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Abstract

Name: Fritz Hiesmayr

Thesis title: On two-valued minimal graphs and minimal sur-

faces arising from the Allen�Cahn equation.

This work is divided into two, largely independent parts. The �rst dis-

cusses so-called two-valued minimal graphs, and takes up the majority of the

text. It concludes with a proof of a Bernstein-type theorem valid in dimen-

sion four: in this dimension entire two-valued minimal graphs are linear. In

gross terms we follow a strategy similar to that used to prove the Bernstein

theorem for single-valued graphs; for example we prove interior gradient and

area estimates which echo those available in this classical theory. The main

contrast with these historical results is the possible presence of a large set

of singularities. This is exacerbated by the fact that two-valued minimal

graphs do not minimise area, unlike their single-valued counterparts. As

a consequence the space of surfaces which could arise as weak limits from

them is potentially huge. This includes the so-called tangent and blowdown

cones, which respectively approximate the in�nitesimal behaviour near sin-

gular points and the asymptotic behaviour at large scales. Of special interest

are a subclass we call classical cones, as they provide local models near par-

ticularly large sets of singularities. The classi�cation of these, which we

establish in dimensions up to seven, represents one of the main technical

challenges of our work. In dimension four, we are able to push this further

and give a proof of the aforementioned Bernstein-type theorem.

The second part deals with minimal surfaces arising from a semilinear

elliptic PDE called the Allen�Cahn equation. There we prove a spectral

lower bound for hypersurfaces that arise from sequences of critical points

with bounded indices. In particular, the index of two-sided minimal hyper-

surfaces constructed using multi-parameter Allen�Cahn min-max methods

is bounded above by the number of parameters used in the construction. Fi-

nally, we point out by an elementary inductive argument how the regularity

of the hypersurface follows from the corresponding result in the stable case.
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Introduction

Two-valued minimal graphs. The study of minimal surfaces is one of

the cornerstones of the calculus of variations, dating back at least to Euler

and Lagrange. It lies at the intersection of several areas, chief among which

are the analysis of PDE and geometry, including geometric measure theory.

One of the results which spurred the growth in the �eld over the course

of the twentieth century was proved by Bernstein in 1927. In [Ber27] he

investigated entire solutions of the minimal surface equation

(1 + |Du|2)∆u−
n∑

i,j=1

DiuDjuDiju = 0

with n = 2, and proved that an entire solution u ∈ C2(R2) was necessar-

ily a�ne linear. The surprising contrast with the loosely related harmonic

functions is that this holds without any additional hypothesis, in particular

no bound is assumed for the growth of the function.

This initial result sparked a profusion of work, among which we fo-

cus on attempts at generalisations to higher dimensions. Bernstein's ap-

proach revealed itself to be hard to adapt to cases where n ≥ 3, so the

�eld turned to other arguments. (In fact, his proof was later found to con-

tain a gap, which was corrected by Hopf [Hop50a, Hop50b].) The modern

treatment of the question heavily relies on geometric measure theory. Using

tools from this �eld, one can show that the asymptotic behaviour at large

scales of an entire minimal graph can be weakly approximated by its so-

called blowdown cones. These blowdown cones�in principle there could be

several�are obtained as measure-theoretic limits of homothetic rescalings of

the graph. When working with single-valued functions, both the graph and

its blowdown cones possess a certain area-minimising property which allows

strong conclusions about the regularity of the latter [Fed70, Fle62, DG61].

In fact when n ≤ 7 then the blowdown cones are smooth, and thus are

planes [Alm66,Sim68]. This su�ciently constrains the behaviour of the graph

to conclude that u is a�ne linear. It was subsequently shown by Bombieri�

de Giorgi�Giusti [BDGG69] that there was no hope for a generalisation of

this result to higher dimensions: for any n ≥ 8 there exist non-linear entire

1



2 INTRODUCTION

solutions of the minimal surface equation de�ned on Rn, with (necessarily)

singular blowdown cones.

These methods fail when working with two-valued functions, the setting

we are interested in. These are de�ned to be functions taking values in

the set A2(R) of unordered pairs of real numbers. Let Ω ⊂ Rn be an

open domain and u : x ∈ Ω 7→ {u1(x), u2(x)} ∈ A2(R) be a two-valued

function. By its graph we mean the set G = graphu ⊂ Ω × R de�ned

by G = {(x,Xn+1) ∈ Ω × R | Xn+1 = u1(x) or Xn+1 = u2(x)}. We say

that this graph is minimal if it is a stationary point for the area functional,

when taking deformations in a suitably large class of surfaces in Ω × R.

(Speci�cally we work with integer density countably recti�able varifolds.)

We are interested in the study of entire two-valued minimal graphs, that is

where u is de�ned on the whole Rn. Note that the existence of such entire

graphs is without doubt, as the graphs of two-valued linear functions are

minimal. We are therefore concerned not with the existence of these graphs,

but instead with their classi�cation with the ultimate aim to show that entire

two-valued minimal graphs are necessarily linear. That being said, most

of the results developed in anticipation of this hold in a local setting; for

example we prove an interior gradient bound which mimics classical bounds

valid for single-valued minimal graphs.

