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ABSTRACT  1 

Biomedical and clinical sciences are experiencing a renewed interest in the fact that males and 2 

females differ in many anatomic, physiological, and behavioral traits. Sex differences in trait 3 

variability, however, are yet to receive similar recognition. In medical science, mammalian 4 

females are assumed to have higher trait variability due to estrous cycles (the ‘estrus-5 

mediated variability hypothesis’); historically in biomedical research, females have been 6 

excluded for this reason. Contrastingly, evolutionary theory and associated data support the 7 

‘greater male variability hypothesis’. Here, we test these competing hypotheses in 218 traits 8 

measured in >26,900 mice, using meta-analysis methods. Neither hypothesis could universally 9 

explain patterns in trait variability. Sex-bias in variability was trait-dependent. While greater 10 

male variability was found in morphological traits, females were much more variable in 11 

immunological traits. Sex-specific variability has eco-evolutionary ramifications including sex-12 

dependent responses to climate change, as well as statistical implications including power 13 

analysis considering sex difference in variance. 14 

Keywords 15 

Sex inequality, gender difference, sexual selection, meta-regression, power analysis  16 
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INTRODUCTION  17 

Sex differences arise because selection acts on the two sexes differently, especially on traits 18 

associated with mating and reproduction (1). Therefore, sex differences are widespread, a fact 19 

which is unsurprising to any evolutionary biologist. However, scientists in many (bio-)medical 20 

fields have not necessarily regarded sex as a biological factor of intrinsic interest (2–7). 21 

Therefore, many (bio-)medical studies have only been conducted with male subjects. 22 

Consequently, our knowledge is biased. For example, we know far more about drug efficacy in 23 

male compared to female subjects, contributing to a poor understanding of how the sexes 24 

respond differently to medical interventions (8). This gap in knowledge is predicted to lead to 25 

overmedication and adverse drug reactions in women (9). Only recently have (bio-)medical 26 

scientists started considering sex differences in their research (10–16). Indeed, the National 27 

Institutes of Health (NIH) have now implemented new guidelines for animal and human 28 

research study designs, requiring that sex be included as a biological variable (2, 17, 18). 29 

[Figure 1 here] 30 

When comparing the sexes, biologists generally focus on mean differences in trait values, 31 

placing little or no emphasis on sex differences in trait variability (see Figure 1 for a diagram 32 

explaining differences in means and variances). Despite this, two hypotheses exist that explain 33 

why trait variability might be expected to differ between the sexes. Interestingly, these two 34 

hypotheses make opposing predictions. 35 

First, the “estrus-mediated variability hypothesis” (Figure 2), which emerged in the (bio-36 

)medical research field, assumes that the female estrous cycle (see for example 6, 19) causes 37 

higher variability across traits in female subjects. A wide range of labile traits are presumed to 38 

co-vary with physiological changes that are induced by reproductive hormones. High 39 

variability is, therefore, expected to be particularly prominent when the stage of the estrous 40 

cycle is unknown and unaccounted for. This higher trait variability, resulting from females 41 

being at different stages of their estrous cycle,  is the main reason for why female research 42 

subjects are often excluded from biomedical research trials, especially in the neurosciences, 43 

physiology and pharmacology (18). Female exclusion has traditionally been justified based on 44 

the grounds that including females in empirical research leads to a loss of statistical power, or 45 

that animals must be sampled across the estrous cycle for one to make valid conclusions, 46 

requiring more time and resources. 47 

Second, the “greater male variability hypothesis” suggests males exhibit higher trait variability 48 

because of two different mechanisms. The first mechanism is based on males being the 49 

heterogametic sex in mammals. Mammalian females possess two X chromosomes, leading to 50 

an ‘averaging’ of trait expression across the genes on each chromosome. In contrast,  males 51 

exhibit greater variance because a single gene on the X chromosome is likely to lead to more 52 

extreme trait values (20). The second mechanism is based on males being under stronger 53 

sexual selection (21–23). Empirical evidence supports higher variability of traits that are 54 
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sexually selected, often harbouring high genetic variance and being condition-dependent, 55 

which makes sense as ‘condition’ as a trait is likely to be based on 1000s of loci (24, 25). Thus, 56 

higher genetic and, thus, phenotypic variance resulting from sexual selection is less general 57 

because it is only expected to apply to sexually selected traits. In mammals, it is likely that 58 

both mechanisms are operating concomitantly. So far, the “greater male variability 59 

hypothesis” has gained some support in the evolutionary and psychological literature (20, 26).   60 

