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Steering feel, or steering torque feedback plays an important role in the steering control task. 
In this report, a new driver steering control model incorporating steering torque feedback 
state estimation is proposed. The hypothesis is that the human driver obtains an internal 
mental model of the steering and vehicle dynamics, which is used in sensory perception, 
cognitive control, and neuromuscular action. The new model could be used to predict a 
driver’s responses when steering a vehicle with steering torque feedback. 
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1. INTRODUCTION  
Steering feel, or steering torque feedback, is an important aspect of dynamic properties of vehicles and has 

been devoted significant attention to by vehicle manufacturers. In a real vehicle, lateral forces generated by the 
tyres on the front axle are communicated to the driver through torque at the steering wheel, and this can give the 
driver useful information about the vehicle states. Therefore, steering feel not only represents the driver’s 
subjective sensation of steering control, vehicle response and haptic feedback, but also affects the driver’s 
assessment of the vehicle’s dynamic qualities upon steering. [1] Although autonomous steering control is a 
maturing technology, the dynamic interaction between the human occupants and the vehicle is still important and 
steering torque feedback may play a more significant role in the transition between conventional and automated 
vehicles. [2]  

The report describes a mathematical model of the driver-steering-vehicle system incorporating steering torque 
feedback and state estimation. Basically, the model comprises the vehicle and steering dynamics, the 
neuromuscular system, the sensory delays and the human brain functions. The model aims to predict a driver’s 
objective and subjective responses when steering a vehicle with steering torque feedback. The underlying 
hypothesis is that a human driver obtains an internal mental model of the steering and vehicle dynamics, which is 
central to the functions of perception, cognition, and action. The model builds on and complements earlier work 
[3] that focused on modelling the role of vestibular feedback. The derivation of new driver-steering-vehicle model 
is presented in Section 2, and parameter values for the new model are given in Section 3. Then a sample set of 
simulation results are presented in Section 4. The main conclusions drawn from the work are summarized in 
Section 5. 
 
2. DRIVER-STEERING-VEHICLE MODEL 

To enable a fundamental understanding of the role of steering torque feedback while reducing the 
computational cost involved in simulating the model, linear dynamics are used to model the driver-steering-
vehicle system in this work. The scope of the model does not extend to speed choice or control, therefore only 
vehicles travelling at constant longitudinal speed are considered, although the principles behind this model could 
be extended to include variable-speed vehicles. The driver is assumed to follow a given target path of negligible 
thickness. A minimal set of human sensory measurements is assumed: visual perception organs and the 
proprioceptors. The modelling of the vestibular organs is eliminated to reduce the complexity of the study.  

The steering task described by the model is represented by Figure 1. Basically, the driver is to follow a 
randomly moving target path used in [3] in the linear operating regime while compensating for random 
disturbances acting on the steering and vehicle system. The target path 𝑟 is straight but randomly varies its lateral 
displacement from the centreline of the road, which means that the driver does not have any preview of the target 
path displacement. The aim of this is to ensure that the driver-steering-vehicle system with torque arising from 
front tyre lateral forces and trail can be disturbed without directly affecting the steering torque feedback. The 
random disturbances acting on the steering-vehicle system specifically refer to column torque disturbance 𝑇𝑑 
acting on the steering system, lateral force 𝐹𝑦 and yaw moment 𝑀𝑧 disturbances acting on the centre of mass of 
the vehicle. It is assumed that the aim of the driver is to minimise the tracking error between the vehicle lateral 
displacement and the randomly moving target path. 
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Figure 1: Steering control task described by the new driver model. The driver is to follow the randomly moving 
target path r while rejecting disturbances acting on the steering-vehicle system 𝑇𝑑, 𝐹𝑦 and 𝑀𝑧. 

 
A schematic structure of the new driver-steering-vehicle model is shown in Figure 2. The model is developed 

based on the hypothesis that the driver is trying to minimise the lateral deviation of the vehicle from the randomly 
target path by using the optimal estimated states of the plant and the environment from the noisy sensory 
measurements. The driver’s primary control output is the alpha muscle activation signal. The driver’s control 
strategy follows the linear quadratic Gaussian (LQG) framework, combining a linear quadratic regulator (LQR) 
with a Kalman filter to give statistically optimal control actions and state estimates based on the driver’s internal 
model of the plant. A Kalman filter uses an internal model to achieve optimal state estimation in the presence of 
additive white noise. However, there is also a muscle stretch reflex action, a stretch reflex (𝐻𝑟  and 𝐷𝑟) controller 
is therefore also included in this model. The plant shown in Figure 3 describes the plant controlled by the driver 
in detail, including models of muscle activation process (𝐻𝑎), the muscle dynamics (part of 𝐻𝑚𝑠), the vehicle (𝐻𝑣) 
and steering dynamics (the other part of 𝐻𝑚𝑠), human sensory delays and disturbance filters (𝐻𝑓𝑇 , 𝐻𝑓𝐹 , 𝐻𝑓𝑀 and 
𝐻𝑓𝑟). The perceived states by the driver are the visually-sensed vehicle lateral deviation with respect to the target 
path 𝑒, the yaw angle 𝜓, and the proprioceptively-sensed muscle angle 𝜃𝑎. 

The driver-steering-vehicle model is implemented as a state-space form, in discrete time with sample period 
𝑇𝑠 so that delays can be explicitly modelled mathematically. All continuous transfer functions 𝐻(𝑠) are converted 
to discrete state-space matrices (A, B, C, D) with states 𝒙, with subscripts matching the name of that transfer 
function. Discretisation is carried out using a zero-order hold (ZOH) method. In most cases this is approximated 
in the form 𝐀 = 𝐈 + 𝑇𝑠𝐀𝑐 , 𝐁 = 𝑇𝑠𝐁𝑐, where 𝐀𝑐  and 𝐁𝑐 are continuous-time state-space matrices. The time step 
index is denoted by 𝑘. 

 
Figure 2: Schematic diagram of the linear driver-steering-vehicle model. Disturbance signals are input as white 
noise 𝑤𝐹 , 𝑤𝑀, 𝑤𝑇  and 𝑤𝑟 then filtered in the plant. The plant input 𝛼 and outputs 𝒛 are perturbed with process 



and measurement noise 𝑤 and 𝒗, so a Kalman filter estimates the plant states 𝒙𝒆. An LQR controller computes an 
optimal plant input 𝛼.  
 

Figure 3: Structure of plant in the new driver-steering-vehicle model. The plant describes the dynamics controlled 
by the human driver, including muscle activation 𝐻𝑎, muscle and steering dynamics 𝐻𝑚𝑠, vehicle dynamics 𝐻𝑣 , 
human sensory delays and disturbance filters 𝐻𝑓𝑇 , 𝐻𝑓𝐹 , 𝐻𝑓𝑀 and 𝐻𝑓𝑟 . 
 
2.1 VEHICLE MODEL 

The vehicle dynamics 𝐻𝑣  are represented using the two degree-of-freedom lateral-yaw single-track ‘bicycle’ 
model moving at constant speed for simplicity, as shown in Figure 4. The model captures the two dominating 
motions, i.e. vehicle yaw and lateral motions, with lateral velocity 𝑣 measured along the lateral axis of the vehicle 
to the centre of mass of the vehicle and yaw rate 𝜔 defined with respect to ground. The yaw angle 𝜓 is defined as 
the angle between the longitudinal axis of the vehicle and the global 𝑥-axis. 𝛿 is the front tyres steer angle. The 
roll and pitch effects of the vehicle are not modelled.  

 
Figure 4: The two degree-of-freedom lateral-yaw vehicle model with disturbance force and moment 

 
For constant longitudinal speed and small-angle assumptions, the equations of motion of the vehicle model 

are 
𝑚(𝑣̇(𝑡) + 𝑈𝜔(𝑡)) = 𝐹𝑦𝑓(𝑡) + 𝐹𝑦𝑟(𝑡) + 𝐹𝑦(𝑡)                                                      (1) 

𝐼𝜔̇(𝑡) = 𝑎𝐹𝑦𝑓(𝑡) − 𝑏𝐹𝑦𝑟(𝑡) + 𝑀𝑧(𝑡)                                                      (2) 
where 𝑈 denotes the constant longitudinal speed of the vehicle, 𝑚 and 𝐼 denote the vehicle mass and yaw inertia, 
respectively. 𝑎 and 𝑏 denote the distance of front and rear tyres from the centre of mass of the vehicle, respectively.  



