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Supplementary Note 1. Device fabrication and cantilever control 

A pattern of 10nm-Cr/100nm-Au lines of width 30µm is evaporated onto a SiO2 substrate via shadow 

mask evaporation through a parallel-bar TEM grid (Agar Scientific), to make the bottom electrode 

(Supplementary Figure 1a). Avoiding lithography for this step maintains a cleaner surface free from 

photoresist or organic solvent contamination. This line pattern is used to reduce the electrode area 

when creating a cross junction upon approach with the transparent cantilever from the perpendicular 

direction (Supplementary Figure b), and prevents scratching off the sample layers by the front edge 

of the cantilever. The deposition of the SAM and AuNPs is done on the patterned Au electrodes as 

described in the Methods in the main text. Parylene is used as an insulating barrier to prevent contact 

between the cantilever surface and the bottom electrode, so molecular junctions are only produced 

through the AuNPs. Parylene is a common coating in the electronics industry1, chosen here for the 

conformal coating properties and room temperature deposition, preserving the SAM. To achieve the 

insulating layer only around, and not on top of the AuNPs, a 350nm thick parylene film is first 

deposited on the entire device. This gives a near-smooth profile above the AuNPs, and the film is then 

isotropically dry etched in steps with O2 plasma until the AuNP crown is exposed, leaving a 20-30nm 

thick parylene layer on everything else. Each etching step is monitored with AFM to achieve the 

correct device structure. 

 



 

 

Supplementary Figure 1 | a, Evaporated Au pattern through parallel-bar TEM grid, scale bar is 500µm. 

b, Cantilever and electrode bias scheme, and wedge fringes upon first contact with the surface, c, 

intermediate position, and d, cantilever completely flat. e, Angled fringes for 1° cantilever tilt. 

 

Cantilever position is controlled with an 𝑋𝑌𝑍 and rotation piezoelectric stage (SmarAct), with the 

cantilever mounted at 5° to the sample surface. As the cantilever is lowered along the 𝑍 direction, 

dense wedge interference fringes appear upon first contact with the surface. The fringe spacing 

progressively increases with further approach, until disappearing when the cantilever is flat and 

parallel to the surface (Supplementary Figure 1b-d). Vertical displacement of <100nm is easily 

monitored from the position and spacing of the fringes. Any cantilever tilt is also immediately detected 

from the angle of the fringes (Fig.S1e) and can be corrected to <0.2°. Reliable electrical measurements 

and spectroscopy on AuNPs are only possible when the cantilever is completely flat and parallel to the 

surface with no tilt. Introducing the cantilever on top of the NPoM maintains the peak shape, but 

blueshifts the coupled mode resonance by ~40nm from dielectric loading of the NP (Supplementary 

Note 2). 

 

Supplementary Note 2. In-situ darkfield spectroscopy 

The transparent cantilever affects darkfield spectroscopy of AuNPs because of the increased refractive 

index this introduces on top of the NPoM structure. We consistently observe a ~40nm blueshift in the 

resonance wavelength of the NPoM coupled mode, and a slight decrease in intensity of the single 

particle mode (Supplementary Figure 2). 

 
Supplementary Figure 2 | Darkfield through cantilever. Darkfield spectroscopy through the cantilever 

shows a blueshift in the NPoM coupled-mode peak. 

 

The NPoM coupled mode remains clearly distinguishable in our in-situ measurements, and its 

evolution is tracked in real time with a stable signal (Supplementary Figure 3a). We observe no change 

in the amplitude or position of this peak in the tunnelling regime for |V|<1.5V, and voltage can be 

cycled repeatedly in this range for tens of minutes without detectable spectral changes. For |V|>1.5V 

we generally observe a rapid increase in conductance (Supplementary Figure 3b) and a redshift of the 

coupled mode (Supplementary Figure 3a), possibly due to disruption of the molecular layer and 

formation of metallic conductive links across the junction that increase conductance and short the 

coupled plasmonic mode. This redshift is only rarely reversible and suggests a morphological change 

in the junction structure. 