[Figure 2 here] 61 

Here we conduct the first comprehensive test of the greater male variability and estrus-62 

mediated variability hypotheses in mice (Figure 2; cf. , 20, 27–31), examining sex differences 63 

in variance across 218 traits in 26,916 animals. To this end, we carry out a series of meta-64 

analyses in two steps (Figure 3). First, we quantify the natural logarithm of the male to female 65 

coefficients of variation, CV, or relative variance  (lnCVR) for each cohort (population) of mice, 66 

for different traits, along with the variability ratio of male to female standard deviations, SD, 67 

on the log scale (lnVR, following 32, see Figure 1). Then, we analyze these effect sizes to 68 

quantify sex bias in variance for each trait using meta-analytic methods. To better understand 69 

our results and match them to previously reported sex differences in trait means (4), we also 70 

quantify and analyze the log response ratio (lnRR). Then, we statistically amalgamate the trait-71 

level results to test our hypotheses and to quantify the degree of sex biases in and across nine 72 

functional trait groups (for details on the grouping, see below). Our meta-analytic approach 73 

allows easy interpretation and comparison with earlier and future studies. Further, the 74 

proposed method using lnCVR (and lnVR) is probably the only practical method to compare 75 

variability between two sexes within and across studies (32, 33), as far as we are aware. Also, 76 

the use of a ratio (i.e. lnRR, lnVR, lnCVR) between two groups (males and females) naturally 77 

controls for different units (e.g., cm, g, ml) and also for changes in traits over time and space. 78 

[Figure 3 here] 79 

 80 

RESULTS  81 

Data characteristics and workflow 82 

We used a dataset compiled by the International Mouse Phenotyping Consortium (34) (IMPC, 83 

dataset acquired 6/2018). To gain insight into systematic sex differences, we only included 84 

data of wildtype-strain adult mice, between 100 and 500 days of age. We removed cases with 85 

missing data, and selected measurements that were closest to 100 days of age (young adult) 86 

when multiple measurements of the same trait were available. To obtain robust estimates of 87 

sex differences, we only used data on traits that were measured in at least two different 88 

institutions (see workflow diagram, Figure 3). 89 
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Our data set comprised 218 continuous traits (after initial data cleaning and pre-processing; 90 

Figure 3). It contains information from 26,916 mice from 9 wildtype strains that were studied 91 

across 11 institutions. We combined mouse strain/institution information to create a 92 

biological grouping variable (referred to as “population” in Figure 3B; see also Supplementary 93 

File 1, Table 1 for details), and the mean and variance of a trait for each population was 94 

quantified. We assigned traits according to related procedures into functionally and/or 95 

procedurally related trait groups to enhance interpretability (referred to as “functional 96 

groups” hereafter; see also Figure 3G). Our nine functional trait groups were behaviour, 97 

morphology, metabolism, physiology, immunology, hematology, heart, hearing and eye (for 98 

the rationale of these functional groups and related details, see Methods and Supplementary 99 

File 1, Table 3). 100 

Testing the two hypotheses 101 

We found that some means and variabilities of traits were biased towards males (i.e. ‘male-102 

biased’, hereafter; “turquoise” shaded traits, Figure 4), but others towards females (i.e. 103 

‘female-biased’, hereafter; “orange” shading, Figure 4) within all functional groups. These sex-104 

specific biases occur in mean trait sizes and also in our measures of trait variability. There 105 

were strong positive relationships between mean and variance across traits (r > 0.94 on the 106 

log scale; Figure 1-figure supplement 1), and therefore, we report the results of lnCVR, which 107 

controls for differences in means, in the main text. Results on lnVR are presented as 108 

supplemental figures (Figure 4 – figure supplements 1 and 2). 109 

There was no consistent pattern in which sex has more variability (lnCVR) in the examined 110 

traits (left panel in Figure 4A). Our meta-analytic results also did not support a consistent 111 

pattern of either higher male variability or higher female variability (see Figure 4B, left panel: 112 

“All” indicates that across all traits and functional groups, there was no significant sex bias in 113 

variances; lnCVR = 0.005, 95% confidence interval, 95% CI = [-0.009 to 0.018]). However, there 114 

was high heterogeneity among traits (I2 = 76.5 %, Supplementary File 1, Table 4 and see also 115 

Table 5), indicating sex differences in variability are trait-dependent, corroborating our 116 

general observation that variability in some traits was male-based but others female-biased 117 

(Figure 4A). 118 

[Figure 4 here] 119 

As expected, specific functional trait groups showed significant sex-specific bias in variability 120 

(Figure 4B).  The variability among-traits within a functional group was lower than that of all 121 

the traits combined (Supplementary File 1, Table 4). For example, males exhibited an 8.05% 122 

increase in CV relative to females for morphological traits (lnCVR = 0.077; CI = [0.041 to 123 

