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Genetic variation associated with infection and the
environment in the accidental pathogen
Burkholderia pseudomallei
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Chutima Chaichana8, Vanaporn Wuthiekanun1, Gordon Dougan4, Nicholas P.J. Day1,9,

Direk Limmathurotsakul1,9, Julian Parkhill 10,11 & Sharon J. Peacock 4,11*

The environmental bacterium Burkholderia pseudomallei causes melioidosis, an important

endemic human disease in tropical and sub-tropical countries. This bacterium occupies broad

ecological niches including soil, contaminated water, single-cell microbes, plants and infection

in a range of animal species. Here, we performed genome-wide association studies for

genetic determinants of environmental and human adaptation using a combined dataset of

1,010 whole genome sequences of B. pseudomallei from Northeast Thailand and Australia,

representing two major disease hotspots. With these data, we identified 47 genes from 26

distinct loci associated with clinical or environmental isolates from Thailand and replicated 12

genes in an independent Australian cohort. We next outlined the selective pressures on the

genetic loci (dN/dS) and the frequency at which they had been gained or lost throughout

their evolutionary history, reflecting the bacterial adaptability to a wide range of ecological

niches. Finally, we highlighted loci likely implicated in human disease.
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B urkholderia pseudomallei is an environmental Gram-
negative bacterium and the cause of melioidosis, a serious
infectious disease. A recent modelling study predicted that

an estimated 165,000 people were affected globally per year,
89,000 of which died1. The bacterium has a broad range of eco-
logical niches, and can be isolated from soil, surface water,
amoebae, plants and infected humans and other animals in many
tropical and sub-tropical regions2–4. Human infection results from
environmental exposure associated with inoculation, ingestion or
inhalation of the bacterium, with increasing risk of acquisition for
people with predisposing health conditions or activities that
increase exposure to soil or water, such as rice farming or drinking
untreated water5. Infection can be acute, chronic, latent or
cleared6, with rare cases of human-to-human transmission being
reported7,8. Antibody responses to B. pseudomallei can be found
in healthy individuals living in endemic areas in the absence of
clinical symptoms9,10, suggesting that the majority of the exposure
is harmless or results in sub-clinical infection.

B. pseudomallei can be found in the stool of some infected
humans11 and experimental murine models12. This provides a
potential mechanism for human-to-environmental transmission
and the possibility of repeated passage through the human host.
Serial passage of Burkholderia cenocepacia in a long-term chronic
airway infection model in mice has been shown to increase
bacterial fitness13. Based on this observation, the natural passage
of B. pseudomallei through humans, other animals or its natural
predators such as soil amoebae might have enhanced and
maintained selection pressure for pathogenicity in a subset of the
population. This potentially results in heterogeneity of bacterial
virulence, as evidenced by marked variations in severity and
pathogenicity in mice challenged by different B. pseudomallei
strains14–16. B. pseudomallei has a large and highly variable
accessory genome across the species17–19. While the core genome
may be sufficient for strain survival, it is possible that specific
bacterial genes, gene variants or their combinations may confer
additional advantages for survival and replication in specific
niches including human infection, or particular environmental
conditions. Here, we sought evidence for bacterial genetic factors
associated with human disease and environmental adaptation
using two independent datasets from major melioidosis hotspots
in Thailand, and Australia18–23. These were used as a discovery
and validation dataset, respectively.

Results
Clinical and environmental isolates are inter-mixed. We first
outlined the population structure of the dataset from Northeast
Thailand where information from household sampling structure
was also available. B. pseudomallei used in this collection was
originally cultured from patients presenting to Sunpasitthipra-
song hospital in Ubon Ratchathani between 2010 and 2011,
together with residential water sources from melioidosis patients
as well as non-infected individuals5 (see Methods for details).
With the exception of 1 patient where two isolates were cultured,
a single isolate was collected from each patient (n patient= 324, n
clinical isolates= 325). Up to 10 water isolates were sampled
from each household (n households= 48, n environmental iso-
lates= 428, see Fig. 1 for sampling framework). Unlike many
pathogens where isolates associated with disease contain sub-
stantially fewer genes24,25, a pan-genome analysis revealed a
similar number of genes per genome in clinical and environ-
mental isolates (two-sided Mann–Whitney U test, p value=
0.312). Moreover, both phylogenetic and multidimensional scal-
ing approaches (MDS) indicated that clinical and environmental
isolates were largely mixed with each phylogenetic group com-
prising both clinical and environmental isolates (Fig. 2).

