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Blockchain, parameterisation and automated
arbitrage applied to the chemical industry

Janusz Jerzy Sikorski

This thesis considers three scenarios related to chemical industry where
the concepts of eco-industrial parks (EIPs), Industry 4.0, parameterisation,
blockchain and arbitrage are brought together to explore the issues of simulation
speed and accuracy, machine-to-machine (M2M) communication and automated
participation in financial markets.

In the first scenario, a biodiesel plant flow sheet model is analysed and
parameterised. The relations between 11 inputs typical to a biodiesel plant
and its energy requirements are approximated using surrogate models, of which
accuracy is assessed. Additionally, the effects of dimensionality, domain size
and surrogate type on the accuracy are investigated and global sensitivities of the
outputs are computed using High Dimensional Model Representation (HDMR).
Most surrogate models achieved at least a reasonable fit regardless of the domain
size and number of dimensions. It was observed that in all cases only 4 or fewer
inputs have significant influence on any of the outputs and that the interaction
terms have only minor effect on any one output.

In the second scenario, applications of blockchain technology related to Industry
4.0 are explored and an example where blockchain is employed to facilitate M2M
interactions and establish a M2M electricity market in the context of the chemical
industry is presented. Successful implementation of two electricity producers and
one electricity consumer trading with each other over a blockchain-based network
is presented.

In the third scenario, an automated arbitrage spotter is developed and applied to
two cases: conversion of natural gas to methanol and crude palm oil to biodiesel.
The spotter is designed to search for opportunities to make additional profit by
analysing the futures market prices for both the reagent and the product. It
considers cost of storage and conversion (other feedstock, steam, electricity and
other utilities) derived from physical simulations of the chemical process. In a
profitable scenario up to 345.17 USD per tonne of biodiesel can be earned by
buying contracts for delivery of crude palm oil in September 2018 and selling
contracts for delivery of biodiesel in December 2018 in a ratio of 4 to 1.
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Chapter 1

Introduction

1.1 Motivation

The chemical industry is in the process of adopting digital technologies. These
technologies offer opportunities, including data analysis and predictive capabili-
ties such as equipment monitoring and predictive analytics, predictive quality and
improved energy management. They can aid in achieving better understanding
and optimisation of its activities ranging across all different levels: from work-
force schedules and individual pieces of machinery to entire plants. They can
also facilitate multi-objective analysis allowing inclusion of parameters such as
environmental impact in addition to the traditional profit maximisation. This is
important as environmental concerns such as reducing pollutants, creating cleaner
manufacturing processes or reducing carbon footprints become ever more press-
ing (Technavio, 2017; Klei et al., 2017; Beacham, 2017).

The process of adopting digital technologies presents a number of threats and
challenges. For example, the danger of cyberwarfare, which requires companies
to seriously consider physical security, industrial systems security, and data sys-
tems security within their organisations. For this reason, the chemical industry is
torn between accelerating the digitisation process to reap its benefits and exposing
itself on one hand, and treading carefully, but missing profitable opportunities on

the other, especially given that this transition is expected to take years to complete.




1 INTRODUCTION

The process of adoption is broadly described by the notion of Industry 4.0,
which aims to supply smart products using smart methods and processes that use
near-real-time data in the digital integration of value chains and facilitate seam-
less asset lifecycle information from plant concept to decommissioning (Leeuw,
2017). It introduces many concepts relevant to taking advantage of the afore-
mentioned opportunities, including machine-to-machine (M2M) communication,
cyber-physical systems (CPSs) and the Internet of Things (IoT) (Kleinelanghorst
et al., 2016; Kraft and Mosbach, 2010). M2M communication refers to the abil-
ity of industrial components to communicate with each other. CPSs can monitor
physical processes, create virtual copies of the physical world and make decen-
tralised decisions. The virtual copies could be realised as surrogate models (or
metamodels or parameterised models), which are approximations of experimental
and/or simulation data designed to provide answers when it is too expensive to di-
rectly measure the outcome of interest. IoT is a dynamic network where physical

and virtual entities have identities and attributes and use intelligent interfaces.

This thesis considers how to utilise the ideas of Industry 4.0 to bring the bene-
fits of digital technologies to eco-industrial parks. An eco-industrial park refers
to an industrial park where businesses cooperate with each other and, at times,
with the local community to reduce waste and pollution, efficiently share re-
sources (such as information, materials, water, energy, infrastructure, and natural
resources) and minimise environmental impact while simultaneously increasing
business success (Pan et al., 2015, 2016; Kastner et al., 2015). An example of
an already implemented digital technology is improving maintenance using sen-
sors attached to equipment. They monitor quality and throughput continuously,
while local, real-time computing provides insight and interactions that can prevent
equipment failures and breakdowns. Organisations employing this technology can
react quicker to arising issues resulting in a higher overall equipment effective-
ness and longer mean time between failures. The aforementioned concepts and
technologies such as parameterisations and blockchain can be brought together to
tackle the challenges encountered by the chemical industry while trying to exploit
benefits from digitisation and automation.




1.2 Research questions explored in the thesis

1.2 Research questions explored in the thesis

The aim of this thesis is to investigate how to apply selected ideas from Indus-
try 4.0 to the chemical industry and exploit further opportunities offered by eco-
industrial parks. Due to the breadth of the topic, the thesis focuses on three spe-
cific research questions and builds proof-of-concept demonstrations. Hence the

following research questions are posed:

e How can a typical process flowsheet model be parameterised to give a sim-
plified surrogate model? Can the resulting surrogate models yield sufficient
accuracy? What is required to progress towards full automation of generat-

ing such surrogate models?

e How can blockchain industry be employed within the chemical industry?
Can it be used to leverage new opportunities in the context of eco-industrial

parks?

e Do opportunities for financial arbitration over chemical commodities exist

on futures markets?




1 INTRODUCTION

1.3 Novel elements of the thesis

This thesis presents the following novel developments:

e A biodiesel plant flow sheet model is successfully analysed and parame-
terised to produce a range of possible surrogate models. Most of the sur-
rogate models achieved at least a reasonable fit regardless of the domain
size and number of dimensions. Effects of dimensionality, domain size and
surrogate type on the accuracy are investigated. Additionally, global sensi-

tivities of the outputs are computed.

e The use of blockchain to facilitate M2M communications and establish an
M2M electricity market in the context of the chemical industry is proposed.
A scenario where two electricity producers and one electricity consumer
are trading with each other over a blockchain-based network is successfully

implemented.

e An automated arbitrage spotter is developed and demonstrated. The arbi-
trage spotter uses market and physical data to search for opportunities to
take advantage of a price difference between multiple markets. It is applied
to two scenarios: conversion of natural gas to methanol and crude palm oil
to biodiesel. The programme is designed to search for opportunities to make
additional profit by analysing the futures market prices for both the reagent

and the product.

1.4 How the thesis connects

The scenarios presented in this thesis are intended to be included in J-Park Simu-
lator (JPS) (Kleinelanghorst et al., 2016; Pan et al., 2015). The JPS is intended
to demonstrate the potential of a modelling platform that integrates cross-domain
real-time data sources and models to holistically assess the impact of various con-
tingencies and provide clear, visual information to support decision-making and

option analysis in the context of the industrial complex located on Jurong Island in
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Singapore. The domains covered by JPS include, but are not limited to, chemical
processes, electricity grids, building information management and safety controls.
The development of the JPS is a central part of the research undertaken at the Cam-
bridge Centre for Advanced Research and Education in Singapore and it remains

an ongoing research project.

This thesis focuses on three scenarios relevant to the development of JPS. The
first focuses on the biodiesel plant formerly located within the park, the second on
a potential M2M electricity market connecting individual machines on the island

and the third on enabling process lines to participate in the financial markets.

The remainder of this thesis is structured as follows. Chapter 2 gives a gen-
eral introduction and literature review of the employed concepts and modelling
techniques. In Chapter 3 the case study of using parameterisation techniques
to a biodiesel plant flow sheet model is presented. In Chapter 4 applications of
blockchain technology related to Industry 4.0 are explored and an example where
blockchain is employed to facilitate M2M interactions and establish a M2M elec-
tricity market in the context of the chemical industry is presented. In Chapter 5
a system that gathers and analyses market and physical (from simulations) data
about the relevant industrial processes and advises on potential investments is
presented. Chapter 6 summarises the conclusions of the thesis and suggests areas

for future work.







Chapter 2

Literature review

This chapter gives a general introduction and literature review
of the employed concepts and modelling techniques. The notion
of Industry 4.0, and the subservient concepts of the Internet of
Things, machine-to-machine communications and cyber-physical
systems, are presented and how it can enable holistic modelling
of complex industrial networks such as those present in eco-
industrial parks. Surrogate models and blockchain technology are
described as potential solutions to issues such as speed, accuracy,
storage space and connectivity. Research and applications of
model predictive control (MPC) are described and discussed. The
interface between the chemical industry and financial markets
is explored and scenario where an independent chemical plant

participates in the global financial markets is presented.




2 LITERATURE REVIEW

2.1 Eco-Industrial Parks

Every industrial actor strives towards better understanding and, ultimately, op-
timisation of any and all of its activities. Traditionally the main objectives of
such an optimisation are minimising resource use and maximising profit. How-
ever, as environmental concerns become ever more pressing ecologically-focused
targets such as reducing pollutants, creating cleaner manufacturing processes
or reducing carbon footprints rise in prominence. Those trends prompted sig-
nificant academic and industrial interest in the concepts of "laws of industrial
ecology" (Renner, 1947), "industrial ecology" (Armstrong and Bashshur, 1958;
Barnard, 1963; Hoffman, 1971; Watanabe, 1972; Allenby, 2004, 2006), "sustain-
able development" (Brundtland et al., 1987) and "industrial symbiosis" (Cher-
tow, 2000). Whence crystallised the concept of eco-industrial parks, an industrial
park where businesses cooperate with each other and, at times, with the local
community to reduce waste and pollution, efficiently share resources (such as in-
formation, materials, water, energy, infrastructure, and natural resources), and
minimise environmental impact while simultaneously increasing business suc-
cess (Pan et al., 2015).

An early example of industrial application of industrial symbiosis is the Verbund
principle created and followed by BASF since their inception in 1865 (BASF,
2018). An example of organically developed EIP is the Kalundborg industrial
park, which was started in 1959 (Ehrenfeld and Gertler, 1997). Primary academic
interest stems from EIPs’ ability to create more sustainable industrial activities
through the use of localised symbiotic relationships (Boix et al., 2015; Kastner
et al., 2015). To this date a great number of studies concerning various aspects
of EIPs have been conducted. Many of them probe methods suitable for optimal
design, focusing primarily on employing mathematical programming to create
exchange networks of materials, water and energy connecting members of the
EIP in question (Cimren et al., 2012; Kantor et al., 2012; Keckler and Allen,
1999; Liao et al., 2007; Karlsson, 2011). Utility of such designs is evaluated by

monitoring environmental, social and economical impacts.

Holistic modelling of complex, highly interconnected networks is a non-trivial
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2.2 Industry 4.0

and expensive task, especially for EIPs which include numerous physical models
of disparate processes. A substantial amount of supporting information which
covers not only data, but also specific knowledge about the EIP in question is
required in order to understand the system and create an accurate model. In this

case, the required supporting information has the following features:

e Large volume: measurement data continuously produced by sensors within

the EIP needs to be stored and analysed;

e Distributed storage: data from individual plants, machines or even sensors
can be stored locally, but the relevant knowledge needs to be shared glob-

ally;

e Syntax heterogeneity: engineering information can be represented in a va-
riety of, often incompatible, forms such as text documents in natural lan-

guage, mathematical models, tables and diagrams, structured worksheets;

e Semantic heterogeneity: understanding of vocabulary and relationships
within information in a specific engineering domain is often implicit and

thus difficult to translate to another domain.

2.2 Industry 4.0

The ideal of a holistic model of an EIP could be brought about by exploiting
key concepts of Industry 4.0, a movement of manufacturing technologies towards
automation and data exchange which includes cyber-physical systems, the Inter-
net of Things and M2M communication, cloud computing and cognitive comput-
ing (Pan et al., 2015; Zhang et al., 2017; Hermann et al., 2016). M2M commu-
nication refers to the ability of industrial components to communicate with each
other. CPSs can monitor physical processes, create virtual copies of the physical
world and make decentralised decisions. IoT is a dynamic network where physi-
cal and virtual entities have identities and attributes and use intelligent interfaces.
Each component of an EIP could become a CPS by having a virtual copy and par-

ticipating in a network collectively created with other CPSs. Such a network could
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2 LITERATURE REVIEW

facilitate the connection and control of the technical components intelligently by
sharing information and understanding that trigger actions. Four design principles
of Industry 4.0 are used to identify and implement its key concepts in real-life
scenarios (Hermann et al., 2016). Those include interconnection (including M2M
and machine-to-people communications), information transparency, technical as-
sistance (via data analysis and visualisation and CPSs physically supporting the
operators) and decentralized decisions (i.e. the ability of CPSs to make low-level
decisions autonomously). Among the challenges faced during implementation of
Industry 4.0 are reliability and stability, IT security issues, unclear economic ben-
efits and need to maintain the integrity of production processes. This work focuses
on the software side of Industry 4.0 and considers a number of exploratory scenar-
ios in order to address some of those challenges: surrogate models of a biodiesel
plant as means of providing CPSs with their virtual component (see Section 2.3),
blockchain technology as a test of M2M interactions within an internal network
(see Section 2.5) and arbitrage spotter as an example of a chemical plant simula-
tion interacting with a commodity market in an external network and yielding a

clear economic benefit (see Section 2.6).

2.3 Surrogate models

One of the critical challenges of modelling EIPs is the creation of suitably ac-
curate, fast and lightweight virtual components of CPSs. This could be solved
with surrogate models (or metamodels or parameterised models), approximations
of experimental and/or simulation data designed to provide answers when it is too
expensive to directly measure the outcome of interest (Forrester et al., 2008). Two
key requirements thereof are reasonable accuracy and significantly faster evalua-

tion than the original method. The models are used to:

e explore design space of a simulation or an experiment,

e calibrate predictive codes of limited accuracy and bridging models of vary-

ing fidelity,

e account for noise or missing data,

10



2.3 Surrogate models

e gain insight into nature of the input-output relationship (data mining, sensi-

tivity analysis and parameter estimation).

Producing a surrogate model involves choosing a sampling plan (an experimental
design), choosing a type of model and fitting the model to the gathered data. Nu-
merous sampling and fitting techniques are available as documented in a number
of reviews. Simpson et al. (2001) provides detailed reviews of data sampling and
metamodel generation techniques, including response surfaces, kriging, Taguchi
approach, artificial neural networks and inductive learning. It also discusses met-
rics for absolute and relative model assessment, including R?, residual plots and
root mean square error. An introduction to and analysis of linear regression with
a focus on generalized linear mixed models with many examples and case studies
is provided by Ruppert et al. (2003).

