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Abstract 46 
 47 
Rewarding choice options typically contain multiple components, but neural signals in single brain 48 
voxels are scalar and primarily vary up or down. In a previous study, we had designed reward 49 
bundles that contained the same two milkshakes with independently set amounts; we had used 50 
psychophysics and rigorous economic concepts to estimate two-dimensional choice indifference 51 
curves (IC) that represented revealed stochastic preferences for these bundles in a systematic, 52 
integrated manner. All bundles on the same ICs were equally revealed preferred (and thus had same 53 
utility, as inferred from choice indifference); bundles on higher ICs (higher utility) were preferred 54 
to bundles on lower ICs (lower utility). In the current study, we used the established behavior for 55 
testing with functional magnetic resonance imaging (fMRI). We now demonstrate neural responses 56 
in reward-related brain structures of human female and male participants, including striatum, 57 
midbrain and medial orbitofrontal cortex that followed the characteristic pattern of ICs: similar 58 
responses along ICs (same utility despite different bundle composition), but monotonic change 59 
across ICs (different utility). Thus, these brain structures integrated multiple reward components 60 
into a scalar signal, well beyond the known subjective value coding of single-component rewards. 61 
 62 
 63 
 64 
Significance Statement 65 
 66 
Rewards have several components, like the taste and size of an apple, but it is unclear how each 67 
component contributes to the overall value of the reward. While choice indifference curves of 68 
economic theory provide behavioural approaches to this question, it is unclear whether brain 69 
responses capture the preference and utility integrated from multiple components. We report 70 
activations in striatum, midbrain and orbitofrontal cortex that follow choice indifference curves 71 
representing behavioral preferences over and above variations of individual reward components. In 72 
addition, the concept-driven approach encourages future studies on natural, multi-component 73 
rewards that are prone to irrational choice of normal and brain-damaged individuals. 74 
 75 
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Introduction  77 
 78 
In daily life, we choose between options that have multiple components. In a restaurant, we can get, 79 
for the same price, a small but tasty steak or a larger but less tasty steak. In choosing the latter, we 80 
give up some taste for more meat. Or the components can be distinct objects, like a meal with small 81 
lasagne and big salad, or a meal with large lasagne and small salad; in choosing the latter, we give 82 
up some salad for more lasagne. In both cases, our preference for an option (steak or meal) is based 83 
on more than one component. To understand such choices, we need to know whether the value 84 
integrated from different components can be represented by scalar measures of preferences and their 85 
neuronal processes.  86 
 Functional magnetic resonance imaging (fMRI) studies investigated choices between bundles 87 
with multiple-components. Several brain regions are involved in such choices, including striatum 88 
(Hunt et al. 2014), frontal cortex (Hunt et al. 2014; Kurtz-David et al. 2019; Busemeyer et al. 2019), 89 
cingulate cortex (Kurtz-David et al. 2019; Busemeyer et al. 2019; Fujiwara et al., 2009) and insula 90 
(Busemeyer et al. 2019). One study showed encoding of values of gift cards that contained an 91 
amount component and a quality component (de Berker et al. 2019); other studies investigated 92 
irrational choices with monetary-gamble components (Kurtz-David et al. 2019) and addressed 93 
irrational attraction and decoy effects (Chau et al. 2014; Gluth et al. 2017; Chung et al. 2017). 94 
Whereas these studies demonstrated neural signals for multi-component rewards, they did not 95 
specifically investigate whether the signals captured the reward value integrated from multi-96 
dimensional vectorial choice options. To resolve the issue would require to study how the increase 97 
of one component compensates for the decrease of the other component without changing the 98 
preference, and how such a trade-off is represented in scalar neural signals. 99 
 This trade-off mechanism constitutes the heart of indifference curves (IC) underlying 100 
Revealed Preference Theory (Samuelson 1938). Each two-component choice option is graphically 101 
represented at a specific x-y coordinate of a two-dimensional plot (Mas-Colell et al. 1995). All 102 
bundles that are equally preferred to each other (choice indifferent, indicating same utility despite 103 
different bundle composition) are located on the same IC irrespective of underlying variation in 104 
bundle composition. Preferred bundles are located on higher ICs (farther away from the origin, 105 
higher utility). This scheme is widely used for conceptualizing economic preferences in economics 106 
textbooks, consumer choice (Simonson 1989; Tversky & Simonson 1993; Rieskamp et al. 2006), 107 
animal choice (Kagel et al. 1975; Pastor-Bernier et al. 2017) and neuronal reward signals in animals 108 
(Pastor-Bernier et al. 2019). The preference scheme has been extended to stochastic choice 109 
(McFadden & Richter 1990; McFadden 2004), which is helpful for multi-trial statistical analyses of 110 
human brain responses. Thus, the question for the current study arises: would human blood-oxygen-111 
level-dependent (BOLD) signals follow the characteristics of ICs that define the emergence of 112 
scalar measures from vectorial bundles? 113 
 We investigated scalar BOLD signals for two-component milkshakes with sugar and fat 114 
components that elicit subjective valuations and neural reward signals (Grabenhorst et al. 2010; 115 
Zangemeister et al., 2016). We used three revealed preference levels (three ICs, different utility), 116 
each estimated from five equally preferred bundles (indifference points, IPs, located on same IC, 117 
same utility despite different bundle composition). Participants were presented with choice options 118 
that contained one fatty and one sugary milkshake with specific amounts. We estimated 119 
psychophysical indifference points (IP) at which a Reference bundle and a Variable bundle were 120 
chosen with equal probability. From these IPs, we estimated well-ordered and non-overlapping ICs. 121 
Using two independent general linear models, we found that scalar BOLD responses in striatum, 122 
midbrain and medial orbitofrontal cortex followed the IC scheme: the responses varied 123 
monotonically across ICs but changed only significantly along individual ICs, indicating orderly 124 
integration of multi-component choice options into single-dimensional measures. The behavioral 125 
results of this study have been published in detail (Pastor-Bernier et al. 2020). 126 
 127 
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Materials and Methods 128 
 129 
Participants 130 

A total of 24 participants (19-36 years old with mean age 25.4 years; 11 males, 13 females) 131 

performed a binary choice task that was followed, in 50% of trials, by a Becker–DeGroot–Marschak 132 

(BDM) task inside the fMRI scanner using sugary and fatty milkshakes. All participants had known 133 

milkshake appetite, and none had diabetes or lactose intolerance. All participants provided written 134 

consent based on an information sheet. The Cambridgeshire Health Authority (Local Research 135 

Ethics Committee) approved this study. The behavioral results have been published with more 136 

details separately (Pastor-Bernier et al. 2020). 137 

 138 

Experimental design 139 
The fundamental notion underlying this experiment posits that choice options consist of at least two 140 

components, and that preferences are revealed by observable choice. The multi-component choice 141 

options are called bundles. It is immaterial for the general concept of multi-component choice 142 

whether the individual components are parts of a single object (like size and taste of a steak in the 143 

example above) or constitute separate objects within a choice option (like lasagne and salad). 144 

Decision makers prefer bundles with larger or better components to those with smaller or worse 145 

components. Importantly, however, their preferences concern all components and are not directed at 146 

a single component alone. This property is manifested when participants prefer bundles in which 147 

one of the components of the preferred bundle is smaller than the same component in the non-148 

preferred bundle (and the other component is large enough to overcompensate). At one point, 149 

participants may express equal preference for bundles in which the lower amount of one component 150 

is fully compensated by the higher amount in the other component, leading to choice indifference. 151 

We repeatedly measured choices with two options, each of which contained two milkshake 152 

components; the milkshakes constituted rewards, as shown by the voluntary consumption in all 153 

participants.  154 

Stimuli and rewards 155 

In each of the two bundles, we used stimuli to show the two milkshake components and their 156 

payout amounts (Fig. 1A). In each bundle stimulus, there were two rectangles aligned vertically. 157 

Each bundle component was indicated by the color of each rectangle. We extensively piloted 158 

various liquidized foods and liquids, and we found that milkshakes with a controlled mixture of fat 159 

and sugar give the most reliable across-participant behavioral performance. The presently used 160 

milkshakes with sugar and fat components that were found in previous studies to elicit subjective 161 

valuations and activate neural reward structures (Grabenhorst et al. 2010; Zangemeister et al., 162 

2016). We delivered the milkshakes separately with a 0.5 s interval (see below). As drinks 163 

consisting of only sugar or only fat were considered as too unnatural, we used a high-fat low-sugar 164 

milkshake (75% double cream and 25% whole milk, with no sugar) as component A (top, blue), and 165 

a high-sugar low-fat milkshake (skimmed milk with 10% sugar) as component B (bottom, red). 166 

Inside each rectangle, the vertical position of a bar indicated the component’s physical amount 167 

(higher was more). We delivered the milkshakes to the participants using a custom-made silicone 168 

tubing syringe pump system (VWR International Ltd). The pump was approved for delivering 169 

foodstuffs and was controlled by a National Instruments device (NI-USB-6009) via the Data 170 

Acquisition Toolbox in Matlab. We displayed stimuli to participants and recorded behavioral 171 

choices using the Psychtoolbox in Matlab running on a Windows (Dell) computer (Pastor-Bernier et 172 

al. 2020). 173 
 174 

Binary choice task before fMRI scanning 175 
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In the binary choice task, each participant revealed one’s preference in repeated choices between 176 
two bundle stimuli, each indicating the amounts of two milkshake components (Fig. 1A). The two 177 
bundles (stimuli) appeared on a computer screen simultaneously in front of the participant. The left 178 
and right positions of the bundles were fixed but pseudorandomly alternated. Each bundle stimulus 179 
included the same two kinds of milkshakes with independent physical amounts. Both stimuli 180 
appeared after a pseudorandomly varying interval (mean 0.5 s) after a central fixation cross. In each 181 
trial, the participant chose between the two bundles by pressing a button once (on a computer 182 
keyboard; left or right arrow corresponding to choosing left or right bundle). We defined reaction 183 
time as the interval between appearance of the two bundle stimuli and the participant's button press. 184 
We delivered the two milkshakes to the participant from the chosen bundle with a probability P = 185 
0.2 using a Poisson distribution; i. e. the milkshake combination of one out of an average of five 186 
chosen bundles was delivered, and no milkshake was delivered in the remaining trials. Component 187 
B (high-sugar low-fat milkshake) was delivered at a constant interval of 0.5 s after component A 188 
(high-fat low-sugar milkshake). We used this constant delay, instead of simultaneous delivery of 189 
two milkshakes or a pseudo-randomly alternating milkshake sequence, to prevent uncontrolled 190 
milkshake interactions, to maintain distinguishability of the individual milkshake rewards and to 191 
keep temporal discounting constant. Therefore, the utility of component B derived from both 192 
milkshake rewards and the temporal discounting specific for each milkshake. While the interval of 193 
0.5 s was sufficiently short to not disrupt task performance and data collection, it was too short to 194 
completely prevent the high-fat milkshake blending into the subsequent high-sugar milkshake 195 
inside the participant's mouth. As the interval was kept constant in all participants and at all times, 196 
the mixture provided a constant gustatory experience. Participants were asked not to eat or drink 197 
anything at least four hours before the task performance. However, satiety may still be a concern 198 
given the high fat and sugar content of our milkshakes. To address this issue, we set the probability 199 
of P = 0.2 payout schedule, limited each payout to 10.0 ml at most, and delivered no more than a 200 
total of 200 ml of liquid to the participant in a session. We addressed the issue with additional 201 
analyses and failed to find differential, sensory-specific satiety noticeable in choice probability 202 
measures (see below; Pastor-Bernier et al. 2020). 203 
 204 