 

 

 
 

Supplementary Figure 3 | In-situ darkfield scattering spectroscopy of BPDT junctions. a, AuNP is 

monitored with darkfield spectroscopy in real time (scaled at each time point) while b, electrical 

measurements are recorded on the AuNP molecular junction. Coupled mode amplitude and position 

are stable for |𝑉|<1.5V. 

 

Supplementary Note 3. In-situ Raman spectroscopy 

Raman spectroscopy is performed in real time on molecules inside a single AuNP junction. The 

plasmonic enhancement of optical field in the junction gap amplifies light-matter interactions enabling 

surface enhanced Raman spectroscopy (SERS) with a typical signal of >105counts/mW/s for the 

molecular vibrational signatures, allowing real time spectroscopy with <1s integration times. Electrical 

measurements are performed at a faster rate of 50 datapoints/s given by the Keithley SMU, so tens 

of I-V data points are collected for each spectrum acquisition. 

 

Reduction in the Raman intensity for voltages above 0.5V are consistently observed for BPDT in more 

than 70% of the single AuNP junctions contacted with the cantilever (Supplementary Figure 4a,b). The 

remaining cases are accounted for by variations in AuNP size or local imperfections in the parylene 

insulating layer leading to poor contact with the AuNP crown. In-situ spectroscopic and electrical 

measurements on a particular junction in the |V|<1.5V regime can typically be cycled for tens of 

minutes before mechanical vibrations of the cantilever cause local displacement of the AuNP leading 

to permanent modifications. 



 

 

 
Supplementary Figure 4 | In-situ Raman spectroscopy of BPDT junctions.  a,b In-situ Raman 

spectroscopy of a single AuNP junction with BPDT molecular layer. c, Corresponding voltage (black) 

and SERS intensity ratio (blue) calculated as SERS(𝑉)/SERS(𝑉=0) for the 1590cm-1 ring-ring CC 

stretching mode. Each data point is the average of consecutive measurements taken at the same 

voltage. d, Ratio of amplitudes for peaks at 1590cm-1/1140cm-1, showing that modulation is stronger 

for the 1590cm-1 peak corresponding to the inter-ring CC bond. 

 

We observe a decrease of up to 95% in the SERS intensity for the Raman signal of BPDT for |V|>1V 

(Fig.S4c). The effect is first visible around |V|=0.5V, saturating for |V|>1V, and is symmetric for 

positive/negative voltages in most experimental realisations. The SERS peak near 1590cm-1, 

corresponding to the stretching of the central CC inter-ring bond, shows a stronger modulation than 

the other peaks in the 1100-1250cm-1 region (Supplementary Figure 4d). This highlights that this bond 

is more affected by the applied voltage due to the twist between the rings, and is in good agreement 

with the same trend observed in DFT calculations. We also observe a decrease of the SERS background 

by up to a factor 2 for |V|>1V, suggesting a 21/4-1=16% decrease in the electromagnetic field intensity 

in the gap (since SERS intensity scales as 𝐸4 in the NPoM gap2). This could be due to a reduction in gap 

refractive index at optical frequencies, however this would produce blueshifts in DF while redshifts 

are seen experimentally (but at higher voltages where current flows). 

 

DFT calculations (Figure 3 main text) predict a small redshift of a few cm-1 as the twist angle between 

the BPDT rings is increased from 0 to 90°. This shift is not experimentally observed in our 

measurements nor in previous reports3,4, suggesting this is due to inaccuracies in the DFT model at 



 

 

this order. DFT calculations also involve a single molecule attached to individual Au atoms, whereas a 

real device includes extended Au electrodes and close-packed molecules. 

 

In-situ SERS of 2-naphtalenethiol in our AuNP junctions shows no changes of peak intensity correlated 

with voltage for any of the molecular vibration peaks (Supplementary Figure 5). Variations in the signal 

are compatible with minor intensity fluctuations generally observed in all measurements. The 2-

naphtalenethiol molecule still has two rings, but these are locked in the same plane since they share 

two carbon atoms, so they are unable to twist like the biphenyl molecules and thus do not produce 

the same modulation in SERS intensity. 