A book by Forrester et al. (2008) puts the process of data sampling and gen-
erating surrogate models into engineering perspective providing numerous case
studies and MATLAB code to perform associated calculations. It discusses re-
sponse surfaces, kriging, support vectors machines and radial basis functions.
An in-depth review of kriging, its application and new extensions are provided
by Kleijnen (2009). A review and assessment of various sampling techniques is
provided by Crary (2002). Reich and Barai (1999) focuses on assessment of ma-
chine learning techniques, artificial neural networks in particular, with case studies
of modelling marine propeller behaviour and corrosion data analysis. An example
of surrogate models bridging models of varying fidelity is provided by Bakr et al.
(2000) where a surrogate maps data produced by fine and coarse physical mod-
els in order to accelerate optimisation of the fine model. Surrogate models are
widely employed in engineering and science for space exploration (Gough and
Welch, 1994; Geyera and Schlueter, 2014), modelling (Knill et al., 1999; Crary
et al.,2000; Chen et al., 2014), sensitivity analysis (Azadi et al., 2014a; Chapman
et al., 1994; Gough and Welch, 1994; Menz et al., 2014; Jouhauda et al., 2007),
parameter estimation (Kastner et al., 2013; Bailleul et al., 2010; Braumann et al.,
2010a), optimisation in areas ranging from circuit design through nanoparticle
synthesis to flood monitoring (Bernardo et al., 1992; Aslett et al., 1998; Roux

and Bouchard, 2013). A number of studies addressed application of surrogates to

11



2 LITERATURE REVIEW

process flow sheet models. Caballero and Grossmann (2008) replace the compu-
tationally expensive subsystems of a flow sheet with Kriging surrogates to speed
up optimisation. Hasan et al. (2012); First et al. (2014); Hasan et al. (2013); Nu-
chitprasittichai and Cremaschi (2013); Boukouvala and Ierapetritou (2013) guide
sampling of an expensive rigorous model using Kriging surrogates to reduce com-
putational time required for optimisation. Fahmi and Cremaschi (2012) optimise
a design of a biodiesel production plant by replacing all subsystems in a process
flow sheet model with surrogate models based around artificial neural networks
(ANNSs) and solving thus defined mixed-integer non-linear problem. Henao and
Maravelias (2011) propose a systematic method for creating surrogate models of
chemical engineering systems and arranging them into a solvable network (super-
structure). The study focuses on ANNSs as a base for their surrogate models and
describes how a superstructure can be optimised. Kong et al. (2016) employ some
of the concepts developed in Henao and Maravelias (2011) for design optimisa-
tion of a chemical plant with heat integration and an attached utility plant. This

paper includes a case study of non-enzymatic ethanol production from biomass.

2.4 Model predictive control (MPC)

MPC is a class of control techniques of which main advantages are its use of step
response data and the ability to handle hard constraints explicitly through on-line
optimization. MPC comes in a number of forms including dynamic matrix control
(DMC) (Cutler and Ramaker, 1980), model algorithmic control (MAC) (Rouhani
and Mehra, 1982), and internal model control (IMC) (Garcia et al., 1989). MPC
has a demonstrated effectiveness in industrial applications and hence is widely
employed (Nunes, 2001). It is important in the context of Industry 4.0 as it is in-
tended as or already employed as the software component of cyber-physical sys-
tems as it can handle models of varying complexity with constraints and allows for
previewing information and different problem formulations (Raman et al., 2014;
Shi et al., 2015; Kasparick and Wunder, 2018; Lucia et al., 2016; Cicconi et al.,
2017). MPC is distinct from surrogate models as they are a multivariable control

algorithm that employs an internal dynamic model of the controlled process and
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an optimisation cost function while taking into account a history of past control
moves (Nikolaou, 1998). Surrogate models can be used within MPC, e.g. explicit
MPC uses piecewise affine functions computed offline, however they are an engi-
neering method for approximating an input-output behaviour of a process that is

difficult or expensive to measure directly.

MPC techniques stem from the linear quadratic regulator (LQR) designed by
Kalman in the early 1960s (Kalman, 1960) to minimise an unconstrained
quadratic objective function of states and inputs. From there the field was ex-
plored in various directions. Model Predictive Heuristic Control (later known
as MAC) was presented by Richalet ef al. (1978). Garcia and Morshedi (1986)
used quadratic programming in quadratic dynamic matrix control to solve the
constrained open-loop optimal control problem where the system is linear, the
cost quadratic, the control and state constraints are defined by linear inequalities.
Keyser and Cauwenberghe (1985) developed Extended Prediction Self—Adaptive
Control which uses a constant control signal starting from the present moment
while using a sub-optimal predictor. Based on that Clarke et al. (1987a,b) devel-
oped Generalized Predictive Control (GPC).

Another variety of MPC is the explicit MPC (eMPC) which allows fast evaluation
as the solution to the considered control problem is calculated offline (Bemporad
et al., 2002). The solution commonly comes in the form of a piecewise affine
function (PWA), a piecewise function which preserves points, straight lines and
planes. In those cases, an eMPC controller needs to store coefficients of the PWA
for each a control region and coefficients of the parametric representations of all
the regions (Garcia et al., 2012). In order to compute the optimal solution, the
region containing the current state needs to be determined and then the PWA needs

to be evaluated using the PWA coefficients stored for all regions.

2.5 Blockchain technology

Section 2.1 introduced the key concepts of Industry 4.0 in the context of eco-

industrial parks including cyber-physical systems, machine-to-machine commu-
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nications and the Internet of Things. Implementation of those concepts in the in-
dustry could be aided by blockchain technology. For example, blockchain could
be used to facilitate M2M commodity (e.g. electricity) trading. In the example of
electricity traded on a wholesale market (as in, for example, USA, Australia, New
Zealand, many European countries and Singapore (Green, 2008)) such a system
could reduce the overhead costs of the traditional trading practice and increase
speed of transaction settlements. Those costs include administration associated
with billing, reconciliation, hedging contracts and purchase agreements, which
may constitute a significant part of electricity price (e.g. in the UK it is 16% (En-
ergy UK, 2015) and in Australia approximately an eighth (EnergyAustralia, 2016)
depending on the place e.g. in Tasmania 12.2% (Aurora Energy Pty Ltd, 2017)).
Additionally, two extensive reports on the application of blockchain technology
in the energy sector by Burger et al. (2016); Hasse et al. (2016) describe potential
use cases and obstacles, including legislative, that need to be overcome before the

technology can be widely introduced.

Blockchain is a type of distributed, electronic database (ledger) which can hold
any information (e.g. records, events, transactions) and can set rules on how this
information is updated (Condos ef al., 2016). It continually grows as blocks (files
with data e.g. transactions) are appended and linked (chained) to the previous
block using a hash (the chaining is visualised in Fig. 2.1 using Bitcoin as an ex-
ample). The hash is produced by running contents of the block in question through
a cryptographic hash function (e.g. Bitcoin uses Secure Hash Algorithm - 256 bit,
SHA-256). An ideal cryptographic hash function can easily produce a hash for
any input, but it is difficult to use the hash to derive the input. Additionally, any
changes in the original data should result in extensive and seemingly uncorrelated
changes to the hash (Rogaway and Shrimpton, 2004; Lewis, 2015). Finally, it
should be infeasible for two different inputs to result in the same hash. Using the
cryptographic hashes in this manner ensures that in order to alter an entry in a
past block all subsequent blocks also need to be altered (Rogaway and Shrimpton,
2004; Lewis, 2015). The ledger is validated and maintained by a network of par-
ticipants (nodes) according to a predefined consensus mechanism (a set of rules

allowing the network to reach a global agreement (Buterin, 2014)) so no single
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centralized authority is needed. Multiple (but not necessarily all) nodes hold a full

copy of the entire database.

Blockchain technology is relatively new, continues to evolve and comes in many
different shapes and forms. In this work Bitcoin is used as a case study as it is the
most well-known and successful implementation of blockchain technology. Bit-
coin is a payment system based on a permissionless (i.e. anyone can read or write
to the chain) blockchain maintained by a peer-to-peer network (P2P) (Nakamoto,
2009a). It features its native currency (bitcoin or BTC), a proof-of-work consen-
sus mechanism (note that there exist other types of consensus mechanisms; for
more see A.2), timestamped blocks not larger than 1 MB (number of transactions
per block varies depending on their size), anonymity, a financial incentive to pub-
lish blocks, optional transaction fees, a cap of the total BTC supply and BTC
fungibility. The blocks primarily record BTC transactions, although additional
data can also be included. An example of Bitcoin’s block and its contents can be
viewed in Fig. 2.2 and 2.3, respectively. A transaction is a transfer of BTC from a
wallet address (or addresses) to another wallet address (or addresses). For creation
transactions, only a receiving wallet is required. Wallets are public representations
of the public and private key pairs that are used to store and transfer coins. One
or more such key pairs are generated for each participant so business can be con-
ducted in a secure and anonymous manner. The keys are a result of an encryption
method called public-private key cryptography, which uses pairs of parameters:
public and private. A public key can be used to verify that a message was created
by an owner of the paired private key (verification of a digital signature) and to

encrypt a message such that only the aforementioned owner can decrypt.

Bitcoin employs a proof-of-work consensus mechanism where the ability to
verify and publish transactions is dependent on the computing power of a
node (Nakamoto, 2009a). In order to publish a block, a node is required to com-

plete the following steps:

1. Build a candidate block using valid transactions (i.e. compatible with the

rest of the chain) from among the submitted transactions.

2. Calculate a hash of the block header using SHA-256 and compare it with
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the current target (a specific number of leading zeros; for more information

see Hash target in A.1), which is imposed by Bitcoin’s protocol.

3. If the hash is not correct, the nonce of the header (an arbitrary number in
the header) will be repeatedly altered until a solution is found or the target

is changed (which means that another node’s block was added to the chain).
4. If the hash is correct, the block is broadcast to the Bitcoin network.

5. If majority of the network (weighted by computing power) accepts the block
it is permanently added to the chain and the publisher is rewarded with

newly created BTCs.

6. If another node’s block is added to the chain, the current block will be dis-

carded entirely, and the process needs to start all over again.

Note that in a case where multiple suitable blocks are broadcast almost simultane-
ously, the chain will temporarily split into two or more branches (forks) which will
be pursued until one is backed by a majority of the network. Bitcoin’s protocol
ensures that a block is added to the chain roughly every 10 minutes (ideally 2016
blocks would be added every 1209600 seconds) by adjusting the difficulty of the
hash target (Nakamoto, 2009a). However, this mechanism results in significant

confirmation latency (order of tens of minutes) and can be resource exhaustive.
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merkle root is a hash based upon all transactions in a block (for more details
see entry "Merkle tree" in A.1).
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Figure 2.3: Sample of transactions from Bitcoin block no. 438995 (Nakamoto, 2016).
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Explored areas and applications

Blockchain is yet to be fully explored in the academic literature, particularly in
relation to the chemical industries. The review of the literature that informed this
section therefore included technical reports, industrial and governmental position
papers and news articles, which provide better access to the latest work in several

areas.

The findings were divided into the following areas:

Explored areas

Security and privacy

Wasted resources and usability
Applications

Record-keeping and contract enforcement

The Internet of Things

Security and privacy

Security and privacy are among the core issues of blockchain technology as ap-
plied to digital currencies and at the same time the most explored areas. The main
issues of security include a possibility of 51% attack, which involves attackers
collectively controlling majority of the network, scams (e.g. Ponzi scams, min-
ing scams, scam wallet, fraudulent exchanges) and distributed denial-of-service
(DDoS) attacks on exchanges and mining pools. A degree of privacy is intro-
duced as every participant may use one or more anonymous wallets. However, it
is still possible to uncover information on the wallet owners. For example, Koshy
et al. (2014) managed to map a subset of Bitcoin addresses to IP addresses by

monitoring and analysing transaction traffic.

A comprehensive review by Yli-Huumo ef al. (2016) found that the majority of re-

search publications are concerned with this area. These issues are also addressed
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by Koblitz and Menezes (2016) who describe two solutions to the problem of cre-
ating a digital currency with the advantages of physical cash, namely an elliptic-
curve-based version of a construction provided by Brands (1993) and Bitcoin.
A detailed description of the mathematics and necessary protocols (setup, sig-
nature, withdrawal, payment, deposit and double-spending prevention) for cur-
rency systems based on cryptographic hash functions is provided. Applications
specifically addressing the issues include CoinParty (Ziegeldorf et al., 2015),
CoinShuffle (Decker and Wattenhofer, 2014), Zerocash (Sasson et al., 2014) and
Enigma (Sasson et al., 2014). Zerocash is a ledger-based digital currency which
allows user identities, transaction amounts and account balances to be hidden from
public view, but still with the ability to quickly and efficiently facilitate transac-
tions (not exclusively financial). Enigma combines blockchain and off-blockchain

data storage to construct a personal data management platform focused on privacy.
Wasted resources and usability

Maintaining the most popular blockchain network consumes significant amounts
of energy on calculations which have no meaning other than the maintenance.
According to O’Dwyer and Malone (2014) in 2014 the power used for Bitcoin
mining was comparable to Ireland’s electricity consumption. Furthermore, in-
creasing accessibility of blockchain technology (e.g. via more user-friendly ap-
plication programming interface, API) should increase its exposure to areas other
than technical computer science and thus help to alleviate the problem of wasted

resources and many others.

The review by Yli-Huumo et al. (2016) identified eight papers focused on the
problems of wasted resources and usability (four each). The applications aimed at
improving Bitcoin’s usability include BitConeView (Kishigami et al., 2015) and
Bitlodine (Spagnuolo et al., 2014). English et al. (2016) demonstrate how Se-
mantic Web and blockchain technology can enhance each other: the former could
facilitate implementation of the latter for several novel applications (e.g. Indus-
try 4.0 platforms for online education or for supply chain management), while
the latter could contribute towards the realization of a more robust Semantic Web
(for a definition see A.1). An ontology for capturing data within a blockchain

was created in order to increase usability of the technology, to facilitate a shared
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understanding of this technology between humans and to enable interlinking with
other Linked Data (for a definition see A.1) to conduct formal reasoning and infer-
ence. A number of consensus mechanisms were developed which are not primar-
ily based on performing intensive computations and typically enjoy lower elec-
tricity consumption for a similar blockchain network. Those include the follow-
ing mechanisms: proof-of-stake (Vukoli¢, 2016; O’Dair et al., 2016; Goodman,
2014), deposit-based (Zamfir, 2015; Sompolinsky and Zohar, 2013), Byzantine
agreement (Higgins, 2015; Vukoli¢, 2016; Castro and Liskov, 1999; Maziéres,
2015) and a rotation scheme (Greenspan, 2015). Goodman (2014) and Greenspan
(2015) employ those concepts in their projects, respectively, Tezos and Multi-
Chain. The first is a generic and self-amending crypto-ledger employing proof-
of-stake consensus mechanism. The second is an off-the-shelf platform for the
creation and deployment of private blockchains aiming to facilitate easy deploy-

ment of blockchain in the organisations of the financial sector.
Application to record-keeping and contract enforcement

Keeping and creation of records and enforcement of contracts are among the most
promising applications of blockchain technology across a wide range of industries
from finance to construction. In the context of Industry 4.0 such capability could
facilitate logging and sharing data (e.g. emissions) and advanced M2M trading

(e.g. bonds).

Watanabe et al. (2015) presents a blockchain-based system for confirming con-
tractor consent and archiving the contractual documents. Cardeira (2015) argues
that employment of the blockchain technology might remedy the major problems
of construction industry, namely timing and guarantee of payments, via smart
contracts (for a definition see A.1). Smart contracts would ensure that sufficient
funds are available to finance the project and that everyone is paid in a timely
manner. The governmental report by Condos et al. (2016) assesses the opportu-
nities and risks of blockchain technology from the perspective of the American
state of Vermont. It is identified that a valid blockchain could be a reliable way
of confirming the party submitting a record, the time and date of its submission,
and the contents of the record at the time of submission. The final conclusion

states that currently the costs and challenges associated with the technology for

21



2 LITERATURE REVIEW

Vermont’s public recordkeeping outweigh the identifiable benefits. Korpela et al.
(2017) explore the potential effects of the technology on the supply chain manage-
ment across a number of industries. Holotiuk et al. (2017); Lindman et al. (2017)
analyse the, potentially disruptive, effects of cryptocurrencies and blockchain on
the payments industry. O’Dair et al. (2016) discuss various applications in the
music industry, including a networked copyright database, efficient royalty pay-
ment system and provision of access to alternative funding sources for artists.
Organisations using blockchain in the music industry include Bittunes (Edhouse,
2013), Dot Blockchain Music (Rogers, 2016) and Mycelia (Heap, 2016). In the lo-
cal infrastructure field, a number of projects have adopted blockchain technology
to enable residents to choose where to buy renewable energy from (their neigh-
bours or others) and to support communities in keeping energy resources local,
reducing dissipation and increasing micro- and macro-grid efficiency. Those in-
clude GridSingularity (GridSingularity, 2016; Nguyen, 2016), LO3 (LO3 Energy,
2016) and SolarCoin (SolarCoin, 2016), as described by a number of technology
news (Rutkin, 2016; Lacey, 2016; Lilic, 2015b,a).