Psychophysical assessment of indifference points (IPs) 205 

We used a psychophysical staircase method (Pastor-Bernier et al. 2020; Green, & Swets, 1966) to 206 
estimate the indifference points (IPs) at which, by definition, each of the two bundle options was 207 
chosen equally frequently (i.e. probability P = 0.5 for each option), indicating choice indifference 208 
for the options. We established bundles at 15 IPs for each participant and used them in the 209 
subsequent fMRI experiment.  210 
 To start the psychophysical procedure, we first set component A to 0 ml and component B to 211 
either 2 ml, 5 ml or 8 ml in the Reference Bundle. We then systematically varied the Variable 212 
Bundle. In the Variable Bundle, we first set the amount of its component A to one unit higher 213 
(mostly 0.5 ml, 1.0 ml or 2.0 ml); we thereby specified the amount of component A gained by each 214 
participant from the choice. We then randomly selected (without replacement) one amount of 215 
component B from a total of seven fixed amounts (multiples of 0.5 ml), which span the whole, 216 
constant range of amounts being tested. We repeatedly selected the amounts until we tested each of 217 
the seven amounts once. We repeated estimation for each IP six times using a sigmoid function (see 218 
Eqs. 1, 1a below), requiring a total of 42 choices for estimating each IP. The amount of component 219 
B in the Variable Bundle was usually lower than the one in the Reference Bundle at the IP. With 220 
these procedures, we assessed how much of component B a participant was willing to trade-in for 221 
an additional unit of component A.  222 
 We obtained more IPs from the participants’ choices between the fixed Reference Bundle and 223 
the Variable Bundle, in which the amount of component A was increased stepwise, at each step 224 
varying the amount of component B to estimate the choice indifference point at which the animal 225 
was indifferent between the two bundles. Thus, bundle position advanced from top left to bottom 226 
right on the two-dimensional IC (Fig. 1B). We are aware that testing with unidirectional progression 227 
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may cause particular variations in IP estimations than testing in a random sequence or in opposite 228 
directions (Knetsch, 1989). However, our primary interest in this study was to investigate basic 229 
neural processes in close relation to unequivocally estimated IPs and ICs rather than addressing the 230 
more advanced features of irreversibility or hysteris in ICs. 231 
 We used three different fixed amounts of component B for the Reference Bundle (2 ml, 5 ml, 232 
or 8 ml), to obtain three IC levels. We estimated four IPs, together with the fixed reference bundle 233 
as an IP, at each of three indifference curves (ICs; i.e. revealed preference levels), resulting in 15 234 
IPs, in a total of 504 choices (trials) among 84 different choice option sets in each participant (6 235 
repetitions for 7 psychophysical amounts at each of the 12 IPs).  236 
 237 
Statistical analysis 238 

Numeric estimation of indifference points 239 

We used a sigmoid fit to numerically estimate the choice IPs. The fit was obtained from the 240 
systematically tested choices with a generalized linear regression. The generalized linear 241 
regressions used the glmfit function in Matlab (Matlab version R2015b) with a binomial distributed 242 
probit model, which is an inversed cumulative distribution function (G). More specifically, we 243 
apply the link function to the generalized linear regression y = 0 + 1Bvar +  and write it as: 244 
 245 
G(y) = 0 + 1Bvar +       Eq. 1 246 
 247 
where y represents the number of trials the Variable Bundle is chosen in each block of a six-248 
repetition series, 0 represent the constant offset, 1 represent the regression slope coefficient, Bvar 249 
represent the physical reward amount (ml) of component B in the Variable Bundle, and  represent 250 
the residual error. We used the probit model as it assumes a multivariate normal distribution of the 251 
random errors, which makes the model attractive because the normal distribution gives a good 252 
approximation to most of the variables. The model does not hypothesize error independence and is 253 
frequently used in econometrics (Razzaghi, 2013). On the other hand, the logit model, which is also 254 
commonly used in economics, is simpler to compute but has more restrictive hypotheses on error 255 
independence. Our preliminary data had shown a similar fit for both the logit and probit model, 256 
therefore, we used the probit model fit because of its less restrictive hypotheses. Thus, we 257 
approximated the IPs with the probit-model sigmoid fit, which can be written as follows: 258 
 259 
Indifference Point = - (0 / 1)     Eq. 1a 260 
 261 
where 0 and 1 represent coefficients of the generalized linear regression (Eq. 1). We obtained 262 
these coefficients from the probit analysis (Amemiya, 1981). 263 
 264 

