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Abstract

Suppose a series system is composed of a number of repairable components. If a component fails, it is repaired

immediately and the effectiveness of the repair may be imperfect. Then the failure process of the component

can be modelled by an imperfect failure process and the failure process of the system is the superposition

of the failure processes of all components. In the literature, there is a bulk of research on the superimposed

renewal process (SRP) for the case where the repair on each component is assumed perfect. For the case that

the component causing the system to fail is unknown and that repair on a failed component is imperfect,

however, there is little research on modelling the failure process of the system. Typically, the likelihood

functions for the superposition of imperfect failure processes cannot be given explicitly. Approximation-

based models have to be sought. This paper proposes two methods to model the failure process of a series

system in which the failure process of each component is assumed an arithmetic reduction of intensity and

an arithmetic reduction of age model, respectively. The likelihood method of parameter estimation is given.

Numerical examples and real-world data are used to illustrate the applicability of the proposed models.

Key words: Arithmetic reduction of intensity (ARI) model; arithmetic reduction of age (ARA) model;

superimposed ARI (SARI) model; superimposed ARA (SARA) model.
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1. Introduction1

In the reliability literature, repair effectiveness can be categorised into perfect, imperfect and minimal.2

Suppose an item failed. A perfect repair on the item is equivalent to replacing the item with a new identical3

item, that is, it brings the failed item to the good-as-new status; a minimal repair restores the item to the4

status just before the item failed, namely, it brings the failed item to the bad-as-old status; and an imperfect5

repair brings the item to a status between the good-as-new and bad-as-old statuses. Usually, the renewal6

process is used to model the interfailure times of perfect repairs; the non-homogeneous Poisson process is7

for those of minimal repairs; and models such as the arithmetic reduction of intensity (ARI) model and8

the arithmetic reduction of age (ARA) model are for those of imperfect repairs [1, 2, 3]. There is a bulk9

of research discussing different types of stochastic processes for modelling failure processes, or simply put,10

modelling interfailure times, see [1, 2, 3, 4], for example. These models are also applied in maintenance11

policy optimisation, see [5, 6, 7, 8, 9, 10, 11, 12], for example.12

Consider a system that is composed of multiple components in series. Suppose that the failures of the13

components are statistically independent. Repair is immediately performed upon a component failure and14

the repair time is negligible. Suppose the effectiveness of the repair is not minimal.15

� If the repair is perfect, then the interfailure times of the system is a superimposed renewal process16

(SRP). The SRP has received plenty of attention from authors (see [13, 14, 15], for example). The17

reader is referred to [3] for a recently published paper of SRPs in reliability.18

� If the repair effectiveness on the failure of each component is imperfect, the superposition of the19

imperfect failure processes has not been well investigated in the literature yet.20

We refer to the case that the components that cause the system to fail are known and that interfailure21

time data are available as unmasked failure data. With unmasked failure data, if the number of failures of22

each component is large enough, one may develop a model for the failure process of each component and23

then aggregate those models to describe the failure process of the system. In the real world, nevertheless,24

maintenance data may be available in an aggregate form. That is, the interfailure time data are available,25

but which component causes the system to fail may be unknown. Such data are often referred to as masked26

failure data. In the case of modelling on masked failure data, one is unable to build a model for the failure27

process of each component and then aggregate them as there is no failure data on each individual component.28

That is, the superposition of imperfect failure processes (SIRP) cannot be explicitly given. In this case,29

methods that can approximate the SIRP have to be sought.30

Examples of such systems can be found from the real-world. For example, one can regard that a section31

of pavement is composed of a grid of cells. The section may be regarded failed if there is a large defect32

such as fatigue cracking on a cell. Maintenance should then be carried out to repair the defect and it is33

usually imperfect. But when the failure data are analysed, data on which cell causes the section to fail34
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may be unavailable due to various reasons such as a lack of precise location. For the pavement owner, it is35

important to have a model of good performance that can estimate the long term costs of maintaining the36

pavement. See [16] for other real-world examples. These examples motivate this work.37

Given a series system composed of multiple components, this paper assumes that the failure process38

of each component can be modelled with either the arithmetic reduction of intensity (ARI) model or the39

arithmetic reduction of age (ARA) model. The reason that this paper uses the ARI and ARA models40

is due to their wide coverage. Some widely studied models, including the model proposed by [17] and41

the virtual models proposed by [18, 19], are the special cases of the ARI model and the ARA model,42

respectively. This paper proposes methods to approximate the superposition of ARI (SARI) model and43

the superposition of ARA (SARA) model, respectively. Probabilistic properties of the proposed methods44

are discussed. Artificially generated numerical examples and real-world examples are used to illustrate the45

proposed methods. This paper extends the work of [4]. Its managerial implication is that practitioners may46

use the proposed methods in their work such as development of maintenance policies and life cycle costing.47

The remainder of this paper is structured as follows. Section 2 gives assumptions and notations that48

are used in the paper. Section 3 investigates the superposition of imperfect failure processes (SIRP) for49

the situations when unmasked failure data are available and then gives a method of simulating such an50

SIRP. Section 4 proposes methods to approximate the superposition of the ARI process and that of the51

ARA process for the case when only masked failure data are available, respectively. Section 5 gives the52

likelihood functions of the SARI and the SARA, respectively, and verifies the proposed methods on an53

artificially generated dataset and then on a real-world dataset. Section 6 discusses an alternative method to54

approximate the SIRP for the case when only truncated failure data are available and also gives the failure55

intensity function of the SRP. Section 7 concludes the paper and proposes future research suggestions.56

2. Assumptions and notations57

This section sets notations and assumptions.58

2.1. Notations59

The notations in Table 1 will be used in the paper.60

2.2. Assumptions61

� Suppose a series system is composed of n components, whose interfailure times are statistically inde-62

pendent.63

� The failure intensity function of component k is
1

n
λk(t) before its first failure.64

� Repair is immediately performed upon the failure of a component (or the system). The effectiveness65

of repair may be perfect, imperfect, or minimal.66
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Table 1: Notation Table

n number of components

k index of a component in the system, k = 1, 2, · · · , n
t time since the system starts, where t ≥ 0

Nt number of failures of the system up to time t

Nk,t number of failures of component k up to time t

N total number of failures of the system

i index of failures, i = 1, 2, · · · , N
m order of memory, where m ≥ 1 in the ARIm model or the ARAm model

j index of the order of memory, j = 1, 2, · · · ,∞
τ time since the completion of the latest repair, where τ > 0

bxc the largest integer that is smaller than or equal to x

bNt
bNt

= Nt − n× b
Nt

n
c if Nt 6= n× bNt

n
c, bNt

= n otherwise.