 
Supplementary Figure 5 | SERS of 2-naphtalenethiol. a, SERS signal from an AuNP junction fabricated 

with 2-naphtalenethiol. b, Corresponding voltage applied across the junction (black) and SERS 

intensity of the 1070cm-1 peak (blue) calculated as SERS(𝑉)/SERS(𝑉=0). Each data point is the average 

of consecutive measurements taken at the same voltage. 

 

Different functional groups at the ends of the biphenyl ring structure affect the conductance of the 

AuNP junction near the molecule-electrode interfaces, producing different effects in the capacitive-

molecular energy balance discussed in the main text. For BPDT we observe the maximum level of 

modulation, with a symmetric decrease in SERS with voltage as high as 95% (Supplementary Figure 

6a). BMMBP shows a modulation of up to 75%, but stronger for negative voltages than for positive 

ones (Supplementary Figure 6b). Even though the BMMBP molecule itself is also symmetric, the 

additional bonds at its ends compared to BPDT can introduce variations in the SAM packing during 

assembly on the substrate or AuNP, causing the observed some asymmetry in SERS modulation. 

Finally, for BPT and CN-BPT we observe a symmetric SERS change of up to 30%, with the modulation 

occurring only at |V|>2V for CN-BPT. 



 

 

 
Supplementary Figure 6 | Role of functional groups in SERS modulation. Change in SERS intensity as 

a function of voltage for a, BPDT, b, BMMBP, c, BPT, and d, CN-BPT. 

 

Supplementary Note 4. Electrical characteristics 

NPoM junctions are characterised using a source-measure unit (Keithley SMU, see Methods main text) 

in 4-wire configuration. To ensure that the cantilever contacting method applied to NPoM junctions 

does not affect the measured values of molecular conductance, we separately verify the electrical 

performance of the cantilever-NPoM system. 

    The conductance of the cantilever itself is measured by electrically contacting a set of Au wires of 

varying width patterned directly on SiO2 with e-beam lithography (Supplementary Figure 7a). Each 

wire is contacted from the top in a direction parallel to the cantilever. For the smallest Au wire of 

width 50nm we measure a linear ohmic response with conductance G=30G0 (Supplementary Figure 

7b), while for 100nm wide wires we measure 80G0. For wider wires up to 50µm we always measure a 

conductance of 80G0, indicating that this is the conductance limit of the cantilever contacting method, 

set by the conductive coating on the cantilever. 

 

 
Supplementary Figure 7 | Cantilever conductance. a, Cantilever contacting of Au wires defined with 

e-beam lithography; scale bar is 50µm. b, Current-voltage characteristic of cantilever-wire contact is 

linear with G=30G0 for 50nm wide wires, and G=80G0 for ≥100nm wires. 

 

The conductance of the NPoM system contacted with the cantilever is measured by fabricating a 

sample with the same geometry described in the main text but no molecular SAM in the NPoM gap, 

with the AuNP thus directly contacting the bottom Au mirror. In these single particle devices we 

consistently measure a linear ohmic I-V response with conductance G=13G0=10-3S (Supplementary 



 

 

Figure 8). Conduction occurs through the AuNP, but a simple conductance calculation from the 

nominal geometry of a NP (20nm wide facet, 100nm diameter, Au resistivity 2.2×10-8Ωm) predicts a 

conductance of ≈0.1S. This suggests that conduction actually happens through a smaller contact area, 

likely defined by the local geometry of the NP facet in the gap and roughness of Au mirror. From 

previous investigations of conductance in nm-sized Au constrictions5 and given that the bottom Au 

mirror and Au coating on the cantilever are deposited in the same conditions, we infer that conduction 

in our system is limited by two equal contact points with diameter 4nm, respectively at the cantilever-

AuNP and AuNP-mirror interfaces. In presence of a SAM, we thus estimate that ≈50-60 molecules 

within this contact region determine the electrical properties of our devices. 

 

 
Supplementary Figure 8 | Conductance across bare AuNP. Cantilever contacting of single NPoMs 

without SAM shows linear I-V response with conductance G=13G0. Each trace corresponds to a 

different single AuNP junction. Traces in the plot are each offset by 3µA, all use 9µA compliance 

current limit. 