Previous studies have noted the importance of recombination
in driving B. pseudomallei evolution23,26–28, demonstrating
genetic interactions and co-evolution of multiple B. pseudo-
mallei lineages that shared the same habitat. Evidence for
genetic interactions29 between clinical and environmental
isolates was sought for 5 monophyletic groups, each of which
had ≥70% bootstrap node support on the core genome
phylogeny to ensure robust analysis (Supplementary Fig. 1).
Our results showed that both clinical and environmental
isolates in each group had undergone recombination. More-
over, similar numbers of recent recombination events (defined
by recombination located at the tips of the phylogeny) were
identified in both clinical and environmental isolates (Fisher’s
exact test p value= 1, Supplementary Fig. 2). A search for the
sources and sinks of recent recombination events (see Methods)
revealed that clinical isolates could act as DNA donors for
recombination detected in environmental isolates. Similarly,
environmental isolates could act as DNA donors for recombi-
nation detected in clinical isolates. DNA recipients and DNA
donors were more likely to be found in isolates from the same
origin. There was a higher probability of clinical isolates
being the donor for clinical isolate recipients (two-sided
Mann–Whitney U test p value < 2.2 × 10−16), and environ-
mental isolates being the donor for environmental isolate
recipients (two-sided Mann–Whitney U test p value= 9.41 ×
10−9). Together, this suggests a structure to the genetic flux
within the clinical and environmental isolates despite the
potential for ecological mixing of the population.

Not all environmental exposure leads to infection. We next
investigated the potential source of infection by comparing the
genetically closest environmental isolates to each clinical isolate
using the Northeast Thailand data. Given that consumption of
untreated household water supply was common in this endemic
area5, we first considered the link between household water
supply and infection. Of 48 households with water samples cul-
tured positive for B. pseudomallei, 27 households belonged to
melioidosis patients. Notably, only 6 households of melioidosis
patients had environmental and clinical isolates clustered within
the same monophyletic group (Fig. 2b, Supplementary Fig. 3a).
After removing signals from recombination, comparison of
pairwise genetic difference showed that clinical and environ-
mental isolates from these 6 households (median= 6994 single-
nucleotide polymorphism (SNP)) were not significantly more
similar to one another than to those from randomly paired
clinical and environmental isolates (median= 7,090,
Mann–Whitney test p value= 0.3901, Supplementary Fig. 3b).
This result indicated that the studied patients did not commonly
contract melioidosis from their household water supply. It is
possible that the infecting isolate represented a minority popu-
lation in water that was not detected in the study, or it was
acquired elsewhere. The availability of Global Positioning infor-
mation for 134 clinical and 387 environmental isolates allowed us
to locate the potential source of infection for a subset of melioi-
dosis cases. After removing signals from recombination events,
we mapped the pairwise genetic differences between each clinical
isolate and its closet environmental isolate (range: 24–16,866
SNPs, Fig. 3a) and their geographical distance (range: 5–100 km
apart, Fig. 3b). We found a lack of genetic and spatial correlation
between clinical isolates and their closest environmental isolate
(R2= 0.013, p value= 0.352) with no genetic evidence that
patients had acquired B. pseudomallei from their neighbourhood
or farmland (defined as 10 km2 from patient’s household). It is
possible that the Mun river, its extensive canal systems and
floodplains30 may have dispersed genetically close isolates over a
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Fig. 1 Sampling framework for B. pseudomallei isolates from the case control study. a The chart shows the number of clinical and environmental isolates
from patients and/or household water supplies of cases (patients with melioidosis) and controls (patients with non-infectious conditions admitted during
the same period). b Temporal distribution of environmental and disease isolates in the discovery dataset collected from June 2010 to January 2012. With
the exception of months with no house visits, the number of monthly clinical and environmental samples collected were positively correlated (linear
regression, adjusted R-square= 0.259, p value= 0.026). c Spatial and temporal distribution of environmental and disease isolates in the validation dataset
from the public database.
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large geographical distances (Fig. 3c–g), thereby disrupting the
genetic and spatial correlation. It is also likely that our environ-
mental isolates were not sufficiently intensively sampled to cap-
ture the source of infection. Nevertheless, the lack of conclusive
cases of household contraction despite evidence of exposure
supports the hypothesis that not all B. pseudomallei exposure
leads to infection.

Genetic factors associated with disease and the environment.
We next investigated potential genetic signals that were associated
with infection or the environment by estimating the correlation
between the bacterial phylogeny and distribution of source of
isolation on the tree using Pagel’s λ31. Only five monophyletic
groups were included in the tests to ensure robust analysis. The
distribution of “disease” and “environmental” origins was not
random (Supplementary Fig. 4), indicating that there may be
separable environmental and clinical clades either at deep or
shallow nodes32. This could reflect the presence of bacterial
determinants that mediate survival in human or environmental
niches.