The de�nition above is readily generalised to the notion of Q-valued

functions for any Q ∈ Z>0, taking values in the set AQ(R) of unordered

Q-tuples of real numbers. These multi-valued functions were introduced

into geometric measure theory by Almgren, who used them in his monu-

mental regularity theory, valid for area-minimising surfaces of any codimen-

sion [Alm00]. (This theory was more recently revisited and simpli�ed by De

Lellis�Spadaro [DLS11, DLS15, DLS14, DLS16a, DLS16b].) We exclusively

use Q = 2, and additionally work only with scalar two-valued graphs, which

have codimension one as subsets of Rn+1. They are of interest mainly for the

following two reasons. First o�, they provide the simplest non-trivial setting

in which so-called branch points appear. Furthermore Wickramasekera has

shown that in a certain sense two-valued minimal graphs provide the canoni-

cal local picture for codimension one stationary stable integral varifolds near

multiplicity two branch points, see [Wic08,Wic20].

In addition to these branch points, a two-valued minimal graph can

also contain so-called classical singularities, in a neighbourhood of which

it is immersed. These are easily seen to form an n − 1-dimensional set.

In contrast to this, obtaining a helpful bound on the size of the branch

set is much harder. Using an approach based on a frequency functional,

Simon�Wickramasekera [SW16] showed that the branch set has Hausdor�
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dimension at most n − 2. This was later meaningfully strengthened by

Krummel�Wickramasekera [KW20], who showed that in fact it is countably

n − 2�recti�able. The presence of these singularities introduces signi�cant

challenges to the analysis of two-valued minimal graphs, which are entirely

absent in the classical single-valued theory. These complications are com-

pounded by the fact that two-valued minimal graphs do not minimise area.

However they are stable, as we will prove.

It is interesting to ask whether despite these di�culties an analogue of

Bernstein's theorem holds for two-valued minimal graphs, in dimensions up

to n+ 1 = 8. (In higher dimensions this fails for what are essentially trivial

reasons, using the single-valued example constructed in [BDGG69].) When

n + 1 = 3 this was proved by L. Rosales, who used a so-called logarith-

mic cuto� argument to show that the second fundamental form vanishes

pointwise [Ros16]. However this argument crucially uses the quadratic area

growth of the surfaces, which is false in all larger dimensions. This is the

setting we set out to study, concluding with an extension of the two-valued

Bernstein theorem to the case n+ 1 = 4.

In preparation for this we prove a number of results respectively valid in

arbitrary dimensions, and in dimensions up to seven. In the �rst place we

prove that two-valued minimal graphs are stable (that is, have non-negative

second variation for the area functional) for a large class of perturbations,

whose support may include the singular set of the graph. The resulting L2-

estimate for the second fundamental are then used to prove interior gradient

estimates. These are obtained via an argument analogous to that given for

the single-valued case in [GT98], although the proof is more involved due to

the presence of the branch point singularities. After some additional work

one obtains the following; see Lemma 5.1.1.

Theorem. Let α ∈ (0, 1), n ≥ 1 be arbitrary and u ∈ C1,α(Rn;A2(R))

be an entire two-valued minimal graph. If u has bounded growth, that is

lim sup
R→∞

(
max
DR
‖u‖/R

)
<∞,

then it is linear.

The proof of this is accomplished via a classi�cation of possible blowdown

cones of G = graphu at in�nity. Indeed one can show that these are neces-

sarily equal to the union of two, possibly equal n-dimensional planes. The

conclusion then comes from the monotonicity formula for minimal surfaces.

In broad strokes the strategy is the same in the general case, when one

does not assume the bounded growth of u, namely one proceeds by classi-

fying the blowdown cones at in�nity. However a much larger class of cones



4 INTRODUCTION

needs to be considered here. This is also a stark contrast with single-valued

graphs, whose blowdown cones are greatly constrained by the requirement

that they be area-minimising. In the present context the blowdown cones

can be singular even in small dimensions, and generally could admit a large

and complicated set of singularities, whereas in the single-valued theory the

blowdown cones are necessarily smooth when n ≤ 7. In that setting one

moreover has that for n ≥ 8 the Hausdor� dimension of the singular set is

at most n− 7.

To study these singularities one has to consider all cones which appear

as limits of arbitrary sequences of two-valued minimal graphs; we call these

limit cones. These limit cones form a class even larger than those which

are obtained by blowing down a single, �xed two-valued minimal graph.

However general dimension reduction principles mean that we need only

consider cones which satisfy additional structural constraints. A signi�cant

portion of our work is dedicated to the classi�cation of so-called classical limit

cones. By this we mean limit cones which are supported in a union of n-

dimensional half-planes π1, . . . , πD meeting along a single n− 1-dimensional

axis. We usually denote such a cone P =
∑

imi|πi|, where the mi ∈ Z>0 are

the multiplicities of the half-planes. Our classi�cation relies on preliminary

improved area estimates. As these deteriorate with increasing dimension,

our result is constrained by n ≤ 6; see Corollary 4.4.6.