 

Adding a SAM of BPDT to the NPoM system immediately drops the junction conductance 

(Supplementary Figure 9a), with measured low-bias conductance values across different junctions 

ranging from 1.5×10-6G0 to 1×10-5G0 per NP (Supplementary Figure 9b). This is >5 orders of magnitude 

smaller than the conductance across a single AuNP without SAM, and we thus conclude that the 

cantilever contacting technique with AuNPs has a negligible effect on the measurements of molecular 

conductance. We attribute the observed variability in the conductance across different junctions to 

variations in the number of contacted molecules due to  surface roughness and NP facet size, but note 

that most junctions show conductance in the 10-6G0<G<10-5G0 range (Supplementary Figure 9c). 

  
Supplementary Figure 9 | I-V characteristic of AuNP molecular junctions. a, Representative I-V 

characteristic of 10 AuNP junctions for the case of a BPDT SAM. Black curves are for single NP 

junctions, grey for junctions with 2 NPs. b, Detail of (a) in linear scale in low bias regime, showing linear 

response typical of direct tunnelling. c, Histogram of low-bias (|V|<0.2V) conductance values from 

data in b, normalised to single NP. 

 

 



 

 

 

Supplementary Note 5. Single molecule twist switching 

As noted in the main text, the 20nm wide facets of 100nm AuNP nanogaps accommodate ~100 

molecules in a single junction However an effect explored in the last few years [see main text ref17] 

allows single molecules SERS to be tracked in real time in the same nanocavities. Strong enough optical 

fields in the NPoM gap can transiently pull out atoms from the facet surface, which further enhances 

light confinement and produces fleeting SERS lines in addition to the normal Raman. We detect these 

‘picocavity’ events (Supplementary Figure 10a), revealing again the same SERS intensity modulation 

on the lines which are shifted by molecular-interactions with the Au adatom (Supplementary Figure 

10b). In particular the voltage-induced suppression of single-molecule SERS matches that of the main 

molecular SERS peaks (dashed box). This shows that the same voltage-induced twist model applies to 

single-molecule junctions (Supplementary Figure 10b). Bias is not found to modulate these Au 

adatoms in different ways, nor does the modified Au-molecule interaction modify the twist forces 

dramatically. Generally all picocavities observed show the same twist switching, matching that of the 

main SERS peaks. 

 
Supplementary Figure 10 | Single molecule switching from picocavities. a, Single molecule switching 

for BPT showing transient picocavities observed in SERS spectra (dashed box). b, Enhanced optical 

field in vicinity of protruding Au adatom inside nanogap, enhances SERS to single molecule level. 

 

 

Supplementary Note 6. Structures for DFT calculations 

DFT calculations without bias are performed as described in the Methods in the main text6–12. A typical 

molecular structure is shown in Supplementary Figure 11, with a BPDT molecule anchored to a Au 

atom at each thiol terminal group. In the calculations the dihedral angle is increased from 0 to 90°. 

 
Supplementary Figure 11 | DFT structures. a,b,  BPDT molecule used in DFT calculations anchored at 

two Au atoms shown at (a) 0° and (b) 65° twist. 

 

 

 



 

 

 

 

Supplementary Note 7. Thermal excitation of BPDT twist 

 
Supplementary Figure 12 | Boltzmann populations from DFT calculations of twist in BPDT at room 

temperature. BPDT molecule used in DFT as in  Supplementary Figure 11. The probability for each 

twist angle is extracted, as well as the potential at each twist. This clearly shows the measurement of 

twist gives a clear angular position, around 35±10°. 

 

Supplementary Note 8. Strain induced changes to DFT twist 

 
Supplementary Figure 13 | Effect of applying strain on BPDT from DFT. a, Stretching the Au-Au 

distance from 12.07 to 13.07Å requires relatively small energy, but barely changes the twist angle. b, 

Stretching the S-S distance from 10.70 to 11.70Å requires very large energies and so is not possible. c, 



 

 

Similarly compressing the S-S distance from 10.70 to 9.70Å bends the molecule requiring large 

energies. 