𝐹𝑦𝑓 and 𝐹𝑦𝑟 are front and rear tyre forces acting along the vehicle lateral axis. A lateral force 𝐹𝑦 and a yaw moment 
𝑀𝑧 applied at the centre of mass of the vehicle act as disturbances, such as might arise from road roughness or 
wind gusts. For on-centre regime of operation is considered, the lateral tyre forces 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are assumed to be 
proportional to tyre slip angles. Therefore, the lateral forces of the front and rear tyres are 

𝐹𝑦𝑓(𝑡) = 2𝐶𝑓 (𝛿(𝑡) −
𝑣(𝑡) + 𝑎𝜔(𝑡)

𝑈
)                                                             (3) 

𝐹𝑦𝑟(𝑡) = 2𝐶𝑟 (−
𝑣(𝑡) − 𝑏𝜔(𝑡)

𝑈
)                                                             (4) 

where 𝐶𝑓 and 𝐶𝑟 are constant corning stiffness of each front tyre and each rear tyre, respectively. The continuous-
time state-space equations of the vehicle model are 

{
 

 
𝑦̇(𝑡)
𝑣̇(𝑡)
𝜓̇(𝑡)
𝜔̇(𝑡) }

 

 
=

[
 
 
 
 
 
0 1 𝑈 0

0 −
2𝐶𝑓 + 2𝐶𝑟
𝑚𝑈

0 −𝑈 −
2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝑚𝑈
0 0 0 1

0 −
2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝐼𝑈
0 −

2𝑎2𝐶𝑓 + 2𝑏2𝐶𝑟
𝐼𝑈 ]

 
 
 
 
 

{
 

 
𝑦(𝑡)
𝑣(𝑡)
𝜓(𝑡)
𝜔(𝑡)}

 

 
+

[
 
 
 
 
 
0 0 0
2𝐶𝑓
𝑚

1
𝑚

0

0 0 0
2𝐶𝑓𝑎
𝐼

0
1
𝐼]
 
 
 
 
 

{
𝛿(𝑡)
𝐹𝑦(𝑡)
𝑀𝑧(𝑡)

}     (5) 

 
2.2 MUSCLE DYNAMICS AND STEERING MODEL 

The muscle dynamics and the steering system are strongly coupled by the torques and angles exchanged 
through the steering wheel, so they are modelled together as 𝐻𝑚𝑠, with the structure shown in Figure 5. The 
steering dynamics with an assist torque are represented by a two degree-of-freedom system, with the steering 
wheel angle denoted as 𝜃𝑠𝑤  and the steering column angle denoted as 𝜃𝑐 . The linear steering dynamics are 
interacted with the driver through the introduction of the muscle angle of the arms 𝜃𝑎  resulting from muscle 
activation driven by neurons. The inertia of the rack and the front wheels referred to the pinion is denoted by 𝐼𝑐. 
This inertia is connected to the vehicle ground by a torsional stiffness 𝑘𝑠𝑤 that represents self-centering stiffness 
(typically arising from the tyre forces acting through the steering geometry) and a parallel torsional damping term 
𝑐𝑠𝑤 that represent the damping in the steering mechanism with respect to the steering wheel axle. The inertia of 
the steering handwheel is denoted as 𝐼𝑠𝑤  and the inertia of the driver’s arm 𝐼𝑎𝑟𝑚 is assumed to be rigidly connected 
to the steering wheel, which is denoted by the dashed line between 𝐼𝑎𝑟𝑚 and 𝐼𝑠𝑤 . The resulting summation of the 
inertia of the arms 𝐼𝑎𝑟𝑚 and the inertia of the steering wheel 𝐼𝑠𝑤  are connected with the inertia of the rack and the 
front wheels 𝐼𝑐 by steering column with stiffness 𝑘𝑡 and a torsion bar with damping 𝑐𝑡 in parallel. Moreover, any 
additional stiffness and damping effects that may result from steering mechanism referred to the steering wheel 
are represented by 𝑘ℎ𝑤 and 𝑐ℎ𝑤.  

The muscle dynamics considers both the muscle activation and intrinsic dynamics [4]. The mechanical 
response of the muscle due to change in the steering wheel angle and from neural activation torque is represented 
by a linearized Hill’s muscle model [5], which is a series combination of contractile element (parallel combination 
of torque from neural activation 𝑇𝑎 and a dashpot 𝑐𝑎 which resisting stretching of the muscle fibre) and spring 𝑘𝑎 
representing the elasticity of the tendons. The details of the generation of neural activation 𝑇𝑎 are described in 
later sections. The internal stiffness and damping of the muscles and joints, which are known as muscle intrinsic 
properties, are fitted by 𝑘𝑝 and 𝑐𝑝, respectively.  

 
Figure 5: Muscle and steering system model with steering column torque disturbance. The springs and dampers 
act in rotation. 

 



The equations of motion of the muscle dynamics and steering model are 
𝑇𝑎(𝑡) = 𝑐𝑎𝜃̇𝑎(𝑡) + 𝑘𝑎(𝜃𝑎(𝑡) − 𝜃𝑠𝑤(𝑡))                                                         (6) 

𝑘𝑎(𝜃𝑎(𝑡) − 𝜃𝑠𝑤(𝑡)) − 𝑐𝑡 (𝜃̇𝑠𝑤(𝑡) − 𝜃̇𝑐(𝑡)) − 𝑘𝑡(𝜃𝑠𝑤(𝑡) − 𝜃𝑐(𝑡))
= (𝐼𝑠𝑤 + 𝐼𝑎𝑟𝑚)𝜃̈𝑠𝑤(𝑡) + (𝑐ℎ𝑤 + 𝑐𝑝)𝜃̇𝑠𝑤(𝑡) + (𝑘ℎ𝑤 + 𝑘𝑝)𝜃𝑠𝑤(𝑡)                                               (7) 

𝑇𝑑(𝑡) + 𝑐𝑡(𝜃̇𝑠𝑤(𝑡) − 𝜃̇𝑐(𝑡)) + 𝑘𝑡(𝜃𝑠𝑤(𝑡) − 𝜃𝑐(𝑡)) + 𝑇𝑚(𝑡) −
𝑇𝑤(𝑡)
𝐺

= 𝐼𝑐𝜃𝑐̈(𝑡) + 𝑐𝑠𝑤𝜃𝑐̇(𝑡) + 𝑘𝑠𝑤𝜃𝑐(𝑡)           (8) 
Besides the torque applied by the arm muscles due to muscle activation, the steering model includes the self-

aligning moment 𝑇𝑤, the torque input from the driving assist system 𝑇𝑚 and the equivalent steering column torque 
disturbance resulting from the rack. The self-aligning moment 𝑇𝑤 due to the torque generated about the king-pin 
axes by the lateral axle force is given by 

𝑇𝑤(𝑡) = 𝐹𝑦𝑓(𝑡)𝑑                                                                               (9) 
where the front tyre trail distance, consisting both the pneumatic and mechanical trail, is denoted by 𝑑. The assist 
torque applied at the steering column 𝑇𝑚 by the driving assist system, assumed to be based on a linear boost curve 
with boost coefficient 𝐶𝑏𝑜𝑜𝑠𝑡, is given by 

𝑇𝑚(𝑡) = 𝐶𝑏𝑜𝑜𝑠𝑡𝑐𝑡(𝜃̇𝑠𝑤(𝑡) − 𝜃̇𝑐(𝑡)) + 𝐶𝑏𝑜𝑜𝑠𝑡𝑘𝑡(𝜃𝑠𝑤(𝑡) − 𝜃𝑐(𝑡))                              (10) 
Finally, the steering gear ratio 𝐺 transforms the steering angle column into the front tyre angle by 

𝛿(𝑡) =
𝜃𝑐(𝑡)
𝐺

                                                                                (11) 
Therefore, the continuous-time state-space equations of the muscle-steering-vehicle is 

{
 
 
 
 
 

 
 
 
 