0.113], I2= 67.3%), but CV was female-biased for immunological traits (6.59% higher in 124 

females, lnCVR = -0.068, CI =[-0.098 to 0.038], I2 = 40.8%) and eye morphology (7.85% higher 125 

in females, lnCVR = -0.081, CI =[-0.147  to (- 0.016)], I2 = 49.8%). 126 
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The pattern was similar for overall sexual dimorphism in mean trait values (here, a slight male 127 

bias is indicated by larger “turquoise” than “orange” areas; Figure 4B, right and Figure 4B, 128 

lnRR: “All”, lnRR = 0.012, CI = [-0.006 to 0.31]). Trait means (lnRR) were 7% larger for males 129 

(lnRR = 0.067; CI = [0.007 to 0.128]) in morphological traits and 15.3 % larger in males for 130 

metabolic traits (lnRR = 0.142; CI = [0.036 to 0.248]). In contrast, females had 5.59 % [lnRR = 131 

0.057, CI = [-0.107 to (-0.007)] larger means than those of males for immunological traits. We 132 

note that these meta-analytic estimates were accompanied by very large between-trait 133 

heterogeneity values (morphology I2 = 99.7%, metabolism I2 = 99.4%, immunology I2 = 96.2; 134 

see Supplementary File 1, Table 4), indicating that even within the same functional groups, 135 

the degree and direction of sex-bias in the mean was not consistent among traits. 136 

DISCUSSION  137 

We tested competing predictions from two hypotheses explaining why sex-biases in trait 138 

variability exist. Neither the ‘greater male variability’ hypothesis nor the ‘estrus-mediated 139 

variability’ hypothesis explain the observed patterns in sex-biased trait variation on their own. 140 

Therefore, our results add further empirical weight to calls that question the basis for the 141 

routine exclusion of one sex in biomedical research based on the estrus-mediated variability 142 

hypothesis (3, 5–7, 30). It is important to know that for each trait we estimated the mean 143 

effect size (i.e. lnCVR) over strains and locations. As such, our results may not necessarily 144 

apply to every group of mice, which may or may not result in stronger support for either of 145 

the two hypotheses. 146 

Greater male variability vs. estrus-mediated variability? 147 

Evolutionary biologists commonly expect greater variability in the heterogametic sex than the 148 

homogametic sex. In mammals, males are heterogametic, and hence are expected to exhibit 149 

higher trait variability compared to females, which is also consistent with an expectation from 150 

sexual selection theory (20). Our results provide only partial support for the greater male 151 

variability hypothesis, because the expected pattern only manifested for morphological traits 152 

(see Figures 4 & 5). This result corroborates a previous analysis across animals, which found 153 

that the heterogametic sex was more variable in body size (20). However, our data do not 154 

support the conclusion that higher variability in males occurs across all traits, including for 155 

many other  morphological traits. 156 

[Figure 5] 157 

The estrus-mediated variability hypothesis was, at least until recently (6, 13), regularly used as 158 

a rationale for including only male subjects in many biomedical studies. So far, we know very 159 

little about the relationship between hormonal fluctuations and general trait variability within 160 

and among female subjects. Our results are consistent with the estrus-mediated variability 161 

hypothesis for immunological traits only. Immune responses can strongly depend on sex 162 

hormones (35, 36), which may explain higher female variability in these traits. However, if 163 
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estrus status affects traits through variation in hormone levels, we would expect to also find 164 

higher female variability in physiological and hematological traits. This was not the case in our 165 

dataset. Interestingly, however, eye morphology (structural traits, which should fluctuate little 166 

across the estrous cycle) also appeared to be more variable in females than males, but little is 167 

known about sex differences in ocular traits in general (37, 38). Overall, we find no consistent 168 

support for the female estrus-mediated variability hypothesis. 169 

In line with our findings, recent studies have refuted the prediction of higher female variability 170 

(6, 13, 19, 30, 31). For example, several rodent studies have found that males are more 171 

variable than females (6, 13, 30, 31, 39, 40). Further studies should investigate whether higher 172 

female variability in immunological traits is indeed due to the estrous cycle, or generally 173 

because of greater between-individual variation (cf. Figure 2). 174 

In general, we found many traits to be sexually dimorphic (Figure 5) in accordance with the 175 

previous study, which used the same database (4). Although the original study also provided 176 

estimates for sex differences in traits both with and without controlling for weight (we did not 177 

control for weight; cf. , 41). More specifically, males are larger than females, while females 178 

have higher immunological parameters (see Figure 5). Notably, most sexually dimorphic trait 179 

means also show the greatest differences in trait variance (Figures 4 & 5). Indeed, theory 180 

predicts that sexually selected traits (e.g., larger body size for males due to male-male 181 

competition) are likely more variable, as these traits are often condition dependent (24). 182 