TNt successive failure times of a repairable system; TNt is a random variable

Tk,Nt
time to the ith failure of component k after the Ntth repair; Tk,Nt

is a random variable

tNt
observation of TNt

tk,Nt
observation of Tk,Nt

Ht− history of the failure process up to t (exclusive of t)

λk(t) failure intensity function of component k if minimal repair is conducted upon failures

Λk(t) =

∫ t

0

λk(u)du

λs,k(t) failure intensity function of component k if imperfect repair may be conducted upon failures

λs(t) failure intensity function of the system at time t

λas(t) approximated failure intensity function of the system at time t

hc(t) hazard function of a virtual component at time t

� The failure process of a component can be modelled by either the ARI model or the ARA model.67

� The failure process of the system can be defined equivalently by the stochastic processes {Tj}j≥1 or68

{Nt}t≥0 and is characterised by the intensity function.69

� Although the failure intensity function of an item (which may be a system or a component) should70

be denoted with the memory of Ht− such as λs,k(t|Ht−) and λs(t|Ht−). For the sake of notational71

compactness, this paper will omit the symbol Ht− and use λs,k(t) and λs(t), respectively.72

� Repair time is so short that it can be neglected.73

� Only the observations of {Tj}j≥1 or {Nt}t≥0 are available, but the source (or component) that causes74

the system to fail is unavailable. Such failure data is hereinafter referred to as masked failure data.75
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3. Modelling the failure process with unmasked failure data76

In this section, we investigate some properties of SARI and SARA, respectively, assuming that the77

components that cause the system to fail are known. That is, the failure data are unmasked.78

3.1. Related literature on failure process models for multi-component systems79

In the literature, there are several papers discussing modelling methods for multi-component systems.80

Below we give a brief review on the work published in the last two years. More references in this area can81

be found in [2, 4] and [3], respectively.82

There are many publications methods proposed to approximate the SRP (see [13, 14, 15] for example).83

The two following models, Model I and Model II, which were recently proposed in [2].84

Model I is given by,85

λs(t) = hc(t− TNt) + λ0(t), (1)86

and Model II is given by,87

λs(t) = hc(t− TNt) +
1

n

min{Nt−1,n−1}∑
j=0

λ0(t− TNt−j) + max{n−Nt, 0}λ0(t)

 , (2)88

where hc(t) is a hazard function and λ0(t) is a failure intensity function. Model I in (1) and Model II in (2)89

incorporate both time trends (ageing, reliability growth), which is modelled by the first element hc(t−TNt),90

and renewal type behaviour, which is modelled by the second element in the models, respectively.91

In essence, Model I and Model II integrate two stochastic processes, which requires more parameters92

than a single stochastic process. In reality, due to technological advances, today’s technical systems have93

a small number of failures in their service life. It is therefore difficult to collect a good number of time-to-94

failure data (or interfailure time data), based on which the estimated parameters in a failure process model95

may have large uncertainty. To reduce the number of parameters, [4] proposes the following model, which96

is referred to as Exponential Smoothing of Intensity model (ESI), to approximate the SRP.97

λs(t) =
1

n

min{Nt−1,n−1}∑
j=0

ρn−j−1λ0(t− TNt−j) +
χ{1 ≤ Nt < n}

n

n−1∑
j=Nt

ρn−j−1λ0(t). (3)98

where ρ is a parameter and ρ ∈ [0, 1] and χ{A} = 1 if A is true, χ{A} = 0 if A is false. When ρ = 1, the above99

model reduces to a model, which is referred to as the MAI (Moving Average of Intensity) model. According100

to [4], based on the comparison among ESI and MAI, and nine other existing models on fifteen real-world101

datasets, the MAI outperforms the ten other models on eleven datasets (out of the fifteen datasets).102

Models (1), (2), and (3) are the sum of two intensity functions, which were discussed in the reliability103

literature for a different purpose, namely, for modelling bathtub shaped non-monotonic intensities. For104

example, [20] assumes the sum of two nonhomogenous Poisson processes with one intensity function being105
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the power law and the other being the log linear law, or both being the power laws [21], or both being the106

log linear laws [22].107

Models (1), (2), and (3) approximate the SRP (superposition of renewal processes) generated by a multi-108

component system, in which the repair on each component is assumed perfect. In reality, imperfect repair109

occurs from time to time and may be a more realistic measure of maintenance effectiveness. However, in110

the literature, as far as the author’s best knowledge, there is little research investigating the superposition111

of imperfect failure processes (SIRP), which motivates the work of the current paper.112

To model the failure process of a single component, reference [1] investigates several models and cate-113

gorised them into two main classes: ARIm (Arithmetic Reduction of Intensity model with memory m) and114

ARAm (Arithmetic Reduction of Age model with memory m with m ≥ 1).115

The ARIm model for component k is given by116

λs,k(t) =
1

n
λk(t)−

1

n
ρk

min{m−1,Nt−1}∑
j=0

(1− ρk)jλk(TNt−j), (4)117

and the ARAm model for component k is given by118

λs,k(t) =
1

n
λk

t− ρk min{m−1,Nt−1}∑
j=0

(1− ρk)jTNt−j

 . (5)119

where ρk is a parameter representing the repair effectiveness of component k and m is the order of the120

memory. That is, Eq. (4) and Eq. (5) assume that the components have different repair effectiveness (i.e.,121

ρk) and the same memory m.122

Reference [1] also discuss the cases when m = 1 and m = ∞ for the ARIm and the ARAm models as123

special cases, respectively.124

Similar to the methods to approximate the SRP proposed in [2] and [4], we may explore methods to125

approximate the failure process of a system with the failure process of each component modelled by either126

ARIm or ARAm, respectively, as shown in the following section.127

3.2. Superposition of the ARIm and ARAm processes, respectively128

Let’s first look at the failure process of a typical system, as shown in Example 1.129

Example 1. Suppose a series system composed of four components, which fail at time points shown in the130

top four horizontal lines in Figure 1. The superposition of the four imperfect failure processes is shown at131

the last horizontal line. In this example, we assume that unmasked failure data are available. If the failure132
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Figure 1: Failure data of a system with four components until time t, where N1,t = 3, N2,t = 2, N3,t = 1, and N4,t = 5