 
𝑦̇(𝑡)
𝑣̇(𝑡)
𝜓̇(𝑡)
𝜔̇(𝑡)
𝜃̇𝑠𝑤(𝑡)
𝜃̈𝑠𝑤(𝑡)
𝜃̇𝑐(𝑡)
𝜃̈𝑐(𝑡)
𝜃̇𝑎(𝑡) }

 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
0 1 𝑈 0 0 0 0 0 0

0 −
2𝐶𝑓 + 2𝐶𝑟
𝑚𝑈

0 −𝑈 −
2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝑚𝑈
0 0

2𝐶𝑓
𝐺𝑚

0 0

0 0 0 1 0 0 0 0 0

0 −
2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝐼𝑈
0 −

2𝑎2𝐶𝑓 + 2𝑏2𝐶𝑟
𝐼𝑈

0 0
2𝐶𝑓𝑎
𝐺𝐼

0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 𝐹2 𝐹3 𝐹4 𝐹5 𝐹1
0 0 0 0 0 0 0 1 0
0 𝐺1 0 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 0

0 0 0 0
𝑘𝑎
𝑐𝑎

0 0 0 −
𝑘𝑎
𝑐𝑎 ]
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑦(𝑡)
𝑣(𝑡)
𝜓(𝑡)
𝜔(𝑡)
𝜃𝑠𝑤(𝑡)
𝜃̇𝑠𝑤(𝑡)
𝜃𝑐(𝑡)
𝜃̇𝑐(𝑡)
𝜃𝑎(𝑡) }

 
 
 
 

 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0

0
1
𝑚

0 0

0 0 0 0

0 0
1
𝐼

0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
1
𝐼𝑐

0 0 0 0]
 
 
 
 
 
 
 
 
 
 
 

{
 

 
𝑇𝑎(𝑡)
𝐹𝑦(𝑡)
𝑀𝑧(𝑡)
𝑇𝑑(𝑡)}

 

 
                                                                                                               (12) 

{
𝑦(𝑡)
𝜓(𝑡)
𝜃𝑎(𝑡)

} = [
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

]

{
 
 
 
 

 
 
 
 
𝑦(𝑡)
𝑣(𝑡)
𝜓(𝑡)
𝜔(𝑡)
𝜃(𝑡)
𝜃̇(𝑡)
𝜃𝑐(𝑡)
𝜃̇𝑐(𝑡)
𝜃𝑎(𝑡)}

 
 
 
 

 
 
 
 

                                         (13) 

where 𝐺1 =
2𝐶𝑓𝑑

𝐺𝑈𝐼𝑐
, 𝐺2 =

2𝐶𝑓𝑎𝑑

𝐺𝑈𝐼𝑐
, 𝐺3 =

(1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑘𝑡
𝐼𝑐

, 𝐺4 =
(1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑐𝑡

𝐼𝑐
, 𝐺5 = − [

(1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑘𝑡+𝑘𝑠𝑤
𝐼𝑐

+ 2𝐶𝑓𝑑

𝐺2𝐼𝑐
] , 𝐺6 =

− (1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑐𝑡+𝑐𝑠𝑤
𝐼𝑐

, 𝐹1 =
𝑘𝑎

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
, 𝐹2 = − 𝑘𝑎+𝑘ℎ𝑤+𝑘𝑝+𝑘𝑡

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
, 𝐹3 = −

𝑐ℎ𝑤+𝑐𝑝+𝑐𝑡
𝐼𝑎𝑟𝑚+𝐼𝑠𝑤

, 𝐹4 =
𝑘𝑡

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
, 𝐹5 =

𝑐𝑡
𝐼𝑎𝑟𝑚+𝐼𝑠𝑤

 
 

Converted to discrete-time state-space equations with sample period 𝑇𝑠, the above equations become  



𝒙𝑚𝑠𝑣(𝑘 + 1) = 𝐀𝑚𝑠𝑣𝒙𝑚𝑠𝑣(𝑘) + 𝐁𝑚𝑠𝑣{𝑇𝑎(𝑘) 𝐹𝑦(𝑘) 𝑀𝑧(𝑘) 𝑇𝑑(𝑘)}𝑇                     (14) 
{𝑦(𝑘) 𝜓(𝑘) 𝜃𝑎(𝑘)}𝑇 = 𝐂𝑚𝑠𝑣𝒙𝑚𝑠𝑣(𝑘)                     (15) 

 
2.3 MUSCLE ACTIVATION 

The muscle activation torque 𝑇𝑎 arises from the neural activation of the muscle. [4] There are two processes 
associated with the activation process block 𝐻𝑎 shown in Figure 3. Activation begins with a signal 𝑢 sent to alpha 
motor neurons in the spine that in turn activate the muscle fibres. The dynamics associated with the motor neurons 
are represented by a first-order lag with time constant 𝜏1, which is normally in the range 20-50ms [6]. There is 
also a lag associated with the activation and deactivation of the muscle fibres. Previous twitch tests found that 
depending on the muscle size, the activation time constant is 5-15ms while the deactivation time constant is 
typically in the range 20-60ms. [6] Cole [4] mentioned that it is a necessary approximation for a linear model that 
a single first-order lag with time constant 𝜏2 is used for both activation and deactivation of muscle fibres. The 
series combination of the two first-order lags form the 𝐻𝑎  block shown in Figure 3. Therefore, the muscle 
activation torque 𝑇𝑎 relating the signal 𝑢 is given by the transfer function 

𝐻𝑎(𝑠) =
1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
                                                                  (16) 

Converted to state-space form, the muscle activation block 𝐻𝑎 is 

{
𝑥̇𝐻𝑎(𝑡)
𝑇̇𝑎(𝑡)

} =

[
 
 
 0 −

1
𝜏1𝜏2

1 −
𝜏1 + 𝜏2
𝜏1𝜏2 ]

 
 
 
{
𝑥𝐻𝑎(𝑡)
𝑇𝑎(𝑡)

} + [
1
𝜏1𝜏2
0
] 𝑢(𝑡)                                           (17) 

𝑇𝑎(𝑡) = [0 1] {
𝑥𝐻𝑎(𝑡)
𝑇𝑎(𝑡)

}                                           (18) 

Written in matrix notations and converted to discrete-time with sample period 𝑇𝑠, the above state-space equations 
become  

𝒙𝑎(𝑘 + 1) = 𝐀𝑎𝒙𝑎(𝑘) + 𝐁𝑎𝑢(𝑘)                                                            (19) 
𝑇𝑎(𝑘) = 𝐂𝑎𝒙𝑎(𝑘)                                                            (20) 

 
2.4 SENSORY SYSTEMS 

Various sensory systems are used by the driver to infer the states of the vehicle and its surrounding. The main 
senses used by the driver in the steering control task are visual system, vestibular system and somatosensors. [7] 
In this work, a minimal set of human sensory measurements is assumed for visual perception organs and the 
proprioceptors and the modelling of the vestibular organs is considered out of the scope of the research to reduce 
the complexity of the study. The visual system is not only used for detecting the target path, but also used in 
perceiving self-motion of the vehicle relative to the surrounding environment. In this work, the perceived states 
by the visual system are the vehicle lateral deviation with respect the randomly moving target path 𝑒 and the yaw 
angle of the vehicle 𝜓. Proprioceptors are a subset of somatosensors and are used for sense the motion and forces 
of the joints and muscle, which is an important means the driver has to sense the angle and torque of the steering 
wheel resulting from the steering dynamics and the contact between the front tyres and the road. In this work, the 
muscle angle 𝜃𝑎 is included as another measurement. The perceived states are subject to a visual delay 𝜏𝑣𝑖 and a 
muscle sensory delay 𝜏𝑣𝜃𝑎 , consisting of 𝑁𝑣𝑖 = 𝜏𝑣𝑖/𝑇𝑠  and 𝑁𝑣𝜃𝑎 = 𝜏𝑣𝜃𝑎/𝑇𝑠  time steps, respectively. The time 
delay of cognitive processing is assumed to be lumped together with the sensory delays and not modelled 
separately. The sensory delays in Figure 3 are implemented using shift registers. The delayed values of the vehicle 
lateral deviation with respect the randomly moving target path 𝑒𝑑 are found by 