Furthermore, a number of applications were found in finance including:
chain.com (Ludwin, 2014) (deployment of blockchain networks); Augur (Peter-
son, 2015) (prediction trading); Everledger (Kemp, 2015) (certification of pre-
cious gemstones); Stroj (Wilkinson and Quinn, 2015) (sharing service for internet
bandwidth and spare disk space); Namecoin (Kraft, 2011)(an open-source Internet

infrastructure such as DNS and identities).
Application to the Internet of Things

Employment of blockchain technology for the purpose of introducing transac-
tional functionality to the IoT has been addressed by a number of ideas and appli-

cations including:

e JoTcoin (Zhang and Wen, 2015) - a currency based on BTC intended to
facilitate proof of ownership and exchanges of IoT commodities (e.g. sensor

data or smart property).

e Community currency (Vandervort et al., 2015) - a proposed crypto-currency

issued by a non-government entity to serve the economic or social interests
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of a group of people.

e Enigma (Zyskind et al., 2015) - whilst primarily a blockchain-based plat-
form for personal data protection, an assessment by Atzori (2016) deems it

a suitable solution for the issue of privacy in the IoT.

e [OTA (Buntix, 2014; Atzori, 2016) - a crypto-currency developed for the
IoT and M2M economy based on Tangle, a blockchain "without blocks"
(i.e. each transaction is confirmed separately).

e ADEPT (Autonomous Decentralized Peer-to-Peer Telemetry) (Panikkar
et al., 2015; Atzori, 2016) - an architecture designed for a dynamic democ-
racy of objects connected to a universal digital ledger, which provides users

with secure identification and authentication.

e Filament (Clift-Jennings, 2016) - a technological framework developed to
enable devices to hold unique identities on a public ledger and to discover,
communicate and interact with each other in an autonomous and distributed

manner.

2.6 Commodity futures market and the chemical in-

dustry

Most organisations participating in industrial parks are profit-seeking companies.
Sometimes investment and energy-saving opportunities present themselves but
cannot be exploited due to significant risks and absence of relevant data or a physi-
cal model with sufficiently strong predictive capabilities. For example, a chemical
plant, with spare production capacity, could make additional earnings by exploit-
ing the price differences between its feedstock and product on the commodity
markets. However, straying from the established throughput without an accurate

simulation may lead to decreased product quality or even damaging equipment.

Industry 4.0 introduces many concepts relevant to taking advantage of the afore-

mentioned opportunities, including M2M communication, cyber-physical systems
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and the Internet of Things (Kleinelanghorst et al., 2016; Kraft and Mosbach,
2010). A system could be established that gathers and analyses market (local
and global) and physical (from sensors and simulations) data about the relevant
industrial processes and advises on potential investments and energy savings. It is
conceivable that in the future an entire production plant or even an entire industrial

park would autonomously seek and fulfil such opportunities.

Furthermore, exploring and exploiting such possibilities within an industrial park
may encourage closer cooperation of participants’ plants leading to a transforma-
tion into an eco-industrial park. An EIP is an industrial park where businesses
cooperate with each other and, at times, with the local community to reduce waste
and pollution, efficiently share resources (such as information, materials, water,
energy, infrastructure, and natural resources), and minimize environmental impact
while simultaneously increasing business success (Pan et al., 2015, 2016; Kastner
etal.,2015).

Numerous studies have been written on trading commodities and their futures on
an exchange, for example, Garcia and Leuthold (2004); Szakmary et al. (2010);
Fung and Hsieh (2001); Campa (1994). A number of publications considers the
interactions between the production and the commodity markets. Smith and Stulz
(1985) examine the reasons why firms hedge and what risks do they choose to
hedge and develop a theory of the hedging behaviour of value-maximizing cor-
porations. Bjorgan et al. (1999) study the issues of financial risk management
in the energy sector and explores impact of financial contracts (such as futures)
for scheduling policies of the companies in the industry. The paper by Tanlapco
et al. (2002) examines risk-minimizing hedging strategies using futures contracts
in an electricity market and finds that the use of electricity futures contracts is
superior to using other related futures contracts such as crude oil. Spinler et al.
(2003) present a theoretical analysis of options contracts for physical delivery
which shows how spot market price risk, demand and cost risk can be shared
between buyer and seller. They conclude that such a contingency may comple-
ment financial risk management instruments capital-intensive firms such as those
in the chemical industry. Ding et al. (2007) explore integrated operational and
financial hedging decisions faced by a global firm. The study found that finan-
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cial hedging strategy ties closely to, and can have both quantitative and qualitative
impact on, the firm’s operational strategy. The publication by Kannegiesser et al.
(2009) presents a planning model for coordinating sales and supply decisions for
commodities in a chemical industry. The impact of elasticities, variable raw ma-
terial consumption rates and price uncertainties on planned profit and volumes are

demonstrated.

A number of studies develop and apply modelling techniques in order to aid com-
panies with financial risk management. Ryu (2006) discusses two multi-period
planning strategies used to minimise negative impact of varying conditions on a
company’s profitability. One is to modify the external condition, e.g. demands,
and the other is to expose explicit constraints limiting capacity expansion. Park
et al. (2010) and Ji et al. (2015) present financial risk management methods in
the petrochemical industry. The former demonstrates a two-stage stochastic pro-
gramming framework for operational planning and financial risk management of
a refinery. The method optimised the contract sizes (long-term, spot and futures)
and the plant’s operational plan. The latter presents a one-stage stochastic pro-
gramming model for the integration of operational hedging and financial hedging
strategy in the crude oil procurement process subject to oil price fluctuation. This
approach uses Conditional Value-at-Risk as the risk measure and considers fu-
tures contracts, put options and call options during optimisation. A publication
by Longinidis et al. (2015) presents a supply chain network design model that
yields the optimal configuration under a variety of exchange rate realizations and
integrates operational hedging actions that mitigate exchange rate risk. Kwon
et al. (2017) describe and demonstrate a two-stage programming framework for
maximizing profit of a petrochemical company. The two stages are hedge trading
(minimising costs of raw materials) and production planning (maximising sales
profits). The procedure simultaneously optimises timing, amount, and price of
raw materials and the strategies for facility operation and product sales. An exam-
ple of a Korean petrochemical company is used to present that this approach can

improve profitability.
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Chapter 3

Surrogate models of a biodiesel
plant

This chapter investigates the extent to which surrogate models
can be used to parameterise typical input-output relations in a
process flow sheet model. The investigation is performed in the
context of a biodiesel plant on Jurong Island. It is shown that
accurate surrogate models can be generated and can be used
as replacements for the detailed flow sheet model in the context
of cyber-physical systems that require rapid and stable model
execution. A variety of scenarios were considered: 1, 2, 6 and
11 input variables were changed simultaneously, 3 domain sizes
of the input variables were considered and 2 different surrogates
(polynomial and HDMR fitting) were used. All considered outputs
were heat duties of equipment within the plant. All surrogate
models achieved at least a reasonable fit regardless of the domain
size and number of dimensions. Global sensitivity analysis with
respect to 11 inputs indicated that only 4 or fewer inputs had
significant influence on any one output. The chapter concludes

with a discussion of continuing the presented work.
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3.1 Methodology

Aspen Plus (a process modelling and optimisation software), MoDS (a software
tool designed to analyse black-box models) and custom-made Python 3.4 (a pro-
gramming language for general-purpose programming) and R 3.2.2 (a software
tool for statistical computing and graphics) scripts were employed together in or-
der to produce and analyse surrogate models of the biodiesel plant simulation
(described in detail in 5.1.1). In this study the following procedure was used:

1. MoDS generated a Sobol sequence (an example of quasi-random, space-
filling sequences) of input data for user-specified variables within the pro-

cess flow sheet model.

2. Python script altered model’s input data, evaluate the simulation and pro-

duce a file with user-specified output values.
3. MoDS retrieved values of user-specified outputs from the file.

4. MoDS scanned data for errors and corrected them (e.g. a reactor reaching

unrealistic temperatures).

5. MoDS generated polynomial and HDMR surrogates that map inputs to out-
puts. Only a subset of the data was used in this step, while the rest was used
for analysis of the surrogates’ accuracy.

6. R was used for postprocessing.

This workflow is visualized in Figure 3.1. More detail is available in the rest of
the chapter.

3.1.1 Codes and data

This work can be reproduced by following this workflow and us-
ing the instructions and code provided under the following link:
https://doi.org/10.17863/CAM.33680.
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3.2 Description of the biodiesel plant model

—> R

Aspen :> MoDS |:> script
—

Plus :

Figure 3.1: Study workflow for Chapter 3.

3.2 Description of the biodiesel plant model

3.2.1 Biodiesel plant simulation

The process flow sheet model under investigation includes initial stages of a
biodiesel production line, namely a reaction step and a separation step, with aux-
iliary equipment as seen in Figure 3.2. The final fuel, fatty acid methyl ester, is
produced via trans-esterification pathway where triglycerides react with methanol
to form methyl ester and glycerine in the presence of an alkaline catalyst. The
flow sheet was based on an existing plant designed by Lurgi GmbH. It consists
of the following elements: a continuously stirred tank reactor (CSTR), a flash
drum, a decanter, 3 heaters and 11 material streams. In the process tripalmitin oil
is reacted with methanol in the CSTR to produce glycerol and methyl palmitate
(biodiesel) and then passed through a flash drum and a decanter to separate ex-
cess methanol and glycerol. The simulation is solved for steady-state operation
and produces a wide variety of chemical and physical information ranging from

throughput to heat duties of individual equipment.

In this study surrogate models were used to describe relations between chosen
inputs and outputs occurring in the process flow sheet model. The choice of
variables aimed to study effects of inputs typical for chemical plants on energy
consumption as it is desired to study interactions between chemical and electrical
models in the future. Three domain sizes of the input variables were considered in
order to assess their effect on the parametrisation accuracy. The variables’ names,
domain and preferred operating conditions are listed in Tables 3.1 and 3.2. Plots
of heat duties of various equipment against molar flow of tripalmitin oil can be

seen in Figure 3.3.
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Table 3.1: Biodiesel surrogate: Input variables.

heater 10E03 (°C)

Name Lower bounds | Upper bounds | Operating point
Molar flow of tripalmitin
oil (kmol/hr) 20, 22.5, 25 40, 37.5, 35 30
Temperature of 20,22.5,25 | 40,37.5,35 30

tripalmitin oil (°C)
Operating temperature of

CSTR 10D01 (°C) 44, 49, 54 64, 64, 64 60
Volume Of(Ii%T RIODOL | 40, 43, 45 50, 49, 47 45
Operating temperature of

flash drum 10D02 (°C) 80, 82.5, 85 100, 97.5, 95 90

Operating temperature of

heater 10E01 (°C) 60, 62.5, 65 80, 77.5,75 70
Molar flow of methanol | 15, 466 170 | 210,200, 190 180

(kmol/hr)
Temperatu(roeco)f methanol 20,22.5. 25 40, 37.5. 35 30
Operating temperature of
decanter 10D02D (°C) 20, 22.5, 25 40, 37.5, 35 30

Operating temperature of

heater 10E02 (°C) 80, 82.5, 85 100, 97.5, 95 90
Operating temperature of 60. 62.5. 65 80.77.5. 75 70

Table 3.2: Biodiesel surrogate: Output variables.

Name

Heat duty of heater 10E01 (MW)

Heat duty of heater 10E02 (MW)

Heat duty of heater 10E03 (MW)

Heat duty of reactor 10D01 (MW)

Heat duty of flash drum 10D02 (MW)

Heat duty of decanter 10D02D (MW)
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3.2 Description of the biodiesel plant model

OIL 10E01 VENTI

VENT2
&

10DO01
10E02

10E03
10D02D ESTER

o 0Uoge

Decanter Flash drum CSTR Heater

GLYC
o

Figure 3.2: Graphical representation of the process flow sheet model of a biodiesel pro-
duction line.

3.2.2 Software - Aspen Plus V8.6

Aspen Plus V8.6 (AspenTech, 2015) is a process modelling and optimisation soft-
ware used by the bulk, fine, specialty, and biochemical industries, as well as the
polymer industry for the design, operation, and optimisation of safe, profitable
manufacturing facilities. Its capabilities include:

e optimisation of processing capacity and operating conditions,

e assessment of model accuracy,

e monitoring safety and operational issues,

e identifying energy savings opportunities and reduce greenhouse gas (GHQG)

emissions,
e performing economic evaluation,

e improving equipment design and performance.

The software was used to simulate the process described in Section 5.1.1.
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Figure 3.3: Plots of heat duties of various equipment against molar flow of tripalmitin
oil.
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3.3 Parameterisation of the biodiesel plant model

3.3 Parameterisation of the biodiesel plant model

3.3.1 Software - Model Development Suite

Model Development Suite (MoDS) (CMCL Innovations, 2015) is a software tool
designed to analyse black-box models (e.g. executables, batch scripts). It includes
a range of tools such as data-driven modelling, multi-objective optimisation, gen-
eration of surrogate models, data standardisation and visualisation, global parame-
ter estimation (Braumann er al., 2010a,b; Man et al., 2010; Braumann et al., 2011;
Shekar et al., 2012b; Menz et al., 2012; Shekar et al., 2012a; Menz and Kraft,
2013; Menz et al., 2014), uncertainty propagation (Azadi et al., 2014b; Brown-
bridge et al., 2014), global and local sensitivity analysis (Vikhansky and Kraft,
2004, 2006; Azadi et al., 2014a), and intelligent design of experiments (Azadi
et al., 2015; Yapp et al., 2016). It was used to sample data, produce surrogate
models and compute global sensitivities.

Sobol sequence, a quasi-random low discrepancy sampling method, is employed
for sampling data and polynomial fitting and HDMR fitting are used to generate
surrogate models. A brief description of each is included, respectively, in Sec-
tions 3.3.4,3.4.1 and 3.4.2.

3.3.2 MoDS-Aspen Plus interface - Component Object Model

The data collection and parametrisation process of a model can be automated
using MoDS provided an executable file capable of reading an input file, running
the considered model and producing an output file (input and output files need to

have either .csv or .xml format).

For the purpose of this study a script written in Python 3.4 was used to manipu-
late the Aspen Plus simulation via Microsoft Component Object Model (COM)
interface. COM is a binary-interface standard enabling creation of objects and
communication between them (Microsoft, 2015). COM object (also known as
COM component) is defined as a piece of compiled code that provides a service

to the rest of the system. That can be a script, an instance of a program e.g. an
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Aspen Plus simulation. A primary feature of this architecture is the fact that COM
components access each other through interface pointers, rather than directly. It
provides a number of functions applicable to all components. Any additional
functions need to be provided by the object or the user, in both cases via a li-
brary associated with the object. In this project COM interface is primarily used
to launch, explore data structures, access data entries and solve models simulated
within Aspen Plus.

3.3.3 Data harvest and surrogate generation

Data collection, processing and visualisation were done using MoDS and custom-
made Python 3.4 and R 3.2.2 scripts. The process of producing a surrogate of
existing models involves the following steps: generation of input data, reception
of output data from the studied model and, when both data sets are complete,
scanning for and excluding erroneous data points and executing a parametrisation
algorithm. The first two steps are critical to ensure high accuracy of the surrogate
model and hence a sufficient number of points and a suitable sampling method are
required to satisfactorily describe the input-output relation for a given number of
independent variables and operating range. In this study the following procedure

was used:

1. A Sobol sequence was used to generate input data for user-specified vari-

ables within the process flow sheet model.
2. Model’s input data was altered according to the generated input data.
3. The simulation was evaluated with the new inputs.
4. MoDS retrieved values of user-specified outputs.
5. Data was scanned for errors and corrected.

6. Polynomial and HDMR fitting were used to generate surrogate models de-

scribing the relation between inputs and outputs.
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Figure 3.4: Model Development Suite workflow.

The workflow of MoDS is visualized in Figure 3.4. A variety of scenarios were
considered: 1, 2, 6 and 11 input variables were changed simultaneously, 3 differ-
ent domain sizes of the input variables were considered and 2 different surrogate
generation methods (polynomial and HDMR fitting) were used. To ensure that
there is always sufficient number of points required to generate a surrogate, each
simulation produced 400 points per input variable (prior to error exclusion). They
were used for fitting surrogates and calculating R?> and R?. Depending on the case,
erroneous points made up to 1% of all points. They arose due to convergence and
stability issues within Aspen Plus. Additionally, test sets of points (100 points per
dimension) were generated for calculating Root-Mean-Square Deviation (RMSD)
and residuals (see Section 3.4.3 for further description). In this study three domain
sizes of the input variables were considered in order to assess their effect on the
parameterisation accuracy. The domain bounds of input variables during simula-

tions and initial steady state values are summarised in Table 3.1.