Lemma. Let α ∈ (0, 1), n ≤ 6 and (uj | j ∈ N) de�ne a sequence of

two-valued minimal graphs in D1 ×R, with uj ∈ C1,α(D1;A2(R)). Suppose

that their graphs Gj weakly converge to a classical cone P D1 ×R. Then

P is a union of two n-dimensional planes.

Via a diagonal extraction argument one deduces from this that any sur-

face arising as a limit of two-valued minimal graphs is smoothly immersed

away from a singular set of codimension two, which includes the branch set.

This crucially relies on the work Wickramasekera [Wic20] and Krummel�

Wickramasekera [KW20]. For those cones obtained by blowing down a sin-

gle, entire two-valued minimal graph, we additionally prove a structure the-

orem, which demonstrates that they can be decomposed into a union of an

n-dimensional plane and a cylindrical cone, which is invariant under trans-

lations in the vertical direction. This holds for arbitrary blowdown cones

without any additional assumptions; in particular we do not assume they are

classical. In dimension n+1 = 4, we combine this with integral curvature es-

timates and a combinatorial argument to prove the following Bernstein-type

theorem for entire two-valued minimal graphs; see Theorem 5.2.1.
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Theorem. Let α ∈ (0, 1) and let u ∈ C1,α(R3;A2(R)) be an entire

two-valued minimal graph. Then u is linear.

Minimal surfaces and the Allen�Cahn equation. In the second

part we present our work on minimal surfaces arising from the so-called

Allen�Cahn equation [Hie18]. This is a semilinear, second-order elliptic PDE

whose solutions describe the behaviour of a two-phase solution. The equa-

tion is obtained as the Euler�Lagrange equation of the eponymous Allen�

Cahn functional. It depends on a small parameter; as this tends to zero

the transition region between the two phases converges (in a certain weak,

measure-theoretic sense) to a minimal hypersurface. In our work we pro-

ceeded to compare the second-order variation of the Allen�Cahn functional

on the one hand to that of the area functional of the limit interface on the

other. We proved upper bounds for the Morse index of the limit minimal

surface in terms of those of the approaching sequence of critical points of

the Allen�Cahn equation. These Morse indices are obtained by counting the

number of strictly negative eigenvalues of certain linear elliptic operators;

for the limit this is the Jacobi operator. We can thus re�ne our estimates by

translating them into bounds for the spectrum of this operator in terms of

the spectra of the approaching sequence of solutions. These estimates have

applications in so-called min-max constructions, which naturally produce

sequences of critical points with bounded Morse index.

A classical theorem, due to the combined work of Almgren, Pitts and

Schoen�Simon, asserts that for n ≥ 2, every (n + 1)-dimensional closed

Riemannian manifold M contains a minimal hypersurface smoothly embed-

ded away from a closed singular set of Hausdor� dimension at most n − 7.

The original proof of this theorem is based on a highly non-trivial geomet-

ric min-max construction due to Pitts [Pit81], which extended earlier work

of Almgren [Alm65]. This construction is carried out directly for the area

functional on the space of hypersurfaces equipped with an appropriate weak

topology, and it yields in the �rst instance a critical point of area satisfying

a certain almost-minimizing property. This property is central to the rest of

the argument, and allows to deduce regularity of the min-max hypersurface

from compactness of the space of uniformly area-bounded stable minimal

hypersurfaces with singular sets of dimension at most n− 7, a result proved

for 2 ≤ n ≤ 5 by Schoen�Simon�Yau [SSY75] and extended to arbitrary

n ≥ 2 by Schoen�Simon [SS81]. (The Almgren�Pitts min-max construction

has recently been streamlined by De Lellis and Tasnady [DLT13] giving a

shorter proof. However, their argument still follows Pitts' closely and is in

particular based on carrying out the min-max procedure directly for the area

functional on hypersurfaces.)
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In recent years an alternative approach to this theorem has been devel-

oped, whose philosophy is to push the regularity theory to its limit in order

to gain substantial simplicity on the existence part. Speci�cally, this ap-

proach di�ers from the original one in two key aspects: �rst, it is based on

a strictly PDE-theoretic min-max construction that replaces the Almgren�

Pitts geometric construction; second, for the regularity conclusions, it relies

on a sharpening of the Schoen�Simon compactness theory for stable minimal

hypersurfaces. The idea in this approach is to construct a minimal hyper-

surface as the limit-interface associated with a sequence of solutions u = ui

to the Allen�Cahn equation

(0.1) ∆u− ε−2
i W ′(u) = 0

on the ambient space M , where W : R → R is a �xed double-well potential

with precisely two minima at ±1 with W (±1) = 0. Roughly speaking,

if the ui solve (0.1) and satisfy appropriate bounds, then the level sets of

ui converge as εi → 0+ to a stationary codimension 1 integral varifold V .

This fact was rigorously established by Hutchinson�Tonegawa [HT00], using

in part methods inspired by the earlier work of Ilmanen in the parabolic

setting [Ilm93]. Note that ui solves (0.1) if and only if it is a critical point

of the Allen�Cahn functional

Eεi(u) =

∫
U
εi
|∇u|2

2
+
W (ui)

εi
.