{
𝑒(𝑘)
⋮

𝑒(𝑘 − 𝑁𝑣𝑖 + 1)
} = [

𝟎[1,𝑁𝑣𝑖−1] 0
𝐈[𝑁𝑣𝑖−1,𝑁𝑣𝑖−1] 𝟎[𝑁𝑣𝑖−1,1]

] {
𝑒(𝑘 − 1)

⋮
𝑒(𝑘 − 𝑁𝑣𝑖)

} + [
1

𝟎[𝑁𝑣𝑖−1,1]
] 𝑒(𝑘)                (21) 

𝑒(𝑘 − 𝑁𝑣𝑖) = [𝟎[1,𝑁𝑣𝑖−1] 1] {
𝑒(𝑘 − 1)

⋮
𝑒(𝑘 − 𝑁𝑣𝑖)

}              (22) 

where 𝐈 is the identity matrix, 𝟎 is a matrix of zeros, and 𝐌[𝑖,𝑗] is a matrix with 𝑖 rows and 𝑗 columns. Converted 
to discrete-time state-space equations with sample period 𝑇𝑠, the above equations become  

𝒙𝜏𝑒(𝑘 + 1) = 𝐀𝜏𝑣𝑖𝒙𝜏𝑒(𝑘) + 𝐁𝜏𝑣𝑖𝑒(𝑘) = 𝐀𝜏𝑣𝑖𝒙𝜏𝑒(𝑘) + 𝐁𝜏𝑣𝑖𝐂𝑚𝑠𝑣(1,:)𝒙𝑚𝑠𝑣(𝑘) − 𝐁𝜏𝑣𝑖𝑟(𝑘)               (23) 
𝑒(𝑘 − 𝑁𝑣𝑖) = 𝐂𝜏𝑣𝑖𝒙𝜏𝑒(𝑘)               (24) 

where 𝐌(𝑖,𝑗) indicates the 𝑖th row and 𝑗th column of matrix 𝐌 and ‘:’ represents the entire row of column of the 
matrix. Similarly, the delayed values of the vehicle yaw angle 𝜓𝑑 are found by 

𝒙𝜏𝜓(𝑘 + 1) = 𝐀𝜏𝑣𝑖𝒙𝜏𝜓(𝑘) + 𝐁𝜏𝑣𝑖𝜓(𝑘) = 𝐀𝜏𝑣𝑖𝒙𝜏𝜓(𝑘) + 𝐁𝜏𝑣𝑖𝐂𝑚𝑠𝑣(2,:)𝒙𝑚𝑠𝑣(𝑘)               (25) 
𝜓(𝑘 − 𝑁𝑣𝑖) = 𝐂𝜏𝑣𝑖𝒙𝜏𝜓(𝑘)               (26) 



The delayed values of muscle angle 𝜃𝑎 are given by  

{
𝜃𝑎(𝑘)
⋮

𝜃𝑎(𝑘 − 𝑁𝑣𝑖 + 1)
} = [

𝟎[1,𝑁𝑣𝜃𝑎−1] 0
𝐈[𝑁𝑣𝜃𝑎−1,𝑁𝑣𝜃𝑎−1] 𝟎[𝑁𝑣𝜃𝑎−1,1]

] {
𝜃𝑎(𝑘 − 1)

⋮
𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎)

} + [
1

𝟎[𝑁𝑣𝜃𝑎−1,1]
] 𝜃𝑎(𝑘)                (27) 

𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎) = [𝟎[1,𝑁𝑣𝜃𝑎−1] 1] {
𝜃𝑎(𝑘 − 1)

⋮
𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎)

}              (28) 

Converted to discrete-time state-space equations with sample period 𝑇𝑠, the above equations become  
𝒙𝜏𝜃𝑎(𝑘 + 1) = 𝐀𝜏𝜃𝑎𝒙𝜏𝜃𝑎(𝑘) + 𝐁𝜏𝜃𝑎𝜃𝑎(𝑘) = 𝐀𝜏𝜃𝑎𝒙𝜏𝜃𝑎(𝑘) + 𝐁𝜏𝜃𝑎𝐂𝑚𝑠𝑣(3,:)𝒙𝑚𝑠𝑣(𝑘)               (29) 

𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎) = 𝐂𝜏𝜃𝑎𝒙𝜏𝜃𝑎(𝑘)               (30) 
 

The perceived states of the vehicle and its surrounding by the sensory system are then sent to the central 
nervous system (CNS), subject to measurement noise. These noisy signals are used to estimate the states of plant. 
The detailed derivation of the state estimator is presented in later sections. 
 
2.5 DISTURBANCE FILTERING 

As mentioned earlier in this report, the vehicle moves at constant longitudinal speed 𝑈 and the driver is asked 
to follow a randomly moving target path while compensating for disturbances acting on the steering-vehicle 
system as shown in Figure 3. The target 𝑟 and disturbances 𝑇𝑑, 𝐹𝑦 and 𝑀𝑧 are generated by filtering Gaussian 
white noise to ensure that the closed-loop driver-steering-vehicle system is not excited beyond the frequencies of 
interest [3]. White noise signals 𝑤𝑟 𝑤𝐹 , 𝑤𝑀 and 𝑤𝑇  are generated in discrete time by choosing random numbers 
from a zero-mean normal distribution. The corresponding variances 𝑊𝑟2 𝑊𝐹

2, 𝑊𝑀
2  and 𝑊𝑇

2 of the signals could be 
adjusted based on different simulation conditions. Specifically, vehicle lateral force disturbance 𝐹𝑦, vehicle yaw 
moment disturbance 𝑀𝑧  and steering column torque disturbance 𝑇𝑑  are generated by passing the noise inputs  
through second-order low pass filters with cut-off frequency 𝑓𝑐𝐹, 𝑓𝑐𝑀 and 𝑓𝑐𝑇, respectively 

𝐻𝑓𝐹(𝑠) = (
𝑓𝑐𝐹

𝑠 + 𝑓𝑐𝐹
)
2

                                                                        (31) 

𝐻𝑓𝑀(𝑠) = (
𝑓𝑐𝑀

𝑠 + 𝑓𝑐𝑀
)
2

                                                                        (32) 

𝐻𝑓𝑇(𝑠) = (
𝑓𝑐𝑇

𝑠 + 𝑓𝑐𝑇
)
2

                                                                        (33) 

Converted to state-space form, the above low pass filters are 

{
𝑥̇𝐻𝑓𝐹(𝑡)

𝐹̇𝑦(𝑡)
} = [0 −𝑓𝑐𝐹2

1 −2𝑓𝑐𝐹
] {
𝑥𝐻𝑓𝐹(𝑡)
𝐹𝑦(𝑡)

} + [𝑓𝑐𝐹
2

0
]𝑤𝐹(𝑡)                                           (34) 

𝐹𝑦(𝑡) = [0 1] {
𝑥𝐻𝑓𝐹(𝑡)
𝐹𝑦(𝑡)

}                                          (35) 

{
𝑥̇𝐻𝑓𝑀(𝑡)

𝑀̇𝑧(𝑡)
} = [0 −𝑓𝑐𝑀2

1 −2𝑓𝑐𝑀
] {
𝑥𝐻𝑓𝑀(𝑡)
𝑀𝑧(𝑡)

} + [𝑓𝑐𝑀
2

0
]𝑤𝑀(𝑡)                                           (36) 

𝑀𝑧(𝑡) = [0 1] {
𝑥𝐻𝑓𝑀(𝑡)
𝑀𝑧(𝑡)

}                                          (37) 

{
𝑥̇𝐻𝑓𝑇(𝑡)

𝑇̇𝑑(𝑡)
} = [0 −𝑓𝑐𝑇2

1 −2𝑓𝑐𝑇
] {
𝑥𝐻𝑓𝑇(𝑡)
𝑇𝑑(𝑡)

} + [𝑓𝑐𝑇
2

0
]𝑤𝑇(𝑡)                                           (38) 

𝑇𝑑(𝑡) = [0 1] {
𝑥𝐻𝑓𝑇(𝑡)
𝑇𝑑(𝑡)

}                                          (39) 

 
Written in matrix notations and converted to discrete-time with sample period 𝑇𝑠, the above state-space equations 
become  