Indifference curves (ICs) 265 

In each participant, we obtained each single IC separately from an individual set of five equally 266 
revealed preferred IPs with differently composed bundles using a weighted least-square non-linear 267 
regression. We used a weighted regression to account for choice variability within participant; the 268 
weight was defined as the inverse of the standard deviation of the titrated physical amount of 269 
component B at the corresponding IP (the IP having been estimated with the probit regression). We 270 
estimated the best  coefficients from the least-square regression to obtain a single IC (utility level), 271 
using the basic hyperbolic equation: 272 
 273 
IC  = 0 + 1B + 2A + 3BA +      Eq. 2 274 
 275 
where A and B represent physical amounts of component A and component B (ml), which refer to 276 
the x and y axis, respectively. Note that is the slope coefficient and 3 is the curvature 277 
coefficient of the non-linear least-square regression. As IC is a constant (representing one utility 278 
level), we merged the IC constant with the offset constant (0) and the error constant () into a 279 
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common constant k. To draw the ICs, we calculated the amount of component B from the derived 280 
equation as a function of the amount of component A: 281 
 282 
B = (k – 2A) / (1 + 3A)     Eq. 2a 283 
 284 
We graphically displayed the fitted ICs (Fig. 1B, C) by plotting the pre-set physical amount of 285 
component A as the x coordinates, and calculated the fitted amount of component B, based on Eq. 286 
2a, as the y coordinates. We estimated the error of the hyperbolic fit as the 95% confidence interval. 287 
When calculating the ICs, we gave less weight to the IP with higher error. This model offered good 288 
fits in our earlier work (Pastor-Bernier, et al. 2017; 2019; 2020). In this way, five IPs aligned to a 289 
single fitted IC. For each participant, we fitted three ICs representing increasing revealed preference 290 
levels (low, medium, high) farther away from the origin (Fig. 1B, C). The indifference map that 291 
resulted from the 3 x 5 IPs was unique for each of the 24 participants. The indifference maps of the 292 
24 participants were presented before (Pastor-Bernier et al. 2020). 293 
 294 
Leave-one-out validation of ICs 295 
We used a leave-one-out analysis to test the validity of the hyperbolic IC fit to the IPs. We 296 
systemically removed one IP in each IC (excluding the initial Reference Bundle at x = 0), and then 297 
fitted the IC again using the hyperbolic model. We then assessed the differences (deviation) 298 
between the original IC (without IP removal) and the new IC without the one left-out IP. The 299 
deviation was defined as the Euclidean distance of component B between the original (left-out) IP 300 
and the IP estimated from the refitted IC: 301 
 302 
d = BIP - Brefit      Eq. 3 303 
 304 
with d representing the difference (i.e. residual; in ml; y-axis), BIP representing the physical amount 305 
of component B in the left-out IP (ml), and Brefit representing the estimated physical amount of 306 
component B in the refitted IC (ml). In this way a residual of 0 ml suggested that removal of the 307 
left-out IP did not change the shape of that IC, while any residual unequal to 0 ml could quantify the 308 
deviation. 309 
 310 
Control of alternative choice factors 311 
To assess the potential influence of other factors affecting the participants’ choice, we performed a 312 
logistic regression fit on choices to test whether the choices were indeed explained by the bundle 313 
components. We performed a random-effect logistic regression on the choice data from each 314 
participant as follows: 315 
 316 
y = 0 + 1RefB + 2VarA + 3VarB + 4RT + 5VarPos + 6PChoice +  Eq. 4  317 
 318 
with y as a dummy variable (either 1 or 0, indicating choosing or not choosing the Variable Bundle), 319 
RefB as physical amount (ml) of component B in the Reference Bundle, VarA and VarB as physical 320 
amount (ml) of components A and B in the Variable Bundle, RT as reaction time (ms), VarPos 321 
indicating left or right position (0 or 1) of the Variable Bundle stimuli shown on the computer 322 
screen relative to the Reference Bundle, and PChoice representing choice of the previous trial (0 or 323 
1). Each  coefficient was normalized by multiplying the standard deviation of the respective 324 
independent variable and dividing by the standard deviation of the dependent variable (y). We 325 
subsequently used a one-sample t-test against 0 to assess the statistical significance of each of the 326 
beta () coefficients.  327 
 We assessed the normalized beta () coefficients and p-values for each individual participant 328 
and then calculated averages across 24 participants. With the regression model, we found a negative 329 
correlation of choosing the Variable Bundle and the amount of component B in the Reference 330 
Bundle (RefB:   = -0.43 ± 0.16, P = 0.020 ± 0.005; mean ± SEM) (amount of component A in the 331 
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Reference Bundle was always a constant 0 ml). We also found positive correlation of choosing the 332 
Variable Bundle and amount of both component A and component B in the Variable Bundle (VarA: 333 
 = 0.67 ± 0.16, P = 0.009 ± 0.004; VarB:  = 0.94 ± 0.33, P = 0.012 ± 0.009). We further found 334 
that for these three variables, the beta () coefficients significantly differed from 0 with one-sample 335 
t-tests (P = 0.012, P = 0.00088 and P = 0.00028, respectively), confirming the robustness of these 336 
.  Thus, we confirmed that the choices depended on the amount of reward of both Variable and 337 
Reference Bundle. We also validated that both bundle components were important for the choices. 338 
All remaining variables in the regression, including reaction time, left or right position of the 339 
Reference Bundle on the computer screen and choice of the previous trial, failed to account 340 
significantly for the participant’s current choice (P = 0.754 – 0.988 ± 0.003 – 0.290). We therefore 341 
conclude that, in our experiment, the bundles with their two components, instead of other factors, 342 
account for the revealed preference relationships. 343 
 344 
Satiety control 345 
Besides considering other components in the design, we also tested potential effects of satiety. 346 
Satiety may have affected the preferences for the two bundle components, even if the rewards were 347 
paid out only in one fifth of the trials on average and were limited to less than 200 ml. Differences 348 
in devaluation between the two component milkshake might be a major factor for changing in an 349 
uncontrolled manner the currency relationship of the two components. This kind of unequal 350 
devaluation should result in a graded change in the instantaneous choice probability around the IPs 351 
over the test steps of 42 trials. We used the following equation to calculate the instantaneous choice 352 
probability: 353 
 354 
y =  (n=1 to 6) (CV / TS)     Eq. 5 355 
 356 
with y representing the instantaneous probability (P ranging from 0.0 to 1.0), CV represent choice 357 
or not-choice of Variable Bundle (1 or 0), and TS represent test step (repetition 1-6). 358 
 We found only insignificant fluctuations in choice probabilities, without any consistent 359 
upward or downward trend in the 1-way repeated measures ANOVA, together with the post-hoc 360 
Tukey Test (above IP: F (5, 41) = 0.28, P > 0.05; below IP: F (5, 41) = 1.53, P > 0.05). 361 
 362 
Behavioral task during fMRI scanning 363 
During scanning, we used a value elicitation task that allowed more trials in a shorter time frame. At 364 
the beginning of each trial, one bundle was shown to the participant for 5 s (bundle-on phase in Fig. 365 
1E) in the center of the computer monitor after the initial fixation period (500 ms). The bundle was 366 
pseudorandomly selected from the 15 IP bundles in three ICs of each participant. Bundle 367 
composition (amounts of the two components) was set in each participant according to performance 368 
in the binary choice task before fMRI scanning. Hence, the 15 bundles for each participant were not 369 
identical across participants. Subsequently, a fixation cross appeared for a pseudorandomly varying 370 
interval (mean 2s). In 50% of the trials (pseudorandomly selected), the task was terminated after 371 
this fixation cross. 372 
 In the other 50% of the trials, we presented the participant with a Becker-DeGroot-Marschak 373 
(BDM) task that was akin to a second price auction (Becker, DeGroot, & Marschak, 1964). This 374 
task served as an independent mechanism that related the estimated ICs to stated utility. In the BDM 375 
(bidding phase in Fig. 1E), we gave the participant a fresh 20 UK pence endowment on each trial. 376 
Using this endowment, the participant bid for a two-component bundle against a pseudorandom 377 
computer bid (extracted from a normal distribution with replacement). To bid, the participant moved 378 
a cursor, shown on the computer screen, horizontally with the left and right keyboard arrows. We 379 
registered the BDM bid (position of the cursor) 5 s after presenting the bidding scale to the 380 
participant. When bidding no less than the computer, the participant received the bundle 381 
(milkshake) reward from both components and paid the monetary value equal to the computer bid. 382 
By contrast, when bidding less than the computer, the participant lost the auction, paid nothing and 383 
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would not get any bundle (milkshake) reward. We showed the participant the result of the auction 384 
immediately after having placed the bid, by displaying a respective win (green circle) or loss (red 385 
square) stimulus on the computer monitor (Fig. 1E); when winning the bid, the participant received 386 
the milkshake rewards in the sequence and frequency as in the binary choice task. 387 
 We first selected one bundle randomly (without replacement) from the participant-specific set 388 
of 15 bundles (the 15 bundle IPs used to fit the 3 ICs as shown in Fig. 1). Then we showed the 389 
participant the selected single bundle during the bundle-on phase. We presented each of the 15 390 
bundles to the participant for 24 times, resulting in a total of 360 trials, which included 180 trials 391 
(50%) with BDM bidding (Fig. 1E), and we used the average of these bids as the participant’s 392 
BDM-estimated utility.  393 
 First, we assessed whether the BDM bids increased for bundles across revealed preference 394 
levels but were similar for IP bundles on the same revealed preference level, using Spearman rank 395 
correlation analysis and further confirmation with the Wilcoxon signed-rank test (note that this 396 
analysis used the coordinates of the individual IPs to which the ICs had been fitted, not the IC 397 
coordinates themselves). We also performed a generalized linear regression with a Gaussian link 398 
function (random-effect analysis) for each participant and then averaged the  coefficients and p-399 
values across all participants. We used the following generalized linear regression: 400 
 401 
y = 0 + 1 PrefLev + 2 AmBundle + 3 TrialN + 4 PrevBid + 5 Consum +  Eq. 6  402 
 403 
with y representing amount of monetary bid, PrefLev representing revealed preference level (low, 404 
medium, high), AmBundle representing the summed amount (ml) of component A and component 405 
B in the currency of component A (converted with Eq. 2a), TrialN representing trial number, 406 
PrevBid representing amount of monetary bid in the previous trial, and Consum representing 407 
accumulated consumption amount (ml) of component A and component B until that point in the 408 
experiment. We normalized each  coefficient by multiplying the standard deviation of the 409 
respective independent variable, and then dividing by the standard deviation of the dependent 410 
variable y. We performed a subsequent one-sample t-test against 0 to assess the significance of each 411 
beta () coefficient across all 24 participants. We found significant beta () coefficients of BDM 412 
monetary bids to the preference level (PrefLev: -coefficient difference from 0: P = 0.000026 with 413 
one-sample t-test;mean across all 24 participants:  = 0.47 ± 0.09, P = 0.016 ± 0.015; mean± SEM) 414 
and bundle amount (AmBundle: P = 0.0278;  = 0.15 ± 0.13; P = 0.020 ± 0.017), but not in trial 415 
number (TrialN: = -0.10 ± 0.25; P = 0.726 ± 0.354), previous trial bid (PrevBid: = 0.12 ± 0.11; P 416 
= 0.676 ± 0.427) nor consumption history (Consum: = 0.12 ± 0.11; P = 0.224 ± 0.185).  417 
 418 
fMRI data acquisition 419 
The functional neuroimaging data in this study were collected using a 3T Siemens Magnetom Skyra 420 
Scanner at the Wolfson Brain Imaging Centre, Cambridge, UK. Echo-planar images (T2-weighted) 421 
with blood-oxygen-level-dependent (BOLD) contrast were acquired at 3 Tesla across two days with 422 
each participant. All images were in plane resolution 3 x 3 x 2 mm, 56 slices were acquired with 2 423 
mm slice thinness, repetition time (TR) = 3 s, echo time (TE) = 30 ms, -90 deg flip angle and -192 424 
mm field of view. To reduce signal dropout in medial-temporal and inferior-frontal regions during 425 
the scanning, the acquisition plane was tilted by -30 degrees and the z-shim gradient pre-pulse was 426 
implemented. We also applied MPRAGE sequences and co-registered to acquired high-resolution 427 
T1 structural scans for group-level anatomical localization with 1 x 1 x 1 mm3 voxel resolution, 428 
slice thickness of 1 mm, 2.3 s TR, 2.98 ms TE, 9 deg flip angle and 900 ms inversion time. 429 
 430 
fMRI data analysis 431 
We used the Statistical Parametric Mapping package to analyze the neuroimaging data (SPM 12; 432 
Wellcome Trust Centre for Neuroimaging, London). We pre-processed the data by realigning the 433 
functional data to include motion correction, normalizing to the standard Montreal Neurological 434 
Institute (MNI) coordinate, and then smoothing using a Gaussian kernel with the full width at half 435 
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maximum (FWHM) of 6 mm within data collected on the same day. We then segmented the data to 436 
extract white matter, grey matter and cerebrospinal fluid (CSF) and followed by co-registering the 437 
two-day data using the T1-weighted structural scans from each day. We then applied a high-pass 438 
temporal filter to it with a 128 s cut-off period. We applied General linear models (GLMs), which 439 
assumed first-order autoregressions, to the time course of activation. We modeled event onsets, in 440 
the time course of activation, as single impulse response functions convolved with the canonical 441 
hemodynamic response. We included the time derivatives in the functions set and defined linear 442 
contrasts of parameter estimates to test the specific effect in each participant’s dataset. We obtained 443 
voxel values for each contrast in the format of a statistical parametric map with corresponding t-444 
statistic. We applied a standard explicit mask (mask_ICV.nii) at the first level analysis to mask out 445 
all activations outside of the brain. To test our specific hypotheses, we used the following GLMs:  446 
 447 
General linear model 1 (GLM1) 448 
This GLM served to search for regions whose stimulus-induced brain activations varied across ICs 449 
(high > low) but not along the same ICs in the bundle-stimulus-on phase (two-level t-test analysis, 450 
Fig. 2). For each participant, we estimated a GLM with the following regressors (R) of interest: 451 
(R1-R15) as indicator functions for each condition during the bundle-on phase (for the 15 different 452 
bundles), at the time when participant was presented with the visual bundle cue representing the 453 
milkshakes bundles; (R16) as indicator function for the BDM bid, at the time when the participant 454 
made the bid; (R17) as R16 that was modulated by the response to the participant's bid (1 - 20); 455 
(R18) as indicator function for the losing bid, at the time when the participant was presented with 456 
visual cues showing the loss of bidding of the trial; (R19) as indicator function for the auction win 457 
phase, at the time when the participant was presented with the visual cues representing the winning 458 
of bidding; (R20) as indicator function for the reward phase, i.e. the times when participants 459 
received the milkshakes; (R21) as R20 that was modulated by reward magnitude (in mL). 460 
Regressors R16 - R19 were not used further for this analysis and served only to regress out potential 461 
BDM effects in the 50% of trials that included BDM. 462 
 In the second (group random-effects) level analysis, we entered the all 24 participant-specific 463 
linear contrasts of the first-level regressors R1-R15 (representing 5 bundles on each of the three 464 
preference levels) into t-tests (high > low revealed preference level) using Flexible Factorial 465 
Design, resulting in group-level statistical parametric maps. In the Flexible Factorial design matrix 466 
(second-level analysis), the following second-level regressors were used: (R1-24) indicator 467 
functions of participant’s identifier representing participant 1 - 24 (within participant effect); (R25-468 
27) indicator functions of the three revealed preference levels (across ICs) (R28-32), indicator 469 
functions of the 5 bundles representing amount of Component A in increasing magnitude or amount 470 
of Component B in decreasing magnitude (along the same ICs). We first calculated the main 471 
contrast image based on high>low revealed preference level (t-tests). Second, we calculated a mask 472 
contrast based on 5 bundles of Component A in increasing magnitude (t-tests). Third, we calculated 473 
another mask contrast based on 5 bundles of Component B in increasing magnitude (t-tests). The 474 
final result of GLM1 was represented by the main contrast (high>low revealed preference level) 475 
masking out (with exclusive mask) the two mask contrasts, controlling of the brain responses along 476 
the same ICs. 477 
 478 
General linear model 2 (GLM2) 479 
This GLM identified regions associated with the binary comparisons of partial physical non-480 
dominance bundles (Fig. 3). The GLM searched for brain regions in which activations were higher 481 
for bundles that were on a higher revealed preference level than bundles in which one component 482 
was physically higher than in the preferred bundle (partial physical non-dominance). In the first-483 
level estimation, regressors were the same as in GLM1 with the 21 regressors described above. In 484 
the second-level analysis, we entered all pairs of bundles that met the following criteria: (Bundle 1): 485 
partial physical non-dominance bundles with higher revealed preference level, but less (with at least 486 
0.2mL less in Components A or 0.4mL less in Component B) in one component; (Bundle 2): partial 487 
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physical dominance bundles with lower revealed preference level, but more in one component. A 488 
third level group-level analysis (one-sample t-test) was performed with contrast images from the 489 
second level to generate group-level statistical parametric maps across 24 participants. 490 
 491 
General linear model 3 (GLM3) 492 
This GLM identified brain regions in which activity correlated with the amount of BDM bid (0 - 20 493 
pence) during the bidding phase (Fig. 4B). In the first-level estimation, we used the following 494 
regressors and parametric modulators: (R1) as indicator function of bundle-on phase; (R2) as R1 495 
modulated by amount of BDM bid; (R3) as indicator function of BDM bidding phase (50% of 496 
trials); (R4) as R3 modulated by amount of BDM bid; (R5) as indicator function of intertrial 497 