Therefore, this sex difference in variability could be more pronounced under natural 183 

conditions compared to laboratory settings. This relationship may explain why male-biased 184 

morphological traits are larger and more variable. 185 

Eco-evolutionary implications 186 

We have used lnCVR values to compare phenotypic variability (CV) between the sexes. When 187 

lnCVR is used for fitness-related traits, it can signify sex differences in the ‘opportunity for 188 

selection’ between females and males (24). If we assume that phenotypic variation (i.e. 189 

variability in traits) has a heritable basis, then large ratios of lnCVR may indicate differences 190 

in the evolutionary potential of each sex to respond to selection, at least in the short term 191 

(42). For example, more variable morphological traits of males could potentially provide 192 

them with better capacity than females to adapt morphologically to changing climate. We 193 

note, however, that in our study, lnCVR reflects sex differences in trait variability within 194 

strains, such that the variability differences we observe between the sexes may be partially 195 

the result of phenotypic plasticity. 196 

Demographic parameters, such as age-dependent mortality rate (43) can often be different 197 

for each sex. For example, a study on European sparrowhawks found that variability in 198 

mortality was higher in females compared to males (44). In this species, sex-specific variation 199 

affects age-dependent mortality and results in higher average female life expectancy. 200 

Therefore, population dynamic models, which make predictions about how populations 201 
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change in their size over time, should take sex-differences in variability into account to 202 

produce more accurate predictions (cf. 45, 46). In our rapidly changing world, better 203 

predictions on population dynamics are vital for understanding whether climate change is 204 

likely to result in population extinction and lead to further biodiversity loss. 205 

 206 

Statistical and practical implications  207 

It is now mandatory to include both sexes in biomedical experiments and clinical trials funded 208 

by the NIH, unless there exists strong justification against the inclusion of both sexes (18, 47). 209 

In order to conduct meaningful research and make sound clinical recommendations for both 210 

male and female patients, it is necessary to understand not only how trait means, but also 211 

how trait variances differ between the sexes. If one sex is systematically more variable in a 212 

trait of interest than the other, then experiments should be designed to accommodate 213 

relative differences in statistical power between the sexes (which has not been considered 214 

before, see 3, 5–7). For example, female immunological traits are generally more variable (i.e. 215 

having higher CV and SD). Therefore, in an experiment measuring immunological traits, we 216 

would need to include a larger sample (N) of females than males (N[female] > N[male]; N[total] = 217 

N[female] + N[male]) to achieve the same power as when the experiment only includes males 218 

(N[total*] = 2N[male]). In other words, this experiment with both sexes would need a larger 219 

sample size than the same experiment with males only (N[total] > N[total*]).  220 

To help researchers adjust their sex-specific sample size to achieve optimal statistical power, 221 

we provide an online tool (ShinyApp; https://bit.ly/sex-difference). This tool may serve as a 222 

starting point for checking baseline variability for each sex in mice. The sex bias (indicated by 223 

the % difference between the sexes) is provided for separate traits, procedures, and 224 

functional groups. These meta-analytic results are based on our analyses of more than 2 225 

million rodent data points, from 26,916 individual mice. We note that, however, variability in 226 

a trait measured in untreated individuals maintained under carefully standardized 227 

environmental conditions, as reported here, may not directly translate into the same 228 

variability when measured in experimentally treated individuals, or individuals exposed to a 229 

range of environments (i.e. natural populations or human cohorts). Further, these estimates 230 

are overall mean differences across strains and locations. Therefore, these may not be 231 

particularly informative if one’s experiment only includes one specific strain. However, we 232 

point out that our estimates may be useful in the light of a recent recommendation of using 233 

‘heterogenization’ where many different strains are systematically included (i.e. randomized 234 

complete block design) to increase the robustness of experimental results (48). However, note 235 

that an experiment with heterogenization might only include a few strains with several 236 

animals per strain. Even in such a case, using just a few strains, our tool could provide 237 

potentially useful benchmarks. Incidentally, heterogenization would be key to make one’s 238 

experimental outcome more generalizable (49).  239 

https://szaj.shinyapps.io/SexDifference_Shiny/
https://bit.ly/sex-difference
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Importantly, when two groups (e.g., males and females) show differences in variability, we 240 

violate homogeneity of variance or homoscedasticity assumptions. Such a violation is 241 

detrimental because it leads to a higher Type I error rate. Therefore, we should consider 242 

incorporating heteroscedasticity (different variances) explicitly or using robust estimators of 243 

variance (also known as ‘the sandwich variance estimator’) to prevent an inflated Type I error 244 

rate (50), especially when we compare traits between the sexes. 245 

Conclusion 246 

We have shown that sex biases in variability occur in many mouse traits, but that the 247 

directions of those biases differ between traits. Neither the ‘greater male variability’ nor the 248 