𝒙𝑓𝐹(𝑘 + 1) = 𝐀𝑓𝐹𝒙𝑓𝐹(𝑘) + 𝐁𝑓𝐹𝑤𝐹(𝑘)                                                     (40) 
𝐹𝑦(𝑘) = 𝐂𝑓𝐹𝒙𝑓𝐹(𝑘)                                                     (41) 

𝒙𝑓𝑀(𝑘 + 1) = 𝐀𝑓𝑀𝒙𝑓𝑀(𝑘) + 𝐁𝑓𝑀𝑤𝑀(𝑘)                                                     (42) 
𝑀𝑧(𝑘) = 𝐂𝑓𝐹𝒙𝑓𝑀(𝑘)                                                     (43) 

𝒙𝑓𝑇(𝑘 + 1) = 𝐀𝑓𝑇𝒙𝑓𝑇(𝑘) + 𝐁𝑓𝑇𝑤𝑇(𝑘)                                                     (44) 
𝑇𝑑(𝑘) = 𝐂𝑓𝑇𝒙𝑓𝑇(𝑘)                                                     (45) 

The random target path 𝑟 is generated by passing the noise input 𝑤𝑟 through function combing a second-order 
low pass filter with cut-off frequency 𝑓𝑟𝑙 and a second-order high pass filter with cut-off frequency 𝑓𝑟ℎ [3] 



𝐻𝑓𝑟(𝑠) = (
𝑠

𝑠 + 𝑓𝑟ℎ
)
2
(
𝑓𝑟𝑙

𝑠 + 𝑓𝑟𝑙
)
2

                                                       (46) 

Similarly, converted to state-space form, and dealt with discrete-time, the transfer function became 
𝒙𝑓𝑟(𝑘 + 1) = 𝐀𝑓𝑟𝒙𝑓𝑟(𝑘) + 𝐁𝑓𝑟𝑤𝑟(𝑘)                                                    (47) 

𝑟(𝑘) = 𝐂𝑓𝑟𝒙𝑓𝑟(𝑘)                                                    (48) 
 
2.6 COMPLETE PLANT 

Combing blocks developed from Section 2.1 to 2.5 gives the complete plant, written in discrete-time state-
space form 

𝒙(𝑘 + 1) = 𝐀𝒙(𝑘) + 𝐁𝛼(𝑘) + [𝐁 𝐆𝑟 𝐆𝐹 𝐆𝑀 𝐆𝑇]{𝑤(𝑘) 𝑤𝑟(𝑘) 𝑤𝐹(𝑘) 𝑤𝑀(𝑘) 𝑤𝑇(𝑘)}𝑇  (49) 
𝒛(𝑘) = 𝐂𝒙(𝑘)   (50) 

where 𝒙(𝑘) = {𝒙𝑓𝑟(𝑘) 𝒙𝑓𝐹(𝑘) 𝒙𝑓𝑀(𝑘) 𝒙𝑓𝑇(𝑘) 𝒙𝑚𝑠𝑣(𝑘) 𝒙𝑎(𝑘) 𝒙𝜏𝜓(𝑘) 𝒙𝜏𝜃𝑎(𝑘)  𝒙𝜏𝑒(𝑘)}𝑇 , 
𝒛(𝑘) = {𝑒(𝑘 − 𝑁𝑣𝑖) 𝜓(𝑘 − 𝑁𝑣𝑖) 𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎)}

𝑇
, 

𝐀 =

[
 
 
 
 
 
 
 
 
 

𝐀𝑓𝑟 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝐀𝑓𝐹 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝐀𝑓𝑀 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝐀𝑓𝑇 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝐁𝑚𝑠𝑣(:,2)𝐂𝑓𝐹 𝐁𝑚𝑠𝑣(:,3)𝐂𝑓𝑀 𝐁𝑚𝑠𝑣(:,4)𝐂𝑓𝑇 𝐀𝑚𝑠𝑣 𝐁𝑚𝑠𝑣(:,1)𝐂𝑎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝐀𝑎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝐁𝜏𝑣𝑖𝐂𝑚𝑠𝑣(2,:) 𝟎 𝐀𝜏𝑣𝑖 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝐁𝜏𝜃𝑎𝐂𝑚𝑠𝑣(3,:) 𝟎 𝟎 𝐀𝜏𝜃𝑎 𝟎

−𝐁𝜏𝑣𝑖𝐂𝑓𝑟 𝟎 𝟎 𝟎 𝐁𝜏𝑣𝑖𝐂𝑚𝑠𝑣(1,:) 𝟎 𝟎 𝟎 𝐀𝜏𝑣𝑖]
 
 
 
 
 
 
 
 
 

 

𝐁 = [𝟎 𝟎 𝟎 𝟎 𝟎 𝑩𝑎 𝟎 𝟎 𝟎]𝑇 
𝐆𝑟 = [𝐁𝑓𝑟 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇  
𝐆𝐹 = [𝟎 𝐁𝑓𝐹 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇 
𝐆𝑀 = [𝟎 𝟎 𝐁𝑓𝑀 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇 
𝐆𝑇 = [𝟎 𝟎 𝟎 𝐁𝑓𝑇 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇 

𝐂 = [
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐂𝜏𝑣𝑖
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐂𝜏𝑣𝑖 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐂𝜏𝜃𝑎 𝟎 

] , 

𝟎 is a matrix of zeros, 𝐌(𝑖,𝑗) indicates the 𝑖th row and 𝑗th column of matrix 𝐌 and ‘:’ represents the entire row of 
column of the matrix. 
 
2.7 STRETCH REFLEX CONTROL 

The muscle neural activation has been considered to come from the alpha motor neurons in the spine. The 
alpha motor neurons receive signals from two main sources. [4] Signals can be sent directly from the motor cortex 
in the brain; in Figure 2 this signal is labelled 𝛼. In addition, the alpha motor neurons can be signalled by the 
reflex action, which is predominantly a closed-loop feedback control of muscle length known as the stretch reflex. 
Gamma motor neurons in the spine activate special fibres in the muscle called spindles. The motor neurons are 
believed to adjust the length of the spindles according to the muscle displacement angle (or steering wheel angle) 
expected by the brain. If the muscle angle differs from the expected angle, the spindles are strained and send a 
signal to the alpha motor neurons, which in turn activate the muscle to achieve the expected muscle angle. The 
function of the muscle spindles is represented in Figure 2 by the summation circle, which calculates the difference 
between the expected angle 𝛾 and the actual angle 𝜃𝑎. The generation of the expected muscle angle 𝛾 is presented 
in later sections. The difference is then operated upon by a reflex gain block 𝐻𝑟  and a delay block 𝐷𝑟  before 
activating the muscle via the alpha motor neuron.  

In this work, the reflex behaviour is modelled to be sensitive to muscle displacement angle; therefore, the 
reflex gain block 𝐻𝑟  contains a stiffness gain 𝑘𝑟 . The reflex delay is largely a function of neural conduction 
velocities and the distance of the muscle from the motor neurons in the spine. It is modelled as a discrete-time 
shift register with a parameter 𝜏𝑟 representing the delay time, consisting of 𝑁𝑟 = 𝜏𝑟/𝑇𝑠 time steps. 

{
𝛼𝑟(𝑘)
⋮

𝛼𝑟(𝑘 − 𝑁𝑟 + 1)
} = [

𝟎[1,𝑁𝑟−1] 0
𝐈[𝑁𝑟−1,𝑁𝑟−1] 𝟎[𝑁𝑟−1,1]

] {
𝛼𝑟(𝑘 − 1)

⋮
𝛼𝑟(𝑘 − 𝑁𝑟)

} + [
1

𝟎[𝑁𝑟−1,1]
] 𝛼𝑟(𝑘)                    (51) 

𝛼𝑟𝑑(𝑘) = 𝛼𝑟(𝑘 − 𝑁𝑟) = [𝟎[1,𝑁𝑣𝑖−1] 1] {
𝛼𝑟(𝑘 − 1)

⋮
𝛼𝑟(𝑘 − 𝑁𝑟)

}                    (52) 

Converted to discrete-time state-space equations with sample period 𝑇𝑠, the above equations become  



𝒙𝜏𝑟(𝑘 + 1) = 𝐀𝜏𝑟𝒙𝜏𝑟(𝑘) + 𝐁𝜏𝑟𝑘𝑟[𝛾(𝑘) − 𝜃𝑎(𝑘)]                                               (53) 
𝛼𝑟𝑑(𝑘) = 𝐂𝜏𝑟𝒙𝜏𝑟(𝑘)                                               (54) 