We applied two complementary genome-wide association
studies (GWAS) (a kmer-based33 and a pan-genome based34

approach) to the 325 clinical and 428 environmental isolates,
which were controlled for population stratification (see Methods,
Supplementary Datas 1 and 2). We note that there was potential
cross categorisation as the environmental isolates could be
capable of causing disease. While this caveat reduces the power

to detect the association which elevates the true negatives, this
would be unlikely to impact on the false-positive rate. Of
24,856,071 kmers used to define the population, 38,797 (0.156%)
were associated with “disease” or “environmental” origin. These
were mapped onto the pan-genome to identify potential genes,
resulting in 365 “disease-associated” or “environmental-asso-
ciated” genes. The pan-genome based GWAS analysis identified
675 disease-associated or environment-associated genes. Com-
parison of output from the two methods showed that 47 genes
were detected by both (38 disease-associated and 9
environmental-associated genes, Supplementary Datas 3 and 4),
which account for 0.3% of the pan-genome. Based on the size of
transcriptional operons reported in Ooi et al.35, we grouped these
genes into 26 loci (Fig. 4). These 47 genes were evaluated in an
independent dataset from Australia (clinical isolates= 184,
environmental isolates= 73), which showed that 12 genes
(25.5%) were either enriched in clinical or environmental isolates
(Supplementary Data 5, two-sided Fisher’s exact test, FDR <
0.01). The fact that isolates from Australia and Southeast Asia
represent distinct phylogenetic clades19,23,28 is consistent with
parallel evolution for a proportion of the disease-associated and
environment-associated genes.

Functional enrichment analyses of the 47 gene clusters in the
discovery cohort showed an elevated frequency of the term
“Pathogenesis” and “Replication, recombination and repair”
(Supplementary Data 6, one-sided Fisher’s exact test p value
2.30 × 10−7, and 2.08 × 10−12, respectively). The former may
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Fig. 3 Genetic relatedness between clinical and environmental isolates from households. a Boxplot summarises pairwise SNPs distance between each
clinical and its closest environmental isolate from each monophyletic group after removing recombination signals. A pairwise SNP distance between two
clinical isolates cultured from the same patient were included as a threshold. b Correlation between pairwise SNP distance and geographical distance of
clinical and its closest environmental isolates. c–g Geographical distance between clinical and its closest environmental isolates by monophyletic group.
Red and blue dots represent clinical and environmental isolates, respectively. Colour shade of the links indicates the pairwise SNP distance between the
pair. Source data used to plot (a) and (b) is available in Supplementary Datas 12 and 13, respectively.
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allow the bacterium to compete in specific environmental niches
or survive inside single-cell or multicellular organisms during
infection. Genes annotated with the term “Replication, recombi-
nation and repair” largely comprised transposons that may act as
markers or remnant elements for horizontally transferred genes,
or may inactivate gene function. Apart from these, 8 of 26 loci
consisted of IS, transposons and integrase, which highlights the
significance of transposable elements in rearranging bacterial
genomes.

Selection pressures maintaining niche-associated genes. We
explored whether or not the 38 disease-associated and 9
environmental-associated genes were under selective pressure by
calculating the ratio of the rate of non-synonymous substitutions
per non-synonymous site to the rate of synonymous substitutions
per synonymous site (dN/dS). The average for both groups was
below 1, but the ratio was significantly higher for environmental-
associated compared with disease-associated genes and accessory
genes (Fig. 5a, Supplementary Data 3, Mann–Whitney U test
p value= 2.87 × 10−2 and 5.11 × 10−3, respectively). Despite the
small number of genes being compared, this suggests that the

subset of genes in the environment-associated genes may be
under reduced purifying selection, or elevated diversifying selec-
tion, compared to disease-associated and other accessory genes.
We further quantified the number of times each cluster was
acquired or lost in monophyletic groups that constitute an entire
phylogenetic tree (n group= 5, n of isolate in each group ≥57
isolates, node bootstrap supports ≥70). Assuming an equal rate of
gene gain and loss, stochastic mapping of the presence of each
disease- or environment-associated cluster highlighted multiple
gene gain-and-loss events, one possible reason for which is a
constant change in niches that may include switching between
extra- and intracellular lifestyles. Notably, 38/47 genes showed a
preference for net gain, 4/47 had a preference for net loss, while 5/
47 showed ambiguous directions when compared across multiple
monophyletic groups (Fig. 5b, c, Supplementary Data 3).
Although we did not observe differences in net gain or loss
between disease- and environmental-associated genes (ANOVA
test, gene p value= 0.841, loci p value= 0.876), our results
highlighted a greater proportion of overall net gain for both
disease- and environmental associated genes. Some of these may
confer the bacterium longer-term advantages, which warrants
further investigation.