‘estrus-mediated variability’ hypothesis provides a general explanation for sex-differences in 249 

trait variability. Instead, we have found that the direction of the sex bias varies across traits 250 

and among trait types (Figures 4 & 5). Our findings have important ecological and 251 

evolutionary ramifications. If the differences in variability correspond to the potential of each 252 

sex to respond to changes in specific environments, this sex difference needs to be 253 

incorporated into demographic and population dynamic modelling. Moreover, in the (bio-254 

)medical field, our results should inform decisions during study design by providing more 255 

rigorous power analyses that allow researchers to incorporate sex-specific differences for 256 

sample size. We believe that taking sex-differences in trait variability into account will help 257 

avoid misleading conclusions and provide new insights into sex differences across many areas 258 

of biological and bio-medical research. Ultimately, such considerations will not only better our 259 

knowledge, but also close the current gaps in our biased knowledge (51). 260 

METHODS 261 

Data selection and process 262 

The IMPC (International Mouse Phenotyping Consortium) provides a comprehensive 263 

catalogue of mammalian gene function for investigating the genetics of health and disease, by 264 

systematically collecting phenotypes of knock-out and wild type mice. To investigate 265 

differences in trait variability between the sexes, we only considered the data for wild-type 266 

control mice. We retrieved the dataset from the IMPC server in June 2018 and filtered it to 267 

contain non-categorical traits for wildtype mice. The initial dataset comprised over 2,500,000 268 

data points for 340 traits. In cases where multiple measurements were taken over time, data 269 

cleaning started with selecting single measurements for each individual and trait. In these 270 

cases, we selected the measurement closest to “100 days of age”. All data are from unstaged 271 

females (with no information about the stage of their estrous cycle). We excluded data for 272 

juvenile and unsexed mice (Figure 3A; this data set and scripts can be found on  273 

https://rpubs.com/SusZaj/ESF, https://doi.org/10.5281/zenodo.4146948; https://bit.ly/code-274 

mice-sex-diff; raw data: https://doi.org/10.5281/zenodo.3759701) 275 

https://doi.org/10.5281/zenodo.4146948
https://bit.ly/code-mice-sex-diff
https://rpubs.com/SusZaj/ESF
https://bit.ly/code-mice-sex-diff
https://doi.org/10.5281/zenodo.3759701
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Grouping and effect size calculation 276 

We created a grouping variable called “population” (Figure 3B). A population comprised a 277 

group of individuals belonging to a distinct wild-type strain maintained at one particular 278 

location (institution); populations were identified for every trait of interest. Our data were 279 

derived from 11 different locations/institutions, and a given location/institution could provide 280 

data on multiple populations (see Supplementary File 1, Table 1 for details on numbers of 281 

strains and institutions). We included only populations that contained data points for at least 282 

6 individuals, and which had information for members of both sexes; further, these 283 

populations for a particular trait had to come from at least two institutions to be eligible for 284 

inclusion. After this selection process, the dataset contained 2,300,000 data points across 232 285 

traits. Overall, we meta-analysed traits with between 2–18 effect sizes (mean = 9.09 effects, 286 

SD = 4.47). However, each meta-analysis contained a total number of individual mice that 287 

ranged from 83/91 to 13467/13449 (males/females). While a minimum of N = 6 mice were 288 

used to create effect sizes for any given group (male or female), in reality samples sizes of 289 

male / female groups were much larger (males: mean = 396.66 (SD = 238.23), median = 290 

465.56; females: mean = 407.35 (SD = 240.31), median = 543.89). We used the function escalc 291 

in the R package, metafor (52) to obtain lnCVR, lnVR and lnRR and their corresponding 292 

sampling variance for each trait for each population; we worked in the R environment for data 293 

cleaning, processing and analyses (53, version 3.6.0; for the versions of all the software 294 

packages used for this article and all the details and code for the statistical analyses, see the 295 

Supplementary Code File 1 and respositories). As mentioned above, the use of ratio-based 296 

effect sizes, such as lnCVR, lnVR and lnRR, controls for baseline changes over time and space, 297 

assuming that these changes affect males and females similarly. However, we acknowledge 298 

that we could not test this assumption.  299 

Meta-analyses: overview 300 

We conducted meta-analyses at two different levels (Figure 3C-J). First, we conducted a meta-301 

analysis for each trait for all three effect size types (lnRR, lnVR and lnCVR), calculated at the 302 