 
2.8 KALMAN FILTER FOR STATE ESTIMATION AND GAMMA ACTIVATION 

The optimal controller requires the full plant state vector 𝒙 to calculate the optimal plant input. The sensory 
systems described in Section 2.4 provide the central nervous system (CNS) with measurements of the plant 𝒛 of 
the plant, perturbed by measurement noise 𝒗, and the CNS could carry out sensory measurement integration using 
statistically optimal methods to estimate the states of the plant. The process of estimating the states of the plant is 
represented by using a Kalman filter, based on an internal mental model of the plant derived in Section 2.6, the 
measurement of noise-free plant input 𝛼  and noisy measurement 𝒛 + 𝒗  of the plant. The theory of Kalman 
filtering is given by [8] [9]. Initially, an estimate of the states 𝒙𝑒(𝑘 + 1|𝑘) is predicted by propagating the current 
input 𝛼(𝑘) and state estimate 𝒙𝑒(𝑘) through the internal mental model of the plant 

𝒙𝑒(𝑘 + 1|𝑘) = 𝐀𝒙𝑒(𝑘) + 𝐁𝛼(𝑘)                                                                (55) 
A correction is then added based on the error between the previous estimated output 𝐂𝒙𝑒(𝑘|𝑘 − 1) and measured 
output 𝒛(𝑘) + 𝒗(𝑘), weighted by the ‘Kalman gain’ 𝐊(𝑘) 

𝒙𝑒(𝑘) = 𝒙𝑒(𝑘|𝑘 − 1) + 𝐊(𝑘){𝒛(𝑘) + 𝒗(𝑘) − 𝐂𝒙𝑒(𝑘|𝑘 − 1)}                                       (56) 
The time-varying Kalman gain 𝐊(𝑘) is calculated to give a statistically optimal minimum-variance estimate based 
on the concept of ‘maximum likelihood estimate’ (MLE), weighting the estimates based on the covariances of the 
Gaussian noise 𝑤 , 𝑤𝑟 , 𝑤𝐹 , 𝑤𝑀 , 𝑤𝑇  and 𝒗 . In this work, the covariances are assumed to be time-invariant, 
therefore a steady-state Kalman filter is implemented to optimally estimate the states of the plant. The estimate of 
the plant states 𝒙𝑒 is given by  

𝒙𝑒(𝑘 + 1|𝑘) = [𝐀 − 𝐋𝐂]𝒙𝑒(𝑘|𝑘 − 1) + [𝐁 𝐋] {
𝛼(𝑘)

𝒛(𝑘) + 𝒗(𝑘)}                                     (57) 

𝒙𝑒(𝑘) = [𝐈 − 𝐌𝑥𝐂]𝒙𝑒(𝑘|𝑘 − 1) + [𝟎 𝐌𝑥] {
𝛼(𝑘)

𝒛(𝑘) + 𝒗(𝑘)}                                     (58) 

where gain matrix 𝐋 and the innovation gains 𝐌𝑥 and 𝐌𝑦  are 
𝐋 = 𝐀𝐏𝐂𝑇(𝐂𝐏𝐂𝑇 + 𝐑KF)−1                                                                     (59) 
𝐌𝑥 = 𝐏𝐂𝑇(𝐂𝐏𝐂𝑇 + 𝐑KF)−1                                                                     (60) 
𝐌𝑦 = 𝐂𝐏𝐂𝑇(𝐂𝐏𝐂𝑇 + 𝐑KF)−1                                                                     (61) 

and 𝐏 is given by solving the following discrete Riccati equation 
𝐀𝑇𝐏𝐀 − 𝐏 − 𝐀𝑇𝐏𝐂(𝐂𝑇𝐏𝐂 + 𝑹𝐾𝐹)−1𝐂𝑇𝐏𝐀 + 𝐐̂KF = 𝟎                                            (62) 

where 𝐐̂KF = [𝐁 𝐆𝑟 𝐆𝐹 𝐆𝑀 𝐆𝑇]𝐐KF[𝐁 𝐆𝑟 𝐆𝐹 𝐆𝑀 𝐆𝑇]   
The process and measurement noise covariance matrices 𝐐KF and 𝐑KF are given by 

𝐐KF = diag([𝑊2 𝑊𝑟2 𝑊𝐹
2 𝑊𝑀

2 𝑊𝑇
2])                                                     (63) 

𝐑KF = diag([𝑉𝑒2 𝑉𝜓2 𝑉𝜃𝑎
2 ])                                                     (64) 

where 𝑊2  denotes the variance of the process noise 𝑤 , 𝑊𝑟2  𝑊𝐹
2 , 𝑊𝑀

2  and 𝑊𝑇
2  denote the variances of the 

disturbances 𝑤𝑟 , 𝑤𝐹 , 𝑤𝑀  and 𝑤𝑇 , respectively, and 𝑉𝑒2 , 𝑉𝜓2  and 𝑉𝜃𝑎
2  denote the variances of the measurement 

noise added to the plant outputs 𝑒, 𝜓, and 𝜃𝑎, respectively.  
The generation of the expected muscle angle, labelled as 𝛾 in Figure 2, is known as gamma activation, which 

is also based on an internal mental model of the plant derived in Section 2.6. Specifically, the expected muscle 
angle 𝛾 is calculated by processing the internal mental model of the plant forwardly with the current input 𝛼(𝑘) 
and state estimate 𝒙𝑒(𝑘), which is essentially the prediction step of Kalman filter. Therefore, the gamma activation 
process is incorporated into the Kalman filter. The expected muscle angle 𝛾 is extracted from the initial estimate 
of the states 𝒙𝑒(𝑘|𝑘 − 1)  
𝛾(𝑘)
= [𝟎[1,𝑁𝑓𝑟] 𝟎[1,𝑁𝑓𝐹] 𝟎[1,𝑁𝑓𝑀] 𝟎[1,𝑁𝑓𝑇] 𝐂𝑚𝑠𝑣(3,:) 𝟎[1,𝑁𝑓𝑎] 𝟎[1,𝑁𝑣𝑖] 𝟎[1,𝑁𝑣𝜃𝑎] 𝟎[1,𝑁𝑣𝑖]]𝒙𝑒(𝑘|𝑘 − 1)   (65) 
where 𝟎 is a matrix of zeros, 𝐌[𝑖,𝑗] is a matrix with 𝑖 rows and 𝑗 columns, 𝑁𝑖 is the number of states in the state 
vector 𝒙𝑖(𝑘). 
 
2.9 COGNITIVE CONTROLLER 

An optimal controller is used to represent the driver’s control of steering wheel to follow the randomly moving 
target path based on the same internal mental model of the plant derived in Section 2.6. The effect of cognitive 
delay is accounted in the sensory delay blocks and is not considered in this section. A linear quadratic regulator 
(LQR) and model predictive control (MPC) are the two main implementations of optimal control and have been 
found to be perform identically when applied under the same circumstance. [10] In this section, an LQR controller 
is applied for the time-invariant linear plant since it allows the control horizon to be set to infinite. The values of 
the target and disturbances beyond the prediction horizon are assumed to be Gaussian white noise.   