.

process of each component is modelled by ARI3, then the superposition of the failure processes is given by133

λs(t) =
1

4

[
λ1(t)− ρ1λ1(t1,3)− ρ1(1− ρ1)λ1(t1,2)− ρ1(1− ρ1)2λ1(t1,1)134

+ λ2(t)− ρ2λ2(t2,2)− ρ2(1− ρ2)λ2(t2,1)135

+ λ3(t)− ρ3λ3(t3,1)136

+ λ4(t)− ρ4λ4(t4,5)− ρ4(1− ρ4)λ4(t4,4)− ρ4(1− ρ4)2λ4(t4,3)
]
. (6)137

138

Similarly, the superposition of the failure processes for the case when the failure process of each compo-139

nent is modelled by ARA3 can be easily provided.140

Now suppose that component k has Nk,t failures that have occurred within (0, t) and the latest failure141

occurred at time Tk,Nk,t . Then the superposition of the ARIm processes is given by142

λs(t) =
1

n

n∑
k=1

λk(t)− min{Nk,t−1,m−1}∑
j=0

ρk(1− ρk)jλk(Tk,Nk,t−j)

 . (7)143

144

The above model is referred to as SARIn,m (superimposed ARI) in this paper.145

Similarly, the superposition of failure processes that models the failure process of each component by146

the ARA models, or the SARAn,m model can be given by147

λs(t) =
1

n

n∑
k=1

λk

t− min{Nk,t−1,m−1}∑
j=0

ρk(1− ρk)jTk,Nk,t−j

 . (8)148

149

According to [23], the ARIm model and the ARAm model have the asymptotic intensities λs,k(t) =150

1

n
(1− ρk)mλk(t) and λs,k(t) =

1

n
λk((1− ρk)mt), respectively. As such, we can obtain the following Lemma.151

Lemma 1. λs(t) in Eq. (7) has the asymptotic intensity
1

n

n∑
k=1

(1− ρk)mλk(t) and λs(t) in Eq. (8) has the152

asymptotic intensity
1

n

n∑
k=1

λk((1− ρk)mt).153

7



Lemma 1 implies: λs(t) in Eq. (7) (or in Eq. (8)) becomes infinite for t→∞ if λk(t) is increasing in t.154

This result differs from the result of the SRP, on which [24] showed that the SRP tends toward (statistical)155

equilibrium as the time of operation becomes very large.156

3.3. Simulation157

In the SRP, each failed component in a series system is replaced with a new identical one. As reiterated158

in the preceding paragraph, [24] showed that the SRP tends toward (statistical) equilibrium as the time of159

operation becomes very large, which can be witnessed by viewing numerical examples shown in [3]. It will160

be interesting to see what trends SARIn,m and SARAn,m possess as the time of operation becomes very161

large. To this end, this subsection aims to use the Monte Carlo simulation to show their trends.162

It is noted that P (Ti+1 ≤ ti+1|Ti = ti) =
F (ti+1)− F (ti)

1− F (ti)
= 1− exp(−Λ(ti+1) + Λ(ti)).163

Suppose a series system is composed of n components, which are identical when the system start at164

t = 0. Without loss of generality, let λ1(t) be the failure intensity function of a component in the system.165

Then Λ1(t) =

∫ t

0
λ1(u)du.166

The probability of the working time of a given component, component 1, for example, after the i-th167

repair is given by168

� P (T1,1 ≤ t1,1|T1,0 = 0) = 1− exp (−Λ1(t1,1)) ,169

� when the ARIm model is used, for i ≥ 1, we have170

P (T1,i+1 ≤ t1,i+1|T1,i = t1,i, · · · , T1,i−min{m−1,i−1} = t1,i−min{m−1,i−1})171

=1− exp

−Λ1(t1,i+1) + ρ1

min{m−1,i−1}∑
j=0

(1− ρ1)jλ1(t1,i−j)t1,i+1172

+Λ1(t1,i)− ρ1
min{m−1,i−1}∑

j=0

(1− ρ1)jλ1(t1,i−j)ti

 (9)173

174

� when the ARAm model is used, for i ≥ 1, we have175

P (T1,i+1 ≤ t1,i+1|T1,i = t1,i, · · · , T1,i−min{m−1,i−1} = t1,i−min{m−1,i−1})176

=1− exp

−Λ1

t1,i+1 − ρ1
min{m−1,i−1}∑

j=0

(1− ρ1)jt1,i−j

177

+Λ1

t1,i − ρ1 min{m−1,i−1}∑
j=0

(1− ρ1)jt1,i−j

 . (10)178

179

Based on the above discussion, with the Monte Carlo simulation, we can simulate the failure process of a180

system based on a given failure intensity function, λ1(t). For example, if we let Λ1(t) =

∫ t

0
λ1(u)du = (

t

10
)2.0181
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in the SARI model and Λ1(t) =

∫ t

0
λ1(u)du = (

t

10
)β in the SARA model, ρ1 = 0.5, m = 2. Set the number182

n of components in a series system to be 5, 50, 100, and 200, respectively, and their numbers of failures183

are assumed to be 100×n, then the failure process according to the failure intensity function given in Eq.184

(7) and that given in Eq. (8) are shown in Fig. 2 for the SARIn,m model and Fig 3 for the SARAn,m185

model, respectively. To gain a better understanding, in Fig 3, for the different settings of n’s and the186

numbers of failures, we also show the cases for β = 1.5, 2, and 2.5, respectively, which are displayed in each187

message box. In the figures, we have divided the entire failure period into 101 units. For example, if the188

time to the 20,000th failure is x, then we calculate the number of failures in intervals (
kx

101
,
(k + 1)x

101
) with189

k = 0, 1, ..., 101, and show the number of failures on the Y-axis and the X-axis shows the 101 units.190

Fig. 2 and Fig. 3 show that the systems do not develop toward (statistical) equilibrium as the time of191

operation becomes very large. Instead, they become infinity, which agrees with Lemma 1.192

Figure 2: ρ1 = 0.5,m = 2,Λ1(t) = (t/10)2, n and N are shown

for different curves in the figure, for the SARIn,m model.

Figure 3: ρ1 = 0.5,m = 2,Λ1(t) = (t/10)β , n,N and β

are shown in the figure message boxes, respectively, for the

SARAn,m model.