interval when there was no bidding phase (50% of trials); (R6) as indicator function at onset of the 498 
loss cue, when the participant lost the BDM bidding; (R7) as indicator function at onset of the win 499 
cue, when the participant won the BDM bidding; (R8) as indicator function at onset of milkshake 500 
delivery; (R9) as R8 modulated by physical amount of milkshake; (R10) as contrast of win cue 501 
onset versus loss cue onset; (R11) as contrast of loss cue onset versus win cue onset. In the second-502 
level analysis, a one-sample t-test analysis was performed with contrast images from the first level 503 
to generate group-level statistical parametric maps across 24 participants. 504 
 505 
Small volume corrections 506 
To derive coordinates for small-volume correction in GLM1 and GLM2, we entered the term 507 
“reward anticipation” in the Neurosynth meta-analysis database (Yarkoni et al., 2011) to obtain 508 
MNI coordinates. The meta-analysis employed a total of 92 independent studies that showed 509 
correlation of value elicitation with various brain regions. Our study used MNI coordinates of 510 
ventral striatum [12, 10, -8], medial orbital frontal cortex (mid-OFC) [20, 46, -18] and midbrain [8, 511 
-18, -14], obtained from this Neurosynth meta-analysis database. We used a sphere with 6 mm 512 
radius for midbrain and striatum, and 10 mm for OFC, following the common approach of using 6 513 
mm radius spheres for subcortical structures and larger spheres for cortical structures (Zangemeister 514 
et al., 2016, De Martino et al., 2009, Chib et al., 2009). 515 
 We aimed at finding activity correlating with the BDM bid in GLM3. Therefore, for small 516 
volume correction analysis in GLM3, we used a MNI coordinate of dorsal striatum [12, 14, 4] 517 
found in a previous study with BDM bidding (De Martino et al., 2009). We did not use coordinates 518 
from Neurosynth in GLM3 because datasets related to BDM or other auctions were not available in 519 
the Neurosynth database. 520 
 521 
Region-of-interest (ROI) analysis 522 
We selected significantly activated regions from brain maps established with GLM1, GLM2 or 523 
GLM3 for further ROI analysis. We extracted raw BOLD data from ROI coordinates based on 524 
group clusters, which we defined independently for each participant using a leave-one-out 525 
procedure based on the result of GLM1, GLM2 or GLM3. In the leave-one-out procedure, we re-526 
estimated the second-level analysis 24 times, each time leaving out one participant, to define the 527 
ROI coordinates for the left-out participant. Following data extraction, we applied a high-pass filter 528 
with a cut off period of 128 s. The data was then z-normalized, oversampled by a factor of 10 using 529 
the Whittaker–Shannon interpolation formula, and separated into trials to produce a matrix of trials 530 
against time.  531 
 A total of 3 ROI analyses were performed in this study. First, a Spearman rank analysis was 532 
used to examine BOLD signals that changed across ICs but not along ICs (corresponding to GLM1 533 
and GLM3). Second, a bar chart was used to illustrate the three revealed preference levels in 534 
different ROIs (corresponding to GLM1). Third, a bar chart was used to show activation changes 535 
between bundles with partial physical non-dominance on different revealed preference levels 536 
(corresponding to GLM2). 537 
 538 
Spearman rank 539 
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In the Spearman rank analysis, we first regressed out the motion parameters (artefact) from the 540 
BOLD response with generalized linear models. Then we used the participant’s residual BOLD 541 
response to generate time courses of Spearman rank correlation (Rho) coefficients.  542 
 For GLM1, we tested the correlation between BOLD response (during the bundle-on phase) 543 
and revealed preference level (across-IC analysis). We then calculated group averages and standard 544 
errors of the mean for each time point for all participants, yielding averaged participant effect size 545 
time courses (Fig. 2C). In the along-IC analysis, we ranked the bundles along the same IC with 546 
individual participant’s BOLD signal (Fig. 2D). A subsequent one-sample t-test against 0 served to 547 
assess the significance of the Rho coefficients across subjects. 548 
 For GLM3, we tested the correlation of the BOLD response (BDM bidding phase) and the 549 
amount of BDM bids. Similar to GLM1, we then calculated group averages and standard errors of 550 
the mean of the Rho coefficients for each time point for all participants (Figs. 4B, 4-1). A 551 
subsequent one-sample t-test against 0 served to assess coefficient significance. 552 
 553 
Bar chart for revealed preference level analysis 554 
We used bars to illustrate how different IC levels were encoded in each region of the brain. To 555 
generate an ROI bar chart, the BOLD response was first extracted using the leave-one-out 556 
procedure described above. For each participant, we obtained three generalized linear model fits to 557 
the BOLD signal at timepoint 6 s. In each generalized linear model fit, the identifier of one level of 558 
revealed preference was entered as a regressor (dummy variable, e. g. 1 for bundles with high 559 
preference level and 0 for middle or low preference level) together with motion parameter 560 
regressors, which served to eliminate the motion artefact. We obtained beta () coefficients of each 561 
level of revealed preference from the fit and then calculated the mean and standard error of the beta 562 
coefficient. We then plotted the bar charts shown in Fig. 2E. Paired t-tests were used to compare 563 
beta coefficients between different revealed preference levels. As a control, we also obtained beta 564 
() coefficients of 5 indifference points from the same level of revealed preference, averaged across 565 
the three levels, and then calculated the mean and standard error of the beta coefficient across 566 
participants. We then plotted the bar charts shown in Fig. 2F. One-way ANOVAs were used to 567 
compare beta coefficients between the 5 indifference points. 568 
 569 
Bar chart for partial physical non-dominance analysis 570 
A bundle was defined as being partially physically non-dominant over another bundle if one of its 571 
milkshake components had a physically lower amount than the same component in the dominated 572 
bundle. Thus, the revealed preferred bundle was partially physically non-dominant. For an ROI 573 
analysis of partial physical non-dominance, we fitted three generalized linear models to the BOLD 574 
response with bundle identifiers, which were two dummy variables representing partially physically 575 
dominance bundles (lower revealed preference despite larger physical amount in one milkshake) 576 
and partial physical non-dominance bundles (higher revealed preference despite smaller physical 577 
amount in one milkshake). Three generalized linear models were used to fit bundles in low vs. 578 
middle, middle vs. high, and low vs. high comparisons, respectively. The domination was defined as 579 
at least 0.2 ml more for component A or at least 0.4 ml more for component B, as in GLM2. We 580 
calculated the mean and standard error of the averaged beta () coefficients across participants at 581 
time point 6 s and plotted the bar chart as shown in Fig. 3C. Paired t-tests were used to compare 582 
beta coefficients between partial physical dominance bundles and partial physical non-dominance 583 
bundles. Motion parameters were also used as regressors for each participant to eliminate motion 584 
artefacts. In addition to extracting BOLD signal with leave-one-out peaks of GLM2 (Fig. 3C), we 585 
also extracted BOLD signal with leave-one-out peak from GLM1 (Fig. 3-1) to confirm the 586 
robustness of this analysis. 587 
 588 
Reward prediction errors (RPE) 589 
The current task did not involve learning in which reward would occur in a partly unpredicted 590 
manner and thus elicit RPEs. The only RPE could occur at the unpredicted time of the first stimulus 591 
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that explicitly and quantitatively predicted the reward amounts of the bundle components indicated 592 
by the bundle stimulus. Conceivably, in the most simple form, the RPE would reflect the integrated 593 
reward amounts of both bundle components relative to the prediction derived from the past trial 594 
history. There were three levels of bundle stimulus corresponding to the three IC levels. Thus, 595 
appearance of a given bundle stimulus would elicit an RPE relative to the past experienced bundles, 596 
weighted by the learning coefficient. Thus, reward prediction errors would have values around -1, 0, 597 
and +1 for bundles located on low, intermediate and high ICs, respectively, the variation depending 598 
on the learning coefficient. For comparison, the bundle stimulus at each IC level without any RPE 599 
would have values of 1, 2 and 3, respectively. Thus, neural responses to the RPE and to the stimulus 600 
directly (i. e. without subtraction of prediction) would result in very similar regression slopes 601 
(depending on the learning constant used for computing the RPE) and thus be difficult to 602 
distinguish from each other. We modelled RPEs with various learning coefficients in the range 603 
between 0.1 and 0.9 and for all values found high correlations between RPE and bundle stimulus 604 
value at the three IC levels. For example, a learning coefficient of 0.2 in a Rescorla-Wagner model 605 
resulted in a Spearman-rank correlation of 0.9337 ± 0.00085 SEM (n=15 bundles x 24 trials = 360 606 
trials x 24 subjects pooled). For this reason, a RPE analysis would not yield new insights and will 607 
not be further reported. 608 
 609 
Results 610 
 611 
Implementation of indifference curves 612 
Participants (n = 24) chose between two visual stimuli in repeated trials. Each of the two bundle 613 
stimuli represented a two-component bundle that contained the same two milkshakes with 614 
independently set amounts (Fig. 1A; see Methods). Thus, we implemented choices between bundles 615 
with separate objects (two milkshakes) rather than choices between single objects that each had 616 
multiple components. Each stimulus contained two colored vertical rectangles: the blue rectangle 617 
represented component A (low-sugar high-fat milkshake); the red rectangle represented component 618 
B (high-sugar low-fat milkshake). In each rectangle, a vertically positioned bar indicated the 619 
physical amount of each component milkshake, where higher was more.  620 
 We examined choices between: (1) a pre-set Reference bundle and (2) a Variable bundle 621 
whose component A had a fixed test amount and whose component B varied pseudorandomly. In all 622 
24 participants, choice probabilities followed the component B monotonically. We obtained each 623 
indifference point (IP; choice probability P = 0.5 for each bundle, indicating equal preference and 624 
same utility despite different bundle composition) from a set of six-repetition choices using a probit 625 
choice function (Eqs. 1, 1a). We thereby obtained a two-dimensional IP that showed the amounts of 626 
the two components of the Variable Bundle between which the participant was indifferent against 627 
the constant Reference Bundle. We repeated this procedure, keeping the Reference Bundle constant 628 
and increasing the amounts of component A in the Variable Bundle, thus obtaining a set of IPs. All 629 
IPs in such a set were equally revealed preferred to, and thus had the same utility as, the constant 630 
Reference Bundle.  631 
 In each participant, we estimated a total of three sets of IPs (each containing 5 IPs) by pre-632 
setting three different amounts of component B (2 ml, 5 ml or 8 ml with component A always 0 ml) 633 
in the Reference Bundle. Each IP defined the trade-off between the two components; it indicated 634 
how much of component B the participant was willing give up in order to gain one unit of 635 
component A without change of preference. We derived each IC from such a set of five IPs by 636 
hyperbolic fitting (Eqs. 2, 2a; Fig. 1B, C). Taken together, the IPs with the continuous ICs 637 
represented revealed preferences in a systematic manner, thus implementing the basic concepts 638 
underlying this study.  639 
 640 
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 642 
Figure 1. Experimental procedure and behavior. 643 
(A) Choice task outside the fMRI scanner. The participant chose between a reference bundle and a varied test bundle. 644 
Each bundle consisted of two components, Component A (blue bar) and Component B (red bar). The amount of each 645 
component was indicated to the participant by the height of a white bar (higher was more). Component A was a low-646 
sugar, high-fat milkshake. Component B was a low-fat high-sugar milkshake. The two milkshakes of the chosen bundle 647 
were delivered at the end of each trial with a probability of P = 0.2.  648 
(B) Schematic diagram of three indifference curves (ICs) and five indifference points (IPs) on each IC (same data points 649 
as shown in Fig. 1F of Pastor-Bernier et al. 2020). 650 
(C) Example ICs from a typical participant. Solid lines represent three ICs (hyperbolically fitted by IPs). Dotted lines 651 
represent 95% confidence interval of the hyperbolic fit. The inset shows the psychophysical function of one IP. The IP 652 
(black dot in the inset) was estimated by probit regression on the test points (blue dot in the inset). The same graph is 653 
shown as Fig. 2A of Pastor-Bernier et al. (2020). 654 
(D) Histogram of residuals between fitted ICs (with a leave-one-out procedure) and left-out IPs across all participants. 655 
The residuals formed a normal symmetric distribution (red line). 656 
(E) Bundle task inside the fMRI scanner. At 4 s after the bundle-on phase, the participant performed in pseudorandomly 657 
selected 50% of trials an additional Becker-DeGroot-Marschak (BDM) task against the computer (bidding 1 - 20 UK 658 
pence). The reward was given if the participant won the BDM (bid > computer bid). 659 
 660 
Behavioral validation of indifference curves 661 
To assess the contribution and validity of IPs (bundles) to the ICs obtained with hyperbolic fits, we 662 
performed a leave-one-out analysis. The details of these behavioral analyses were presented before 663 
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(Pastor-Bernier et al. 2020) and are repeated here for completeness. Briefly, we left out (removed) 664 
one IP at a time from the five IPs within one fitted IC (except for the Reference Bundle at x = 0), 665 
and then we refitted the IC using the remaining four IPs with the same hyperbolic equation (see 666 
Methods, Eqs. 2, 2a). We performed the same kind of leave-one-IP-out analysis separately for each 667 
IC in each participant (4 IPs on 3 ICs in 24 participants, resulting in 288 analyses in total).  668 
 The refitted ICs resulted in consistent fits in four measures. First, there was no overlap in the 669 
refitted IC with any refitted IC at other levels in all 24 participants; thus, the IC levels retained 670 
separation despite one IP being left-out. Second, there was no overlap in the 72 refitted ICs with the 671 
95% confidence intervals of other original ICs at different levels; thus, the IC levels retained 672 
separation despite one IP being left-out. Third, most refitted ICs (92 %, 66 of 72 ICs) still within the 673 
95% confidence intervals of the original ICs without the eft-out IPs, while the remaining curves 674 
(8%, 6 of 72 ICs) showed only some parts of the IC that fell outside the 95% confidence intervals; 675 
thus, individual IPs were not overweighted in the ICs. Fourth, the left-out IPs deviated only 676 
insignificantly from the refitted ICs (P = 0.98 with t-test; N = 336; residual: 0.05 ± 0.13 ml in all 677 
participants, mean ± standard error, SEM) (Fig. 1D); this result confirmed that individual IPs were 678 
not overweighted in the ICs. These four validations demonstrated the robustness and consistency of 679 
the hyperbolically fitted ICs in capturing the IPs. Thus, in all participants, the ICs provided valid 680 
representations of the three revealed preference levels.  681 
 682 
Neural responses for two-component bundles across and along ICs 683 
During fMRI scanning, the task started with a fixation cross lasting 0.5 s (Fig. 1E). Then, a single 684 
two-component visual stimulus appeared in the center of the computer monitor (bundle-on phase); 685 
the stimulus predicted delivery of one of the 15 bundles (IPs) composed of two different 686 
milkshakes. The physical amount of the milkshakes in the bundle was determined by the 687 
participant-specific indifference point (IP) estimated from the binary choice task (see above). The 688 
participant received the two bundle milkshakes with the respective amounts indicated by the 689 
vertical bars on the stimulus, without choice. That presentation was either followed by a Becker-690 
DeGroot-Marschak (BDM) task within the trial (50% of trials, pseudorandomly selected) or 691 
terminated (50% of trials). The BDM bidding served as a mechanism-independent measure of 692 
utility estimation, as used before (de Berker et al. 2019; De Martino et al. 2013). In total, each 693 
participant performed 360 trials (24 trials for each of the 15 bundles). With the fMRI data we 694 
collected, we analyzed the various aspects of neural responses (BOLD signals) to the bundles with 695 
several General Linear Models (GLMs) and region-of-interest (ROI) analyses.  696 
 We first used GLM1 to identify brain responses that follow the scheme of ICs, namely 697 
monotonic increase with higher ICs (or decrease with inverse coding) and insignificant change 698 
along the same ICs, as shown in Fig. 2A. Thus, would BOLD signals change monotonically with 699 
preference and utility across ICs but vary insignificantly with choice indifference and same utility 700 
along ICs? To do so, the individual contrast images (representation of BOLD signal) of each bundle 701 
in each participant were grouped according to the IC the bundle belonged to (low, medium, high) 702 
and the position of the bundle on each IC (1 - 5, from top left to bottom right). 703 
 We used parametric statistical tests (t-test with Flexible Factorial Design) and estimated 704 
neuroimages of responses to each of the 15 bundles grouped into the three IC levels or five groups 705 
along ICs (see Methods). We found that the striatum, midbrain and OFC showed significantly 706 
increasing activation across increasing ICs (high > low IC; map threshold of p < 0.005; t-test) but 707 
insignificant variations along individual ICs (exclusive mask map threshold of p < 0.005) (Fig. 2B; 708 
Table 1; for effect sizes, see Table 1-1). More specifically, we found small-volume corrected 709 
significance in the striatum (peak at [10, 6, -4], z-score = 3.27, 6 mm radius sphere, cluster-level 710 
FWE corrected p = 0.041), midbrain (peak at [4, -16, -12], z-score=3.71, 6 mm radius sphere, 711 
cluster-level FWE corrected p = 0.048) and OFC (peak at [22, 42, -16], z-score = 3.67, 10 mm 712 
radius sphere, cluster-level FWE corrected p = 0.037). (All small-volume corrections in this study 713 
were centered on pre-defined coordinates from the Neurosynth meta-analysis database, see 714 
Methods). In addition, we found significant activities in other regions, including the insula and 715 
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cingulate cortex (Table 1). By contrast, we found significant BOLD changes between bundles 716 
positioned on same ICs in a number of other, mostly cortical regions (Table 1-2). These changes 717 
violated the IC scheme representing the trade-off between the two bundle rewards and were not 718 
further explored. 719 
 720 