 

Supplementary Note 9. Parameters for electrical model of BPDT in nano-junction 

We use the model in the main text, with two molecule-metal junctions (capacitance 𝐶1,3 and 

conductance 𝐺1,3) for the back-to-back Schottky diodes, and a junction between the two conducting 

aryl rings in the centre of the molecule with capacitance 𝐶2 and conductance 𝐺2. Because a set of 

similar molecules with different twist angles have already been measured experimentally, these are 

not free parameters. 

Conductive AFM and STM break-junction experiments in liquid indicate that the conductance 

𝐺2 through biphenyl molecules is controlled by the inter-ring twist, 𝐺2 = 𝐺𝐶𝐶(1 + 𝑔 cos2 𝜃) where 

𝐺𝐶𝐶~76 μS when the rings are exactly orthogonal so there is no 𝜋 − 𝜋 overlap (see refs [23-26] in 

main text). The value of 𝑔 is then set from the total conductance when the rings are planar (note that 

what is measured in STM is the total conductance and not just the molecular conductance), using 

𝐺𝑡(𝜃 = 0)~1.5 mS  (ref [26] in main text) which implies 𝐺1~ 2.4 mS, and that 𝑔~50. This is indeed 

what prior experiments quantitatively show, that the ring-ring conduction increases by a factor of 50 

when the ring twist angle approaches zero. 

For the capacitance of these junctions, we calculate 𝐶 = 𝑞/𝑉 using the charge distribution 

and potential profile obtained from DFT modelling of the junction under bias (see Supplementary Note 

11), and obtain 𝐶2=0.015aF and 𝐶1=0.04aF. These values are reasonably close to simple parallel-plate 

estimates: 𝐶2 = 𝜀0𝜀𝑟𝐴𝐶𝐶/𝑑𝐶𝐶  ~ 0.012aF   with 𝜀𝑟=2,13 𝐴𝐶𝐶 = 𝜋(0.15nm)2=0.07nm2, and the frontier 

orbital separation of the carbons between the rings 𝑑𝐶𝐶~ 1Å.  The contact capacitance 𝐶1 = 𝐶3 =

𝜂𝜀0𝜀𝑟𝐴/𝑑𝑆−𝐴𝑢 ~ 1.8aF, where the factor 𝜂 comes from the capacitance of the sphere-plate system, 

𝜂 = ln (1 +
𝐷𝜋2

4𝑑𝑆−𝐴𝑢
) ~4.314, and 𝐴=0.23nm2/molecule from the packing of the SAM, with the frontier 

orbital separation of the Au-S estimated from DFT as 𝑑𝑆−𝐴𝑢~ 0.1Å. This suggests that the DFT values 

for 2D Au contacts are compatible with a real 3D junction given that it has a much larger contact area. 

We find that an adjusted value of 𝐶1=1.5aF provides the best fit of the model to experimental data, 

and gives the fit described in the main text and Fig.4b,c. Indeed the junction capacitance from 

molecule - metal contact increases, because of the larger charge screening possible for the 3D Au 

contact geometry. The controlling parameter is the ratio √𝐶1/𝐶2~15, which can be intuitively thought 

as representing how much wider the contact size for the metal-molecule contact is than the C-C link 

between the rings inside the molecule. 

For the BMMBP, we can estimate the reduction in conductivity along the chain from its well 

characterised effect on tunnelling.15,16 A universal scaling is found when inserting an additional carbon 

in the chain, with 𝛽~0.9. Using this in the model shows that the change in SERS at bias of 1V reduces 

as this molecular conductivity reduces (Supplementary Figure 14a). 

For both BPT and BPTCN, the top contact conductance and capacitance are expected to 

decrease. Again using this in the model, including both 𝑉1,𝐶1 and 𝑉3,𝐶3 given the molecular 

asymmetry, shows that the data would be explained for capacitances more than 30x times smaller 

than the BPDT contact capacitance where the thiol binds directly to the Au (Supplementary Figure 

14b). 

 



 

 

 
Supplementary Figure 14 | Effect of changes to circuit model in voltage-dependent suppression of 

SERS. a, Keeping all parameters the same as above, except reducing the molecular conductance 𝐺2. 