4. Modelling the failure process with masked failure data193

If Tk,Nk,t (for k = 1, 2, . . . ) are known and we assume that λk(t) = λ(t) and ρk = ρ, from Eq. (7) and194

Eq. (8), we obtain195

λs(t) =
1

n

n∑
k=1

λk(t)− min{Nk,t−1,mk−1}∑
j=0

ρk(1− ρk)jλk(Tk,Nk,t−j)

196

=λ(t)− 1

n

min{Nk,t−1,mk−1}∑
j=0

(
ρ(1− ρ)j

n∑
k=1

λ(Tk,Nk,t−j)

)
, (11)197

198
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and199

λs(t) =
1

n

n∑
k=1

λk

t− min{Nk,t−1,mk−1}∑
j=0

ρk(1− ρk)jTk,Nk,t−j

200

=
1

n

n∑
k=1

λ

t− min{Nk,t−1,mk−1}∑
j=0

ρ(1− ρ)jTk,Nk,t−j

 , (12)201

202

respectively.203

Under the assumption that only masked failure data are available, unlike the SRP in which a component204

after a renewal can be regarded as starting from time 0, which implies the SRP model does not need to205

remember the component’s previous maintenance/repair history. The SARIn,m or the SARAn,m processes,206

however, must remember all of its maintenance history. If we compare the SRP with the SIRP, we can find207

� that the age of a component in the SRP is unknown as we do not know when it is installed;208

� that the number of failures of a component in the SRP is always 1 as a failed component is renewed;209

� that the operating/calendar age of a component in the SIRP is known as it is installed and started at210

time 0; and211

� that the number of failures of a component in the SIRP is unknown.212

In what follows, we assume the n components in the series system are identical. If the failure process213

of a component follows ARIm (or ARAm), then the failure processes of the others should follow the same214

model.215

Under the assumption that only masked failure data are available, the value k’s in Tk,Nk,t in Eq. (11) or216

in Eq. (4) are not observable. As such, it is not possible to use these two models shown in (11) and (4).217

Under the assumption that only masked failure data are available, we may have two approaches to218

approximating the SARIn,m process or the SARAn,m process. These two approaches are219

Approach 1 to regard the system as one single item and approximate SARIn,m and SARAn,m with ARIm220

and ARAm, respectively, or221

Approach 2 to take a further development of SARIn,m and SARAn,m, respectively, and propose new222

models to approximate these two models, respectively.223

Approach 1 uses the ARIm model and the ARAm model to approximate the series system if the failure224

data are masked. That is, in this approach, one regards a multi-component system to be a one-component225

system, then use the ARIm model or the ARAm model to model the failure process.226

When the number of failures is small, using the ARIm or the ARAm to approximate an SIRP makes the227

implicit assumption that the kth failure depends on the (k − 1)th, which may not be true for the case of228
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N < n (where N is the total number of observed failures), under which each failed component may have229

only experienced one failure, and the failures of different components are statistically independent. After230

all, the probability of the occurrences of the first failures within a short time is greater than that of the231

second failures because: within a given time period (0, t), denote P (N(t) = k) as the probability that the232

number of failures is k, then P (N(t) = 2) < P (N(t) = 1).233

Although the numbers of component failures in a typical system may be different, as shown in Fig 4,234

the expected numbers of failures for identical components in a given time period are the same. As such, a235

naive but appealing approach to approximating the SIRP model is to assume that the failures of the system236

are caused by each component one after another. That is, suppose a system that is composed of identical237

components in series, we assume the first n failures are due to the first failures of the n components, the238

failures from the (n+ 1)-th to the 2n-th failures are due to the second failures of the n failures, and so on.239

Based on this assumption, we have the following discussion.240

Denote241

bNt =


Nt − nb

Nt

n
c Nt 6= nbNt

n
c

n Nt = nbNt

n
c,

(13)242

where bxc is the largest integer that is smaller than or equal to x.243

Then we have the following analyses.244

(i) The case of the ARI model. If we assume that the failure process of each component follows ARIm245

shown in Eq. (4), we have the following analyses.246

� If Nt = 0, the failure intensity of the system is λ(t).247

� If 0 < Nt ≤ n, there are Nt components whose first failures occur. Each of these components has248

failure intensity function
1

n
λ(t) − 1

n
ρλ(Tk) and each of the rest n − Nt components has failure249

intensity
1

n
λ(t). As such, the failure intensity function of the system after the Nt-th failure is250

given by251

λas(t) =
1

n

Nt∑
k=1

(λ(t)− ρλ(Tk)) +
n−Nt

n
λ(t)252

= λ(t)− 1

n

Nt∑
k=1

ρλ(Tk) (14)253

254

� If n < Nt ≤ mn, there are the two following scenarios.255

– If Nt = nbNt

n
c, then the failure intensity function of the system is given by256

λas(t) = λ(t)− 1

n

n∑
k=1

bNt
n
c−1∑

j=0

ρ(1− ρ)jλ(TNt−nj−k+1). (15)257
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– If Nt 6= nbNt

n
c, then bNt components have experienced one more failure than the n − bNt258

other components. The sum of the failure intensity functions of these bNt components is259

bNt
n
λ(t)− 1

n

bNt∑
k=1

bNt
n
c∑

j=0

ρ(1− ρ)jλ(TNt−nj−k+1), and the sum of the failure intensity function of260

the n− bNt other components is
n− bNt

n
λ(t)− 1

n

n∑
k=bNt+1

bNt
n
c−1∑

j=0

ρ(1− ρ)jλ(TNt−nj−k+1). As261

such, the failure intensity function of the system is given by262

λas(t) =λ(t)− 1

n

bNt∑
k=1

bNt
n
c∑

j=0

ρ(1− ρ)jλ(TNt−nj−k+1)−
1

n

n∑
k=bNt+1

bNt
n
c−1∑

j=0

ρ(1− ρ)jλ(TNt−nj−k+1).