3.3.4 Sampling of the data used for parameterisation

Data points were generated using Sobol sequences, a type of quasi-random, low-

discrepancy sequences. Low discrepancy of points in such a sequence means that
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their proportion falling into an arbitrary set is approximately proportional to the
measure of the set. This property is true on average, but not necessarily for spe-
cific samples. Their ability to cover considered domain quickly and evenly gives
them advantages over purely random numbers. Also, in contrast to deterministic
sequences, they do not require a predefined number of samples and their cover-
age improves continually as more data points are added. Sobol sequences use a
base of two to form successively finer uniform partitions of the unit interval, and
then reorder the coordinates in each dimension (Sobol, 1967). The MoDS imple-
mentation of a Sobol sequence generator follows the description of Joe and Kuo
(2008).

3.4 Implementation of the response surface models

3.4.1 Polynomial response surfaces model

Polynomial response surfaces are a subset of response surface methodology, a
group of mathematical and statistical techniques designed to facilitate empirical
model building (Myers et al., 2009). Polynomials of a predefined degree are op-
timized to describe an unknown relation between independent variables (input
variables) and responses (output variables). Input and output data sets are ob-
tained via series of tests, an experiment, in which the input variables are modified
in order to study the changes in the output responses. As the number of adjustable
coefficients in a polynomial surrogate increases combinatorially with its order and
number of variables so does the minimum number of data points required to pro-
duce it. Hence applying high-order polynomials to problems with many inputs
may lead to overfitting and hence poorer predictive power. Generally, overfitting
occurs when a model describes features specific to the data set on which it is
trained such as random error or noise. For deterministic computer experiments
those are not an issue, but an overfitted model will suffer from having an exagger-
ated set of coefficients providing no intuitive insight into nature of the relationship

under consideration and from introducing irrelevant nonlinearity.
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3.4 Implementation of the response surface models

General linear least-squares fit

When fitting polynomial of a given order k to a data set the objective function
to be minimised is the weighted sum of the squares of the differences between
data and model. This analysis assumes N data values y\"), ..., y¥) obtained at the
points x(V), ..., x™)_ and statistical weights W), ..., W®) are given. Coefficients

of the polynomial are given by

B* = argmin®(f)
B
with

N

®(B) =Y WO — f5(x)]”

i=1

In order to simplify the notation, multi-indices are employed. For example, if p is
a multi-index of order /, that means p € N, where Ny := {0,1,2,...}. Then,

!
p| = ZP[-
i=1

The independent variable is denoted by x and it is assumed that x € R". A poly-

nomial in x is then a sum of terms of the form

P .P2 Pn
Xl X2 ...Xn y

which can be abbreviated to x” and is of order |p|. Thus, the polynomial fg can

be written as

fo(x) =Y Byx".

|p|<k

where the s denote the coefficients of the individual terms and k corresponds to

the polynomial order.
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The necessary COIldlthIl = 0 for any multi-index g with |g| < k for stationary

points of & then becomes

d Al 0 :
O_a—ﬁqq’(ﬁ):z; T = fp )}aﬁqfﬁ(x('))
ZZZW()[y()_ aﬁ Z ﬁp
i=1 9 |pl<k
X V‘%ﬁp ”W-
Rearranging yields
ZW(i)y(i) (x - Z Z Bp
i=1 i=1 |pI<k

;fplzw >1

i

equa-

This linear system of equations, called normal equations, consists of ("*k)

tions for as many unknown coefficients f3.

3.4.2 High Dimensional Model Representation (HDMR) re-

sponse surface model

High Dimensional Model Representation (HDMR) is a finite expansion for a given
multivariable function as described by Sobol (1990); Rabitz and Alis (1999). It
allows for readily extracting global sensitivities with respect to the independent
variables by calculating them from the coefficients of a HDMR surrogate. Also,
it needs to be noted that the number of parameters within HDMR fit increases far
slower than within polynomial fit when high-dimensional problems are consid-

ered.
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3.4 Implementation of the response surface models

In HDMR representation the output function y is decomposed into a sum of func-

tions that only depend on subsets of the input variables such that:

Ny N. N,
y=f(x) :f0+2ﬁ(xi)+z Z fii (i) 44 fion, (1, X2, xn,) - (3.1)
i=1

i=1 j=i+1

where N, is the number of input parameters, i and j index the input parameters,
and fy is the mean value of f(x). The expansion given above has a finite number
of terms and exactly represents f(x), however the terms containing functions of
more than two input parameters are ignored resulting in the following truncated

approximation:

N, N, N,
yRf@)=fot L)+ Y X i) (3.2)
i= i=1 j=i+
This approximation relies on the assumption that terms beyond second-order are
negligible for many practical applications (including most non-biological pro-
cesses in the chemical industry). This is supported by the fact that in statistics
often only the input covariances play a significant role (Li et al., 2002; Rabitz
and Alis, 1999). However, HDMR may not be applicable to cases where high-
order terms are important such as wave-body interactions (Molin e? al., 2014),
modelling of ecological and biological systems (Billick and Case, 1994; Sanchez-
Gorostiaga et al., 2018) and arbitrary mathematical functions. Note that equa-

tion 3.1 is always an exact representation.

An efficient method of evaluating each of these terms is to approximate the func-
tions f;(x;) and f;;(x;,x;) with analytic functions, ¢(x;), (Li et al., 2002). For data
produced using random and quasi-random sampling these functions are related
by:
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fO :73
M

(xl) == Z az}kq)k (X,') ;
k=1

M M

f[J X,,XJ Z Z ﬁukl(pk Xi (Pl(xj) .

=11l=k+1

The functions, ¢ (x;) are orthonormal obeying,

/¢k(x,-)dxl~:0

/‘Pk (x;) @r (x;) dx; = 8y -

This leads the following equations for the coefficients:

Jo= /f(x)dx
o= [ 100 () dx

Bias= [ 10)60(x) 1 (x)

(3.3a)

(3.3b)

(3.3¢)

(3.4a)

(3.4b)

(3.52)
(3.5b)

(3.5¢)

The separation of the contributions from each individual input parameter and each

combination of parameters makes the process of calculating the global sensitivi-
ties almost trivial. It has been described by Rabitz and Alis (1999) that the contri-

bution of each term in (3.2), 0' ; and Gy ij>

can be related to the total Variance by

to the variance of the output parameter
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The sensitivities, S; and S;

ij» can then be calculated by dividing by the total variance

2
o5 to get
2 2
o:. o: ..
Si = —y; and S,‘j = LZU . (37)
v Oy

Global sensitivity analysis explores the parameter space and provides robust sen-
sitivity measures throughout the region of interest even in the presence of non-
linearity and parameter interactions. In nonlinear cases, derivative-based local
sensitivity analysis can give a false impression of sensitivity (Wainwright et al.,
2014).

Basis functions

Polynomials, including Lagrange polynomials (Baran and Bieniasz, 2015), or-
thonormal polynomials, cubic B splines, and ordinary polynomials (Li et al.,

2002), are commonly used as basis functions for HDMR construction.

In MoDS, Legendre polynomials, P,(x), are used as the basis functions, ¢ (x).

They are normalised according to

! 2
/IPm(X)Pn<X)d)C:2n—_|_16mn, (38)

to satisfy (3.4b). The polynomials are generated at runtime according to Bonnet’s

recursion formula

(n+1)B1(x) = 2n+1)xP,(x) —nP, 1 (x), (3.9
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where Py(x) = 1 and P;(x) = x. This means that maximum polynomial order,
M*, can be set to an arbitrary natural number. Additionally, maximum interaction

order, M'*, needs to be set to either 1 or 2.

Automatic order selection

Accuracy improvement due to each new term is assessed by calculating R* value
and comparing it against a predefined minimum value R** = 0.00001, before con-
tinuing on to the next one. If a term’s contribution is smaller than the threshold,
the term is discarded. The algorithm terminates once maximum polynomial or-
ders M* and M™* are reached. It has several advantages over employment of a
raw polynomial including reduction of data processing, computational complex-
ity and number of optimisable parameters, which greatly helps dealing with high-
dimensional problems. All of the functions f; have the same polynomial order,
M*, and the f;; are all of order M". Also, it is assumed that the magnitude of the
coefficients decreases as the order of the basis function increases. Whilst this is

valid in many situations it may not always be applicable.

3.4.3 Accuracy measures

There exist various accuracy measures applicable to surrogate models, but there
is no single, all-encompassing index. For that reason, a number of methods were
used including R?, R?, Root-Mean-Squared-Deviation (RMSD) and residual plots.

The indices are defined as follows:

R N
500 -5
N

RP=1-(1-R)——
(1-R)y—

N
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3.5 Numerical experiments

el =y — £
where y' is the i data point, £\ is an i"* model predicted value, ¥ is the empirical
mean of data points, N is the number of data points, p is the number of adjustable
parameters, e(?) refers to residual for i/ data point and i = 1,2,..,N. The first three
measures are single number indices thus more convenient, but less informative

than residual plots.

R? (coefficient of determination) is a measure indicating fit of a statistical model to
data (Draper and Smith, 1998). In essence, it compares the discrepancies between
the predicted data and actual data with the discrepancies between the arithmetic

average and actual data.

R? (adjusted R?) is R?, as described above, corrected for the number of fitted pa-
rameters relative to the number of data points. This measure cannot be greater
than R?(for N > p) and it decreases as N — p indicating that the model overfits
the data.

RMSD is the sample standard deviation of the differences between predicted val-
ues and observed values (Hyndman and Koehler, 2006). It is a good metric for
comparing predictive power of different models for a particular variable (but not

between the variables due to scale dependency).

3.5 Numerical experiments

3.5.1 Comparison of the surrogate models - polynomial versus
HDMR

R? values were produced using the training set and are used to assess fit of the
surrogates to the training data (data sampled from the process flow sheet model
used for parameterisation), while RMSD and residual plots were produced using
the test set (data sampled from process flow sheet model used for testing, but

not parameterisation). Values sampled from entire domain of the input variables
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were used unless specified otherwise. Plots comparing surrogate types include
polynomial fits of order 1 through 5 (labelled as P1 through P5) and HDMR fits
with various constraints. Label H1 corresponds to a 1 order fit, H2a to a 2"¢
order without interactions, H2b to 2" order with interactions and H10 to 10"
order with 2"¢ order interactions. Note that HDMR fits may consist of terms with

powers lower than specified, but in such a case it will be explicitly mentioned.

A number of different behaviours were observed in the study. Most surrogate
models achieved at least a reasonable fit regardless of the domain size, number
of dimensions and according to R?> and RMSD. Neither R* nor R? can be used to
effectively differentiate between the models as most achieve values in excess of
0.98 (for an example see Figure 3.5(a)). However, there is noticeable increase in
R? due to 2nd order interaction terms (P1 to P2 and H2a to H2b). Also, it needs
to be noted that the number of parameters within HDMR fit increases far slower
than within polynomial fit when high-dimensional problems are considered. Even
the most extensive HDMR fit H10 had far fewer parameters than polynomial fits
of order > 3, as seen on plot 3.5(b).

RMSD provides a reasonable measure for comparing accuracy of models, as seen
in Figure 3.6. Plots 3.6(a) and 3.6(b) suggest that polynomial fit of order 3 and
HDMR fit H2b (marked by green squares) minimise RMSD and hence are the best
fit for the duty of reactor 10D01 with respect to all 11 inputs. The aforementioned
plots (marked by orange triangles) also show that increasing order of polynomial
fit lead to poorer predictive powers, most likely due to overfitting the training data.
Similarly, HDMR fit H10 produces larger RMSD values than H2b. It can be seen
that adding interaction (H2a to H2b) effect noticeably decreases RMSD in HDMR
fitting.

Plots 3.6(c) and 3.6(d) show how RMSD changes as the domain size of inputs
increases. The former plot (for 5 order polynomial fit) shows an exponential
increase, while the latter (for HDMR fit H10) shows decrease of RMSD from

smallest to intermediate size and sharp increase from intermediate to largest size.

Residual plots are the most informative form of error measurement as they show
the error size and distribution helping to understand whether the fit captures the

true nature of the data. In most cases data does not seem to follow a polyno-
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mial relation resulting in non-random distribution of the residuals. Figures 3.8
and 3.9 present residual plots for 11-dimensional surrogates of heat duties of
reactor 10D01 and heater 10E03. Comparison of plots in Figures 3.8 and 3.7
shows that for output produced by surrogates with multiple input variables the
non-random features are much more difficult to identify. Magnitude of the residu-
als in most cases is relatively small indicating strong predictive powers of the fits.
Comparing plots 3.7(c) and 3.8(c) reveals that performance of polynomial fit of
order 5 drops from being the best model to the worst. Plots 3.8(b) and 3.8(d) show
that even though HDMR fit H10 produced a higher RMSD, its residual plot is as
good as seemingly better P3 fit. Those also confirm that P3 seems to be one of
the best fits. Plot 3.8(c) confirms that PS5 fit exhibits relatively low accuracy, even

worse than that of a simple linear fit (see plot 3.8(a)).
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(a) Plot of R? for the considered surrogates. (b) Plot of number of parameters for the con-
sidered surrogates.

Figure 3.5: Plots of RMSD and number of parameters for the considered surrogates pro-
duced for heat duty of reactor 10D01 with respect to all 11 inputs. Labels
P1 through P5 correspond to polynomial fits of order 1 through 5. Label HI
corresponds to a 1*" order fit, H2a to a 21 order without interactions, H2b to
2" order with interactions and H10 to 10" order with 2"? order interactions.
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Figure 3.6: Plots of RMSD for the considered surrogates and domain sizes produced for
heat duty of reactor 10D0I1 with respect to all 11 inputs. Labels PI through
P5 correspond to polynomial fits of order 1 through 5. Label HI corresponds
to a 1*" order fit, H2a to a 21 order without interactions, H2b to 2" order
with interactions and H10 to 10" order with 2" order interactions. Green
squares indicate models (one per type) with lowest RMSD, while orange tri-
angles indicate models (one per type) with suffering most from overfitting.
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(c) Plot of residuals for 5 order polynomial fit. (d) Plot of residuals for HDMR fit H10 (3" or-
der polynomial).

Figure 3.7: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10DO01 produced for 1 input.
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Figure 3.8: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10D01 produced for 11 inputs.
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Figure 3.9: Plot of residuals against molar flow of tripalmitin oil for heat duty of heater
10EO03 produced for 11 inputs.
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3 SURROGATE MODELS

3.5.2 Global sensitivity analysis

Global sensitivities of the heat duties of all equipment under consideration with
respect to the 11 inputs produced by HDMR fitted over the entire domain are
summarised in Figures 3.10 and 3.11. It can be seen that in all cases only 4 or
fewer inputs have significant influence on a given output. Additionally, interaction
terms have only minor effect on any one output. Heat duty of each device is
significantly affected by its own operating temperature and operating temperature
of a heating device directly upstream (given such exists). While molar flow of oil,
main feedstock of the process, has significant effect on all heat duties (except that
of the flash drum), molar flow of methanol only affects heat duty of heater 10E02.
This is because heat capacity of oil is around 100 higher than that of methanol
(1665.0 J/mol/K (Filatov and Afanas’ev, 1992) and 79.5 J/mol/K (Freedman et al.,
1989)) and only in the flash drum there is significantly more methanol than oil.

Heat duty of heater 10EO1 is primarily affected by its operating temperature and
molar flow and temperature of incoming oil. Heat duty of heater 10E02 is mostly
affected by its operating temperature, operating temperature of reactor 10D01 and
molar flow of oil and methanol. Heat duty of heater 10E03 is primarily affected by
its operating temperature, operating temperature of decanter 10D02D and molar
flow of oil. Heat duty of reactor 10DO01 is primarily affected by its operating tem-
perature, operating temperature of heater 10EO1 and molar flow of oil. Heat duty
of flash drum 10DO02 is primarily affected by its operating temperature and oper-
ating temperature of heater 10E02. Heat duty of decanter 10D02D is primarily
affected by its operating temperature, operating temperature of flash drum 10D02
and molar flow of oil. Global sensitivities with respect to terms and variables not

mentioned here were negligible.