If the solutions ui are additionally assumed stable with respect to Eεi , then

Tonegawa and Wickramasekera [TW12] proved that the resulting varifold

V is supported on a hypersurface smoothly embedded away from a closed

singular set of Hausdor� dimension at most n− 7, using an earlier result of

Tonegawa [Ton05] which established the stability of the regular part reg V

with respect to the area functional. Their proof of this regularity result

uses the regularity and compactness theory for stable codimension 1 integral

varifolds developed by Wickramasekera [Wic14a] sharpening the Schoen�

Simon theory.

Stability of ui means that the second variation of the Allen�Cahn func-

tional Eεi with respect to H1(M) is a non-negative quadratic form. More

generally the index indui denotes the number of strictly negative eigenval-

ues of the elliptic operator Li = ∆ − ε−2
i W ′′(ui), so that ui is stable if

and only if indui = 0. Using min-max methods for semi-linear equations,

Guaraco [Gua18] recently gave a simple and elegant construction of a solu-

tion ui to (0.1) with indui ≤ 1 and ‖ui‖L∞ ≤ 1, and such that as εi → 0,

the energies Eεi(ui) are bounded above and below away from 0. The lower

energy bound guarantees that the resulting limit varifold V is non-trivial.
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Since indui ≤ 1, ui must be stable in at least one of every pair of disjoint

open subsets of M ; similarly if indui ≤ k then ui must be stable in at

least one of every (k+ 1)-tuple of disjoint open sets. This elementary obser-

vation, originally due to Pitts in the context of minimal surfaces, together

with a tangent cone analysis in low dimensions, allowed Guaraco to deduce

the regularity of V from the results of [TW12]. More recently still, Gaspar

and Guaraco [GG18] have used k-parameter min-max methods to produce

sequences of critical points with Morse index at most k, for all positive inte-

gers k. Our results show that this index bound is inherited by the minimal

surface arising as εi → 0, provided it has a trivial normal bundle. We also

point out that the regularity follows in all dimensions from the corresponding

result in the stable case via an inductive argument that avoids the tangent

cone analysis used in [Gua18]. See Theorem 6.1.8, Corollary 6.1.10 and the

discussion immediately following it.

Corollary. Let M be a closed Riemannian manifold of dimension

n + 1 ≥ 3. Let V be the integral varifold arising as the limit-interface of

the sequence (ui) of solutions to (0.1) constructed in [Gua18] (respectively

in [GG18] using k-parameter min-max methods). Then dimH sing V ≤ n−7.

If reg V is two-sided, then its Morse index with respect to the area functional

satis�es indHn reg V ≤ 1 (respectively indHn reg V ≤ k).

In min-max theory, one generally expects that the Morse index of the

constructed critical point is no greater than the number of parameters used

in the construction. The above corollary gives this result for the construc-

tions of Guaraco and Gaspar�Guaraco, provided the arising hypersurface is

two-sided. This was recently shown by Chodosh and Mantoulidis [CM20]

to hold automatically when the ambient manifold M has dimension 3 and

is equipped either with a bumpy metric or has positive Ricci curvature.

Building on work of Wang and Wei [WW19], Chodosh�Mantoulidis prove

curvature and strong sheet separation estimates, and use these to deduce

that in this three-dimensional setting the convergence of the level sets oc-

curs with multiplicity 1. They moreover show that in all dimensions, if the

limiting surface has multiplicity 1, then its index is bounded below by the

index of the uε.

This complements our upper bound for the index, which is a direct con-

sequence of a lower bound for (λp), the spectrum of the elliptic operator

LV = ∆V + |A|2 + RicM (ν, ν)�the scalar Jacobi operator�in terms of (λip),

the spectra of the operators (Li). Establishing this spectral lower bound is

our main result; see Theorem 6.1.8.
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Theorem. LetM be a closed Riemannian manifold of dimension n+1 ≥
3. Let V be the integral varifold arising from a sequence (ui) of solutions to

(0.1) with indui ≤ k for some k ∈ N. Then dimH sing V ≤ n− 7 and

(i) λp(W ) ≥ lim supi→∞ λ
i
p(W ) for all W ⊂⊂M \ sing V and p ∈ N,

(ii) indHn C ≤ k for every two-sided connected component C ⊂ reg V .

Remark. The spectral lower bound of (i) also holds if the assumptions

on the ui are weakened in a spirit similar to the work of Ambrozio, Carlotto

and Sharp [ACS16], that is if instead of an index upper bound one assumes

that for some k ∈ N there is µ ∈ R such that λik ≥ µ for all i. (Note that

the index bound indui ≤ k is equivalent to λik+1 ≥ 0.)

Remark. As similar result had previously been proved by Le [Le11] in

ambient Euclidean space, under the additional assumption that the conver-

gence to the limit surface occurs with multiplicity 1. Adapting the methods

developed in [Le11,Le15] to ambient Riemannian manifolds, Gaspar gener-

alised our results to the case where the limit varifold is one-sided, without

any assumption on multiplicity [Gas20]. Their general approach is similar

to ours but subtly di�erent, in that they instead consider the second inner

variation of the Allen�Cahn functional; see also the recent work of Le and

Sternberg [LS19], where similar bounds are established for other examples

of eigenvalue problems.