(16)

263

264

� Similar to the case of n < Nt ≤ mn, if Nt > mn, then we have265

– If Nt = nbNt

n
c, then the failure intensity function of the system is given by266

λas(t) = λ(t)− 1

n

n∑
k=1

m−1∑
j=0

ρ(1− ρ)jλ(TNt−nj−k+1), (17)267

– If Nt 6= nbNt

n
c, the failure intensity function of the system is given by268

λas(t) =λ(t)− 1

n

bNt∑
k=1

m−1∑
j=0

ρ(1− ρ)jλ(TNt−nj−k+1)−
1

n

n∑
k=bNt+1

m−1∑
j=0

ρ(1− ρ)jλ(TNt−nj−k+1)

(18)

269

270

(ii) The case of the ARA model. If we assume that the failure process of each component follows271

ARAm shown in Eq. (5), we have the following analyses.272

� If Nt = 0, the failure intensity of the system is λ(t).273

� If 0 < Nt ≤ n, there are Nt components whose first failures occur. Each of these components has274

failure intensity function
1

n
λ(t−ρTk) and each of the rest n−Nt components has failure intensity275

1

n
λ(t). As such, the failure intensity function of the system after the Nt-th failure is given by276

λas(t) =
1

n

Nt∑
k=1

λ(t− ρTk) +
n−Nt

n
λ(t) (19)277

278

� If Nt > n, a similar discussion as the ARI case can be made.279

To sum up, we obtain the following definition, i.e., Definition 1.280
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Definition 1. A new SARIn,m model, denoted as SARIan,m, and a new SARAn,m, denoted as SARAa
n,m are281

defined, respectively, in the following. A SARIan,m is defined by282

λas(t) =



λ(t), if Nt < 1;

λ(t) − 1

n

Nt∑
k=1

ρλ(Tk), if 1 ≤ Nt < n;

λ(t) − 1

n

bNt∑
k=1

ρλ(TNt−k+1) − 1

n

n∑
k=1

min{bNt
n
c−1,m−1}∑
j=1

ρ(1 − ρ)jλ(TNt−n(j−1)−bNt
−k+1) if Nt ≥ n

(20)283

and a SARAa
n,m is defined by284

λas(t) =



λ(t), if Nt < 1;

1

n

Nt∑
k=1

λ (t− ρTk) +
n−Nt
n

λ(t), if 1 ≤ Nt < n;

1

n

bNt∑
k=1

λ (t− ρTNt−k+1) +
1

n

n∑
k=1

λ

t− min{bNt
n
c−1,m−1}∑
j=1

ρ(1 − ρ)jTNt−n(j−1)−bNt
−k+1

 if Nt ≥ n

(21)285

286

On Definition 1, there are the following special cases.287

(i) If n = 1, then SARIan,m in Eq. (20) and SARAa
n,m in Eq. (21) reduce to ARIm and ARAm in (4) and288

(5), respectively.289

(ii) If m = 1 and Nt > n, then SARIan,m reduces to SARIn,1,290

λas(t) = λ(t)− 1

n

n∑
k=1

ρλ(TNt−k+1), (22)291

and, SARAa
n,m reduces to SARAn,1,292

λas(t) =
1

n

n∑
k=1

λ (t− ρTNt−k+1) . (23)293

(iii) If ρ = 0, then the repair on each component is minimal and both SARIan,m in Eq. (20) and SARAa
n,m294

in Eq. (21) reduce the NHPP (non-homogenous Poisson process).295

(iv) If ρ = 1 and n = 1, then296

� The failure intensity λas(t) after the Ntth failure in SARI1,m (see Eq. (20)) is λ(t) − λ(TNt). At297

time TNt , λ(t) − λ(TNt) = 0 and the system starts from the status with failure intensity 0. But298

it is important to note that it does not mean that the item is repaired as good as new.299

� The failure intensity λas(t) after the Ntth failure in the SARA1,m model (see Eq. (21)) is λ(t−TNt).300

At time TNt , λ(t− TNt) = 0, which implies that the system is repaired as good as new.301
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(v) If ρ = 1 and n > 1, model Eq. (20) and model Eq. (21) reduce to302

λas(t) = λ(t)− 1

n

n∑
k=1

λ(TNt−k+1), (24)303

and304

λas(t) =
1

n

n∑
k=1

λ (t− TNt−k+1) , (25)305

respectively.306

The model shown in Eq. (25) is the MAI model, which is a special case of the model shown in Eq.307

(3).308

Remark 1. The above bullet (v) shows that the MAI model is a special case of the SARAa
n,m model.309

Numerical data experiments and case studies show that the MAI model has a clear advantage over ten other310

models on 11 out of 15 real world datasets [4]. As such, the model SARAa
n,m can be regarded as an extension311

of the MAI model.312

Remark 2. The existing failure process models can roughly be categorised into three classes, as discussed313

below.314

� Models that have one parameter depicting the repair effectiveness of each individual repair. For exam-315

ple, the parameter An in the virtual age models Vn = Vn−1 +An(Tn−Tn−1) and Vn = An(Vn−1 +Tn−316

Tn−1) is the parameter depicting the effectiveness of the nth repair [25] (where Vn is the virtual age).317

Technically, An may estimate the repair effectiveness of different components in a system. However,318

in reality, it is not suitable for modelling the failure process of a multi-component system due to two319

reasons: on the one hand, the size of masked failure data may not be sufficiently large for estimating a320

large number of parameters An; on the other hand, An may be assumed a stochastic process, on which321

there is little research that has been conducted.322

� Models that have only one parameter depicting the repair effectiveness for different components in323

a system. For example, models shown in Eq. (4) and (5) fall in this category. Similarly, if An324

in the virtual age models are set to An = A (i.e., An are the same over different n’s), then the325

above-mentioned virtual age models have one parameter as well. The shortcoming of such models for326

modelling the failure process of a multi-component system is discussed in Approach 1 in the above327

discussion.328

� Models that approximates the SRP. For example, models shown in Eqs. (1), (2) and (3) fall in this329

category, which assumes that the repair on each failed component is perfect and is not suitable for a330

system in which repair on failed component is imperfect.331
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Models (20) and (21) are derived for depicting the failure process of a multi-component series system when332

the failure process of a component follows the ARI model and the ARA model, respectively. They can333

therefore be used to model the failure process of the pavement system discussed in Section 1, for example.334

Figure 4: Masked failure data of a system with four components until time t, where N1,t, N2,t, N3,t, and N4,t are unknown;

Nt = 11. where ti,0 = 0, j = 1, 2, ..., Ni,t, and tj = 0 if j ≤ 0.