                                 721 
 722 
Figure 2.  BOLD responses following the revealed preference scheme of two-dimensional indifference curves (ICs). 723 
(A) Schematic of the analysis method used in GLM1 (arrows): significant BOLD signal across ICs (increasing utility) 724 
but not within ICs (same utility despite different bundle composition, as inferred from choice indifference). Participants 725 
typically showed convex ICs (left) or linear ICs (right). 726 
(B) BOLD responses discriminating bundles between ICs (map threshold p < 0.005, extent threshold ≥ 10 voxels), but 727 
no discrimination between bundles along same ICs (map threshold p > 0.005; i.e. exclusive mask for brain response 728 
falls along the same ICs with threshold p=0.005) in a group analysis. For activations identified with F contrast, see Fig. 729 
2-1. For activations identified with the lower threhold of p < 0.001, see Fig. 2-2. 730 
(C) Across-IC Spearman rank analyses of brain activations. The Rho coefficients followed the haemodynamic response 731 
function (HRF) across the 3 IC levels in the ROIs of the three brain structures shown above in B. Solid blue lines 732 
represent mean Rho from 24 participants; + SEM. Yellow shaded boxes show analysis time window. Green asterisks p < 733 
0.05, blue asterisks p < 0.01 for t-test of Spearman’s Rho against zero. The BOLD responses (input of the Spearman 734 
rank analyses; with motion parameters regressed out) were extracted from the peak voxels of each participant using 735 
with a leave-one-out procedure (see Methods). 736 
(D) Along-IC ROI activations. The Spearman rank analyses indicated hardly any significance along same ICs in ROIs 737 
of the three brain structures shown in B. 738 
(E) Bar charts of neural beta coefficients of GLM1 for the three IC levels in the three brain structures shown in B in 24 739 
participants. Bars show mean ± SEM. 740 
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(F) Bar charts of neural beta coefficients of GLM1 for all five indifference points (IPs) on same IC levels (neural beta 741 
coefficients were averaged across the three IC levels in each participant) in 24 participants. Insignificant differences in 742 
one-way Anova: striatum: p = 0.3845, F(4,115) = 1.05, midbrain: p = 0.6828, F(4,115) = 0.57; OFC: p = 0.5672, 743 
F(4,115) = 0.74. 744 