‘population’ level (i.e. using population as a unit of analysis). Second, we statistically 303 

amalgamated overall effect sizes estimated at each trait (i.e. overall trait means as a unit of 304 

analysis) after accounting for dependence among traits. In other words, we conducted 305 

second-order meta-analyses (54). We used the second-order meta-analyses for three 306 

different purposes: A) estimating overall sex biases in variance (lnCVR and lnVR) and mean 307 

(lnRR) in the nine functional groups (for details, see below) and in all these groups combined 308 

(the overall estimates); B) visualizing heterogeneities across populations for the three types of 309 

effect size in the nine functional trait groups, which complemented the first set of analyses 310 

(Figure 3I, Table 6 in Supplementary File 1); and C) when traits were found to be significantly 311 

sex-biased, grouping such traits into either male-biased and female-biased traits, and then, 312 

estimating overall magnitudes of sex bias for both sexes again for the nine functional trait 313 

groups. Only the first second-order meta-analysis (A) directly related to the testing of our 314 
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hypotheses, results of B and C are found in the supplemental tables and Figures and reported 315 

in our freely accessible code. 316 

Meta-analyses: population as an analysis unit 317 

To obtain degree of sex bias for each trait mean and variance (Figure 3C), we used the 318 

function rma.mv in the R package metafor (52) by fitting the following multilevel meta-319 

analytic model, an extension of random-effects models (sensu 55): 320 

ESi ~ 1 + (1 |Strainj ) + (1 | Locationk) + (1 | Uniti) + Errori, 321 

where ‘ESi’ is the ith effect size (i.e. lnCVR, lnVR and lnRR) for each of 232 traits, the ‘1’ is the 322 

overall intercept (other ‘1’s are random intercepts for the following random effects), ‘Strainj’ 323 

is a random effect for the jth strain of mice (among 9 strains), ‘Locationk’ is a random effect 324 

for the kth location (among 11 institutions), ‘Uniti’ is a residual (or effect-size level or 325 

‘population-level’ random effect) for the ith effect size, ‘Errori’ is a random effect of the 326 

known sampling error for the ith effect size. Given the model above, meta-analytic results had 327 

two components: 1) overall means with standard errors (95% confidence intervals), and 2) 328 

total heterogeneity (the sum of the three variance components, which is estimated for the 329 

random effects). Note that overall means indicate average (marginalised) effect sizes over 330 

different strains and locations and total heterogeneities reflect variation around overall 331 

means due to different strains and locations. 332 

We excluded traits which did not carry useful information for this study (i.e. fixed traits, such 333 

as number of vertebrae, digits, ribs and other traits that were not variable across wildtype 334 

mice; note that this may be different for knock-down mutant strains) or where the meta-335 

analytic model for the trait of interest did not converge, most likely due to small sample size 336 

from the dataset (14 traits, see SI Appendix, for details: Meta-analyses; 1. Population as 337 

analysis unit). We therefore obtained a dataset containing meta-analytic results for 218 traits 338 

at this stage, to use for our second-order meta-analyses (Figure 3D). 339 

Meta-analyses: accounting for correlated traits 340 

Our dataset of meta-analytic results included a large number of non-independent traits. To 341 

account for dependence, we identified 90 out of 218 traits, and organized them into 19 trait 342 

sub-groups (containing 2-10 correlated traits, see Figure 3E). For example, many 343 

measurements (i.e. traits) from hematological and immunological assays were hierarchically 344 

clustered or overlapped with each other (e.g., cell type A, B and A+B). We combined the meta-345 

analytic results from 90 traits into 19 meta-analytic results (Figure 3F) using the function robu 346 

in the R package, robumeta with the assumption of sampling errors being correlated with the 347 

default value of r = 0.8 (56). Consequently, our final dataset for secondary meta-analyses 348 

contained 147 traits (i.e. the newly condensed 19 plus the remaining 128 independent traits, 349 

see Figure 3, Supplementary File 1, Table 2), which we assume to be independent of each 350 

other. 351 



11 

 352 

Second-order meta-analyses: trait as an analysis unit 353 

We created our nine overarching functional groups of traits (Figure 3G) by condensing the 354 