Example 2. Suppose that the value k’s in Tk,j in Example 1 are unknown. But tj (j = 1, 2, ..., 11) are335

available, as shown in Figure 4. We assume that the four components are identical and that the failure336

process of each component is ARI3. The 11 failures are assumed to be caused by three failures of each of337

three components and two failures of the other component (3×3+2 = 11), respectively, which can be modelled338

by Model (20) in Definition 1. The model, SARIa4,3, is given by339

λas(t) =λ(t)− 1

4
ρ(λ(t11) + λ(t10) + λ(t9))340

− 1

4
ρ(1− ρ)(λ(t8) + λ(t7) + λ(t6) + λ(t5))341

− 1

4
ρ(1− ρ)2(λ(t4) + λ(t3) + λ(t2) + λ(t1)). (26)342

343

In case the causes of the system failures are known, then by plugging tk,i in Figure 3 into Eq. (26), we obtain344

λas(t) =λ(t)− 1

4
ρ(λ(t1,3) + λ(t4,5) + λ(t4,4))345

− 1

4
ρ(1− ρ)(λ(t2,2) + λ(t4,3) + λ(t4,2) + λ(t1,2))346

− 1

4
ρ(1− ρ)2(λ(t3,1) + λ(t2,1) + λ(t4,1) + λ(t1,1)). (27)347

348

As can be seen, Model (27) differs from Model (6).349

In the following, we compare λs(t) in Eq. (7) with λas(t) in Eq. (20), and λs(t) in (8) with λas(t) in (21).350

To do it, we need to introduce an important definition on stochastic ordering.351

Definition 2. Stochastic order (p. 404 in [26]). Assume that X and Y are two random variables. If for352

every real number r, the inequality353

P (X ≥ r) ≥ P (Y ≥ r)354
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holds, then X is stochastically greater than or equal to Y , or X ≥st Y . Equivalently, Y is stochastically less355

than or equal to X, or Y ≤st X, or, E(X) ≥ E(Y ).356

Suppose a system is composed of n identical components, each of which follows the same ARIm, then357

for Nt > n we have358

λs(t) =λ(t)− 1

n

n∑
k=1

min{m−1,Nk,t−1}∑
j=0

ρ(1− ρ)jλ(Tk,Nk,t−j)359

=λ(t)− 1

n

bNt∑
k=1

ρλ(TNt−k+1)−
1

n

n∑
k=1

min{bNt
n
c−1,m−1}∑
j=1

ρ(1− ρ)jλ(TNt−n(j−1)−bNt−k+1) + εt, (28)360

361

where362

εt =− 1

n

n∑
k=1

min{m−1,Nk,t−1}∑
j=0

ρ(1− ρ)jλ(Tk,Nk,t−j)363

+
1

n

bNt∑
k=1

ρλ(TNt−k+1) +
1

n

n∑
k=1

min{bNt
n
c−1,m−1}∑
j=1

ρ(1− ρ)jλ(TNt−n(j−1)−bNt−k+1).364

365

Lemma 2. The expectation of εt has the following bounds:366

−1− ρm

1− ρ
E(λ(T1)) ≤ E(εt) ≤ ρE(λ(T1)) +

1− ρm

1− ρ
E(λ(T1)) (29)367

368

The proof of Lemma 2 can be found in Appendix.369

εt measures the difference between λs(t) and λas(t). It should be noted: εt has a practical implication if370

the values of ρ’s in Eq. (11) and in Eq. (20) are the same and the λ(t) in model (20), which is obtained371

from the masked failure data, and the λ(t) in model (11), which is obtained from the unmasked failure data372

are the same.373

5. Parameter estimation and numerical examples374

In this section, we derive the maximum likelihood functions for the models proposed in Section 4 and375

then apply them on a real dataset.376

Given a series of successive failure times t1, t2, · · · , tN , on which the system failed; where N is the number377

of failures and N > n. That is, the available data are up to the time at which the last failure occurs.378

5.1. Maximum likelihood functions379

Below we consider the likelihood for the failure process of a single system before a specified number of380

failures is occurred. If several independent processes are observed, the log-likelihood can be easily obtained381

based on the likelihood functions given in this section.382
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Below we will give the likelihood function of the SARIan,m model and the SARAn,m models in Section383

3. The derivation of the likelihood functions follows from Andersen et al. (1993, sec. II.7) that under our384

stated conditions, the likelihood function for the observations from a single system is derived below.385

Following the definition of bNt , we define bi = i−nb i
n
c if i 6= nb i

n
c, where i is a positive integer. We also386

define N1 = {i|1 ≤ i ≤ n−1}, N2 = {i|n < i ≤ N−1, i 6= νn, 1 ≤ ν < bN
n
c}, and N3 = {i|i = νn, ν < bN

n
c}.387

Hence, given a dataset of N successive failure times t1, · · · , tN , the likelihood function for the SARIan,m388

model is389

LSARI(Θ) =λ(t1) exp(−Λ(t1))
∏
i∈N1

[(
λ(ti+1) − 1

n

i∑
k=1

ρλ(tk)

)
exp

(
−Λ(ti+1) + Λ(ti) +

(ti+1 − ti)

n

i∑
k=1

ρλ(tk)

)]
390

×
∏
i∈N2

λ(ti+1) − 1

n

bi∑
k=1

min{b i
n
c,m−1}∑

j=0

ρ(1 − ρ)jλ(ti−nj−k+1) − 1

n

n∑
k=bi+1

min{b i
n
c−1,m−1}∑
j=0

ρ(1 − ρ)jλ(ti−nj−k+1)

391

× exp

−Λ(ti+1) +
(ti+1 − ti)

n

bi∑
k=1

min{b i
n
c,m−1}∑

j=0

ρ(1 − ρ)jλ(ti−nj−k+1)392

+ Λ(ti) +
(ti+1 − ti)

n

n∑
k=bi+1

min{b i
n
c−1,m−1}∑
j=0

ρ(1 − ρ)jλ(ti−nj−k+1)

393

×
∏
i∈N3

λ(ti+1) − 1

n

n∑
k=1

min{b i
n
c−1,m−1}∑
j=0

ρ(1 − ρ)jλ(ti−nj−k+1)

394

× exp

−Λ(ti+1) + Λ(ti) +
(ti+1 − ti)

n

n∑
k=1

min{b i
n
c−1,m−1}∑
j=0

ρ(1 − ρ)jλ(ti−nj−k+1)

 (30)395

396

and the likelihood of the SARAa
n,m model is given by397

LSARA(Θ) = λ(t1) exp(−Λ(t1))398

×
∏
i∈N1

{[
n− i

n
λ(ti+1) +

1

n

i∑
k=1

λ (ti+1 − ρtk)

]
exp

(
− 1

n

i∑
k=1

Λ (ti+1 − ρtk) +
1

n

i∑
k=1

Λ(ti − ρtk) − n− i

n
(Λ(ti+1) − Λ(ti))