Fig. 4 B. pseudomallei disease- and environmental-associated genes. a Bar charts summarise the frequency of disease- or environment- associated genes by
functional category. The plots are ranked by categorical gene frequency from unknown category (n= 13 genes), potential roles in pathogenicity (n= 13
genes), replication, recombination and repair (n= 13 genes), cell wall membrane envelope biogenesis (n= 3 genes), secondary metabolite biosynthesis
(n= 3 genes), and energy production and conservation (n= 2 genes). b Distance network reveals genetic loci enriched in disease- and environment-
associated isolates. A network was constructed on distance between disease and environmental-associated genes that fell within the size of operon
described by the transcriptional unit, as reported in Ooi et al. 2013. Each node represents each gene, with the edge thickness proportional to the frequency
of each gene pair observed in the population. The largest disease-associated locus identified in this dataset was the toxin complex. For a and b, the colour
indicates the effect size and directionality of association on the scale of log10(Odds ratio), with red and blue presenting association with disease and the
environment, respectively.
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Examples of disease-and environmental associated genes. Many
of the disease-associated loci contained genes that encoded bio-
logically plausible or known virulence determinants. One example
was a large toxin complex (tcdB, tcdA, tccC and hemolysin acti-
vator fhaC) encoded by a locus of up to 69.7 kb, which was
identified in the discovery dataset (Supplementary Fig. 5). This
locus has not been characterised in B. pseudomallei but homo-
logues exist in diverse bacterial species including Pseudomonas,
Yersinia and Photorhabdus36,37. The latter is an insect pathogen,
experimental characterisation of which has demonstrated that
tccC has enzymatic activity38 and that tcdA and tcdB facilitate the
translocation of the toxin into host cells37. These toxin genes were
flanked in B. pseudomallei by several integrases and transposases
families including IS2, IS3/IS911, IS4, IS66, IS166, IS407, IS111A/
IS1328/IS1533 and IS1478, indicative of a mobile genetic element
origin. An analysis of gene gain-and-loss events for the locus was
possible for one monophyletic group (group 5, n= 156 isolates),
as this locus was variably present in group 5 but fully present or
absent in the other groups. For this group, we observed a slightly
greater net gain of the whole locus with the toxin genes being
acquired and lost 10 and 9 times, respectively. This may suggest
not only a selective advantage but also a fitness cost associated
with this locus for B. pseudomallei.

An example of environmental-associated loci is a truncated
variant of filamentous hemagglutinin (fha), a known adhesin and

immunomodulator across different bacterial species. In B.
pseudomallei, the number of fha genes varies between isolates
and different combinations of fha genes have been observed with
patients infected by B. pseudomallei, with a specific fha variant
reported to have increased risk of infection associated with
positive blood cultures39. While our kmer approach identified
disease-associated signals from haemaglutination activity
domains on this gene, our pan-genome approach detected
environmental-associated signals from a truncated form of this
gene (Supplementary Fig. 6). A closer inspection highlighted a
truncation caused by a premature stop codon upstream of the
haemaglutinin repeat domains, which might disrupt gene
function. This environmental-associated and truncated form
showed a greater net gain in all tested monophyletic group
(Fig. 5), suggesting a selective advantage of this variant in the
northeast Thailand setting.

Discussion
Our results suggest that despite evidence of direct contact with
householders, not all B. pseudomallei exposure led to infection. A
transition from exposure to disease likely requires additional risk
factors involving B. pseudomallei, host and environment. Our
analyses have identified B. pseudomallei gene clusters that are
enriched in clinical or environmental isolates. These genes have