This shows that suppression reduces as molecular conductance reduces. Dashed lines show estimate 

for BMMBP. b, For several values of reduced top contact 𝐺3, shows SERS scaling with reduced contact 

capacitance  𝐶3. 

 

Supplementary Note 10. DFT calculations of charged BPDT molecules 

 

 
Supplementary Figure 15 | Energy potential of charged BPDT molecules vs ring torsion angle. DFT 

calculations on BPDT (Supplementary Note 6, gas phase) predict an energy minimum for a ring torsion 

angle of 35° without molecular charging. Adding net charge to the molecule, either positive or 

negative, induces a shift of the equilibrium position to smaller angles and gives an increase in Raman 

cross section in agreement with previous findings3,4. On the contrary, the observed decrease in Raman 

signal with bias in our experiments, indicates that molecular charging cannot be responsible. 

 



 

 

  
Supplementary Figure 16 | Raman spectra of charged BPDT. DFT calculations of BPDT indicate that 

positive (green, +1) or negative (blue, -1) molecular charge induces shifts in the Raman peak positions 

from those of the neutral molecule (orange). No shifts are observed experimentally when bias is 

applied across NPoM junctions. 

 

Supplementary Note 11. DFT modelling of BPDT junction under non-equilibrium condition 

A single molecule BPDT junction is first modelled with a 3D lattice of Au atoms in the leads 

(Supplementary Figure 17a), using double-zeta polarized basis set to verify consistency with the 

simplified 2D lattice, and with single-zeta basis set adopted later. This is to avoid computationally 

extremely expensive calculations using the 3D lattice of Au atoms in the leads. The energy profile 

shows qualitative agreement between the two models (Supplementary Figure 17). The simpler model 

with a 2D lattice described in the main text provides results consistent with the 3D lattice system and 

allows calculation of potentials and transport properties for various bias voltages including at higher 

bias voltages. Our calculations using this model show that the minimum energy configuration at zero 

bias is 𝜃~20°, which shifts to higher angles as the bias in increased (Supplementary Figure 18).  

 
Supplementary Figure 17 | DFT calculations of total energy with different electrode size. Single 

molecule BPDT junction modelled with a, a 3D lattice of Au atoms and b, a 2D lattice of Au atoms in 

the leads, as the angle between rings is varied. 



 

 

  
Supplementary Figure 18 | DFT calculations under bias for 2D Au lattice. Minimum energy 

configuration in 2D lattice model shifts from 𝜃~30° to 𝜃~90° as bias is increased from 𝑉𝑏=0V to 𝑉𝑏=2V. 

 

Furthermore, it is found that the induced potential and charge fluctuations swap sides when the 

applied bias is reversed (Supplementary Figure 19). This confirms that one contact acts as rectifying 

while the other is conducting, as expected for back-to-back Schottky diodes (discussed in the main 

text). 

 

  
 

Supplementary Figure 19 | Potential profile and charge distributions in 2D lattice model, for 𝜽=15°. 

a, Under 1V bias, the induced potential drops almost entirely at the S-Au interface of the metal lead 



 

 

with the higher electron potential (negative contact). The profile is mirrored when the bias polarity is 

inverted. b, Potential map. c, Charge distribution in units of elementary charge for each atom in the 

model (red: Au, yellow: S, green: C, purple/blue: H). Positive charge accumulates at the link-Au atom 

and neighbouring Au atoms, while negative charge is concentrated on the S atom, inducing a strong 

dipole at the molecule-lead interface, causing the large potential drop. 

 

To calculate transport properties of the junctions with different twist angle and bias voltages, from 

the converged mean-field Hamiltonian 𝐻(𝑉𝑏) obtained from DFT calculation, we calculated 

transmission coefficient 𝑇(𝐸, 𝑉𝑏) of electrons with energy 𝐸 passing from one electrode to the 

other17,18 via the relation 𝑇(𝐸) = 𝑇𝑟(𝛤𝐿 (𝐸)𝐺𝑅 (𝐸)𝛤𝑅 (𝐸)𝐺𝑅†(𝐸)) where 𝛤𝐿,𝑅(𝐸) = 𝑖(∑𝐿,𝑅(𝐸) −