These observations show that when performing multi-dimensional analysis of heat
duties within the system many terms in the surrogate models can be ignored due to
insignificant influence. Thus, calculation complexity and computational expense
can be greatly reduced. Additionally, it shows which inputs are important when

heat duties of the equipment need to be controlled.
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Figure 3.10: Global sensitivities produced by 11-dimensional HDMR fit over the entire
domain.
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Figure 3.11: Global sensitivities produced by 11-dimensional HDMR fit over the entire
domain.
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3.6 Future considerations

In this chapter it was shown how to create accurate surrogates of a model typical
for chemical industry using polynomial response surfaces and High Dimensional
Model Representation response surfaces. A number of research questions that
are beyond the scope of the current work remain to be investigated in order to
develop the technology demonstrated in this chapter to the point where it can be
deployed within an autonomous Industry 4.0 environment. A list of examples is

given below.

e What restrictions exist on the behaviour and/or complexity of the chem-
ical model?

The current chapter focused on a typical, but somewhat simple, chemical
process flowsheet model. It was observed that the numerical behaviour of
the model caused some issues for the generation of the surrogate model. In
this particular case, this was overcome by identifying and ignoring a (small)
problematic subset of the model results. Would this get worse with more
complex models and is it a behaviour that all surrogate models are likely to
need to deal with? Probably. There are many reasons why a model could
display such behaviour. For example, there may be genuine bifurcations in
the solution of the underlying model equations. Examples of this include
reaction problems with strong heat release (for example a flame) that have
a "hot" solution and a "cold" solution. In this example, the behaviour is a
reflection of the underlying physics. It is not a deficiency in the model. In
other cases, the converse may be true. For example, it could be that there
are issues with a numerical method that cause it to return erroneous results.
For example, suppose that the underlying physics requires the identification
of a global minimum, and that we search for this minimum using a method
that requires an initial guess. If we have a poor initial guess, is it possi-
ble that the method may not converge. Hopefully this problem would be
easy to identify. Alternatively, perhaps the numerical method finds a local
minimum that nevertheless falls within its convergence criteria, causing it

to terminate and return a result based on the local minimum. This type of
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3 SURROGATE MODELS

error could be much more subtle and therefore much harder to identify.

e How should complexity be measured? Can we identify a relationship

between complexity and accuracy?

How should the complexity of a process of a chemical process model be
measured? For example, should it be measured based on the physical char-
acteristics of the process? The number of unit operations, process streams,
phases etc. Or should it be measured in terms of a mathematical descrip-
tion of the process. For example, the number of process parameters, inputs
and outputs, the state space of the inputs and outputs, whether or not the
response is expected to be smooth, steady and/or continuous? Is it possi-
ble to define a measure of complexity that can be used to make statements
about the expected accuracy of a (given) surrogate method? Does the accu-
racy change smoothly, or does it suddenly drop off once you reach a certain

complexity?

e What is the best choice of surrogate method for a given situation?

Given a mathematical problem, is it possible a priori to identify good (and
bad) choices of surrogate models? This is an active research question. For
example, see the work by Garud et al. (2018) and references therein. Are
there specific types of surrogates that are often good choices for chemical
processes? Or is it the case that the optimal choice of surrogate differs for
different parts of a chemical process? If so, and also considering the likely
benefits of lower complexity, would it be better to model different parts of
a process using different surrogates, which could then be combined into an
overall model? Could this be taken a step further and used to define a library
of ready-made surrogate models for standard items of equipment (pumps,
separators etc), instances of which could be trained to model small parts of
a given process flowsheet and then combined to create an overall surrogate

for the overall process?

e How could the processes of fitting a surrogate model be automated?

In addition to requiring answers and solutions to many of the issues dis-

cussed above, a number of other capabilities need to be developed in order
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3.7 Chapter summary

to realise a system that could automate the fitting of surrogate models. For
example, the system would need to be able to communicate and interact
with the underlying process models, both to extract information used to de-
cide what type of surrogate should be used, and to run the models to retrieve
data as part of the training process. Likewise, it would need to be able to
communicate and interact with the software used to fit to surrogate. Active
research is ongoing to address specific questions within these areas. For
example, see the work by Xiaochi Zhou (2019), which presents progress to-
wards developing a framework that supports the deployment of autonomous
interacting computational agents. In the proposed framework, each model
would be seen by the system as an agent that could be asked to perform

tasks as and when required.

3.7 Chapter summary

This chapter presents results of parameterisation of typical input-output relations
within process flow sheet of a biodiesel plant and assesses parameterisation accu-
racy. The model under investigation includes a reaction and separation steps with
auxiliary equipment and was solved for steady-state operation. Thus produced
data was used to generate surrogate models describing relations between chosen
inputs and outputs. A variety of scenarios were considered: 1, 2, 6 and 11 input
variables were changed simultaneously, 3 different domain sizes of the input vari-
ables were considered and 2 different surrogate generation methods (polynomial
and HDMR fitting). Each simulation produced 400 points per input variable used
for fitting and calculating R? and R?. Test sets of points (100 points per dimension)

were generated for calculating RMSD and residuals.

A number of different behaviours were observed in the study. Most surrogates
achieved at least a reasonable fit regardless of the domain size, number of di-
mensions and according to R* and RMSD. Neither R? nor R? could be used to
effectively differentiate between the models as most achieve values in excess of
0.98. Also, it needs to be noted that the number of parameters within HDMR fit

increases far slower than within polynomial fit when high-dimensional problems
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3 SURROGATE MODELS

are considered. The most extensive HDMR fit (H10) had far fewer parameters
than polynomial fits of order > 3. RMSD provides a reasonable measure for com-
paring accuracy of models. Fits P3 and H2b minimised RMSD and hence are the
best fit for the duty of reactor 10D01 with respect to all 11 inputs. Increasing
order of polynomial fit above 3 lead to poorer predictive powers due to overfit-
ting the training data. RMSD increases exponentially for polynomial fits as the
domain size of inputs increases. For fit H10 RMSD decreases from smallest to in-
termediate size and sharply increases from intermediate to largest size. Inclusion
of 2nd order interaction terms accounted for a noticeable, but minor accuracy im-
provement in terms of R? and RMSD. It was observed that non-random features
in residual plots are much more difficult to identify when multiple inputs were
considered. Higher order polynomial fits may not be suitable for describing high
dimensional, chemical data. For example, performance of polynomial fit of order
5 drops from being the best model to the worst as dimensionality increases from
1to11.

Global sensitivities of the heat duties of all equipment under consideration with
respect to the 11 inputs were produced by HDMR fitted over the entire domain. It
was observed that in all cases only 4 or fewer inputs have significant influence on
a given output. Interaction terms have only minor effect on any one output. Heat
duty of each device is significantly affected by its own operating temperature and
operating temperature of a heating device directly upstream (given such exists).
While molar flow of oil, main feedstock of the process, has significant effect on
all heat duties (except that of the flash drum), molar flow of methanol only affects
heat duty of heater 10E02. These observations show that when performing multi-
dimensional analysis of heat duties within the system many terms in the surrogate
models can be ignored due to insignificant influence. Thus, calculation complexity
and computational expense can be greatly reduced. Additionally, it shows which

inputs are important when heat duties of the equipment need to be controlled.

It was shown that the presented approach can be effectively used to parameterise
a model typical for chemical industry. Such surrogate models can be used as a
replacement of sufficient accuracy in modelling platforms which need to rely on

models of physical processes, but also need to be fast and stable during execution.
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Chapter 4

Blockchain-enabled M2M electricity

market

This chapter investigates how blockchain technology might be
coupled to cyber-physical systems to leverage new opportunities in
the context of eco-industrial parks by enabling automated trading
of resources. The investigation is performed in the context of using
blockchain to facilitate M2M interactions and establish a M2M
electricity market in the chemical industry. The presented scenario
includes two electricity producers and one electricity consumer
trading with each other over a blockchain. All participants
are supplied with realistic data produced by process flow sheet
models. This work contributes a proof-of-concept implementation
of the scenario. It was shown that the blockchain technology
can be employed in the chemical industry for the purposes of
allowing virtual representations of real equipment trading with
each other. Extending this idea to Industry 4.0 and cyber-physical
systems would allow real equipment to interact with each other
autonomously in a decentralised network. The chapter concludes

with a discussion of continuing the presented work.
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4 BLOCKCHAIN-ENABLED M2M ELECTRICITY MARKET

4.1 Methodology

Aspen Plus (a process modelling and optimisation software), Multichain (a soft-
ware package for the creation and deployment of private blockchains), Oracle VM
Virtual Box (a virtualization software) and custom-made Python 3.4 (a program-
ming language for general-purpose programming) scripts were employed together
in order to produce an example in which blockchain technology is employed to

facilitate M2M interactions and simulate a M2M electricity market. In this study

the following procedure was used:

1. Multichain was used to establish a blockchain between the virtual machines

This workflow is visualized in Figure 4.1. More detail is available in the rest of

and allow them to post, view and execute transactions on a continuous basis.

pen Plus simulations (natural gas is burnt to provide supply and steam is

. Every 5 seconds electricity supply and demand data was updated using As-

compressed to provide demand) on a Windows 10 machine.

data to three Fedora 24 virtual machines, each representing either an elec-

tricity consumer or producer.

. A Python script on Windows 10 used the file system to pass the generated

. Python scripts on the Fedora machines were used to read the data from

Aspen Plus simulations and interact with the blockchain.

the chapter.

Ve

Aspen
Plus

Windows 10

=

Fedora 24

Python
script |:>

File system

:> Python :> Block-
<:| script <:| chain

J

.

Figure 4.1: Study workflow for Chapter 4.
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4.1.1 Codes and data

This work can be reproduced by following this workflow and us-
ing the instructions and code provided under the following link:
https://doi.org/10.17863/CAM.33680.

4.2 Design and implementation

This section presents an example in which blockchain technology is employed to
facilitate M2M interactions and establish a M2M electricity market in the context
of the chemical industry and the IoT. Electricity is a convenient example as its
transfer is near-instantaneous (as are the corresponding blockchain transactions),
but in principle any other commodity (e.g. steam, natural gas, coal) could be used
here. However, the likelihood of a discrepancy between the blockchain record and

reality is more likely for commodities which require significant delivery time.

This scenario consists of two electricity producers, producing approx. 750 MW,
and one electricity consumer, consuming approx. 23 MW, which trade with each
other over a blockchain. The producers publish exchange offers of energy (in
kWh) for currency (in USD) in a data stream, which functions as a publishing
board. Energy produced in a 5-second interval is split into batches of 100 kWh
(and one, smaller remainder batch) and priced according to a predefined policy
(one producer randomly chooses a price between 0.01 and 0.2 USD per kWh and
the other between 0.1 and 0.3 USD per kWh). The consumer reads the offers,
analyses them and attempts to satisfy its energy demand at a minimum cost. Its
energy demand is updated every 5-second interval. When an offer is accepted it
is executed as an atomic exchange (i.e. two simultaneous transactions are exe-
cuted, and both must either succeed together or fail together). The scenario is
visualised conceptually in Fig. 4.2. It is envisaged that the machines participating
in this system would each be equipped with a computer containing their digital
representation enabling them to interact with a blockchain and provide relevant
sensor data. Here, the physical machines are replaced with physical simulations
of industrial processes in Aspen Plus (AP) (AspenTech, 2015).
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4 BLOCKCHAIN-ENABLED M2M ELECTRICITY MARKET

Table 4.1: General information about chain BE?2.

MultiChain version 1.0 alpha 25

Protocol version 10006
Chain name BE2
Mining diversity 0.75

Names of native assets | USD, kWh
Number of participants | 3

Each producer is simulated by a process in which natural gas is burnt to produce
energy, see Fig. 4.3. It consists of a methane stream which is throttled in a valve
from 15 bar to 1.3 bar and fed into a Gibbs reactor where it combusts in air, which
is pressurised to 1.3 bar in a compressor and then fed into the reactor. Energy
is harvested from the exhaust stream using a heat exchanger. Each consumer is
simulated by a compressor increasing steam pressure, see Fig. 4.4. It pressurises
steam from 1 bar to 21 bar. It is assumed that consumer can be readily driven

using the energy produced by the producers.

The example was implemented on a Windows 10 machine hosting three Fedora
24 (Fedora Project, 2016) virtual machines using Oracle VM Virtual Box. These
used MultiChain (Greenspan, 2015) to establish a blockchain (named BE2) and
AP to simulate industrial processes. It is important to note that the employment
of the final setup was preceded by, in additional to a standard literature review,
an extensive search for a suitable application (primarily by consultations and in-
terviews) and appropriate software (using Bitcoin blockchain or creating of an

Ethereum side-chain was considered) was conducted.

The machines running Fedora represent the producers and the consumer on
chain BE2 and receive data from the AP simulations. General information
about blockchain BE2 can be found in Table 4.1. All data transfers outside the
blockchain, interpretation and analysis of the posted offers, electricity pricing and

automation were facilitated using scripts written in Python 3.5.
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Figure 4.4: An Aspen Plus (AspenTech, 2015) simulation in which an electricity-driven
compressor increases steam pressure.
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4.3 Software used in the implementation

Multichain

MultiChain is a software package, in development, designed as an off-the-shelf
platform for the creation and deployment of private blockchains, where certain
degree of trust between the participants is possible. In this implementation the
primary features of BE2 include round robin consensus mechanism, and native
assets (here, a digital currency created on top of the chain’s native currency; see
Assets in A.1). In round robin consensus mechanism, the set of miners is lim-
ited to known entities which take turns in publishing blocks. The strictness of the
rotation scheme is controlled using a parameter called mining diversity (0 < min-
ing diversity < 1). This parameter defines the minimum proportion of permitted
miners needed to control the network. 0.75 is a recommended value (Greenspan,
2015), as high values are safer, but a value too close to 1 can cause the blockchain
to freeze up if some miners become inactive. In the case that the network splits
temporarily (e.g. due to communications failure) resulting in a fork, the branch

with the longer chain will be adopted.
The participants are approved for publishing blocks as follows:

1. Any permission changes defined by transactions in the current block are

applied;
2. The current number of permitted miners is calculated;

3. The number of miners is multiplied by mining diversity and rounded up to

get spacing;

4. If any of the spacing-1 blocks were mined by the current miner, the block is

invalid.
The scheme enjoys the following advantages over a centralised database:

e Each participant has full control over its assets via their ownership of private
key(s);
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e Distributed control prevents an individual or a small group from unilaterally

deciding which transactions are valid or will be confirmed;

e More robust as access and validation of transactions will continue even if a

server malfunctions (i.e. no single point of failure).

Aspen Plus V8.8

Aspen Plus V8.8 (AspenTech, 2017b) is a process modelling and optimisation
software used by the bulk, fine, specialty, and biochemical industries. More details
of the software are provided in Section 3.2.2. It was used to simulate a process
in which natural gas is burnt to produce energy, see Fig. 4.3, acting as an energy
producer on the blockchain network and a compressor increasing steam pressure,

see Fig. 4.4, acting as an energy consumer on the blockchain network.

Python 3.5.0

Python (Python Software Foundation, 2017) is an interpreted programming lan-
guage for general-purpose programming. In this study it was used to automate
the interactions between the Multichain blockchain and the Aspen Plus simula-
tions. Aspen Plus was accessed via COM interface (more in Section 3.3 of Chap-
ter 3), while Multichain using a Savoir 1.0.6 package (Python Software Founda-
tion, 2018) adapted for Python 3.

Oracle VM VirtualBox

VirtualBox (Oracle Corporation, 2018) is a virtualization software for x86-based
systems. It can be installed on Windows, Linux, Mac OS X and Solaris x86 com-
puters. It allows creating and running multiple virtual machines, running different
operating systems, on the same computer at the same time. It was employed to

host Fedora machines.
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4.3.1 Description of a typical trade

This section presents a sequence of events which leads to successful trade between

participants of blockchain BE2.