                                      745 
 746 
Figure 2-1. BOLD responses discriminating bundles between indifference curves (ICs) identified with F contrast (map 747 
threshold p < 0.005, extent threshold ≥ 10 voxels, high>low), but no discrimination between bundles along same ICs 748 
(map threshold p > 0.005; i.e. exclusive mask for brain response to bundles on same ICs with threshold p=0.005) in a 749 
group analysis. OFC: orbitofrontal cortex. 750 
 751 
 To provide further evidence for neural activations following the scheme of ICs, we performed 752 
a Spearman rank time course analysis. We first extracted BOLD signals using leave-one-subject-out 753 
cross-validated GLM models, which should prevent potential biases with pre-selected peaks (see 754 
Methods). Subsequently we used the BOLD signals from peak voxels in each left-out subject to 755 
perform Spearman rank analyses. We found that the striatum, midbrain and OFC showed significant 756 
Spearman rank correlation coefficients (Spearman's Rho) between bundles located on different ICs 757 
at around 6s after onset of the bundle stimulus (p < 0.05), consistent with the standard time course 758 
of haemodynamic response (Fig. 2C). By contrast, only insignificant (p > 0.05) rank coefficients 759 
were found at 5 - 7s between bundles located along same ICs in these brain regions, as shown in the 760 
sliding-window analysis (Fig. 2D). These time courses followed the revealed preference to bundles 761 
across different ICs but failed to differ along the same IC, thus complying with the scheme of ICs 762 
that represent revealed preference. Moreover, we extracted beta (slope) coefficients of the BOLD 763 
signal at 6s with the ROI coordinates identified by GLM1 and plotted them for three revealed 764 
preference levels in bar charts (Fig. 2E). We found a significant difference between high versus low 765 
revealed preference level in the midbrain (p = 0.0062), OFC (p = 0.0023), and marginal significant 766 
difference in the striatum (p = 0.0533). We also found a significant difference between high versus 767 
middle revealed preference level in the OFC (p = 6.8551 x 10-4). By contrast, a one-way ANOVA 768 
analysis on the beta (slope) coefficients of the BOLD signal indicated insignificant differences 769 
between responses to 5 IPs positioned on same ICs in striatum, midbrain and OFC (Fig. 2F). We 770 
used F contrasts as the exclusive mask and found small volume corrected significance in striatum (p 771 
= 0.041, 6 mm radius sphere) and OFC (p = 0.037, 10 mm radius sphere) but only marginal 772 
significance in midbrain (p= 0.051, 6 mm radius sphere) (Fig. 2-1). These activations were also 773 
confirmed with the lower threshold of p < 0.001 (Fig. 2-2; T contrast), with small volume corrected 774 
significance in striatum (p=0.017, 6 mm radius sphere), OFC (p=0.018, 10 mm radius sphere) and 775 
midbrain (p=0.042, 8 mm radius sphere; no significance with 6 mm).  776 
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 Taken together, these data indicate that activations in several components of the brain’s 777 
reward system followed the basic scheme of ICs representing revealed preferences: activation 778 
across the ICs but no activation along the same IC. 779 
 780 

                           781 
 782 
Figure 2-2. BOLD responses discriminating bundles between ICs with lower threshold (map threshold p < 0.001, extent 783 
threshold ≥ 10 voxels, high > low), but no discrimination between bundles along same ICs with T contrast (map 784 
threshold p > 0.005; i.e. exclusive mask for brain response to bundles on same ICs with threshold p=0.005) in a group 785 
analysis. Svc: small volume corrected. 786 

Binary comparisons between partial physically non-dominant bundles  787 
According to the concept of ICs, any bundle on a higher IC (farther from the origin) should be 788 
preferred to any bundle on a lower IC. Hence, a single-dimensional neural signal reflecting multi-789 
component choice options should vary between any bundle on a higher IC and any bundle on a 790 
lower IC. To reflect the proper integration of the two bundle components irrespective of specific 791 
physical properties, the neural signal should follow the IC rank even when one component 792 
milkshake of the higher-IC bundle is lower than in the lower-IC bundle (partial physical non-793 
dominance). To identify such differences, we used the GLM2. With pairwise comparisons, GLM2 794 
should identify higher responses to revealed preferred bundles with partial physical non-dominance. 795 
Thus, GLM2 compared all bundle pairs that fit the following condition within each participant: 796 
bundle 1 was located on higher IC but had a lower amount of one component milkshake compared 797 
to bundle 2 that was located on a lower IC (Fig. 3A). 798 
 The GLM2 analysis demonstrated significant activations in similar regions as with GLM1, 799 
where striatum (peak at [16, 6, -6], z-score=3.8, 6 mm radius sphere, cluster-level FWE corrected p 800 
= 0.012), midbrain (peak at [4, -16, -12], z-score=2.85, 6 mm radius sphere, cluster-level FWE 801 
corrected p = 0.032) and OFC (peak at [24, 42, -16], z-score=3.99, 10 mm radius sphere, cluster-802 
level FWE corrected p = 0.012) showed small-volume corrected significant activations (Fig. 3B). 803 
These activations were also confirmed with the lower threshold of p < 0.001 (Fig. 3-1), with small 804 
volume corrected significance in striatum (p=0.008, 6 mm radius sphere) and OFC (p=0.004, 10 805 
mm radius sphere). Also, we found significant activities in other regions, including insula, superior 806 
frontal gyrus and cingulate, as shown in Table 2. 807 

 808 

Striatum
Midbrain
(8mm svc) OFC



 

 

19

19

                 809 
 810 
Figure 3. Higher BOLD responses to more preferred (but physically partially dominated) bundles positioned on 811 
different indifference curves (ICs). 812 
(A) Two examples of binary bundle comparison. Each pair of black circles indicates one binary comparison in one 813 
participant.  814 
(B) Brain regions activated more by preferred bundles compared to alternative bundles in group analysis with GLM2. 815 
Map threshold p < 0.005, extent threshold ≥ 10 voxels. For activations identified with the lower threshold of p < 0.001, 816 
see Fig. 3-1. 817 
(C) Bar charts showing neural beta coefficients of regression in ROIs of three brain structures in the population of 24 818 
participants. Each group of bars (3 groups in each ROI) shows the beta coefficients for bundles in partial physically 819 
dominating relationships on different ICs: low vs. mid; mid vs. high and low vs. high. Orange bars represent the higher 820 
preference level and blue bars represent the lower preference level in each comparison. The bars show the mean ± SEM. 821 
For activations at peak voxels, see Fig. 3-2. 822 
 823 
 We also performed ROI analyses (coordinates identified by GLM2 with leave-one-subject-out 824 
procedure) that calculated betas of partial physical non-dominance (higher revealed preference) and 825 
partial physical dominance bundles (lower revealed preference) as described in Methods. For each 826 
ROI, we computed three models, which compared bundles pairwise, with low vs. middle, middle 827 
vs. high, and low vs. high revealed preference, respectively. Neural beta regression coefficients 828 
were extracted at 6 s after the onset of the bundle stimulus, which corresponded to the canonical 829 
hemodynamic response. In regard to high vs. low revealed preference level, we found significance 830 
in the striatum (p = 0.0459) and OFC (p = 0.0033) when comparing bundles in high IC vs. low IC 831 
(Fig. 3C). We also found significance in the striatum (p = 0.0309) and OFC (p = 7.6575 x 10-5) 832 
when comparing high vs. middle IC bundles. In the midbrain, we found no significance (p > 0.05) 833 
in the three comparisons between bundles on low, middle and high ICs (although such a tendency 834 
existed in all three comparisons). When plotting Figure 3C using peak voxels from GLM1, we 835 
found similar results for all three regions (Fig. 3-2), which is unsurprising as the coordinates were 836 
similar between GLM1 and GLM2. Thus, the region-of-interest analysis was robust with GLM1 837 
coordinates for these regions.  838 
 Taken together, these pairwise bundle comparisons demonstrated neural coding of partial 839 
physical non-dominance bundles as a necessary condition for extracting a scalar neural signal from 840 
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vectorial, multi-component choice options. These results confirmed compliance with the graphic 841 
schemes of ICs demonstrated with GLM1. 842 
 843 

                                        844 
     845 
Figure 3-1.  Higher BOLD responses to more preferred (but physically partially dominated) bundles positioned on 846 
different indifference curves with stricter thresholds (Map threshold p < 0.001, extent threshold ≥ 10 voxels) in striatum 847 
(left) and OFC (right). 848 
 849 