Fig. 5 The selective pressure on disease- and environmental associated genes and the frequency at which they had been gained or lost throughout their
evolutionary history. a The dN/dS of core genes, accessory genes, disease-associated genes, and environmental-associated genes are plotted on a log
10 scale. Two-sided Mann–Whitney U test was used to compare categorical observation. b The ratio of gene gain minus gene loss over the total gain and
loss events for disease-associated genes and environmental associated genes. Independent observations were drawn from five monophyletic groups.
ANOVA was employed to test the differences in group observation, where available treated as replicates for each gene. Where multiple observations were
observed for each gene, a mean across different monophyletic groups was taken as an average. For a and b, boxplots summarise the distribution of data
based on first quantile, median and third quantile. c A summary of net gain or loss events across all five groups. Yellow and purple bars indicate greater net
gain and greater net loss of each gene. Source data used to plot (a) and (b) is available in Supplementary Datas 14 and 15, respectively.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0678-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:428 | https://doi.org/10.1038/s42003-019-0678-x | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


arisen repeatedly in different populations with distinct phylo-
geography, demonstrating robustness of the findings from the
Thai discovery dataset. Many of these genes are under relaxed
purifying selection and have been gained or lost multiple times
throughout the organism’s evolutionary history, implying that
there may be several niches to which this opportunistic bacterium
is adapted. This includes environmental and other eukaryotic
hosts3,40,41, the latter potentially providing genetic pre-adaptation
for invasion and survival in the human host. Based on our current
knowledge of the ecology of B. pseudomallei, there are still a
substantial number of disease-associated and environment-
associated genes with unknown function, unidentified interac-
tion partners or unexplored roles in each ecological niche, thereby
limiting the immediate translational applications of our study.
Further exploration into the ecological role of these genes will be
essential to better manage and prevent the infection from this
accidental pathogen.

Methods
Bacterial isolates. Two bacterial collections were used to create independent
discovery and validation datasets. These originated from distinct regions where
melioidosis is highly endemic—northeast Thailand and northern Australia18–22.

The discovery dataset was drawn from a study of the activities of daily living
associated with melioidosis, which was conducted at Sunpasitthiprasong (formerly
Sappasithiprasong) hospital in Ubon Ratchathani, Northeast Thailand between 2010
and 20115. In brief, 330 cases of culture-proven melioidosis and 513 control patients
with non-infectious conditions were recruited5. B. pseudomallei can survive in
water42, an ability contributing to its environmental persistence in the endemic area.
Five litres of residential drinking water were collected per household and cultured
for B. pseudomallei from cases and controls who lived within 100 km of the hospital.
B. pseudomallei was isolated from 12% of borehole and tap water samples, and 4%
of well water samples. Multiple colonies were picked and individually saved from
each water sample. Consumption of untreated water was common (85% of cases
and 72% of controls) and associated with a higher risk of melioidosis5. We assumed
that isolates from water were a fair representation of environmental isolates.
Simultaneous infection with more than one strain of B. pseudomallei was reported
to be uncommon43. Except for 1 case, a single colony was cultured from each
melioidosis patient. We noted a differential rate of B. pseudomallei being cultured
from clinical (median for blood culture= 1 CFU/mL)44 and water samples
(median= 1 × 10−3 CFU/mL)5. For the purposes of the study described here, we
sequenced 325 B. pseudomallei isolates from 324 cases, and 428 B. pseudomallei
colonies (isolates) from 48 water samples (including samples from 27 melioidosis
patients) (Fig. 1, Supplementary Data 1).

The validation dataset consisted of whole genome sequence data for 258 B.
pseudomallei isolated in Australia, which were downloaded from the NCBI database
(Supplementary Data 2). These isolates have been described previously18–23. In
brief, isolates were from patients with melioidosis (n= 184) and the environment
(n= 73). The temporal and spatial distribution of isolates in this dataset is
summarised in Fig. 1.

Whole-genome sequencing. DNA was extracted from the 753 Thai B. pseudo-
mallei isolates as described in45. DNA libraries were prepared according to the
Illumina protocol and sequenced on an Illumina HiSeq2000 with 100-cycle paired-
end runs giving a mean coverage of 84 reads per nucleotide. Sequencing of clinical
and environmental isolates was done at the same time on the same platform.
Taxonomic identity was assigned using Kraken46 to control for potential con-
tamination in each sample with other closely related species. While the data
generated should represent two chromosomes, the plasmid is frequently lost during
culture and was lacking from many of the short read data sets.

Genome assembly and pan-genome analysis. New assemblies were performed as
described in ref. 47 to give a median of 97 contigs (min= 61 contigs, max= 259
contigs), and median length of 7,114,540 bp (min= 6,884,381 bp, max= 7,404,549
bp). All study genomes were annotated using Prokka48. A predicted median of
5936 coding sequences were assigned onto each genome (min= 5762, max=
6264), which falls within the range of published reference genomes40,49. Roary50

was used to calculate the pan-genome for the discovery dataset together with the
two reference B. pseudomallei genomes (K96243 from Thailand and Bp668 from
Australia). The inclusion of the well-characterised Thai reference K96243 served as
the quality control for the pan-genome analysis, and the Australian reference
Bp668 served as an outgroup to root the phylogeny in a subsequent analysis. An
all-against-all BLASTP comparison at 92% sequence identity was used as described
in ref. 19. Genes were defined as core if present in ≥99% of isolates. This led to 4322
and 10,718 genes being classified as core and accessory, respectively

(Supplementary Data 7). The number of core genes identified fell within the range
described previously18.