IMPC’s 26 procedural categories (“procedures”) into related clusters. The categories were 355 

based on procedures that were biologically related, in conjunction with measurement 356 

techniques and number available traits in each category (see Supplementary File 1, Table 3 for 357 

a list of clustered traits, procedures and grouping terms). To test our two hypotheses about 358 

how trait variability changes in relation to sex, we estimated overall effect sizes for nine 359 

functional groups by aggregating meta-analytic results via a ‘classical’ random-effect models 360 

using the function rma.uni in the R package metafor (52). In other words, we conducted three 361 

sets of 10 second-order meta-analyses (i.e. meta-analyzing 3 types of effect size: lnRR, lnVR 362 

and lnCVR for 9 functional groups and one for all the groups combined, Figure 3H). Although 363 

we present the frequencies of male- and female-biased traits in Figure 4A, we did not run 364 

inferential statistical tests on these counts because such tests would be considered as vote-365 

counting, which has been severely criticised in the meta-analytic literature (57). 366 
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 487 

 488 

Figure Legends 489 

Figure 1 490 

Overview of meta-analytic methods used to detect differences in means and variances in any 491 

given trait (e.g., body size in mice). The orange shading represents females (F), turquoise 492 

shading stands for males (M). The solid “dot” represents a mean trait value within the 493 

respective group. Solid lines represent standard deviation, with upper and lower bounds 494 

indicated by diamond shapes. Below, we present three types of effect sizes that can be used 495 

for comparing two groups, along with the respective formulas and interpretations. Compared 496 

to lnVR (the ratio of SD), lnCVR (the ratio of CV or relative variance) provides a more general 497 

measure of the difference in variability between two groups (mean-adjusted variability ratio). 498 

Figure 2  499 

The two hypotheses (“Greater Male Variability” vs ”Estrus-Mediated variability”) have 500 

different underlying predictions on how variabilities influence total observed phenotypic 501 

variance (Vtotal in the figure). For Greater Male Variability, the within-subject (or within-trait) 502 

variation Vwithin could be potentially negligible or is equal in males and females. This is 503 

illustrated as the shaded distributions around each individual mean (dashed vertical lines), 504 

which are of equal area for the males (turquoise) and females (orange). The greater value of 505 

Vtotal is driven by wider distribution of mean trait values in males compared to females (i.e. 506 

Vbetween, represented by a thick horizontal bar). The estrus-mediated variability hypothesis, in 507 

contrast, assumes that within-subject [or within trait] variability is much higher in females 508 

than in males (broader orange-shaded trait distributions than blue-green distributions), while 509 

the variability of the means between individuals stays the same (thick horizontal bars). 510 

Figure 3  511 

Workflow of data processing and meta-analysis 512 

Figure 4  513 

Panel A shows the numbers of traits across functional groups that are either male-biased 514 

(turquoise) or female-biased (orange). The x-axes in Panel A show the overall percentages of 515 

traits, coloured shading is indicative of direction of sex-bias sex (if meta-analytic means < 0, 516 

then they are female-based whereas if they are > 0, male-based). White numbers in the 517 

turquoise bars represent numbers of traits that show male-bias within a given group of traits, 518 

number in the orange area the number of female-biased traits. Panel B shows effect sizes and 519 

95% CI from separate meta-analysis for each functional group (Figure 3 H). Traits that are 520 
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male biased in Panel B are shifted towards the righthand side of the zero-midline (near the 521 

turquoise male symbol), whereas female bias is shifted towards the left (near orange symbol). 522 

 523 

Figure 5 524 

Summary of sex-differences in the mean trait values (lnRR) and variances (lnCVR) across nine 525 

functional trait groups, and overall. 526 

Supplementary Files 527 

Figure 1 - figure supplement 1  528 

Mean-variance relationships (log(Mean) vs log(SD, standard deviation)) across all traits for 529 

males (A) and females (B). 530 

 531 

Figure 4 – figure supplement 1 532 

Numbers of either male (blue-green bars) or female (orange-red bars) biased traits (Panel A) 533 

across functional groups, this time for lnCVR (left hand side), lnVR (middle) and lnRR (right 534 

hand side). Panel B shows effect sizes from separate meta-analysis for each functional group, 535 

and Panel C contains results of heterogeneity analyses. All three panels represent results 536 

evaluated across all traits. 537 

 538 

Figure 4 – figure supplement 2 539 

A) Differences in numbers of affected traits, in variance (lnCVR and lnVR) and means (lnRR), 540 

where there is a significant difference between the sexes (i.e CI not overlapping zero), and 541 

where the sex bias is greater than 10% difference (regardless of significance). Panel B depicts 542 

results for the sex bias in those traits that differ between the sexes (second-order meta-543 

analysis). Triangles represent sex bias in means (response ratio) and black circles differences 544 

in the coefficient of variation ratio (mean-adjusted variability). The orange-red bars represent 545 