A typical trade proceeds as follows:

1. The producer nodes prepare and publish exchange offers of kWh for USD
in the stream "elec-market-open". The preparations require the producers to

lock a sufficient amount of energy asset and encode details of the exchange.

2. The consumer node looks for the offers related to each publisher and de-

codes them.

3. The consumer compares the offers and chooses the one which minimises

the energy cost.

4. The consumer prepares a transaction matching the chosen offer by locking
sufficient funds and appending the chosen offer with payment details. It

then encodes this and submits the accepted exchange to the chain.

5. Finally, the consumer verifies that the transaction was validated by the

chain.

4.4 Future considerations

In this chapter it was shown that the blockchain technology can be employed in
the chemical industry to allow virtual representations of real equipment to trade
with each other to improve the efficiency of the process. The work was performed
in the context of eco-industrial parks and the JPS project and it is anticipated that
it will be continued by progressing towards the vision of fully automated indus-
try. Employing blockchains in conjunction with JPS will enable the application
of the findings from the current example to larger networks and different types
of commodities (e.g. steam, water, carbon credits), the implementation of more

complex pricing models, balancing of the positions of customers and producers
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(at the moment the market is purely producer-driven) and the introduction of more
complex trade deals using smart contracts, which would allow to further automate
the considered system and thus increase its efficiency. From the chemical en-
gineering perspective, the intention is to use a greater variety of models and to
introduce dynamic behaviour (e.g. a simulation of a process line during start-up
and shut-down) in order to investigate how does the technology perform in differ-
ent environments. Blockchain technology may have the potential to change the
engineering industry by facilitating the transition to and functioning of Industry
4.0. When applying this technology to further problems it is important to assess
whether it is suitable for a given scenario by considering its benefits and limita-

tions. Benefits include:

e Increased trust - trust in the protocols replaces trust in verification conducted

by humans,

e Immutability and integrity of the stored data - disputes between participat-

ing parties can be easily resolved,
e Disintermediation - removes need for a central authority within the network,
e Automation of transactions between participating parties,
e Cost reductions due to automation and disintermediation,

e Increased processing speed for certain scenarios compared to a centralised

system.

The limitations of blockchain technology include:

e High latency - the mechanism of block addition is computationally expen-

sive (applicable to the proof-of-work consensus mechanism),

e High costs - the entire transaction history needs to be stored on multiple
nodes and the mechanism of block addition is computationally expensive in

the case of the proof-of-work consensus mechanism,
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e Public-private key cryptography technology - it provides no recourse if a

party publishes or misplaces their private key,
e Immutability - makes amending the transaction history difficult,

e Lack of privacy - many nodes in the network contain the entire transaction

history.

These considerations raise a number of open questions that it is recommended
should be investigated before implementing the type of trading scheme consider-

ing in this work. A list of examples is given below.

e How can challenges of scalability be handled to facilitate transactions
within the environment of Internet of Things? Internet of Things entails
allowing thousands (possibly many more) of devices to rapidly communi-
cate and conduct transactions with each other. Due to the costs associated
with processing transactions blockchain technology may not be suitable for
high frequency operations, however finding the point at which the tech-
nology becomes unsuitable could guide further research. Overall whether
blockchain technology will be able to facilitate those interactions hinges on
overcoming scalability issues including high latency, constantly increasing

storage requirements and energy-expensive process of block addition.

e What kind of consensus mechanism is optimal for employment in the
context of chemical industry? What characteristics (for example, level
of permission or distribution of mining power) should a consensus mecha-
nism have in order to serve well the needs of chemical industry? How do
those characteristics interact with each other? This work used a round robin
consensus mechanism as it was designed with private blockchains, where
certain degree of trust between the participants is possible, in mind. This
is a reasonable method for companies which are engaged in a cooperative
venture or for intra-company transactions. However, for applications to a
more competitive environment a different one may be more suitable. For

example, a deposit-based mechanism, where the participants are required to
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register a security deposit in order to be allowed to produce blocks, could

effectively discourage any attempt at misbehaviour.

¢ How will introduction of blockchain technology into chemical industry
impact the existing business models? What kind of (if any) new business
models and forms of employment may arise in this situation? What mag-
nitude of benefit should be expected from using this approach? Given the
advantage of disintermediation provided by blockchain technology implies
that intermediary services may need to significantly redesign their business
models in order to stay relevant. Furthermore, companies using blockchain
for internal purposes may find it beneficial to restructure in order to use this

technology more effectively.

e Could the presented idea be applied to other commodities? This sce-
nario used electricity as its delivery and reception are effectively instanta-
neous. For the same reason applying it to exchange of virtual entities (such
as in CO, emissions trading schemes) would be viable. However, trading
commodities with significant exchange times may result in discrepancies
between the blockchain records and the real state of affairs. For that reason,
such exchanges may need an additional mechanism designed to realign the

records and reality.

4.5 Chapter summary

This chapter demonstrates that it is possible to successfully employ the blockchain
technology to facilitate M2M interactions and establish a M2M electricity market
in the context of the chemical industry via the I0T. The presented scenario in-
cludes two electricity producers and one electricity consumer trading with each
other over a blockchain. The producers publish exchange offers of energy (in
kWh) for currency (in USD) in a data stream. The consumer reads the offers,
analyses them and attempts to satisfy its energy demand at a minimum cost. When
an offer is accepted it is executed as an atomic exchange. This work contributes

a proof-of-concept implementation of the described scenario and its technical de-
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tails. Furthermore, all participants are supplied with realistic data produced by

process flow sheet models of industrial equipment.

It was shown that the blockchain technology can be employed in the chemical
industry for the purposes of allowing virtual representations of real equipment
trading with each other. Extending this idea to Industry 4.0 and cyber-physical
systems would allow real equipment to interact with each other autonomously in

a decentralised network.
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Chapter 5
Automated arbitrage spotter

This chapter investigates how the cyber-physical system developed
in previous chapters can be applied to find and exploit oppor-
tunities for financial arbitration over chemical commodities on
futures markets. It presents the implementation of an automated
arbitrage spotter powered by market and physical data applied to
two scenarios: conversion of natural gas to methanol and crude
palm oil to biodiesel. It was shown that models of chemical
plants can find and assess opportunities for financial arbitration
over chemical commodities on futures markets in an automated
manner by calculating their total costs per unit of product and
comparing it with the online market prices. Extending this idea
to Industry 4.0 it shows that a cyber-physical systems operating
a chemical plant could participate in and interact with a trading
network. Analysis conducted using market data from 28.05.2017
in the former scenario indicates that no trade should be made.
In the latter case up to 345.17 USD per tonne of biodiesel can be
earned by buying September 2018 reagent delivery contracts and
selling December 2018 product delivery contracts. The chapter

concludes with a discussion of continuing the presented work.
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5.1 Methodology

Aspen Plus (a process modelling and optimisation software) and custom-made
Python 3.5 (a programming language for general-purpose programming) scripts
were employed together in order to produce an automated arbitrage spotter for a
chemical plant converting a reagent into a product which searches for opportuni-
ties to make additional profit by analysing the futures market prices for both the

reagent and the product. In this study the following procedure was used:

1. Python script was used to read process data (such as product mass flow,
reagent mass flow and consumption of utilities) from Aspen Plus simu-
lations modelling a chemical process and download futures market prices

from an appropriate online source (such as a commodity exchange).

2. Python script was used to consider the futures market prices of reagent and
the product, costs of storage, transport and conversion (steam, electricity

and other utilities) and produce an investment recommendation.

This workflow is visualized in Figure 5.1. More detail is available in the rest of

the chapter.

)

Online
source

\ ) Python

— script
Aspen —
Plus
—

Figure 5.1: Study workflow in Chapter 5.
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5.1.1 Codes and data

This work can be reproduced by following this workflow and us-
ing the instructions and code provided under the following link:
https://doi.org/10.17863/CAM.33680.

5.2 Design and implementation

This section describes the design and implementation of the automated arbitrage
spotter for a chemical plant converting a reagent into a product. The spotter
searches for opportunities to make additional profit by analysing the futures mar-
ket prices for both the reagent and the product. It considers costs of storage,
transport and conversion (steam, electricity and other utilities) and produces an
investment recommendation. It is assumed that the plant is located in Singapore
and operates with a long-term production contract, but its throughput could be

marginally increased.

The implementation involves the following steps:

1. downloading market data from an appropriate online source (the considered
scenarios include the Chicago Mercantile Exchange (CME Group, 2017b)
and Zhengzhou Commodity Exchange (ZCE, 2017)),

2. performing a feasibility analysis based on the downloaded data and physical
data provided by a simulation of the chemical plant under consideration
(the included scenarios employ Aspen Plus (AspenTech, 2017b) and Aspen
HYSYS (AspenTech, 2017a)).

Both steps are executed by scripts written in Python 3.5.0 (Python Software Foun-
dation, 2017). Market data is downloaded on a daily basis as it is updated at the
same rate. The second step determines potential profit to be made on delivering a
single unit of the product. The required quantities of the reagent contracts, utili-
ties (steam, water, heating fuel and electricity), transport to and from the plant and

storage volume are calculated and costed. The utility, transport and storage prices
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were determined based on specifications of a biodiesel plant designed by Lurgi
GmbH in 2007 and the available literature. Necessary currency conversions were
done with data from Oanda (2017); XE.com Inc. (2017), while Coinnews Media
Group LLC (2017) was used to adjust for inflation.

The programme solves the following equation for all contracts in the correct
chronological order (i.e. delivery of the product must be scheduled at least a
month after delivery of the reagent) in order to determine profit per unit of the

product:

Profit =P, — T, — (S, ® (S, xR)) xd —R x (P.—T,) = U (5.1)

where subscripts p and r refer to the product and the reagent respectively, P to
price, T to transport cost, S to storage cost, R to units of the reagent per unit of
the product, d to the storage duration and U to the cost of utilities per unit of the
product. Note that ¢ indicates that the programme assumes either the product or
the reagent is stored for the entire time between reception of latter and delivery of

the former.

Finally, the software will return the most profitable contract and storage schedule

combination.

5.3 Software used in the implementation

Aspen Plus V8.8

Aspen Plus V8.8 (AspenTech, 2017b) is a process modelling and optimisation
software used by the bulk, fine, specialty, and biochemical industries. More details

of the software are provided in Section 3.2.2 of Chapter 3.

Aspen HYSYS V8.8

Aspen HYSYS (AspenTech, 2017a) is a process modeling tool used by the petro-

chemical industry for process simulation and process optimization in design and
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operations. Its uses include, but are not limited to:

e designing various components in a petrochemical plant,
e detecting abnormal operating conditions,

e modeling steady state and dynamic processes.

Python 3.5.0

Python (Python Software Foundation, 2017) is an interpreted programming lan-
guage for general-purpose programming. In this study it was used to download
online data, perform calculations and connect to Aspen Plus and Aspen HYSYS
via COM interface. More details of the interface are provided in Section 3.3 of
Chapter 3.

5.4 Results and discussion

5.4.1 Description of the crude palm oil-to-biodiesel conversion

process
Biodiesel plant simulation

A process producing 24.334 tonnes per hour of biodiesel was modelled in Aspen
Plus V8.8 using the UNIFAC-DMD property method and steam tables for calcula-
tions involving pure water (Gmehling et al., 2002). The flow sheet model includes
two reaction stages (modelled using continuously stirred tank reactors - CSTRs), a
separation stage, a methanol recycle loop, a gas-fuelled steam generation section
and auxiliary equipment, see Fig. 5.2. The final fuel, fatty acid methyl ester, is
produced via trans-esterification pathway where triglycerides react with methanol
to form methyl ester and glycerine in the presence of an alkaline catalyst. The
flow sheet was based on an existing plant designed by Lurgi GmbH. In the pro-

cess tripalmitin oil is reacted with methanol in the CSTRs to produce glycerol and
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Table 5.1: Details of the futures contracts (CME Group, 2017a,c).

Crude palm oil Biodiesel
Exchange Chicago Mercantile Exchange | Chicago Mercantile Exchange
Contract Unit 25t 100 t
Currency USD USD
Delivery location | Malaysia Southern China

methyl palmitate (biodiesel), then passed through a flash drum and a decanter and
washed with water to separate the remaining methanol and glycerol. Finally, dry
air is used to remove water from the product. The simulation is solved for steady-
state operation and produces a wide variety of chemical and physical information
ranging from throughput to heat duties of individual equipment. It is assumed that

crude palm oil can be directly fed into this processing line.

Financial analysis

This scenario involves the following steps:

1. downloading market data from the website of Chicago Mercantile Ex-
change (CME Group, 2017c,a),

2. performing a feasibility analysis based on the downloaded data and physical
data provided by Aspen Plus (AspenTech, 2017b) model of a chemical plant

converting crude palm oil into biodiesel, see Fig. 5.4.

It is important to note that both futures markets deal with financially settled con-
tracts, but it is assumed that their prices are an accurate approximation of the
physically settled ones. For transportation purposes it is assumed that the delivery
location of crude palm oil is in Malaysia and of biodiesel in southern China. The
contract details can be seen in Table 5.1. A plot of the prices can be viewed in
Fig. 5.3.

The required quantities of crude palm oil contracts, utilities (steam, water, heat-
ing fuel and electricity), transport to and from the plant and storage volume are

calculated and costed per tonne of biodiesel. The prices were determined based
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on the plant specifications and the literature. The summary of prices can be found
in Table 5.2. To calculate the profit the programme solves eqn. 5.1 outlined in
Section 5.2.

The best contract and storage schedule combination is chosen based on this in-
formation using an exhaustive search. The result of the analysis using the market
data from 28.05.2017 is 345.17 USD per tonne of biodiesel can be made. This
can be achieved by buying contracts for delivery of crude palm oil in September
2018 and selling contracts for delivery of biodiesel in December 2018 in a ratio
of 4 to 1. The largest cost contribution comes from transportation. Note that it is
assumed that all crude palm oil was converted instantaneously (relatively to the
timescales involved). Duration of storing the reagent and the product is irrelevant

as their storage costs are the same.

This result indicates that there may be a realistic scope for increasing profitability
of a chemical plant by exploiting the opportunities across different commodity

markets. It is also shown that this can be achieved in an automated manner.

Table 5.2: Storage, transport and utility prices.

Storage
Crude palm oil 0.2075 USD per month-tonne
Biodiesel 0.2075 USD per month-tonne
Transport
Crude palm oil (Fadhil, 2013) 5.0 USD per tonne
Biodiesel (Fadhil, 2013) 40.0 USD per tonne
Utilities
Electricity (EMA, 2017) 0.0000386 SGD per kJ
Fuel gas 0.0000093 USD per kJ
Steam (low pressure) 0.01264 USD per kg
Steam (high pressure) 0.00349 USD per kg
Cooling water 0.00174 USD per kg
Process water 0.00033 USD per kg
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Figure 5.2: Aspen Plus model of a crude palm oil-to-biodiesel plant (steam generation
equipment not shown). Note: while the text in the figure appears very small,
the figure is encoded in a vector format so that it can be read clearly by
zooming in when reading the electronic version of the thesis.
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Crude palm oil futures prices from Chicago Mercantile Exchange
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Figure 5.3: Plot of the crude palm oil and biodiesel futures prices from 28.05.2017. For
example, a contract for future delivery of crude palm oil in September 2018
can be bought (or sold) at approx. 584 USD per tonne.
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5.4.2 Description of the natural gas-to-methanol conversion

process
Methanol plant simulation

A process producing around 56.791 tonnes per hour (1085 mmBTU per hour) of
methanol was modelled in Aspen HYSYS V8.8 using the Peng-Robinson prop-
erty method (Peng and Robinson, 1976). The flow sheet model can be divided
into two parts: natural gas-to-syngas conversion and syngas-to-methanol conver-
sion. Overall, they include two reaction steps (modelled using plug flow reactors -
PFRs), three separation steps, three recycle loops, a water top-up section and aux-
iliary equipment, see Fig. 5.4. Natural gas (mostly composed of methane, but also
ethane and propane) is stripped of any pollutants (such as sulphur compounds)
and then converted into syngas (a mixture of carbon monoxide and hydrogen) via
steam reforming. Water is removed from the mixture, which is then converted into
methanol in a PFR. Lastly, the product is purified up to the desired specifications.
The simulation is solved for steady-state operation and produces a wide variety
of chemical and physical information ranging from throughput to heat duties of

individual equipment.