Population structure estimated by multi-dimensional scaling. The population
structure of the 753 Thai isolates was estimated from sequence assemblies using
Mash v. 1.1.151, which captures information from intergenic regions, core and
accessory genes. Assemblies were shredded into their constituent kmers. The
pairwise distance between assemblies was estimated and computed into the 753 ×
753 matrix. Metric MDS was performed using R cmdscale to project the population
structure into n-1 coordinates. The top three coordinates were used to control for
GWAS population stratification.

Population structure estimated by phylogenetic trees. Phylogenetic approach
was employed to determine the overall population structure as well as more
detailed subclade analyses. An overall population structure was estimated using
SNPs in the core genome. Single-copy core genes from 753 isolates, K96243 and
Bp668 were concatenated and aligned using Mafft v7.20552, followed by manual
inspection using SeaView53. This comprised 4322 genes, representing on average
73% of genes in individual genomes. Single-nucleotide substitutions in the align-
ment were called using the methods described by Page et al.54, resulting in SNPs. A
maximum-likelihood phylogeny was constructed with RAxML HPC v.8.2.855 using
a general time reversible nucleotide substitution model with four gamma categories
for rate heterogeneity and 100 bootstrap support. The overall phylogeny had 58.4%
of external and internal nodes showing ≥70% bootstrap support.

For measuring phylogenetic signals and ancestral reconstruction analyses, only
monophyletic branches with >70% bootstrap support were considered. Branches
with poor bootstraps were removed using iTOL56. Subsequent tests were
performed on 5 monophyletic groups comprising group 1 (n= 57), group 2 (n=
84), group 3 (n= 86), group 4 (n= 91) and group 5 (n= 156), totalling 474 isolates
(63% of the northeast Thailand dataset). Each group was rooted on the Australia
isolate Bp668.

Maximum-likelihood phylogenies were also used to examine specific disease-
associated clusters by concatenating and aligning genes using Mafft v7.20552, with
truncated genes manually checked. A maximum-likelihood phylogeny was
constructed as above with 100 bootstrap support and rooted on an Australian gene
homologue.

Detection of recombinant sites. Recombination detection required genome
alignment with higher resolution. A pseudo-alignment from each group was
generated by mapping sequence reads against a reference genome K9624349 from
northeast Thailand. Methods described in ref. 57 was applied to allow greater
sensitivity for detection of variants including small insertions and deletions
(indels). To determine the impact of recombination within this dataset, we ran
Gubbins29 on individual monophyletic group (Supplementary Fig. 1). The regions
identified as recombinogenic were largely those reported as genomic islands58. The
contribution of recombination to the overall diversity was estimated by ratio of
recombination events to the number of mutations (r/m) thus avoiding a bias
introduced by using number of SNPs that can be affected by DNA donors of
varying genetic distances. Phylogenies with recombination removed were used to
determine connections between isolates from the clinic and household water
supply.

Identification of recombination donors. Potential sources of recombination
fragments were determined by comparing the sequences identity to the recombined
fragments detected the recipient strains. Recombination regions overlapped with
genomic islands mobile genetic elements were excluded. Identification of potential
recombination donor were focused on recent recombination events with recipient
located on the tip of each subclade phylogeny. Recipient blocks were searched using
BLAT v.3559 against the rest of the assemblies for identical match (donor blocks).
To minimise non-specific match, the search was restricted to recipient block >10 bp
with no unknown nucleotide “N” detected in both recipient and donor blocks.

We next calculated the probability of each isolate being a donor for individual
recipient isolate. For each recipient isolate where “n” potential donor isolates were
identified, each potential donor isolate was assigned a probability of “1/n”. Isolates
showing no hit for a particular search were assigned probability of 0. The total
likelihood of each isolate for being a donor was calculated as the sum of the above
probabilities from all donation events.

Mapping geographical distance. Information of the Global Positioning System
were available for 521 isolates (Supplementary Data 1). The pair-wised distance
between isolates were calculated using R package geosphere60 with Haversine
function.