For the minimal hypersurfaces obtained by a direct min-max procedure

for the area functional on the space of hypersurfaces (as in the Almgren�

Pitts construction), index bounds have recently been established by Mar-

ques and Neves [MN16]. Both the Almgren�Pitts existence proof and the

Marques�Neves proof of the index bounds are rather technically involved; in

particular, the min-max construction in this setting has to be carried out in

a bare-handed fashion in the absence of anything like a Hilbert space struc-

ture. In contrast, in the approach via the Allen�Cahn functional, Guaraco's

existence proof is strikingly simple, and our proofs for the spectral bound

and the regularity of V are elementary bar the fact that they rely on the

highly non-trivial sharpening of the Schoen�Simon regularity theory for sta-

ble hypersurfaces as in [Wic14a].

Outline. Chapter 1 introduces basic notions from geometric measure

theory which will be used throughout the remainder of the text. We start

with the well-known notion of the Hausdor� measure, and use this to de-

�ne Hausdor� dimension, countably recti�able sets etc. We also brie�y dis-

cuss Caccioppoli sets, as well as the capacity of sets. Our main references

are [Sim84, EG15, Giu84]. In the second half of the chapter we move on
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to concepts like integral varifolds and currents. More speci�cally the focus

lies on stationary varifolds, and accordingly we also list some of the conse-

quences of the �rst variation formula, including the monotonicity formula.

We conclude the chapter by de�ning so-called tangent and limit cones.

In Chapter 2 we move on to more advanced notions, mainly pertaining

to the regularity theory of minimal surfaces. We include both results valid

for stationary integral varifolds, chief among which are the Allard regularity

theorem, and more recent work on the regularity theory of stable, stationary

integral varifolds in codimension one. The result we use most frequently in

the remainder is a branched sheeting theorem of Wickramasekera [Wic20]

valid near branch point singularities. After this general theory, we give

a short exposition of the theory of area-minimising currents, including an

abbreviated history of the classical, single-valued Bernstein theorem, valid

in dimensions n + 1 ≤ 8. We conclude the chapter with a technical lemma

inspired by the work of Jenkins�Serrin [JS66a, JS66b]. This is an original

result, and a crucial ingredient in our classi�cation of classical limit cones in

Chapter 4.

Chapter 3 starts with some basic de�nitions and notation for two-valued

functions in Section 3.1. The only place where we deviate slightly from

the literature is by de�ning notation for integrals of two-valued functions,

which are ubiquitous in our a priori estimates. In Section 3.2 we de�ne

minimality for two-valued graphs and describe some of their basic proper-

ties. Among the new results we establish is the stability of these graphs; the

proof of this relies on the recti�ability of the branch set proved by Krummel�

Wickramasekera [KW20]. In Section 3.3 we prove area estimates for two-

valued minimal graphs. Our derivation of these inequalities echoes the argu-

ment for single-valued minimal graphs given in [GT98, Ch. 16]. These initial

bounds show that homothetic rescalings of a �xed entire graph converge

weakly to a so-called blowdown cone. For sequences of two-valued minimal

graphs that converge in this weak sense, we obtain signi�cantly improved

estimates. These are not present in the above, and are crucial both for our

classi�cation of classical limit cones and for our proof of the two-valued Bern-

stein theorem in dimension four. The area bounds do not rely on the �ne

properties of the branch set proved by Krummel�Wickramasekera [KW20],

instead the dimension bound derived by Simon�Wickramasekera [SW16] is

more than su�cient. This is not so in Section 3.4, where we prove a priori in-

terior gradient estimates for two-valued minimal graphs. These appear to be

new in this context, although both the statements and their proofs mirror the

classical, single-valued theory. We follow the presentation in [GT98, Ch. 16],

and leverage the stability of the graphs to obtain integral estimates for an
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auxiliary function w, which measures the slope of the graph. However the

singularities in the graph introduce signi�cant complications which increase

the length of the arguments. The function w is used again in the �nal part

of the chapter. There we �rst prove a sort of maximum principle for w valid

near branch points. This is used in the �rst place to establish the regularity

of Lipschitz two-valued minimal graphs. This is interesting in its own right,

but also underpins the analysis of entire graphs with bounded growth. In

our proof we follow a strategy suggested to us by S. Becker-Kahn, whose

results we also rely on in the inductive step, see [BK17].

