECD2)] was carried out on the source waveforms. 

There was a main effect of Sequence position (F(1.371, 
28.790) = 5.455, p = .018, ƞp

2 = 0.206). Although the right 
hemisphere response was numerically stronger, there were no 
other effects or interactions (p ≥ .096).

4 |  DISCUSSION

One branch of previous work has discovered SPN priming: 
SPN amplitude increases with repeated presentation of novel 
symmetrical exemplars (Figure 1). Another branch of previ-
ous work supports the non-selectivity hypothesis, and sug-
gests that the extrastriate symmetry network pools element 
position information across low-level channels (Gheorghiu 
et al., 2016; Wright et al., 2018). We combined both branches 
of previous work and found new support for the non-selectiv-
ity hypothesis with SPN priming.

SPN priming was comparable when luminance polarity 
was repeated or changed in the triplet sequences. This sug-
gests that black and white symmetries are not coded by inde-
pendent neural systems.2 Furthermore, source waveform 
analysis confirmed the SPN priming results at the source 
level and found no additional cortical sources. Therefore, 
SPN enhancement was due to increased activation within the 
extrastriate symmetry network. This is consistent with simi-
lar analysis in Makin, Tyson-Carr, et al. (2020).

TMS work has found that the disruption of LOC reduces 
symmetry repetition effects as measured behaviourally 
(Cattaneo, Mattavelli, Papagno, Herbert, & Silvanto, 2011). 
This also suggests repetition effects are mediated within 
the extrastriate symmetry network, in line with our source 
level analysis. However, the study by Cattaneo et al. (2011) 
raises some caveats here that require further discussion. 
In Cattaneo et  al.  (2011), participants were slower to dis-
criminate target symmetry when it was congruent with 
the adaptor (e.g. Vertical  >  Vertical) than when it was 

 2Our experiment did not distinguish between a) element luminance and b) 
element luminance polarity (i.e., the direction of luminance difference from 
the grey background). Here white dots were a luminance increment 
compared to the grey background (positive polarity), and black dots were a 
luminance decrement compared to the grey background (negative polarity). 
It would be possible to devise an experiment like ours, but where both dot 
luminance levels constituted an increment [e.g. a black background with 
dark grey dots (increment 1) or light grey dots (increment 2)]. Likewise, it 
would be possible to devise an experiment like ours where both dot 
luminance levels constituted a decrement [e.g. a white background with 
light grey dots (decrement 1) or dark grey dots (decrement 2)]. We are 
confident that SPN priming would be transfer across large changes in 
element luminance even when these changes do not constitute a polarity 
reversal. However, this has not been empirically established by the current 
experiment.

F I G U R E  4  Source model. (a) Final 
source dipole model comprising two 
extrastriate sources. (b) Source waveforms 
for each ECD and mean amplitude within 
the defined intervals. Error bars = ± 1SD. 
(c) Mean scalp map for each sequence type 
and latency interval
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incongruent (Vertical  >  Horizontal). It is not clear why 
Cattaneo et al. (2011) found this when our results would pre-
dict the opposite (a congruence advantage). It could be that 
Cattaneo et al.’s participants had to inhibit the task-irrelevant 
adaptor, and this was more difficult when it matched the 
target orientation. In our study, the repeated trials were pre-
sented passively, so the symmetry response could accumulate 
without such cognitive complications.

It has been shown that SPN amplitude is similar for lumi-
nance defined (achromatic) and colour defined (isoluminant) 
stimuli when contrast greatly exceeds threshold (Martinovic 
et al., 2018). This suggests that the symmetry network is in-
different to luminance and colour, as the non-selectivity hy-
pothesis claims. However, the ERP similarity demonstrated 
by Martinovic et al. (2018) is only an approximate indicator 
of neural similarity. Transfer of repetition effects, as demon-
strated in the current study, is more convincing evidence for 
the non-selectivity hypothesis.

The non-selectivity hypothesis follows from other work. 
For instance, Tyler and Hardage (1996) found that sec-
ond-order, polarity insensitive mechanisms are predominant 
during some symmetry discrimination tasks. Furthermore, 
filter models of symmetry perception can incorporate early 
half or full wave rectification (Dakin & Hess, 1997; Wilson 
& Wilkinson,  2002). This work also suggests that regular-
ity coding should transcend element luminance polarity and 
predicts priming should transfer across changes in luminance 
polarity.

The current results are also in line with those of Clifford 
and Weston (2005), who found that Glass pattern aftereffects 
survive changes in luminance polarity. There are many sim-
ilarities between neural coding of reflectional symmetry and 
Glass patterns (Rampone & Makin, 2020), so it is perhaps 
unsurprising that both are indifferent to element luminance 
polarity.

While the extrastriate symmetry network is not lumi-
nance polarity selective, we stress that it is sometimes sen-
sitive to luminance polarity (mis)matching across the axis. 
This is revealed by experiments on anti-symmetry. As men-
tioned, some psychophysical work has found that anti-sym-
metry discrimination thresholds are elevated, especially 
when element density is high (Gheorghiu et  al.,  2016; 
Mancini et al., 2005; Wenderoth, 1996). The SPN is gen-
erated by anti-symmetry, but amplitude is reduced (Makin, 
Rampone, & Bertamini, 2020; Makin et al., 2016; Wright 
et  al.,  2018). Therefore, any future models of symmetry 
perception must account for both sensitivity to luminance 
polarity mismatching, AND the fact that extrastriate sym-
metry response is not gated by luminance polarity. The 
future theoretical challenge is to accommodate both these 
robust empirical findings.

Finally, we note that the visual effects of illumination and 
shading are typically unstable in real environments. When 

looking at a real object, the wavelengths reflected from its 
surfaces change quickly, while the spatial relationships be-
tween its parts change slowly. It is perhaps adaptive for vi-
sual object recognition mechanisms to be tuned to spatial 
relationships between parts, and ignore relatively superficial 
variability in luminance, contrast and colour.
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