Estimation of phylogenetic signals. Pagel’s λ31,61 was used to assess phylogenetic
signal in each monophyletic group, where bootstrap supports ≥70%. This quan-
titative measurement helped determine whether members of the same group were
more similar than those outside of the group, and whether the search for genetic
signals that distinguish the two groups was productive. Origin of isolation (clinical
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or environmental) was reconstructed onto the tree using fitDiscrete from the R
package Geiger62. We compared the model fit of the tree using log-likelihood of the
untransformed maximum likelihood tree against the model where the tree was
transformed to a polytomy or partially transformed trees (internal branches were
multiplied by λ= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, Supplementary
Fig. 4a). We also reconstructed randomised origin of isolation (clinical or envir-
onmental, 100 permutations) onto the tree and compared log-likelihood scores
obtained from reconstruction with the actual origin versus randomised origins.

Detecting kmers associated with disease and the environment. Two separate
GWAS were performed to screen kmers for associations with source of isolation
(clinical or environmental) using the 753 Thai genomes. Assemblies were shredded
into overlapping kmers of 9–100 bases, resulting in 24,856,071 kmers. All kmers
occurring in more than one assembly were counted using fsm-lite (https://github.
com/nvalimak/fsm-lite) as described in ref. 33, and filtered to retain kmers that
appeared in 5–95% of samples (“fsm-lite –v –s 5 –S 95 –l lists.txt –t index > kmer”;
followed by “gzip kmer”). Kmers with low frequency (5% minor allele frequency
cut-off) were removed and thus reduced the data to 24,555,746 kmers. Kmers were
next filtered using the χ2-test (1 d.f.). Kmer association with a p value < 10−5 were
has been shown previously through simulations to be true positive associations33,
and thus was retained for further investigation. This step reduced the kmers to
300,325 kmers. Seer33 was then used to fit a logistic curve to binary data (clinical or
environmental) for each kmer (“seer–pheno clin.env.pheno.tsv -k fsm_kmer.{i}.gz
–struct structure.tsv –threads 4 > significant_kmers.{i}.txt”, where {i} is the job
array). The first three principal components calculated from metric dimensional
scaling were used as covariates to control for bacterial population structure. This
resulted in 37,104 kmers positively associated with clinical isolates, and 1693 kmers
positively associated with environmental isolates (Supplementary Data 8). All
kmers were mapped to the K96243 reference49 and the raw assemblies of 753
isolates using BLAT v. 3559 to identify the relevant genes and gene variants. In
order to map low complexity kmers (length 10–26 base pairs), the following
parameters were used: blat –minMatch= 1 –tileSize= 8 –minScore= 10. The
match was allowed for both forward and reverse strands. Only identical hits were
retained. Any predicted coding sequences (CDS) with more than 2 kmer hits were
pooled and collectively termed “disease-associated” genes or “environment-asso-
ciated” genes. These kmers were shown to represent both small-scale (single
polymorphic and indels) and large-scale (likely introduced via horizontal gene
transfer) variation19.

Detecting genes associated with disease and the environment. As a com-
plementary approach, we performed a pan-genome based GWAS using Scoary34

on the Thai dataset (Supplementary Data 9). Two separate GWAS were performed
to find genes associated with source of isolation (clinical or environmental) while
correcting for population structure using the phylogenetic tree (scoary –t clin.env.
pheno.tsv –g gene_presence_absence.tsv –n tree –c BH). False-discovery rate
(FDR) was estimated by Benjamini–Hochberg adjusted p value (with –c BH)
provided in Scoary34, and tested for consistency against an empirical p value
generated by random permutations (Supplementary Fig. 4b). Disease-associated or
environment-associated genes with a Benjamini–Hochberg adjusted p value < 0.01
were reported and compared for consistency with genes identified by the kmer-
based GWAS (Supplementary Data 3). Sequences of disease-associated and
environment-associated genes were outlined in Supplementary Data 10.

Validating genes associated with disease and the environment. Disease-
associated or environment-associated genes that were identified by both the kmer-
based and pan-genome based methods (n= 47) were validated in an independent
dataset from Australia. Where genome assemblies were available, genes were
validated by searching for Australian orthologues using BLAT v. 3559 allowing for
92% identity, the same cut-off used in the pan-genome analysis. Where short reads
were available23, ARIBA63 was employed to perform local assembly and mapping
to check for the presence or absence of genes. The sequence identity threshold
(–cdhit_min_id 92) was adjusted to 92% for consistency. Gene distribution across
Australian clinical and environmental isolates was tested using two-sided Fisher’s
exact test with a Benjamini–Hochberg adjusted p value (Supplementary Data 5).