The LQR controller calculates a gain vector 𝐊LQ which acts on the estimated plant states 𝒙𝑒 to give an optimal 
plant input 𝛼, through minimising a cost function 𝐽. The additive Gaussian white noise 𝑤𝑟 𝑤𝐹 , 𝑤𝑀 and 𝑤𝑇  are 
ignored since these are not control actions from the driver. In this work, it is assumed that the driver aligns a 
different part of the vehicle with the randomly moving target path instead of the centre of vehicle, as illustrated in 
Figure 6. A time shift constant 𝑇𝑡 is included in the model to account for this effect and therefore the cost function 
𝐽 incorporates costs on the shifted lateral deviation of the vehicle from the target path and the plant input 𝛼, 
weighted by 𝑞𝑒 and 𝑞𝛼: 

𝐽 = ∑{𝑞𝑒[𝑦(𝑘) − 𝑟(𝑘) + 𝑈𝜓(𝑘)𝑇𝑡]2 + 𝑞𝛼𝛼(𝑘)2}
∞

𝑘=0

= ∑{𝒙(𝑘)𝑇𝐐LQ𝒙(𝑘) + 𝛼(𝑘)𝑇𝐑LQ𝛼(𝑘)}
∞

𝑘=0

       (66) 

where  
𝐐LQ = 𝐇𝑇𝑞𝑒𝐇                                                                                  (67) 

𝐇 = [𝐂𝑓𝑟 𝟎[1,𝑁𝑓𝑦] 𝟎[1,𝑁𝑓𝑧] 𝟎[1,𝑁𝑓𝑑] 1 0 𝑈𝑇𝑡 𝟎[1,𝑁𝑚𝑠𝑣−3] 𝟎[1,𝑁𝑎] 𝟎[1,𝑁𝑣𝑖] 𝟎[1,𝑁𝑣𝜃𝑎] 𝟎[1,𝑁𝑣𝑖]]  (68) 
𝐑LQ = 𝑞𝛼                                                                                     (69) 

where 𝟎 is a matrix of zeros, 𝐌[𝑖,𝑗] is a matrix with 𝑖 rows and 𝑗 columns, 𝑁𝑖 is the number of states in the state 
vector 𝒙𝑖(𝑘). Several previous studies also included the costs on yaw angle error [10] [11], and it is also possible 
to include the first derivative of the control input with respective time. However only these two elements are 
involved in the cost function for simplicity in this work. Different combinations of the values of the path-following 
weightings can represent a range of driving strategies, in particular indicating the trade-off between the path-
following accuracy and the control activity to accomplish a driving manoeuvre.  

The time-invariant LQR control is of the form [10] 
𝛼(𝑘) = −𝐊LQ𝒙𝑒(𝑘)                                                                         (70) 

where 
𝐊LQ = (𝐁𝑇𝐒𝐁 + 𝐑LQ)

−1𝐁𝑇𝐒𝐀                                                             (71) 
and 𝐒 is given by solving the following discrete Riccati equation 

𝐀𝑇𝐒𝐀 − 𝐒 − 𝐀𝑇𝐒𝐁(𝐁𝑇𝐒𝐁 + 𝐑LQ)
−1𝐁𝑇𝐒𝐀 + 𝐐LQ = 𝟎                                      (72) 

Matlab’ s ‘dlqr’ function can be used to evaluate 𝐊LQ given the costs and the plant being controlled by the human 
driver. 

 
Figure 6: Geometry of driver’s viewpoint, a different part of the vehicle is aligned with the randomly moving 
target path instead of the centre of vehicle. 

 
3. MODEL PARAMETER VALUES 

The performance of the new driver-steering-vehicle model depends on the values of the parameters. In total, 
there are more than forty parameters in the closed-loop driver-steering-vehicle model, including the parameters 
of the vehicle model, the steering model, and the driver model.  

The parameters regarding the steering model and the vehicle model are determined by the dynamic properties 
of the steering-vehicle system. Most of these parameters are directly given by Toyota Motor Europe (TME) [12] 
while a small number of them are chosen based on the measured data provide by TME and preliminary stability 
analysis. The amplitudes of the applied Gaussian white noise and their corresponding filters are determined by 
the driving conditions.  

In general, it is assumed that the driver’s internal model matches the actual plant controlled by the driver 
exactly. Other values relate to physical properties of the human driver; and therefore, work has been carried out 



to find suitable values of these driver parameters. Due to the huge number of parameters involved in the driver 
model, it is necessary to fix the values of some parameters following the results from the relevant literature. To 
be specific, the muscle activation blocks 𝐻𝑎 consists of two time constants in the series of first-order lags 𝜏1 and 
𝜏2. It has been found that these two time constants are independent of the muscle activation level [6], which means 
values of them are not affected by the states of the muscle, whether relaxed or tensed. Therefore, it is reasonable 
to fix the values of them. In this work, a value of 30ms is used for 𝜏1 and the value of 𝜏2 is chosen as 20ms, taking 
the advice of Cole [4]. The reflex delay is also not affected by the muscle activation level and is set to 40ms as 
suggested by Hoult [6]. However, the intrinsic dynamics of the muscle is affected by the extent to which the 
muscle is tensed [6]. In this work, the values of intrinsic stiffness 𝑘𝑝 and damping 𝑐𝑝 are set to 0 Nm/rad and 0 
Nms/rad, respectively for simplicity. The value of tendon stiffness 𝑘𝑎 is set to 30 Nm/rad. [5] The visual sensory 
delay 𝜏𝑣𝑖  and the muscle angle sensory delay 𝜏𝜃𝑎  are set to 0.24s and 0.19s, respectively, guided by the 
measurement of Nash [13] , who studied drivers’ sensory dynamics in steering control task. The values of the 
LQR controller cost function weightings allow the trade-off between path-following accuracy and control activity 
to be determined, and it influences the path-following bandwidth of the driver model [6]. This means different 
driving styles of the driver could be represented by varying the weightings of the cognitive controller cost function. 
However, it is only the relative weightings that influence the controller performance. Therefore, 𝑞𝑒 is set to 1 m−2. 
The names, symbols, units, and sources of the vehicle model parameters, the steering system parameters and the 
fixed driver model parameters are summarized in Table 1. 

Except the parameters discussed above, there are specifically nine parameters which are neither fixed in 
advance from relevant literature various nor taken from driving conditions, and therefore, should be identified by 
using data from experiments. These parameters include the damping 𝑐𝑎 resisting stretching of the muscle fibre, 
the arm inertia 𝐼𝑎𝑟𝑚, the reflex controller gain 𝑘𝑟, the noise amplitude 𝑊, 𝑉𝑒, 𝑉𝜓and 𝑉𝜃𝑎 , the cognitive controller 
cost on the shifted lateral deviation of the vehicle from the target path 𝑞𝑒 and the controller time shift 𝑇𝑡.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1: Driver-steering-vehicle model parameters  

 Description Parameter Value Unit Source 

Vehicle Model Vehicle mass 𝑚 1370 kg [12] 

 Vehicle yaw moment of inertia 𝐼 1840 kg m2 [12] 

 Lateral front tire stiffness 𝐶𝑓 41.8 × 103 N/rad [12] 

 Lateral rear tire stiffness 𝐶𝑟 62.2 × 103 N/rad [12] 

 Distance from CoM to front axle 𝑎 0.98 m [12] 

 Distance from CoM to rear axle 𝑏 1.49 m [12] 

 Longitudinal velocity 𝑈 16.7(60) m/s(kph) [12] 

Steering Model Steering gear ratio 𝐺 16  [12] 

 Trail (Pneumatic + Caster) 𝑑 0.059 m [12] 

 Stiffness of the steering system due to the kingpin 
axes (inclination + scrub radius) 

𝑘𝑠𝑤 0.516(9) Nm/rad(Nmm/deg) [12] 

 Moment of inertia of the steering wheel 𝐼𝑠𝑤  0.0264 kg m2 / 

Damping coefficient of the steering system (of the 
bearings) and steering system friction 

𝑐𝑠𝑤 0.2 
 

Nms/rad / 

Boost curve coefficient 𝐶𝑏𝑜𝑜𝑠𝑡 0  / 

Steering column stiffness 𝑘𝑡 115(2) Nm/rad(Nm/deg) [1] 

Inertia of the rack and the front wheels referred to 
the pinion 

𝐼𝑐 1.7
𝐺2

 kg m2 [1] 

Damping coefficient of the torsion bar 𝑐𝑡 1.74 Nms/rad / 

Another stiffness term 𝑘ℎ𝑤 0 Nm/rad / 

Another damping term  𝑐ℎ𝑤 0 Nms/rad / 

 



Table 1: Driver-steering-vehicle model parameters (continued) 

 Description Parameter Value Unit Source 

Driver Model Intrinsic muscle stiffness 𝑘𝑝 0 Nm/rad / 

Intrinsic muscle damping 𝑐𝑝 0 Nms/rad / 

Tendon stiffness 𝑘𝑎 30 Nm/rad [5] 

Motor neurons lag time constant  𝜏1 30 ms [4] 

Muscle activation and deactivation lag time 
constant  

𝜏2 20 ms [4] 