                850 
 851 
Figure 3-2. Bar charts showing neural beta coefficients of regression at peak voxels in ROIs (with ROIs coordinate 852 
extracted from GLM1 using leave-one-out procedure) of three brain structures in the population of 24 participants. Each 853 
group of bars (3 groups in each ROI) shows the beta coefficients for bundles in partial physically dominating 854 
relationships on different indifference curves (IC): low vs. mid; mid vs. high and low vs. high. Orange bars represent 855 
the higher preference level and blue bars represent the lower preference level. The bars show the mean ± SEM. 856 
 857 
Becker-DeGroot-Marschak (BDM) control of revealed preference 858 
To validate the order of revealed preferences represented by the ICs with an independent estimation 859 
mechanism, we used a monetary Becker-DeGroot-Marschak (BDM) bidding task that estimated 860 
each participant's utility for each bundle. In 50% of trials during fMRI scanning, each participant 861 
made a monetary BDM bid (UK pence) for one of the 15 bundles, out of a fresh endowment of 20 862 
UK pence in each trial (BDM bidding phase; Fig. 1E). The 15 bundles constituted the indifference 863 
points of the ICs that were estimated during the binary choice task with each participant.  864 
 The BDM bids followed the order of revealed preference levels across ICs, as demonstrated 865 
by significant positive Spearman Rank correlation between the three IC levels and the bid amounts 866 
for bundles and confirmed with significant binary Wilcoxon signed-rank tests between the three IC 867 
levels (Fig. 4A; blue, green, red). By contrast, there was no correlation between bids for the five 868 
bundles and their position along each IC (from top left to bottom right; Spearman Rho = 0.0219; p = 869 
0.6791). Thus, BDM bids increased across the three IC levels but did not change monotonically 870 
with bundle position along individual ICs in the population of our participants. 871 
 In order to investigate neural mechanisms of BDM bidding and value elicitation, we 872 
compared two GLM models: (1) GLM3 to identify brain regions that encoded BDM bids (0 - 20 873 
pence) during the bidding phase, as shown in Fig. 4B; (2) GLM1 to identify brain regions that 874 
encoded value elicitation according to IC levels during bundle-on phase, as shown above in Fig. 2B, 875 
C, far right.  876 
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                                    877 
 878 
Figure 4. Activation in ventromedial prefrontal cortex (vmPFC) during BDM bidding. 879 
(A) Bar chart for BDM bids for 15 bundles of 24 participants (mean ± SEM). The colors of the bars indicate the 880 
indifference curves (IC) to which the bundle belongs (blue = low IC; green = middle IC; red = high IC). Spearman rank 881 
correlation: across ICs: Rho = 0.5710, p = 1.5659 x 10-32; within IC: Rho = 0.0219, p = 0.6791. Wilcoxon signed rank 882 
test: IC1 vs. IC2:  p = 1.2802 x 10-20; IC2 vs. IC3: p = 8.0748 x 10-21; IC1 vs. IC3: p = 1.5954 x 10-19. 883 
(B) vmPFC activation during bidding phase (GLM3: activation correlated with BDM bids; threshold p < 0.005, extent 884 
threshold ≥ 10 voxels). Spearman rank analysis (right) showed significant Rho coefficient across bids. For additional 885 
activation in dorsal striatum, see Fig. 4-1. 886 
 887 
 Analysis with GLM3 demonstrated activation in vmPFC that encoded BDM bids during the 888 
bidding phase (Fig. 4B left; peak at [6, 44, 0], z-score = 4.10, whole-brain corrected with cluster-889 
level FWE corrected p = 0.002), together with other brain regions (Table 3). Further ROI analysis 890 
showed significant rank correlation between vmPFC activation and BDM bids at around 6 s after 891 
BDM cue onset (Fig. 4B right; bidding phase; p < 0.05; Spearman's Rho), consistent with the 892 
expected haemodynamic response function. By contrast, analysis with GLM1 showed significant, 893 
small-volume corrected activation in OFC that indicated its involvement in encoding IC levels 894 
during the bundle-on phase (Fig. 2B; far right). The ROI analysis showed significant rank 895 
correlation between OFC activation and IC levels at around 6 s after bundle onset (Fig. 2C; far 896 
right; bundle-on phase; p < 0.05; Spearman's Rho). In addition, with GLM3, we found small-897 
volume corrected significant encoding of BDM bids in the dorsal striatum (Fig. 4-1; peak at [12, 12, 898 
0], z-score = 3.53, 6 mm radius sphere, cluster-level FWE corrected p = 0.008), whereas BDM 899 
encoding was insignificant in the ventral striatum (p > 0.1). 900 
 Taken together, BDM bidding provided a good validation of the estimated levels of revealed 901 
preference represented by ICs. However, and interestingly, revealed preference levels and BDM 902 
bids were encoded in different regions of the frontal cortex and striatum.  903 
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                            905 
 906 
Figure 4-1. Dorsal striatum activation during bidding phase (GLM3: activation correlated with the amount of BDM 907 
bids; threshold p < 0.005, extent threshold ≥ 10 voxels). Brain map (left) shows dorsal striatum activity during bidding 908 
phase. Spearman rank analysis (right) showed significant Rho coefficient across bids during bidding phase in dorsal 909 
striatum. 910 
 911 
Discussion 912 
 913 
We systematically tested characteristics of scalar neural responses to vectorial, multi-component 914 
bundles. We estimated indifference points (IPs) by asking human participants to choose between 915 
two bundles. Each bundle contained the same two separate objects (milkshakes) rather than 916 
consisting of single objects that each had multiple components. Our behavioral results (Pastor-917 
Bernier et al. 2020) showed that preference relationships among multi-component choices were 918 
reliably represented by systematic ICs, as a prerequisite for testing the underlying neural 919 
mechanisms. In fMRI scans with GLM and post-hoc ROI analyses, we identified brain regions 920 
whose activations correlated with levels of revealed preference. The GLM1 and post-hoc Spearman 921 
rank analysis demonstrated activations in the ventral striatum, midbrain and OFC that reflected 922 
revealed preference levels across ICs (changing utility) but failed to vary along equal-preference 923 
ICs (same utility despite different bundle composition). The GLM2 specifically dissociated revealed 924 
preference from physical dominance and showed consistent results with those from GLM1. A 925 
mechanism-independent control with a Becker-DeGroot-Marschak (BDM) bidding task confirmed 926 
the validity of ICs for representing revealed preference levels. Interestingly, however, BDM bidding 927 
was associated with activations in vmPFC and dorsal striatum rather than the previously identified 928 
reward structures following IC levels. Together, these data demonstrate systematic, single-929 
dimensional neural activations in the striatum, midbrain and OFC that reflect preferences for, and 930 
utility of, vectorial multi-component choice options.  931 
 Scalar neural activations from vectorial choice options are only the most simple way to 932 
represent value integrated from multiple components. Other plausible but less straightforward ways 933 
might be ensemble coding composed of multiple heterogeneous signals representing only single 934 
components of multi-component options, as seen in individual OFC neurons (Pastor-Bernier et al. 935 
2019). Future neuroimaging studies may address such issues. 936 
 In our binary choice task, we elicited revealed preferences with repeated, psychophysically 937 
controlled choices (Pastor-Bernier et al. 2020; Green, & Swets 1966). Such a multi-trial, stochastic 938 
approach is well conceptualized (McFadden & Richter 1990; McFadden 2004), fulfils statistical 939 
requirements of neural research, corresponds to standard choice functions (Sutton, & Barto 1998), 940 
and allows comparison with animal neurophysiology (Pastor-Bernier et al., 2017). These methods 941 
delivered varying choice probabilities (stochastic choices) instead of single selections (deterministic 942 
choices). 943 
 Economic choice experiments often involve substantial but imaginary sizes or amounts of 944 
consumer items and money, or use random singular payouts (Simonson, 1989; Tversky & Simonson 945 
1993; Rieskamp el al., 2006). By contrast, our payout schedule fit the requirements of neuroimaging 946 
and involved tangible and consumable rewards over hundreds of trials, while also controlling for 947 
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satiety. The behavioral choices resembled small daily activities, such as drink and snack 948 
consumption. In this way, we obtained three well-ordered ICs for each participant that provided 949 
accurate and systematic representations of preferences for multi-component bundles, without 950 
involving imagined items or monetary reward (Pastor-Bernier et al. 2020). 951 
 We used the BDM task as an authoritative, mechanism-independent control for eliciting 952 
subjective values, thereby providing an additional validating mechanism for the revealed 953 
preferences elicited in our binary choice test. The value estimating mechanism for BDM bids differs 954 
substantially from the one for revealed preference ICs. The truthful revelations (incentive 955 
compatibility) of BDM makes this mechanism an essential tool in experimental economics that is 956 
becoming more popular in human decision research (Plassmann et al., 2007; Medic et al., 2014; 957 
Zangemeister et al., 2016). The elicited BDM bids correlated well with the revealed preference 958 
levels (Pastor-Bernier et al., 2020) and thereby validated in a mechanism-independent manner the 959 
empirically estimated IPs used during fMRI (in which the participants performed the BDM task). 960 
Previous neuroimaging studies showed activations in ventromedial prefrontal cortex that correlated 961 
with BDM bids (Chib et al., 2009; McNamee et al., 2013). Our experimental design dissociated 962 
value elicitation by bundles and by BDM bidding. We confirmed the BDM activations in vmPFC 963 
and found that the two mechanistically different tasks activated different regions in both prefrontal 964 
cortex and striatum; responses to the bundles followed the IC scheme (different activations across 965 
but not within ICs) in OFC and ventral striatum, whereas BDM bidding activated vmPFC and 966 
dorsal striatum. Previous studies showed that vmPFC activity can reflect value derived from both 967 
rating measures and can distinguish between preferred and non-preferred options irrespective of 968 
task demands (Lebreton et al., 2009; Lopez-Persem et al., 2020). Thus, the conditions under which 969 
vmPFC encodes value, and the precise form of value-elicitation that best explains vmPFC activity 970 
are valuable topic for future studies.. 971 
 Previous studies tested neural mechanisms of human choice of bundles with multiple 972 
components, such as payoff amount and probability (Chau et al. 2014), quality and quantity of 973 
goods (de Berker et al. 2019), money and time (Gluth et al. 2017), and food components (Suzuki et 974 
al. 2017). Nevertheless, none of these studies tested bundles that were positioned along modelled 975 
ICs (i.e. eliciting choice indifference) and thus failed to test the crucial trade-off that demonstrates 976 
the graded and well-ordered manner of single-dimensional preferences for multi-dimensional choice 977 
options. Without this information, we would not know how a scalar neural response may arise from 978 
graded changes of vectorial, multi-component bundles. Our study, testing 5 bundles on each IC, 979 
addressed this problem and identified the brain regions that showed this kind of neural response.  980 
 Although we tested the emergence of single-dimensional neural signals for multi-dimensional 981 
bundles in a systematic and concept-driven way, there were limitations with our experimental 982 
design. First, both bundle components had the same type of primary reward (milkshakes). It would 983 
be interesting to study whether the same brain regions would encode different types of rewards and 984 
follow the formalisms of ICs, including the graded trade-off. For instance, future research may 985 
compare monetary rewards with primary nutrient rewards. Second, we only demonstrated neural 986 
responses with the typical convex ICs. It would be interesting to study whether different brain 987 
regions might encode preferences with different shapes of ICs. Such work may test participants’ 988 
choices with linear or concave ICs. Third, we did not test the influences of prior experience on 989 
current decisions. Previous studies (Schultz 1998; van den Bos et al. 2013; Lopez-Persem et al. 990 
2016) showed that choices could be influenced by previous experience and be updated by 991 
reinforcement learning. Future research may include multi-component choice options during fMRI 992 
scanning to study multi-component reinforcement learning. Lastly, we only demonstrated fMRI 993 
BOLD responses, and future neurophysiology research should confirm the coding of revealed 994 
preference at a single neuron level in human patients with intracerebrally implanted electrodes, 995 
similar to our recently investigated neuronal encoding of revealed preference in monkey 996 
orbitofrontal cortex (Pastor-Bernier et al. 2019). To conclude, while we showed brain activation 997 
with bundles in a formal but standard revealed preference setting (convex ICs, primary reward), it is 998 
desirable to know how human brains encode revealed preference in a larger variety of situations. 999 
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 The reward circuit including the striatum and midbrain is known to participate in reward 1000 
anticipation and learning, including reward prediction error (Diederen et al. 2017). In monkeys, 1001 
midbrain dopamine neurons encode values for predicted rewards in economic decision tasks (Lak et 1002 
al. 2016; Schultz et al. 2017). Similar to the midbrain and striatum, previous work showed the 1003 
involvement of the human mid-OFC in valuation of primary nutrient reward (Grabenhorst et al., 1004 
2010) and monetary reward (Kahnt et al. 2014). Remarkably, the neural activity in OFC elicited 1005 
here, in response to visual cues predicting liquid rewards with varying sugar and fat components, 1006 
closely matched the coordinates observed previously (Grabenhorst et al., 2010) in a study in which 1007 
subjects orally sampled very similar liquid rewards. Thus, this area of OFC seems to be involved 1008 
both in reward valuation during oral consumption of primary nutrient rewards and in the economic 1009 
valuation of visually cued choice options. In non-human primates, OFC neurons encode reward 1010 
prediction (Tremblay & Schultz 1999; Padoa-Schioppa & Assad 2006) and follow revealed 1011 
preferences for multi-component bundles (Pastor-Bernier et al. 2019). In the current study, we used 1012 
a concept-driven design and found that neural responses in the striatum, midbrain and OFC 1013 
integrated multiple bundle components in a way that followed the ICs scheme (changing across ICs 1014 
but being similar along equal-preference ICs). Moreover, we demonstrate the involvement of the 1015 
midbrain in multi-component decision making for the first time. Overall, our results show the 1016 
involvement of principal reward structures of the brain in integrating the multiple components of 1017 
vectorial bundles into single-dimensional neural signals that are suitable for economic decision 1018 
making. 1019 
 Besides the primary reward circuit (midbrain dopamine neurons, OFC, striatum, amygdala), 1020 
other brain regions are also involved in economic decision making. Previous studies in multi-1021 
component decision making suggested the involvement of the cingulate, prefrontal cortex and 1022 
insula in value elicitation (Kurtz-David et al. 2019; Busemeyer et al. 2019). Consistent with these 1023 
studies, we also found significant activation in these regions. As shown in Table 1 and Table 2, the 1024 
BOLD signals identified by GLM1 and GLM2 showed that these regions also encode bundle values 1025 
during the bundle-on phase, together with the striatum, midbrain, and mid-OFC. Our results are 1026 
consistent with these previous studies, suggesting that a considerable number of brain regions also 1027 
play a role in multi-component decision making. 1028 
 1029 
 1030 
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         1130 
Table 1. Brain regions activated across but not along indifference curves (ICs) during bundle-on 1131 