In Chapter 4 we analyse cones which arise as weak limits of sequences

of two-valued minimal graphs. From a technical point of view, the results

presented in this chapter lie at the heart of our work. The simplest situation

is where the limit is supported in a plane. This case is treated in Section 4.1,

where we show that the plane has multiplicity at most two. This allows the

application of the results of Krummel�Wickramasekera [KW20] via a diago-

nal convergence argument; this shows that any limit surface has a countably

n − 2�recti�able branch set. We also study the situation where there is

mass cancellation in the limit, and prove that in this case the sequence of

approaching graphs must be unbranched. In Section 4.2 we make our �rst

foray into the classical cones that may appear as limits of two-valued min-

imal graphs. As a �rst step we show that these must be equal to a sum of

n-dimensional planes meeting along a common n−1-dimensional axis (rather

than half-planes). This is proved using a method from [SS81], substituting

the sheeting theorem employed there with that of [Wic20]. This drastically

cuts down on the number of cases one needs to consider. Our complete clas-

si�cation of the classical limit cones distinguishes between cases according to

whether the cone is vertical or not. The latter case is simpler, and is treated

in Section 4.3. We use an entirely di�erent argument to deal with vertical

cones, of a more combinatorial nature; in particular this does not rely on

a modi�cation of the arguments of Schoen�Simon. Instead we proceed by

marrying a local analysis near the limit cone with a counting argument. This

is the place where we use the Jenkins�Serrin-type lemma for single-valued

minimal graphs. Combined with the restrictions from our improved area

estimates we can exclude all cases but that where the limit is a union of two

planes each with multiplicity one. As these area estimates become ine�ective

when n ≥ 7, our classi�cation of cones is valid only for n smaller than that.

In this range of dimensions, we may use a diagonal convergence argument

to obtain fairly strong information about the structure of arbitrary limits of

sequences of two-valued minimal graphs. Combining our classi�cation with
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the results of [KW20,Wic20] we �nd that any such limit surface is smoothly

immersed away from a countably n− 2�recti�able set of singularities.

Chapter 5 is the last chapter dealing with two-valued minimal graphs,

concluding with a proof of the Bernstein theorem in dimension four. We

start with Section 5.1, where we prove two results. The �rst holds in any

dimension, and states that entire two-valued minimal graphs in C1,α with

bounded growth are automatically linear. The second holds in dimension at

most seven, as it indirectly relies on our improved area estimates. It states

that every blowdown cone can be decomposed into a sum of a plane and a

cone which is translation-invariant in the vertical direction. In Section 5.2

we prove the two-valued Bernstein theorem in dimension n+1 = 4: an entire

two-valued minimal graph de�ned on R3 must be linear. Our proof is built

upon essentially all the results that precede it. Combining these with a well-

known, so-called logarithmic cuto� argument we obtain an initial reduction

which shows that all blowdown cones are sums of planes. This does not com-

plete the proof, as these planes need not in principle meet along a common

axis. To show that this is in fact the case, we use a combinatorial argument.

Speci�cally we associate to the cone a �nite directed graph, and prove that

this can only contain short directed paths. This restriction excludes all but

one case, where the cone is equal to a sum of two possibly equal planes. A

direct application of the monotonicity formula concludes the proof.

Chapter 6 is the last chapter, where we present our work on the Allen�

Cahn equation, and minimal surfaces arising from it. We show that one

can derive Morse index bounds, and bounds for the eigenvalues of the Ja-

cobi operator of a minimal surface, if one assumes analogous bounds for the

sequence of solutions of the Allen�Cahn equation from which it arises. In

Section 6.1 we give the statements of the main result and its corollaries.

Their proof requires a number of preliminary results, which are contained in

Section 6.2. The proof of the main result (Theorem 6.1.8) is in Section 6.3,

and is split into two parts: in the �rst part we prove the spectral lower bound

by an inductive argument on indui; this immediately implies the index up-

per bound. The proof of dimH sing V ≤ n − 7 is given in the second part,

and uses a similar inductive argument. There are two appendices: Appen-

dix A contains two elementary lemmas from measure theory that are used

repeatedly in Section 6.2. Appendix B gives a proof of Proposition 6.2.6,

which is a straight-forward adaptation of an argument used by Tonegawa for

the stable case.



Chapter 1

Geometric measure theory

1.1. Measure theory: basic notions

1.1.1. The Hausdor� measure. Let k,m ∈ Z≥0 be two non-negative

integers, and n ∈ Z>0. Consider an arbitrary subset A ⊂ Rn+k. We de�ne

Hmδ (A) = inf
∞∑
j=1

ωm(diamCj/2)m,

where the in�mum is taken over all countable covers (Cj | j ∈ N) of A with

diamCj < δ for all j and ωm is the volume of the m-dimensional unit ball

in Rm. With decreasing δ, Hmδ (A) is non-decreasing. The m-dimensional

Hausdor� measure is

Hm(A) = lim
δ→0
Hmδ (A).

The monotonicity with respect to δ ensures the existence of this limit, and in

fact means that Hm(A) = supδ>0Hmδ (A). The Hausdor� measures are Borel

regular, that is the Borel subsets of Rn+k are Hm-measurable and for every

subset A ⊂ Rn+k there is a Borel subset B ⊃ A with Hm(A) = Hm(B).

However for 0 ≤ s < n the Hausdor� measure Hs is not a Radon measure

as it is not σ-�nite.

One can extend this de�nition to non-integer exponents s ≥ 0, essentially

the only necessary change being to �nd a reasonable value for ωs. For integer

m ∈ Z≥0 we may notice that ωm = πn/2

Γ(n
2

+1) , where Γ(s) =
∫∞

0 e−xxs−1 dx

is Euler's Γ-function. This formula extends to non-negative s without any

changes. Let s ≤ t. Note that when δ < 1 then for any set A ⊂ Rn+k,

Hsδ(A) ≥ Htδ(A). Passing to the limit we �nd that Hs(A) ≥ Ht(A).