)}
399

×
∏
i∈N2


 1

n

bi∑
k=1

λ

ti+1 −
min{b i

n
c,m−1}∑

j=0

ρ(1 − ρ)jti−nj−k+1

+
1

n

n∑
k=bi+1

λ

ti+1 −
min{b i

n
c−1,m−1}∑
j=0

ρ(1 − ρ)jti−nj−k+1

400

× exp

− 1

n

bi∑
k=1

Λ

ti+1 −
min{b i

n
c,m−1}∑

j=0

ρ(1 − ρ)jti−nj−k+1

− 1

n

n∑
k=bi+1

Λ

ti+1 −
min{b i

n
c−1,m−1}∑
j=0

ρ(1 − ρ)jti−nj−k+1

401

+
1

n

bi∑
k=1

Λ

ti − min{b i
n
c,m−1}∑

j=0

ρ(1 − ρ)jti−nj−k+1

+
1

n

n∑
k=bi+1

Λ

ti − min{b i
n
c−1,m−1}∑
j=0

ρ(1 − ρ)jti−nj−k+1

402

×
∏
i∈N3

 1

n

n∑
k=1

λ

ti+1 −
min{b i

n
c−1,m−1}∑
j=0

ρ(1 − ρ)jti−nj−k+1

403

× exp

− 1

n

n∑
k=1

Λ

ti+1 −
min{b i

n
c−1,m−1}∑
j=0

ρ(1 − ρ)jti−nj−k+1

+
1

n

n∑
k=1

Λ

ti − min{b i
n
c−1,m−1}∑
j=0

ρ(1 − ρ)jti−nj−k+1

 ,

(31)

404

405

where t0 = 0, λ(t) = 0, and Λ(t) =

∫ t

0
λ(u)du.406

By maximising log(LSARI) and log(LSARA), one can find optimal parameters in λ(t) and ρ̂, respectively.407
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5.2. Data examples408

In the following, we compare the performance of models NHPP, ARIm, ARAm, SARIan,m, and SARAa
n,m.409

We use criteria such AIC (Akaike information criterion), AICc (AIC with a correction), and BIC (Bayesian410

information criterion) to compare the performance. Those criteria are: AIC = −2 log(L) + 2q, AICc =411

−2 log(L) + 2q +
2(q + 2)(q + 3)

N − q − 2
, and BIC = −2 log(L) + qlog(N), where L is the maximized value of412

the likelihood for the model, q is the number of parameters in the model, and N is the total number of413

failures (observations). The term 2q,
2(q + 2)(q + 3)

N − q − 2
, and qlog(N) in the AIC, AICc and BIC penalise a414

model with a large number of parameters, respectively. The reader is referred to [27] for details on model415

performance measures. [28] provides a practical procedure for the selection of time-to-failure models based416

on the assessment of trends in maintenance data.417

We compare the performance of the proposed models SARIan,m and SARAa
n,m on artificially generated418

data, which are generated based on the simulation method shown in Section 3.3. We set failure intensity419

function λ(t) = 0.002869t1.5 (which has Λ(t) = (
t

15
)2.5), n = 3, m = 2, and ρ = 0.5, that is, each of the three420

components has a failure process ARI2. We compare the models: NHPP, ESI, MAI, ARI, ARA, SARIan,m,421

and SARAa
n,m on the dataset. Table 2 shows that the SARI3,7 outperforms other models in terms of the422

−log(likelihood).423

Table 2: Model comparison on artificially generated data.

NHPP ESI MAI ARI ARA SARI SARA

SARI Data −log-likelihood 85.78 85.14 85.13 84.10 84.14 84.09 84.12

(α = 15, β = 2.5 BIC 179.38 182.01 178.09 179.94 180.01 179.92 179.97

n = 3, N = 50) AICc 176.08 177.16 174.79 175.09 175.16 175.07 175.12

We also compare the performance of the proposed models SARIan,m and SARAa
n,m on the Bus514 dataset424

shown in [29]. On this dataset, we know neither the number of components nor whether the components are425

identical. We compare the models: NHPP, ESI, MAI, ARI, ARA, SARIan,m, and SARAa
n,m on the dataset.426

Table 3 shows that the SARIa3,1 outperforms other models.

Table 3: Model comparison on the Bus514 dataset.

NHPP ESI MAI ARI ARA SARI SARA

-log-likelihood 532.74 530.82 533.18 530.84 532.74 530.38 532.74

Bus514 Data BIC 1073.46 1073.61 1074.34 1073.65 1077.45 1072.73 1077.45

AICc 1069.96 1068.46 1070.84 1068.50 1072.30 1067.58 1072.30

427

The above two examples show that SARIan,m results in the smallest −log(likelihood values), but SARAa
n,m428

does not perform so well as the SARIan,m model. Nevertheless, since the MAI model shows its outstanding429
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performance and SARAa
n,m is an extension of MAI, one may set ρ = 1 in SARIan,m in case SARAa

n,m shows430

poor performance on a dataset. To gain a better view on the comparison of the performance of the models,431

Figure 5 shows their values of BIC and AICc.

Figure 5: Comparison of BIC and AICc.

432

6. Discussion433

6.1. An approximation method for left-truncated masked failure data434

Section 4 discusses the scenario where a full history of masked failure data can be collected. Now we435

consider the case that M failure observations of the earliest occurrences are not available, that is, T1, ..., TM436

are not available, but TM+1, TM+2, . . . , TNt are available. Such data are masked left-truncated failure data.437

One can the models SARIan,m and SARAa
n,m in Section 4 to fit the data, which assumes that the first n failures438

are due to the n components, respectively. An alternative method is to simply take TNt , TNt−1, ..., TNt−n+1439

as the last failure times of the n components, and take TNt−n, TNt−1, ..., TNt−2n+1 as the 2nd last failure440

times of the n components, and so on. Under such an assumption, we propose the following models.441

Definition 3. A SARIan,m is defined by442

λas(t) = λ(t)−
ΦN ′

t

n

n∑
k=1

min{bN
′
t

n c−1,m−1}∑
j=0

ρ(1− ρ)jλ(TN ′
t−nj−k+1)−

ΨN ′
t

n

rt∑
k=1

ρ(1− ρ)b
N′

t
n cλ(T

N ′
t−nb

N′
t

n c−k+1
), (32)443

and a SARAa
n,m is defined by444

λas(t) =
ΦN ′

t

n

n∑
k=1

λ

t− min{bN
′
t

n c−1,m−1}∑
j=0

ρ(1− ρ)jTN ′
t−nj−k+1

+
ΨN ′

t

n

n∑
k=1

λ

(
t−

rt∑
k=1

ρ(1− ρ)b
N′

t
n cT

N ′
t−nb

N′
t

n c−k+1

)
,

(33)445
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where m ≥ 1, N ′t = Nt −M + 1, ΦN ′
t