Financial analysis

This scenario involves the following steps:

1. downloading market data from the websites of Chicago Mercantile Ex-
change (CME Group, 2017b) and Zhengzhou Commodity Exchange (ZCE,
2017) (the contract details can be seen in Table 5.3, while a plot of the prices

can be viewed in Fig. 5.5),

2. performing a feasibility analysis based on the downloaded data and physical
data provided by Aspen HYSYS (AspenTech, 2017a) model of a chemical

plant converting natural gas into methanol, see Fig. 5.4.

The required quantities of natural gas contracts, utilities (steam, water, heating
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Table 5.3: Details of the futures contracts (ZCE, 2017, CME Group, 2017b).

Natural gas Methanol
Exchange Chicago Mercantile Exchange | Zhengzhou Commodity Exchange
Contract Unit 10 mmBTU 1 tonne (approx. 19.1 mmBTU)
Currency USD CNY
Delivery location | Henry Hub pipeline Zhengzhou Exchange

fuel and electricity), transport to and from the plant and storage volume are calcu-
lated and costed per mmBTU of methanol. The prices of utilities, except electric-
ity, and methanol storage were determined based on specifications of the biodiesel
plant from Section 5.4.1, while the remaining ones from the literature. The sum-
mary of prices can be found in Table 5.4. To calculate the profit the programme

solves eqn. 5.1 outlined in Section 5.2.

The best contract and storage schedule combination is chosen based on this in-
formation using an exhaustive search. The analysis using the market data from
28.05.2017 recommends that no trade should be made in order to avoid making a
loss. The least loss of approximately 3690 USD per mmBTU of methanol can be
achieved by buying contracts for delivery of natural gas in June 2017 and selling
contracts for delivery of methanol in July 2017 in a ratio of 3 to 1. The largest cost
contribution comes from the utilities. Note that it is assumed that all natural gas
was instantaneously (relatively to the timescales involved) converted on arrival

and methanol was stored until delivery date.

This results indicates that direct arbitrage with natural gas may not be possible
since the markets are efficient (i.e. market prices reflect all relevant information)
and the natural gas prices in Asia due to the so called "Asian premium" (i.e. addi-
tional transport and storage costs). Additionally, it is cheaper to produce methanol
at the source of natural gas as the former is significantly cheaper to transport than
the latter.
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Table 5.4: Storage, transport and utility prices.

Storage
Natural gas (FERC, 2004) 0.121 USD per month-mmBTU
Methanol 0.01086 | USD per month-mmBTU
Transport
Natural gas (EYGM, 2014) | approx. 7 USD per mmBTU
Methanol (Aitken, 2016) 1.200 USD per mmBTU
Utilities
Electricity (EMA, 2017) | 0.0000386 SGD per kJ
Fuel gas 0.0000093 USD per kJ
Steam (low pressure) 0.01264 USD per kg
Steam (high pressure) 0.00349 USD per kg
Cooling water 0.00174 USD per kg
Process water 0.00033 USD per kg
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Figure 5.4: Aspen HYSYS model of a natural gas-to-methanol plant. The upper section
converts natural gas into syngas, while the lower syngas into methanol. Note:
while the text in the figure appears very small, the figure is encoded in a

vector format so that it can be read clearly by zooming in when reading the
electronic version of the thesis.
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Natural gas futures prices from Chicago Mercantile Exchange
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Figure 5.5: Plot of the natural gas and methanol futures prices from 28.05.2017. For
example, a contract for future delivery of methanol in Aug 2017 can be bought
(or sold) at approx. 18.7 USD per mmBTU.
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5.5 Future considerations

In this chapter it was shown that models of chemical plants can find and assess
opportunities for financial arbitration over chemical commodities on futures mar-
kets in an automated manner by calculating their total costs per unit of product
(including transport, storage, reagents and utilities) and comparing it with the on-
line market prices. Employing this approach in conjunction with JPS, blockchain
technology and parameterisation of suitable plant models could allow simulation
of financial markets with more complex trade deals. Additionally, there exist
many research questions that are beyond the scope of the current work but should

be investigated. A list of examples is given below.

e What model characteristics are desirable for this kind of application?
This work presents a scenario where commodity contracts from an existing
market are accepted and completed with a minimum of a month between
reception and delivery. Given this temporal resolution the accuracy of the
considered model is significantly more important that the evaluation speed.
If a market, where physical exchanges are made more frequently, is en-
tered speed becomes more important. However, unless the time between
reception and delivery falls into the order of hours or shorter (e.g. in the
electricity market), accuracy will always be paramount. Using surrogate
models would most likely be only warranted to substitute computationally
expensive and/or unstable models. It is important to remember that a surro-
gate model cannot be more accurate than the model on which it is based so

the base model needs to have a minimum level of accuracy.

e What kind of chemical industries could participate in a commodity
market as presented? Throughout this work it is assumed that the plant
operates with a long-term production contract, but its throughput could be
marginally increased. By using the spare production capacity, the plant
could make additional earnings by exploiting the price differences between
its feedstock and product on the commodity market. Chemical processes
which can be flexible with their production throughput will be more suit-

able to apply the scheme than ones which are not.
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e How would commodity markets be affected by wide participation of
automated plants? What kind of behaviours would such plants need to
exhibit to be able to effectively participate? How would a market composed
of models of chemical plants behave? Would the optimal plant behaviour
change based on the type of commodities involved? While the presented
scenario involves a model of chemical plants participating in an existing
market, given a sufficiently large number of automated chemical plants they
could have a significant impact on the markets that the participate in or even

create their own market exchanges.

e How would existing business models be impacted by common partici-
pation of automated plants in commodity markets? Would new kinds
of business models arise in this situation? One of the advantages of the
presented system is the disintermediation between the considered chemi-
cal plant and the target commodity markets. Given that the currently ex-
isting intermediaries would be pressured to rethink their business models.
Additionally, it could encourage plants with spare production capacity to
temporarily increase their production in order to participate in commodity
markets. For example, a plant involving electrochemical processes could

operate using grid electricity whenever it is profitable.

5.6 Chapter summary

This chapter presents an implementation of an automated arbitrage spotter pow-
ered by market and physical data applied to two scenarios: conversion of natural
gas to methanol and crude palm oil to biodiesel. The programme searches for
opportunities to make additional profit by analysing the futures market prices for
both the reagent and the product. It considers cost of storage and conversion (other
feedstock, steam, electricity and other utilities) derived from physical simulations
of the chemical process. It is assumed that the plant is located in Singapore and

operates with a long-term production contract.

Two scenarios considered are natural gas-to-methanol conversion and crude palm
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oil-to-biodiesel conversion. Analysis conducted using the market data from
28.05.2017 in the former scenario no trade should be made in order to avoid mak-
ing a loss. However, in the latter case up to 345.17 USD per tonne of biodiesel can
be earned by buying contracts for delivery of crude palm oil in September 2018
and selling contracts for delivery of biodiesel in December 2018 in a ratio of 4
to 1. Duration of storing the reagent and the product is irrelevant as their storage
costs are the same. It is shown that there may be a realistic scope for increasing
profitability of a chemical plant by exploiting the opportunities across different
commodity markets in an automated manner. Additionally, the results suggest
that direct arbitrage with natural gas may not be possible as the markets are effi-

cient and transporting natural gas tends to be more expensive than methanol.

It was shown that models of chemical plants can find and assess opportunities
for financial arbitration over chemical commodities on futures markets in an au-
tomated manner by calculating their total costs per unit of product (including
transport, storage, reagents and utilities) and comparing it with the online market
prices. Extending this idea to Industry 4.0 it shows that a cyber-physical systems
operating a chemical plant could participate in and interact with a trading network.
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Chapter 6

Conclusions

6.1 Conclusions of the presented work

All of the scenarios were designed as parts of J-Park Simulator, a holistic, mod-
elling platform based on the industrial park located on Jurong Island in Singapore.
The first focused on the biodiesel plant formerly located within the park, the sec-
ond on a potential M2M electricity market connecting individual machines on
the island and the third on enabling process lines to participate in the financial

markets.

Surrogate models of a biodiesel plant

Model Development Suite was used to produce various surrogates of an Aspen
Plus biodiesel plant flow sheet model using polynomial-based surrogate models.
The approximations relate 11 inputs typical to the biodiesel plant and their accu-
racy is assessed. The impact of dimensionality, domain size and parameterisation
type on the accuracy are explored. Additionally, global sensitivities of the outputs
are calculated using HDMR. It is found that most surrogate models achieved at
least a reasonable fit regardless of the domain size and number of dimensions.
Furthermore, it was observed that in all cases only 4 or fewer inputs have signifi-

cant influence on any of the outputs and that the interaction terms have only minor
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effect on any one output. This suggests that this application can be parameterised

with even simpler models i.e. ones ignoring interaction terms altogether.

It was shown that this approach can be effectively used to parameterise a model
typical for chemical industry. Thus, they can be used as an accurate replacement
in modelling platforms which need to rely on models of physical processes, but

also need to be fast and stable during execution.

Blockchain-enabled M2M electricity market

The potential of applying blockchain technology in the chemical industry is ex-
plored and analysed. A scenario employing blockchain to establish and facilitate
a M2M electricity market in the context of the chemical industry is presented and
implemented. Two electricity producers and one electricity consumer continu-
ously trade with each other over a blockchain-based network. The participants
are automated process flow sheet models of industrial equipment supplied with
realistic data. It was shown that the blockchain technology can be employed
in the chemical industry for the purposes of allowing virtual representations of
real equipment trading with each other. Extending this idea to Industry 4.0 and
cyber-physical systems would allow real equipment to interact with each other

autonomously in a decentralised network.

Automated arbitrage spotter

An automated arbitrage spotter, supplied with market and physical data, is de-
signed and implemented. The software searches for opportunities to make addi-
tional profit by analysing the futures market prices for both the reagent and the
product in the cases of conversion of natural gas to methanol and crude palm oil
to biodiesel. It considers cost of storage and conversion (other feedstock, steam,
electricity and other utilities) derived from physical simulations of the chemical
processes. No profitable scenario was found for the first chemical process, while
for the second up to 345.17 USD per tonne of biodiesel can be earned by buying

contracts for delivery of crude palm oil in September 2018 and selling contracts
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for delivery of biodiesel in December 2018 in a ratio of 4 to 1. It is assumed
that the plant is located in Singapore and operates with a long-term production
contract. It was shown that models of chemical plants can find and assess oppor-
tunities for financial arbitration over chemical commodities on futures markets in
an automated manner by calculating their total costs per unit of product (including
transport, storage, reagents and utilities) and comparing it with the online market
prices. Extending this idea to Industry 4.0 it shows that a cyber-physical systems

operating a chemical plant could participate in and interact with a trading network.
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6.2 Suggestions for future work

Interoperability

Significant work in the future can be done in the area of interactions between the
concepts explored in this thesis. For example, behaviour of a network where sur-
rogate models of chemical plants interact with each other and the external world
on a blockchain-based forum could be investigated. An ontology-based context
model for the network could be developed and employed within such a network.
It could provide participating agents with the context of their execution poten-
tially leading to improved performance and ability to engage in more complex

interactions.

Surrogate models of a biodiesel plant

Suggestions for investigations continuing the work described in Chapter 3, where
the process of generating accurate surrogates of a model typical for chemical in-
dustry using polynomial response surfaces and HDMR response surfaces was in-

vestigated, include:

e study more complex chemical models e.g. a number of interconnected
models forming a feedback loop necessitating coupling surrogate models
and solving them simultaneously to understand the extent to which these

methodologies can be applied to real-world systems,

e investigate existing restrictions on the behaviour and complexity of the
chemical model in order to better understand the boundaries within which

it should be parameterised,

e study measures of model complexity as well as the relationship between
complexity of chemical models and accuracy of the derived surrogate model
in order to uncover how this relationship varies across types of chemical

models and parameterisation techniques,

92



6.2 Suggestions for future work

e identify best choice of a parametrisation method given a particular scenario
in the context of the chemical industry in order to determine which tech-

nique(s) is best for a given class of cases,

e develop a capability to effectively automate the process of fitting surrogate
models so that it can deployed within an autonomous Industry 4.0 environ-

ment.

Blockchain-enabled M2M electricity market

Recommendations for studies continuing the work presented in Chapter 4, where
it was shown that the blockchain technology can be employed in the chemical
industry to allow virtual representations of real equipment to trade with each other

to improve the efficiency of the process, include:

e apply blockchain technology to scenarios involving larger networks, more
complex pricing models, more complex trade deals, greater variety of chem-
ical models and different types of commodities (e.g. steam, water, carbon
credits) to understand the extent to which the technology can be extended

to real-world systems,

e address the challenges of scalability within the environment of Internet of
Things so that the presented application can deployed within an autonomous

Industry 4.0 environment,

e identify best choice of a consensus mechanism given a particular scenario
in the context of the chemical industry in order to determine which mecha-

nism(s) is best for a given class of cases,

e study the impact of blockchain technology on the existing business models
in the chemical industry in order to gain understanding into the change that

this technology may effect on its environment.
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6 CONCLUSIONS

Automated arbitrage spotter

Suggestions for studies continuing the work presented in Chapter 5, where it was
shown that models of chemical plants can find and assess opportunities for finan-
cial arbitration over chemical commodities on futures markets in an automated

manner, include:

e utilise the presented approach in conjunction with JPS, blockchain technol-
ogy and parameterisation of suitable plant models to allow simulation of
financial markets to understand the extent to which these technologies can

be applied to real-world systems,

e study what model characteristics are desirable for this kind of application
and which chemical industries could likely participate in a commodity mar-
ket as presented in order to better understand the boundaries within which
it should be applied,

e study the effects of wide participation of automated plants on commodity
markets and the impact of such participation on the existing business models
in the chemical industry in order to gain understanding into the change that

this application may effect on its environment.

94



Appendix A

Key concepts and definitions of the
blockchain technology

A.1 Definitions

51% attack - an attempt by one or more participants with collective majority con-
trol of a network (e.g. by hash rate or stake) to revise transaction history and/or

prevent new transactions from being confirmed.

Assets - an entity (e.g. currency, commodity) created by sending additional data

in transactions of a chain’s native currency.
Block - a file in which data (e.g. transactions, events) are recorded.

Blockchain - a distributed, electronic database which can hold any information
(records, events, transactions, etc.) and can set rules on how information is up-
dated (Condos et al., 2016). It continually grows as discrete chunks (blocks) are
appended and linked (chained) to the previous block using the hash of its content.
It also records every change made in its history so in order to alter a past entry
all subsequent blocks also need to be altered. It is authenticated and maintained
through a distributed network of participants (nodes) according to a predefined

consensus mechanism (Condos et al., 2016).
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Byzantine Generals Problem (as described by Lamport et al. (1982)) - an agree-
ment problem in which a group of generals, each commanding a portion of the
Byzantine army, encircle a city. These generals wish to formulate a plan for at-
tacking the city. In the most basic form, they need to decide whether to attack
or retreat. It is vital that every general agrees on a common decision, for a half-
hearted attack by a few generals would become a rout and be worse than a coordi-
nated attack or a coordinated retreat. The problem is complicated by the presence
of traitorous generals who may not only cast a vote for a suboptimal strategy, but
also do so selectively (i.e. different answers sent to different people). This is anal-
ogous to a number of nodes participating in a blockchain attempting to arrive at a
global consensus whilst using unreliable communication and under threat of some

participants malfunctioning or being malicious.

Consensus mechanism - a set of state transition rules enabling an economic set
(among which the rights to conduct the transition are distributed) to perform se-
cure update of the state (Buterin, 2014). Bitcoin users are an example of the

aforementioned economic set. For further description and examples see A.2.

Crypto-currency - a digital currency in which encryption techniques are used to
regulate the generation of units of currency and verify the transfer of funds, oper-

ating independently of a central bank (The Oxford Dictionary, 2016).