Visual delay 𝜏𝑣𝑖 0.24 s [13] 

Muscle angle sensory delay 𝜏𝜃𝑎  0.19 s [13] 

Reflex delay 𝜏𝑟 40 ms [6] 

Cost function weight on control input 𝛼 𝑞𝛼 1  / 

Simulation setup Sampling time 𝑡𝑠 0.02 s / 

 

 

 

 



4. SIMULATION OF THE DRIVER-STEERING-VEHICLE MODEL 
Simulations can be carried out to evaluate the performance of the new driver-steering-vehicle model 

developed in Section 2. As mentioned earlier, there are nine driver model parameters which are neither fixed in 
advance from relevant literature nor taken from the driving conditions. A single set of these parameter values is 
found by conducting identification based on some preliminary experiments over a range of conditions. The details 
of the identification procedure and the experimental conditions will be reported in another paper. The identified 
values of these nine parameters are slightly modified to be used in the simulations in this work, as shown in Table 
2. Nash and Cole [13] found that the process noise and measurement noise amplitudes in the Kalman filter depend 
on the RMS values of the equivalent signals in the driver-vehicle-model. However, these signals are not known 
until after the simulation has been run, so an iterative procedure would be needed to find the RMS signal values 
for each condition. To save time, these noise amplitudes are simply fixed at the values shown in Table 2 for the 
simulations. This work is the basis of parameter identification and model validation, which will be carried out in 
a later work by using the results collected from the driving simulator experiments.  

 
Table 2: Driver model parameters used in the simulations 

Description Parameter Value Unit 

Damping resisting stretching of the muscle fibre 𝑐𝑎 3.59  Nms/rad 

Arm inertia 𝐼𝑎𝑟𝑚 0.056 kgm2 

Reflex gain 𝑘𝑟 47.2 Nm/rad 

Process noise standard deviation  𝑊 6.49 Nm 

Standard deviation of measurement noise on lateral deviation of 
the vehicle from the target path 𝑒  𝑉𝑒 0.1 m 

Standard deviation of measurement noise on vehicle yaw angle 
𝜓 𝑉𝜓 0.01 rad 

Standard deviation of measurement noise on muscle angle 𝜃𝑎 𝑉𝜃𝑎  0.3 rad 

Cognitive controller cost on the shifted lateral deviation of the 
vehicle from the target path 𝑞𝑒 2000  

Controller time shift 𝑇𝑡 0.566 s 

 
In the simulation, instead of being formulated as Gaussian white noises, the disturbances 𝑤𝑟, 𝑤𝐹 , 𝑤𝑀 and 𝑤𝑇  

are implemented as step inputs. The simulations are then run with each of these step inputs without process and 
measurement noises for 10 seconds. The magnitudes of the step inputs and the cut-off frequencies of their 
corresponding filters are shown in Table 3. The Kalman filter parameters 𝑊𝑟2, 𝑊𝐹

2, 𝑊𝑀
2  and 𝑊𝑇

2 are set to the 
equivalent variances of the step inputs used in the simulations. The simulation results of vehicle and driver 
responses with step input of each of the four disturbances 𝑤𝑟, 𝑤𝐹 , 𝑤𝑀 and 𝑤𝑇  without process and measurement 
noises are shown in Figure 7 – Figure 10.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3: Magnitudes of the step inputs and cut-off frequencies of the white noise filters used in the 
simulations 

Description Parameter Value Unit 

Magnitude of the step input 𝑤𝑟 𝑊𝑟𝑠 1 m 

Magnitude of the step input 𝑤𝐹  𝑊𝐹𝑠 2190 N 

Magnitude of the step input 𝑤𝑀 𝑊𝑀𝑠 2160 Nm 

Magnitude of the step input 𝑤𝑇  𝑊𝑇𝑠 2 Nm 
Cut-off frequency for the low-pass filter 𝐻𝑓𝐹  𝑓𝑐𝐹 10000 rad/s 

Cut-off frequency for the low-pass filter 𝐻𝑓𝑀 𝑓𝑐𝑀 10000 rad/s 

Cut-off frequency for the low-pass filter 𝐻𝑓𝑇  𝑓𝑐𝑇 10000 rad/s 

Cut-off frequency for the low-pass filter in 𝐻𝑓𝑟  𝑓𝑐𝑟𝑙 10000 rad/s 

Cut-off frequency for the high-pass filter in 𝐻𝑓𝑟  𝑓𝑐𝑟ℎ 1 × 10−4 rad/s 

 

 
Figure 7: Simulation results of the vehicle and driver responses (vehicle lateral position, vehicle yaw angle, 
human driver’s steering wheel angle and muscle activation torque) with step input of 𝑤𝑟 and without process and 
measurement noises. The step input occurs at 𝑡 = 0s.  
 

 
 



 
Figure 8: Simulation results of the vehicle and driver responses (vehicle lateral position, vehicle yaw angle, 
human driver’s steering wheel angle and muscle activation torque) with step input of 𝑤𝐹  and without process and 
measurement noises. The step input occurs at 𝑡 = 0s.  
 

 
Figure 9: Simulation results of the vehicle and driver responses (vehicle lateral position, vehicle yaw angle, 
human driver’s steering wheel angle and muscle activation torque) with step input of 𝑤𝑀 and without process and 
measurement noises. The step input occurs at 𝑡 = 0s.  
 
 



 
Figure 10: Simulation results of the vehicle and driver responses (vehicle lateral position, vehicle yaw angle, 
human driver’s steering wheel angle and muscle activation torque) with step input of 𝑤𝑇  and without process and 
measurement noises. The step input occurs at 𝑡 = 0s.   
 

Simulations are then run without any disturbances but with process and measurement noises for 50 seconds. 
The standard deviation of the process and measurement noises, and cut-off frequency of the white noise filters 
used in the simulations are shown Table 4. The spectra of the vehicle and driver responses are calculated using a 
discrete Fourier transform and plotted in Figure 11. The RMS value of the simulated responses are shown in Table 
5. 
 

Table 4: Standard deviation of the process and measurement noises and cut-off frequencies of the white 
noise filters used in the simulations 

Description Parameter Value Unit 

Standard deviation of the process noise 𝑤 𝑊 6.49 Nm 

Standard deviation of the measurement noise 𝑣𝑒 𝑉𝑒 0.1 m 

Standard deviation of the measurement noise 𝑣𝜓 𝑉𝜓 0.01 rad 

Standard deviation of the measurement noise 𝑣𝜃𝑎  𝑉𝜃𝑎  0.3 rad 
Cut-off frequency for the low-pass filter 𝐻𝑓𝐹  𝑓𝑐𝐹 10000 rad/s 

Cut-off frequency for the low-pass filter 𝐻𝑓𝑀 𝑓𝑐𝑀 10000 rad/s 

Cut-off frequency for the low-pass filter 𝐻𝑓𝑇  𝑓𝑐𝑇 10000 rad/s 

Cut-off frequency for the low-pass filter in 𝐻𝑓𝑟  𝑓𝑐𝑟𝑙 10000 rad/s 

Cut-off frequency for the high-pass filter in 𝐻𝑓𝑟  𝑓𝑐𝑟ℎ 1 × 10−4 rad/s 

 
 
 
 
 



 
Figure 11: The spectra of the vehicle and driver responses (vehicle lateral position, vehicle yaw angle, human 
driver’s steering wheel angle and muscle activation torque) with process and measurement noises and without any 
other disturbances.  
 

Table 5: RMS value of the simulated vehicle and driver responses 

Description      Value Unit 

RMS value of vehicle lateral position 𝑦 0.0350 m 

RMS value of vehicle yaw angle 𝜓 0.0043 rad 

RMS value of steering wheel angle 𝜃𝑠𝑤 0.1256 rad 

RMS value of muscle activation torque 𝑇𝑎 5.8582 Nm 

 
5. CONCLUSIONS 

A linear parametric driver steering control model incorporating steering torque feedback and state estimation 
has been developed for linear steering dynamics in this report. The novelty of the model is the inclusion of the 
three important brain functions of perception, cognition and action, all three of which are governed by a single 
internal model of the plant. In addition, a stretch reflex action is included. The validated model could be used to 
predict a driver’s objective and subjective responses when steering a vehicle with steering torque feedback. 
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