= χ{N ′t ≥ n}, ΨN ′
t

= χ{bN
′
t

n
c < m ∩ bN ′

t
6= 0}, rt = N ′t − nbN

′
t

n
c if446

N ′t 6= nbN
′
t

n
c, and rt = N ′t otherwise.447

Definition 3 differs from Definition 1, as shown in Figure 6 and Example 3448

� Fig. 6 shows the difference between the two definitions. The notes above the SIRP line shows how Definition449

1 defines a cycle, which is a set of Tk with the same power of (1 − ρ) in a SARIan,m model or in a SARAa
n,m450

model, and the notes under the SIRP line shows how Definition 3 defines a cycle.451

� Eq. (34) in Example 3 shows the SARIa4,3 by Definition 3, in which λ(t8) has a coefficient
1

4
ρ and λ(t5) has a452

coefficient
1

4
ρ(1− ρ) whereas in Example 2, λ(t8) has a coefficient

1

4
ρ(1− ρ) and λ(t5) has a coefficient

1

4
ρ.453

Figure 6: Comparison of definitions of different cycles of Definition 1 and Definition 2.

Example 3. Further to Example 2, a model SARIa4,3, defined by Definition 3, and is given by

λas(t) =λ(t)− 1

4
ρ(λ(t11) + λ(t10) + λ(t9) + λ(t8))

− 1

4
ρ(1− ρ)(λ(t7) + λ(t6) + λ(t5) + λ(t4))

− 1

4
ρ(1− ρ)2(λ(t3) + λ(t2) + λ(t1)). (34)

6.2. Failure intensity function of the SRP454

Although the SRP has been well studied (see [3] for more detailed discussion), to the author’s best knowledge, its455

failure intensity function has not been given in the existing literature and is given in Lemma 3.456

Lemma 3. Given a series system on which a failed component is replaced with an identical new component immedi-457

ately, the failure intensity function of the system after the Nt-th replacement is given by458

λ(t|Ht−) =


1

n

n∑
k=1

λk(t), if Nt = 0,

1

n

n−1∑
k=1

λik(t− Tik,Nt−jk) +
1

n
λin(t− Tin,Nt), if Nt ≥ 1.

(35)459

where jk ∈ {1, 2, . . . , Nt}, ik ∈ {1, 2, . . . , n}, T0 = 0, ik1
6= ik2

for k1 6= k2, jk1
6= jk2

if k1 6= k2 and jk1
jk2

> 0.460

The proof of Lemma 3 can be found in Appendix.461
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7. Conclusions and further work462

In the real world, systems are normally composed of multiple components and the failure data may be masked463

due to insufficient failure cause data or such data are unattainable because of physical constraints or lack of resources.464

This needs to develop a method to model the superposition of a number of imperfect failure processes. However,465

since the failure data are masked, the components that cause the system to fail are unknown. This needs to develop466

methods to approximate the failure process of the system.467

While the superposition of renewal processes has been extensively studied, the superposition of imperfect failure468

processes (SIRP) has received little attention in the literature. There is a need to conduct research on SIRP, which is469

the focus of this paper.470

The main contributions of this paper include the following.471

� This paper developed two methods: one for untruncated masked failure data and one for left-truncated data, to472

approximate the superposition of the imperfect failure processes of the components in a series system in which473

the failure process of each component follows two widely used models. The imperfect failure process models are474

the arithmetic reduction of intensity (ARI) model or the arithmetic reduction of age (ARA) model, respectively.475

� The paper showed that unlike the superposition of renewal processes, the superposition of the ARI processes476

(SARI) (or the ARA processes (SARA)) does not tend toward (statistical) equilibrium as the time of operation477

becomes very large;478

� The MAI (Moving Average of Intensity) model proposed in [4] is a special case of the superposition of the ARA479

processes; and480

� It developed a method to simulate the SARI process and the SARA process, respectively, and gave likelihood481

functions of the SARI model and the SARA model (for the untruncated data), respectively.482

Our future work will be focused on the derivation of statistical properties of the models.483
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Appendix543

Below gives the proof of Lemma 2.544

Proof. Apparently, εt ≥ −
1

n

n∑
k=1

min{m−1,Nk,t−1}∑
j=0

ρ(1− ρ)jλ(Tk,Nk,t−j) ≥ −
1

n

n∑
k=1

m−1∑
j=0

ρ(1− ρ)jλ(Tk,Nk,t−j) and εt ≤545

1

n

bNt∑
k=1

ρλ(TNt−k+1) +
1

n

n∑
k=1

min{bNt
n c−1,m−1}∑
j=1

ρ(1 − ρ)jλ(TNt−n(j−1)−bNt−k+1) ≤ 1

n

n∑
k=1

ρλ(TNt−k+1) +
1

n

n∑
k=1

m−1∑
j=0

ρ(1 −546

ρ)jλ(TNt−n(j−1)−bNt−k+1). Note that Tk,Nk,t−j ≥st T1, TNt−k+1 ≥st T1, and TNt−n(j−1)−bNt−k+1 ≥st T1. According547

to Definition 2, we have E(Tk,Nk,t−j) ≥ E(T1), E(TNt−k+1) ≥ E(T1), and E(TNt−n(j−1)−bNt−k+1) ≥ E(T1). We can548

therefore easily obtain that the expectation of εt has the following bounds:549

−1− ρm

1− ρ
E(λ(T1)) ≤ E(εt) ≤ ρE(λ(T1)) +

1− ρm

1− ρ
E(λ(T1)) (36)550

551

�552

Below gives the proof of Lemma 3.553

Proof. The condition jk1
6= jk2

if k1 6= k2 and jk1
jk2

> 0 implies that (1) there is one component renewed, which554

has failure rate function λin(t−Tin,Nt); and (2) within the others, some may have not renewed since installation time555

t = 0 and have the same age, and the others may have failed and then renewed at different failure times.556
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Before the first failure, none of the components is replaced. Hence, the failure intensity of the system is
1

n

n∑
k=1

λk(t).557

During the period from the first replacement until the time when the last component installed at time t = 0 is replaced.558

�559
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