Simulation on association analysis. As a complementary to FDR determined by
Benjamini–Hochberg approach64; for each tested gene in both discovery and vali-
dation datasets, we separately ran 100 permutations with true genotypes (gene
presence or absence) but randomised source of isolation (clinical or environmental).
This generated an empirical p value to determine the cut-off threshold. For the
discovery cohort, all candidate genes achieved significant association at an empirical
p value < 0.01, suggesting that the observed associations were not random (Supple-
mentary Fig. 4b). For the validation cohort, genes that could be replicated also
achieved significant association at an empirical p value < 0.01. This also validated a
Benjamini–Hochberg adjusted cut-off at p value 0.01 as our conservative threshold.

Gene functional category. Gene ontology (GO) describing biological process,
molecular function and cellular compartment was assigned to each gene in the pan-
genome using InterProscan v5.21–60.065. Not all genes matched the GO database.

As of October 2019, 38.2% genes had GO terms assigned. A given gene could be
associated with multiple GO terms (mean ~2.85, min= 1, max= 14), and when
this occurred a parent GO term was used to represent child GO terms. Comparison
of GO terms in disease versus environmental isolates, and their enrichment among
disease-associated clusters versus expectation based on the reference genome
K96243 was performed using one-sided Fisher’s exact test with all GO terms, with a
Benjamini–Hochberg adjusted p value (Supplementary Data 6).

Disease-associated clusters were also annotated with Orthologous Groups of
Proteins (COG66) and pathway maps (KEGG67 and MetaCyc68) to determine
putative function. As of October 2019, COG, KEGG and MetaCyc could be
assigned to 78.04, 9.79 and 7.72% of disease-associated genes, respectively.
Information on protein domains was sourced from the Conserved Domain
Database (CDD)69.

Measuring gene selection pressure. The ratio of non-synonymous to synon-
ymous substitutions (dN/dS or Ka/Ks) was calculated using the KaKs calculator70.
To reduce computational load, we randomly selected accessory genes to represent
equal number as core genes (n= 4322). Alignments of core, accessory, disease-
associated and environment-associated genes were extracted from the pan-
genome50. The test rejected neutrality (H0 dN/dS= 1, Fisher’s exact test p value <
0.05) in 3031 core genes, 3027 accessory genes, 28 disease-associated and 9
environment-associated genes. A non-parametric Mann–Whitney U test was used
to investigate any departures in the mean of dN/dS for genes associated with
disease, the environment and core.

Estimating gene gain and loss events. Gain or loss of disease-associated and
environment-associated genes through evolutionary history was quantified using
make.simmap from the R package Phytools v 0.6–4471 with 1000 simulations. The
analysis was performed separately for each monophyletic group. We first compared
likelihood scores for the presence or absence of each gene across the phylogeny
with the three different models (AR, ER and SYM). ER was the best fit model in our
dataset and was selected. For each gene, only monophyletic groups with gene
frequency between 0.01 and 0.99 were included in the analyses.

Data visualisation. Visualisation of phylogenetic trees and statistical analyses was
performed in R, Phandango72, and FigTree v 1.4.2 (http://tree.bio.ed.ac.uk/
software/figtree/).

Statistics and reproducibility. We employed chi-squared tests or Fisher’s exact
tests to compare categorical variables, and parametric ANOVA or non-parametric
Mann–Whitney U tests to evaluate continuous variables, respectively. Unless
otherwise stated, two-sided tests were performed in all cases. Where appropriate,
we used the Benjamini–Hochberg procedure and Monte Carlo permutation test to
adjust p values for multiple comparisons, thereby controlling for multiple
hypothesis testing. To ensure reproducibility, we also used two independent
approaches to perform GWAS (kmers-based and gene-based methods) on the
discovery dataset and validated the enrichment of candidate genes in an inde-
pendent validation cohort. Source data used to plot Figs. 2a, 3a, b and 5a, b are
archived in Supplementary Datas 11–15, respectively.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All supporting data are included in this published article and its supplementary material.
Short reads and assemblies for isolates are archived in ENA or NCBI database. Accession
number for each individual isolate in discovery and validation dataset are given in
Supplementary Datas 1 and 2. Source data for the figures are available in Supplementary
Datas 11–15. Pan-genome analysis listing all genes in the dataset is available via
Figshare73 (details in Supplementary Data 7) Sequences of disease- and environmental
associated genes are available via Figshare74 (details in Supplementary Data 10).

Code availability
All tools and R packages used for the analysis are publicly available and fully described in
the method sections and noted in refs. 33,34,46–48,50–56,59–63,70–72.
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