phase (whole-brain analysis with GLM1).  1132 

 1133 

Brain region Hemisphere MNI peak coordinates (x,y,z) peak z-score 

Striatum* R 10, 6, -4 3.27 

Midbrain* / 4, -16, -12 3.09 

OFC* R 22, 42, -16 3.67 

Parieto-occipital transition zone/ 
occipital gyri 

/ -12, -66, 46 7.42 

Insular gyrus/ 
basal operculum 

 

L  -30, 18, 2 5.80 

R 32, 26, -4 4.91 

Superior frontal gyrus / -24, 2, 52 5.70 

Middle frontal gyrus  
L 

-42, 2, 42 4.98 

-40, 34, 18 4.74 

R 44, 46, 16 4.94 

Cingulate gyrus / -2, -24, 28 4.87 

Precentral gyrus R 40, 6, 24 4.59 

Angular gyrus L -22, -72, 54 3.89 

 1134 

Cluster P values (P < 0.05) with family-wise error correction across the whole brain. Map threshold 1135 

P < 0.005 (across ICs; high>low IC) with exclusive contrast map P > 0.005 (along ICs), extent 1136 

threshold ≥ 10 voxels. *P < 0.05 with small volume correction correction (6mm radius for striatum 1137 

and midbrain; 10mm for OFC) using coordinates from Neurosynth meta-analysis database (see 1138 

Methods). '/' indicates activation close to and crossing the midline. For effect sizes, see Table 1-1. 1139 

For significant BOLD changes between bundles positioned on same ICs in other brain regions, see 1140 

Table 1-2. 1141 

  1142 
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 1143 

Table 1-1. Effect sizes for BOLD responses to bundles positioned across and along indifference 1144 

curves (IC) in striatum, midbrain and OFC (GLM1). 1145 

 1146 

 Preference 
(different utility) 

Choice indifference 
(same utility) 

Brain region Effect across ICs Effect along ICs  
(T statistics) 

Effect along ICs  
(F statistics) 

Striatum Z = 3.27 
p = 0.041 

N/A (Fat) 
N/A (Sugar) 

N/A 

Midbrain Z = 3.09 
p = 0.048 

N/A (Fat) 
N/A (Sugar) 

N/A 

OFC Z = 3.67 
p = 0.037 

Z = 2.77, p = 0.188 (Fat) 
N/A (Sugar) 

N/A 

 1147 

P values refer to small volume corrected BOLD signal (6mm radius for striatum and midbrain; 1148 

10mm for OFC) using coordinates from Neurosynth (see Methods). Map threshold P < 0.005, 1149 

extent threshold ≥ 10 voxels. Z: peak z-score. Threshold p = 0.005 with extent threshold ≥ 10 1150 

voxels, tested with small volume correction. N/A: no cluster of voxels met the statistical criteria.  1151 
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 1153 
Table 1-2. Brain regions activated along indifference curves (ICs) during bundle-on phase (whole-1154 

brain analysis with GLM1 F contrast along ICs).  1155 

 1156 

Brain region Hemisphere MNI peak coordinates (x,y,z) peak z-score 

Striate area / 2, -86, 6 >8 

Inferior frontal gyrus, orbital part/ 
Lateral OFC 

R 46, 50, -2 4.63 

Inferior frontal gyrus, triangular part R 56, 16, 0 4.14 

Middle temporal gyrus R 64, -24, -18 4.41 

Superior frontal gyrus, medial part / 4, 38, 26 4.37 

Supramarginal gyrus R 48, -50, 42 4.31 

Inferior temporal gyrus L -32, -78, -16 3.86 

Superior temporal gyrus L -56, -46, 40 3.74 

 1157 

Cluster P values (P < 0.05) with family-wise error correction across the whole brain. Map threshold 1158 

P < 0.005 (along ICs), extent threshold ≥ 10 voxels. '/' indicates activation close to and crossing the 1159 

midline. 1160 

  1161 



 

 

30

30

 1162 
Table 2. Brain regions showing differences (partial physical non-dominance> partial physical 1163 

dominance) in BOLD signal between partial physically dominating bundles located on different 1164 

indifference curves (ICs) during bundle-on phase (whole-brain analysis with GLM2). 1165 

 1166 

Brain region Hemisphere MNI peak coordinates (x,y,z) peak z-score 

Striatum* R 16, 6, -6 3.8 

Midbrain* / 4, -16, -12 2.85 

OFC* R 24, 42, -16 3.99 

Insular gyrus/ 
Basal operculum 

L -30, 24, -2 5.55 

R 32, 26, -6 4.40 

Angular gyrus R 32, -68, 28 5.51 

Cerebellum L -36, -68, -30 4.79 

Superior frontal gyrus / 22, 2, 54 4.75 

Occipital gyri L -28, -88, 4 4.57 

Middle frontal gyrus 
L -50, 40, 16 4.32 

R 46, 42, 14 3.76 

Inferior frontopolar gyrus R 18, 64, -8 4.11 

Cingulate gyrus / -2, -24, 28 4.05 

 1167 

Cluster P values (P < 0.05) with family-wise error correction across the whole brain. Map threshold 1168 

P < 0.005, extent threshold ≥ 10 voxels. *P < 0.05 with small volume correction correction (6mm 1169 

radius for striatum and midbrain; 10mm for OFC) using coordinates from Neurosynth meta-analysis 1170 

database (see Methods). 1171 

  1172 



 

 

31

31

 1173 
Table 3. Brain regions with BOLD responses correlating with BDM bids during the bidding phase 1174 

(whole-brain analysis with GLM3).  1175 

 1176 

Brain region Hemisphere MNI peak coordinates (x,y,z) peak z-score 

vmPFC / 6, 44, 0 4.10 

Dorsal striatum* R 12, 12, 0 3.53 

Insular gyrus/ 
basal operculum 

R 30, 24, -2 5.21 

Inferior frontal gyrus, opercular 
part 

R 46, 8, 22 4.76 

Occipital gyri L -36, -90, -2 4.67 

Superior parietal lobule L -30, -56, 46 4.14 

Superior frontal gyrus / 2, 26, 42 4.05 

Middle frontal gyrus R 38, 36, 18 3.93 

Postcentral gyrus R 32, -36, 48 3.62 

Inferior frontopolar gyrus R 22, 56, -4 3.53 

 1177 

Cluster P values (P < 0.05) with family-wise error correction across the whole brain. Map threshold 1178 

P < 0.005, extent threshold ≥ 10 voxels. *P < 0.05 with small volume correction (6 mm radius) 1179 

using coordinates from a previous study with BDM bidding (De Martino et al., 2009; see Methods). 1180 

 1181 