∑𝐿,𝑅

†
(𝐸)) describes the level broadening due to the coupling between left 𝐿 and right 𝑅 electrodes and 

the central scattering region, 𝛴𝐿,𝑅(𝐸) are the retarded self-energies associated with this coupling and 

𝐺𝑅 = (𝐸𝑆 − 𝐻 − ∑𝐿
𝑒 − ∑𝑅

𝑒 )−1 is the retarded Green’s function, where 𝐻 is the Hamiltonian and 𝑆 is the 

overlap matrix obtained from SIESTA implementation of DFT under non-equilibrium conditions19. We 

then calculate the room-temperature current 𝐼(𝑉𝑏) from obtained 𝑇(𝐸, 𝑉𝑏) using Landauer formula 

𝐼(𝑉𝑏) =
2𝑒

ℎ
∫ 𝑑𝐸 𝑇(𝐸, 𝑉𝑏) (𝑓 (𝐸, 𝑇,

𝑉𝑏

2
) − 𝑓 (𝐸, 𝑇, −

𝑉𝑏

2
))

+∞

−∞
. The measured current is an ensemble 

average of a few tens of molecules in the junction. Each molecule junction has slightly different binding to 

the electrodes and therefore the alignment of frontier orbitals relative to the electrode Fermi energy can 

be different from one junction to the next. In order to account for this effect, we calculate 𝐼 − 𝑉 

characteristics using a range of electrodes Fermi energy ([-0.25, 0.25] eV) as shown in Supplementary 

Figure 20a. Supplementary Figure 20b shows the average current calculated from 𝐼 − 𝑉 curves in 

Supplementary Figure 20a. The corresponding electrical conductance is shown in Supplementary Figure 

20c. Clearly, there is a smooth crossover from currents through the 15°-twist angle (lowest energy 

configuration at low bias 𝑉 < 𝑉𝑡) to that of 90°-twist angle (lowest energy configuration at higher bias 𝑉 >

 𝑉𝑡).    

 

 
Supplementary Figure 20 | Transport in BPDT junctions. a, Calculated current though a single 

molecule BPDT junction as a function of applied bias. Small variations (±0.25eV fluctuation range 

plotted) in the Fermi energy change the transport properties for both 𝜃=15° and 𝜃=90°. b, Average of 

curves plotted in (a), together with c, corresponding conductance. In an NPoM junction with many 

molecules, switching towards 𝜃=90° likely occurs at slightly different voltages for each molecule, so 

no sharp change is conductance is expected around the transition voltage. 

 



 

 

 
Supplementary Figure 21 | Effect of binding geometry on transport calculations. Configuration 

energies obtained from DFT calculations under bias for flat Au electrodes (a), and displaced link-Au 

atoms (b). The specific atomic geometry of the molecule-electrode interface affects the configuration 

energy profile, but does not qualitatively change the ring twist behaviour. 

 

 

 
 

Supplementary Figure 22 | Simple tunnelling barrier picture of transport during molecular twisting. 

Initially upon SAM formation, electron transfer from Au to S creates a Schottky barrier at each 

electrode (blue arrows), with quasi-Fermi level shown dashed. a, At 𝜃=90° the central CC bond 

presents a high barrier, which dominates transport. Hence for voltage applied the potential drops 

mostly across the centre of the molecule. b, At 𝜃=15° there is no barrier in the centre of the molecule, 

so the only barriers are those set by the contact dipoles. Since the electron flux is proportional to 

𝑣|𝜓|2 (with 𝑣 the flux velocity) and is conserved, regions with higher barrier give smaller 𝑣 (𝑣 ∝ 𝑘 ∝

1/√2𝑚𝐸) and thus a larger wavefunction amplitude. This means that applying a positive bias to the 

right hand electrode (decreasing electron potential there) builds up electrons on the link-Au on the 

left side. This reduces the lhs surface dipole, decreasing the tunnel barrier which allows current to 

flow. The dipole on the rhs of the molecule is unchanged because there is no charge build-up (Fig. 4d 



 

 

red in main text). Note also that if the bias direction is reversed, the same contact dipole is modified 

on the negative electrode on the rhs (Supplementary Figure 19a). 
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