Cryptographic hash function - a type of hash functions (see below) suitable for
use in cryptography e.g. Bitcoin uses SHA-256 (Secure Hash Algorithm - 256
bit) (Rogaway and Shrimpton, 2004; Lewis, 2015). An ideal cryptographic hash

function exhibits the following traits:

e a hash can be easily produced for any message;
e it is difficult to derive the original data from its hash;

e any changes in the original data result in the hash changing so extensively

that the new hash value appears uncorrelated with the old hash value;

e it is infeasible for two different inputs to result in the same hash.
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Fork - the event of a blockchain splitting into two or more chains. A fork can
occur when two or more miners publish a valid block at roughly the same time,
as a part of an attack (e.g. 51% attack) or when a blockchain protocol change is
attempted (such a fork is "hard" if all users are required to upgrade, otherwise it
is "soft") (Nakamoto, 2009b).

Hash function - any function that can be used to map data of arbitrary size to data
of fixed size (Rogaway and Shrimpton, 2004; Lewis, 2015).

Header hash - a hash of the information contained in a block’s header which is
used to link the block with the next one. In the case of Bitcoin blocks it contains
the blockchain version number, the header hash of the previous block, the merkle
root (see Merkle tree below) of all transactions in the block, the current time and

the current difficulty (see Hash target below).

Hash target - a set of acceptance criteria imposed on a block’s header hash (see
Header hash above) by the protocol of a blockchain. In the case of Bitcoin, the

target is an upper bound on the hash’s value.

Internet of Things (loT) - dynamic, global network infrastructure that can self-
configure using standards and interoperable protocols where physical and virtual
things have identities, attributes, and personalities, use intelligent interfaces, and

can seamlessly integrate into the network (Atzori, 2016).

Industry 4.0 - is characterised by the ability of industrial components to commu-
nicate with each other. It includes cyber-physical systems, the Internet of Things

and cloud computing (Kleinelanghorst et al., 2016; Hermann et al., 2016).

Linked Data - a method of publishing structured data so that it can be interlinked

and become more useful through semantic queries (Bizer et al., 2009).

Merkle tree - a tree constructed by pairing data (e.g. in the Bitcoin system it
usually refers to transactions), then hashing the pairs, then pairing and hashing

the results until a single hash remains, the merkle root (Nakamoto, 2009c).

Mining - the process of verifying transactions and publishing blocks. The exact
procedure varies widely depending on a particular blockchain implementation. In

Bitcoin’s case miners compete to solve a mathematical puzzle that requires the
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consumption of computing power (Vukoli¢, 2016). Once the puzzle is solved,
the new block of transactions is accepted by the network and committed to the
blockchain. The miner is rewarded with newly generated coins. For further de-

scription and examples see A.2.

Node - any device which is part of a network and has a unique network address.
In the context of blockchain and crypto-currencies it refers to a wallet software

such as the Bitcoin client application.

Nonce - an arbitrary number that may only be used once. In the case of Bitcoin, it
is a part of block’s header and mining nodes repeatedly adjust the number in order

to meet the target imposed on header hashes.

"Nothing at stake" problem - a shortfall experience by blockchain using a proof-
of-stake consensus mechanisms where block generators have nothing to lose
by voting for multiple blockchain histories leading to consensus never resolv-
ing (Poelstra, 2016).

Peer-to-peer (P2P) network - a network of nodes (peers) directly connected with
each other. The system relies on the peers, who have equal standing within the

network, sharing at least as many resources as they consume.

Permissioned blockchain - a blockchain whose use is restricted to known, vetted
participants (O’Dair et al., 2016).

Permissionless blockchain - a blockchain that is accessible to anyone who wishes
to use it (O’Dair et al., 2016).

Private blockchain - a blockchain that limits read access to particular
users (O’Dair et al., 2016).

Public blockchain - a blockchain that grants read access and ability to create trans-
actions to all users (O’Dair er al., 2016).

Public-private key cryptography - a class of encryption methods that uses pairs of
keys (e.g. a pair of two special numbers): public and private. A public key can be
used to verify that a message was created by an owner of the paired private key
(verification of a digital signature) and to encrypt a message such that only the

aforementioned owner can decrypt.
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Smart contract - a contractual agreement built on computer protocols, whose

terms are executed automatically (O’Dair et al., 2016).

Semantic Web - an extension of the Web through standards by the World Wide
Web Consortium (W3C) in order to promote common data formats and exchange

protocols on the Web, most fundamentally the Resource Description Framework
(RDF) (Nakamoto, 2013).

Transaction - a transfer of a digital asset from an address (or addresses) to another
address (or addresses) (O’Dair et al., 2016).

Wallet - a public representation of the public and private key pairs that are used to

store and transfer coins.

Examples of forking during normal operation:
typical (top) and rare (bottom)

Block N+1a Block N+3a
Block N+1b Block N+3b

Block N+1a Block N+2a Block N+3a
Block N+1b Block N+2b Block N+3b

Figure A.1: Diagram demonstrating temporary blockchain forks (Nakamoto, 2009a).

Block N+4

Block N+4
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A.2 Consensus mechanisms

This section briefly describes various kinds of consensus mechanisms (see defini-
tion in A.1) used for blockchain implementations. The following mechanisms are

discussed:

e Proof-of-work

Proof-of-stake

Deposit-based

Byzantine agreement (PBFT)

Rotation scheme

Proof-of-work

Proof-of-work is a method of achieving network consensus where the ability
to verify and publish transactions is dependent on the computing power of the
miner (O’Dair et al., 2016; Buterin, 2014). The details have already been ex-

plained in Section 2.5.

Proof-of-stake

Proof-of-stake is a consensus mechanism in which the ability to verify and pub-
lish blocks depends on the "stake" (e.g. amount of the native currency) already
possessed (O’Dair et al., 2016). Verification is performed by the nodes with
the largest stake in the network as its correct operation is in their best interest,
e.g. mining is easier for those who can show they control a large amount of the

blockchain’s native currency.

Publishing blocks proceeds as follows (Vukolié, 2016):

1. A participant needs to "lock" (e.g. deposit, spend) a number of coins in

order to be allowed to publish blocks;
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2. The participant needs to generate a block with a valid hash (as in the proof-
of-work system, but the more coins consumed, the easier the search for a
valid hash);

3. The block is published and validated by other participants.

The system benefits over the proof-of-work mechanism from reduced energy con-
sumption, immunity from hardware centralization and reduced risk of any one
member acquiring the controlling stake as its cost might be higher than the cost
of acquiring significant mining power. However, it suffers from the "nothing at
stake" problem (described in A.1).

Deposit-based

A deposit-based consensus protocol requires the participants to register a secu-
rity deposit in order to serve the consensus by producing blocks (Zamfir, 2015).
In the case of Ethereum, a chain selection rule called GHOST (Greedy Heaviest
Observed Sub Tree) serves as an arbitrator governing the security deposits (Som-
polinsky and Zohar, 2013). If a node validates a transaction that GHOST consid-
ers invalid, the node loses its deposit and forfeits the privilege of participating in
the consensus process. This directly solves the "nothing-at-stake" problem (de-
scribed in A.1). This system benefits from strong convergence of history (i.e.
every block would either be fully abandoned or fully adopted) and strengthened
immutability as blocks that are not in the main chain remain on the record (Som-
polinsky and Zohar, 2013). Ethereum is expected to introduce a deposit-based

consensus protocol called Casper (Zamfir, 2015).

Byzantine agreement

Byzantine agreement, also known as Practical Byzantine Fault Tolerance (PBFT),
type consensus mechanisms are based on a solution to the Byzantine Generals
Problem (described in A.1). In this case each node generates a private-public
key pair and publishes the public key. Messages from other nodes, which are

concerned with issues requiring the network agreement, passing through the node
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are signed by the node to verify their format. Once enough identical responses are
recorded, the consensus about the issue in question is reached. This protocol is
suitable for low-latency storage system and digital asset-based platforms that do
not require a large data throughput, but need many transactions (Vukoli¢, 2016;

Castro and Liskov, 1999). One of the platforms using it is Hyperledger.

This method does not require any hashing power (hence enjoys reduced energy us-
age), provides fast and efficient consensus convergence and decouples trust from
resource ownership making it possible for the small to keep the powerful honest.
However, the system needs to be set up by a central authority or over a course
of closed negotiations and all parties have to agree on the exact list of partici-
pants (Maziéres, 2015).

Federated Byzantine Agreement (FBA) is a type of PBFT, but it enjoys an open
membership scheme (Maziéres, 2015), where all nodes know other nodes and
can consider some to be important. Whenever a transaction needs to be verified,
any given node waits for the vast majority of the nodes it considers important
to agree with each other. At the same time, the important participants do not
agree to the transaction until the participants they consider important agree as
well. Eventually, sufficiently large part of the network accepts the transaction
making it infeasible for an attacker to make any changes. The FBA system relies
on small sets of trusted parties which would consist of the nodes that built their
trust level over time through good behaviour (Maziéres, 2015). A platform called

Stellar employs this scheme (Higgins, 2015).

Round robin

For private blockchains, where certain degree of trust between the participants
is possible, the network consensus can be achieved without difficult computa-
tions. In the case of MultiChain (Greenspan, 2015) the set of miners is limited
to known entities which take turns in publishing blocks. The strictness of the
rotation scheme is controlled using a parameter called mining diversity (0 < min-
ing diversity < 1). This parameter defines the minimum proportion of permitted

miners needed to control the network. 0.75 is a recommended value (Greenspan,
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2015), as high values are safer, but a value too close to 1 can cause the blockchain
to freeze up if some miners become inactive. In the case that the network splits
temporarily (e.g. due to communications failure) resulting in a fork, the branch

with the longer chain will be adopted.

The participants are approved for publishing blocks as follows:

1. Any permission changes defined by transactions in the current block are

applied;
2. The current number of permitted miners is calculated;

3. The number of miners is multiplied by mining diversity and rounded up to

get spacing;

4. If any of the spacing-1 blocks were mined by the current miner, the block is

invalid.
The scheme enjoys the following advantages over a centralised database:

e Each participant has full control over its assets via their ownership of private
key(s);

e Distributed control prevents an individual or a small group from unilaterally

deciding which transactions are valid or will be confirmed;

e More robust as access and validation of transactions will continue even if a

server malfunctions (i.e. no single point of failure).
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Glossary

A Cyber Physical System (CPS) is a physical mechanism controlled or moni-
tored by software where both aspects are deeply intertwined. It is usually
connected to a network e.g. a control system of an electrical distribution

network. Pages: 2,9, 10

An Eco-Industrial Park (EIP) is an industrial park where businesses cooperate
with each other and, at times, with the local community to reduce waste and
pollution, efficiently share resources (such as information, materials, water,
energy, infrastructure, and natural resources), and minimize environmental
impact while simultaneously increasing business success (Boix et al., 2015;
Ehrenfeld and Gertler, 1997). Pages: iv, 8-10, 24

Industry 4.0 is characterised by the ability of industrial components to commu-
nicate with each other. It includes cyber-physical systems, the Internet of
Things and cloud computing (Hermann et al., 2016). Pages: iv, 2, 3,5, 7,
9,10, 12, 13, 20, 21, 23, 53, 57, 66, 69, 71, 87, 90, 91, 93

Machine-to-Machine (M2M) communication refers to the ability of industrial

components to directly communicate with each other. Pages: 2, 4, 9, 23

The Internet of Things (IoT) is a dynamic, global network infrastructure that
can self-configure using standards and interoperable protocols where phys-
ical and virtual things have identities, attributes, and personalities, use in-
telligent interfaces, and can seamlessly integrate into the network (Atzori,
2016). Pages: 2,9, 22, 23, 59, 68
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Nomenclature

Upper-case Roman

M*
Ml*

:E)%:U;USTUXZZZ

Maximum polynomial order

Maximum interaction order

Size of a set (where N € N)

Number of data points

The number of input parameters, x

Legendre polynomials of order m (where m € N)

Price of a product

Price of a reagent

Units of the reagent per unit of the product

Coefficient of determination - a measure indicating fit of a statistical
model to data

R? corrected for the number of fitted parameters relative to the num-
ber of data points

R? threshold for inclusion of surrogate terms

Sensitivity with respect to the ith input variable

Sensitivity with respect to the interaction term of the ith and jth
input variables

Storage cost of a product

Storage cost of a reagent
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Lower-case Roman

argmin

Jij

le...NX(xlvx% "'7XNX)

~.

T T .

Transport cost of a product

Transport cost of a reagent

Cost of utilities per unit of the product

Statistical weights in the general linear least-square fit method
First statistical weight

ith statistical weight

Nth statistical weight

A function that returns the arguments that minimise a given function
Storage duration for product or reagent

Residual error for i data point

A function

A function in x

Mean value of f(x)

Mean value of f(x)

i" model predicted value

Polynomial in x with coefficient

Function describing surrogate contribution of the ith input variable
(excluding the constant term and interaction terms)

Function describing surrogate contribution of the interactions of the
ith and jth input variables

Function describing surrogate contribution of the interactions of N,
input variables

Index for ordering parameters

Index for ordering parameters

Polynomial order

Number of adjustable parameters

A multi-index
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An independent variable

Polynomial

Polynomial in a set of variables x of order p
Polynomial in a single variable x; of order p
First input

ith input

Nth input

Set of outputs

ith output data point

First output

ith output

Nth output

Mean value of y

Upper-case Greek

® A function defining coefficients of a polynomial in the general lin-

ear least-square fit method

Lower-case Greek

Qi
B

ﬁ *
Biji
0

¢

Coefficient used for evaluating an approximation of HDMR

Coefficients of terms in a polynomial

Optimised polynomial coefficients

Coefficient used for evaluating an approximation of HDMR

Kronecker delta

An analytic function used for evaluating an approximation of

HDMR
Standard deviation

Variance
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Gy%i Contribution of the ith input variable to the total variance in the
output variable (excluding interaction terms)
G%i ; Contribution of the interactions of the ith and jth input variables to

the total variance in the output variable

o: Total variance in the output variable

Symbols

10D01  Continuously stirred tank reactor as seen on Fig. 3.2
10D02  Flush drum as seen on Fig. 3.2
10D02D Decanter as seen on Fig. 3.2
10EO1 Heater as seen on Fig. 3.2
10E02 Heater as seen on Fig. 3.2
10EO3 Heater as seen on Fig. 3.2
H1 Denotes a 1* order HDMR fit
H2a Denotes a 2" order HDMR fit without interactions
H2b Denotes a 2" order HDMR fit with interactions
H10 Denotes a 10" order HDMR fit with 2" order interactions
P1 Denotes a 1* order polynomial fit
P2 Denotes a 2"¢ order polynomial fit
P3 Denotes a 3" order polynomial fit
P4 Denotes a 4" order polynomial fit
P5 Denotes a 5 order polynomial fit
N Set of natural numbers
Ny Set of natural numbers including 0
N} I-dimensional set of natural numbers including 0
R" Real coordinate space of n dimensions
¢ Exclusive disjunction
J  Integration symbol
“)  Binomial coefficient (n+k)!/k!n!
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g—g: Partial derivative of function & with respect to f3,
Abbreviations
AH Aspen HYSYS
ANN Artificial neural network
AP Aspen Plus
API  Application programming interface
BTC Bitcoin
CARES Cambridge Centre for Advanced Research and Education in Singa-
pore
CME Chicago Mercantile Exchange
COM Component Object Model
CoMo Computational Modelling
CPS Cyber-physical system
CSTR Continuously stirred tank reactor
DDoS Distributed denial-of-service
DMC Dynamic matrix control
EIP Eco-industrial park
eMPC explicit Model Predictive Controller
FBA Federated Byzantine Agreement
GHG Greenhouse gas
GPC Generalized Predictive Control
HDMR High Dimensional Mathematical Representation
IMC Internal model control
[IoT Internet of Things
JPS J-Park Simulator
LQR Linear quadratic regulator
M2M Machine-to-Machine
MAC Model algorithmic control
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MoDS
MPC
P2P
PBFT
PFR
PWA
RDF
RMSD
SHA
W3C
ZCE

Model Development Suite

Model Predictive Controller
Peer-to-peer

Practical Byzantine Fault Tolerance
Plug flow reactor

Piecewise affine function
Resource Description Framework
Root-mean-square deviation
Secure Hash Algorithm

World Wide Web Consortium
Zhengzhou Commodity Exchange
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