Proposition 1.1.1 ( [EG15]). Let 0 ≤ s < t <∞, and A ⊂ Rn. Then:

(i) H0 is the counting measure.

(ii) Hn coincides with the Lebesgue measure on Rn.

(iii) Hs(λA) = λsHs(A) for all λ > 0.

(iv) Hs(L(A)) = Hs(A) for every a�ne isometry L : Rn → Rn.

(v) If Hs(A) <∞ then Ht(A) = 0.

(vi) If Ht(A) > 0 then Hs(A) =∞.

12
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Hence we �nd that for any set A ⊂ Rn+k there is d ≥ 0 so that Hs(A) =

∞ for s < d and Hs(A) = 0 for s > d. We call d = inf{0 ≤ s < ∞ |
Hs(A) = 0} the Hausdor� dimension of A, and write d = dimHA. At

s = d itself one might have any one of the following three possibilities:

Hd(A) can be zero, positive or in�nite. (It might come as a surprise that

Hd(A) = 0 is a possibility, although this is common in stochastic processes.

For example, one can show that the trajectory of a Brownian motion in the

plane almost surely is a Lebesgue null set with Hausdor� dimension two,

see [MP10, Ch.4].)

The de�nition of a Hausdor� dimension readily generalises to an arbi-

trary metric space (X, d) say. The only case we are interested where X is

not Euclidean space is the following. Let Σ ⊂ Rn+k be a C1-embedded

n-dimensional submanifold, with d its intrinsic distance function. Then one

can take X = Σ and de�ne the n-dimensional Hausdor� measure on (Σ, d).

This coincides with the usual notion of n-dimensional volume measure. In

particular, one may write (as indeed we will in the remainder of the text)

given any f ∈ C1
c (Rn+k),

∫
Σ f dvol =

∫
Σ f dHn at least provided Σ has lo-

cally bounded mass, meaning Hn(Σ ∩K) < +∞ for all compact K ⊂ Rn+k.

Similarly on X = Rn the n-dimensional Hausdor� measure agrees with

the Lebesgue measure, and thus given f ∈ C1
c (Rn) we write

∫
f(x) dx =∫

f dHn.
Let (X, d) be a locally compact and separable metric space. We call

Radon measure any measure µ on X which is Borel-regular and �nite on

compact subsets of X.

µ(A) = inf{µ(U) | A ⊂ U,U open}

for any subset A ⊂ X, and

µ(A) = sup{µ(K) | K ⊂ A,K compact}

for any µ-measurable subset A ⊂ X. Remember we say that a subset A ⊂ X
is µ-measurable if for all subsets S ⊂ X, µ(S) = µ(S ∩A) + µ(S \A).

Let Cc(X) be the space of continuous functions X → R with compact

support. It is well-known that we can identify the Radon measures on X

with the space of non-negative linear functionals on Cc(X) by mapping µ 7→
[f 7→

∫
f dµ]. Using the Banach�Alaoglu theorem one obtains the following

compactness result for Radon measures, see for example [Sim84].

Theorem 1.1.2. Let (µk | k ∈ N) be a sequence of Radon measures on

X with supk µk(U) < ∞ for all open U ⊂ X with compact closure. Then

there is a subsequence (µk′) which converges to a Radon measure µ on X in

the sense that
∫
f dµk′ →

∫
f dµ for all f ∈ Cc(X).
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1.1.2. Lipschitz functions and recti�able sets. On an arbitrary

metric space (X, d) we say that a function f : X → R is Lipschitz if there

is L ≥ 0 so that |f(x) − f(y)| ≤ Ld(x, y) for all x, y ∈ X. We say that a

function f = (f1, . . . , fn+k) : X → Rn+k is Lipschitz if the f1, . . . , fn+k are

all Lipschitz.

Theorem 1.1.3 (Rademacher's theorem). If f : Rn → R is Lipschitz,

then f is di�erentiable Hn-almost everywhere.

This also holds for Lipschitz functions de�ned on a subset A ⊂ Rn.

Indeed, by [Sim84, Thm. 5.1] there is a Lipschitz function f̄ : Rn → R

which restricts to f on A and has the same Lipschitz constant.

Theorem 1.1.4 ( [Sim84]). If f : Rn → R is Lipschitz, then for all

ε > 0 there is a continuously di�erentiable g : Rn → R with Hn({x ∈ Rn |
f(x) 6= g(x), Df(x) 6= Dg(x)}) ≤ ε.

Finally, we use the following weaker version of the well-known Arzelà�

Ascoli theorem; here we write ‖f‖1 = supX |f |+ |Df | for a Lipschitz function
f on X.

Theorem 1.1.5. Let (X, d) be locally compact metric space. Let (fk | k ∈
N) be a sequence of Lipschitz functions with supk‖fk‖1 < ∞. Then there

is a subsequence (fk′) and a Lipschitz function f so that fk′ → f locally

uniformly.