trait groups with a female bias, blue-green bars male-biased traits. 546 

 547 

Supplementary Code 1 548 
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This markdown file contains all steps from processing the raw data file through to meta-549 

analyses to Figure and table generation. The knitted html version can be viewed at 550 

https://rpubs.com/SusZaj/ESF. 551 

 552 

 553 

Supplementary File 1 554 

This document contains 6 supplementary tables, captions as listed below. 555 

Table 1: Summary of the available numbers of male and female mice from each strain and 556 

originating institution 557 

Table 2: Trait categories (parameter_group) and the number of correlated traits within these 558 

categories. Traits were meta-analysed using robumeta   559 

Table 3: We use this corrected (for correlated traits) results table, which contains each of the 560 

meta-analytic means for all effect sizes of interest, for further analyses. We further use this 561 

table as part of the Shiny App, which is able to provide the percentage differences between 562 

males and females for mean, variance and coefficient of variance. (continued below) 563 

Table 4: Summary of overall meta-analyses on the functional trait group level 564 

(GroupingTerm). Results for lnCVR, lnVR and lnRR and their respective upper and lower 95 565 

percent CI’s, standard error and I2 values are provided. Values truncated at 5 decimal places 566 

for readability. 567 

Table 5: Provides an overview of meta-analysis results performed on traits that were 568 

significantly biased towards either sex. This table summarizes findings for both sexes and the 569 

respective functional trait groups. Values truncated at 5 decimal places for readability. 570 

Table 6: Summarizes our findings on heterogeneity due to institutions and mouse strains. 571 

These results are based on meta-analyses on sigmaˆ2 and errors for mouse strains and 572 

centers (Institutions), following the identical workflow from above. Values truncated at 5 573 

decimal places for readability. 574 

 575 
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lnCVR > 0 èmale-biased mean trait values

lnCVR = ln( )



trait

females

Greater Male
Variability

Estrus-Mediated
Variability

Vtotal >    Vtotal

Vbetween   > Vbetween

Vwithin   = Vwithin

Vtotal <    Vtotal

Vwithin   < Vwithin

Vbetween   = Vbetween

trait

trait

trait

males



From IMPC database:
~2,500,000 data points

wild-type mice, 340 traits

Filter & reduce raw dataset
• one measurement per trait per individual
• adults only(~100days of age)
• measured in >1 phenotyping center
• for both sexes

~2,300,000 data points
232 traits (Table S1)
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147 traits
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B Create additional variable
• Population = Strain x Center
Calculate for each Population x Trait:
• descriptive statistics
• effect sizes
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Identify non-independent traits
• similar measurements (biological knowledge)

90 traits F Meta-Analyses: accounting for correlated traits
• estimates for each independent Trait

H Second-order Meta-Analyses: trait as analysis unit
• Estimate for each functional trait group separately
• Overall estimate across all functional groups 

Second-order Meta-Analyses: combining total 
heterogeneities among populations
• estimates per functional trait group
• overall estimate

J Second-order Meta-Analyses: examining sex biases
• estimates within data subsets
• traits as analysis unit, as above (H)

G Identify functional trait groups
• similar functions (biological knowledge)

x
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30 traits 
significantly 

female-biased  

31 traits 
significantly 
male-biased

31 15 9 28 22 28 6 1269N traits:



91

2

4

15

15

9

17

2

13

14

127

10

2

13

7

60

9

7

2

17

117

9

2

14

15

26

14

8

12

17

101

3

4

14

7

43

12

1

3

14

lnCVR lnRR
A

ll traits

0 25 50 75 100 0 25 50 75 100

All

Eye

Hearing

Heart

Hematology

Immunology

Physiology

Metabolism

Morphology

Behaviour

Percentage

A

lnCVR lnRR

A
ll traits

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

All

Eye

Hearing

Heart

Hematology

Immunology

Physiology

Metabolism

Morphology

Behaviour

Effect size

B



Behaviour
è few sex-biased mean trait values
è little sex-bias in trait variability

Morphology
è mostly male-biased mean trait values
è traits often more variable in males

Metabolism
è mostly male-biased mean trait values
è little sex-bias in trait variability

Physiology
è few sex-biased mean trait values
è little sex-bias in trait variability

Immunology
è mostly female-biased mean trait values
è traits often more variable in females

Hematology
è few sex-biased mean trait values
è little sex-bias in trait variability

Heart
è few sex-biased mean trait values
è little sex-bias in trait variability

Hearing
è few sex-biased mean trait values
è little sex-bias in trait variability

Eye
è few sex-biased mean trait values

All traits
è few sex-biased mean trait values

è traits often more variable in females

è little sex-bias in trait variability
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