A subset M ⊂ Rn+k is called countably n-recti�able if there exists a col-

lection of Lipschitz functions Fj : Rn → Rn+k so that Hn(M \∪jFj(Rn)) =

0. We may apply the approximation theorem, Theorem 1.1.4 above to every

Fj separately using a sequence of ε = εi converging to zero to �nd the follow-

ing equivalent characterisation of recti�ability. A setM ⊂ Rn+k is countably

n-recti�able if there is a countable collection of C1 embedded submanifolds

(Mj | j ∈ N) so that Hn(M \ ∪jMj) = 0.

We make two quick trivial observations: �rst, any set with Hn(A) =

0 is automatically n-recti�able. Hence we also �nd that any countably

n-recti�able set has Hausdor� dimension dimHA ≤ n, with equality if

Hn(A) 6= 0. As a quick aside, let us point out that there are sets with

Hn(A) < ∞ which are however are not countably n-recti�able, see the ex-

amples given in [Fed69, 3.3.19] or [Mor16, Ch. 3].

Let M ⊂ Rn+k be a countably n-recti�able set. Let θ : M → [0,∞) be

a Borel-measurable function, locally integrable on M . Using a slight abuse

of notation, we can then de�ne the weight measure ‖M‖ corresponding to

the pair (M, θ) by integrating θ along M . This is a Radon measure de�ned
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by
∫
f d‖M‖ =

∫
M fθ dHn for all f ∈ C1

c (Rn+k). Combining several results

from [Sim84, Ch.11], one �nds that θ(X) = limρ→0‖M‖(Bρ(X))/ωnρ
n at

Hn-a.e. X ∈M . The right-hand side can be de�ned for any Radon measure

µ. Where this limit exists, it is called the density of µ at X, and is written

Θ(µ,X). (In general one cannot assume the existence of this limit outside

some null set, and has to work with the upper and lower densities.) In anal-

ogy with this more general case, we often also also write θ(X) = Θ(‖M‖, X)

and calls this the density of M at the point X.

Pick now an arbitrary point X ∈ Rn+k, and de�ne the homothety with

scale factor λ > 0 centered at this point, to be the map ηX,λ : Y ∈ Rn+k 7→
λ−1(Y − X). We say that an n-dimensional linear subspace P ⊂ Rn+k is

is the approximate tangent space to M at X with respect to θ if given any

f ∈ C1
c (Rn+k),

∫
ηX,λM

f(Y )θ(X + λY ) dHn(Y )→ θ(X)
∫
P f dHn as λ→ 0.

Such an approximate tangent space exists at Hn-a.e. point X ∈ M [Sim84,

Thm.11.6], and where it is de�ned we write P = TXM .

Let M ⊂ Rn+k be a countably recti�able set, and f : Rn+k → R be

di�erentiable. Then, at all points X ∈M where TXM is de�ned we call the

projection of Df(X) ∈ Rn+k onto TXM the gradient of f at X with respect

to M , and denote it ∇Mf(X) or ∇f(X) if the context is clear. Similarly we

write ∇⊥Mf(X) = Df(X)−∇Mf(X), sometimes abbreviating this ∇⊥f(X).

In terms of the pushforwards of the weight measure under the homothetic

rescalings, this may be summarised by writing that ηX,λ#‖M‖ → ‖P‖ as
λ→ 0 in the topology of Radon measures, where ‖P‖ is the weight measure

associated to the plane P with constant density equals θ(X).

1.1.3. BV functions and Caccioppoli sets. Let U ⊂ Rn be an open

set, and let f ∈ L1(U). Let ξ ∈ C1
c (U ; Rn) be a compactly supported

vector �eld, which we can integrate against f to obtain
∫
U f div ξ dHn =∫

U f
∑

iDiξi dHn. We say that f has bounded variation, and write f ∈
BV (U), if

sup
{∫

U
f div ξ | ξ ∈ C1

c (U ; Rn), |ξ| ≤ 1
}
< +∞.

Let f ∈ BV (U). Then the gradient of f in the sense of distributions

de�nes a (vector-valued) Radon measure on U , whose total variation we write

|Df |. Using this notation we �nd that the supremum above is precisely equal

to
∫
U |Df |. The analogous construction for functions f ∈ L1

loc(U) yields the

space BVloc(U) of functions with locally bounded variation.

We list a few important results concerning functions with bounded vari-

ation.
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Theorem 1.1.6 ( [Giu84]). Let U ⊂ Rn be an open set, and (fj | j ∈ N)

be a sequence of functions in BV (U), which converge to a function f in

L1
loc(U). Then f ∈ BV (U) and

∫
U |Df | ≤ lim infj→∞

∫
U |Dfi|.

When endowed with the norm ‖f‖BV = |f |L1 +
∫
U |Df |, the space BV (U)

is a Banach space. It is not hard to see that the Sobolev space W 1,1(U) ⊂
BV (U). The Example 1.1.9 below shows that however W 1,1(U) is not equal

BV (U).

Note that both spaces are endowed with the same norm, that is for

f ∈W 1,1(U), ‖f‖W 1,1 = ‖f‖BV . AsW 1,1(U) is a Banach space, it is a closed

proper subset of BV (U). Moreover, as C∞(U) ∩W 1,1(U) ⊂ W 1,1(U) there

is no hope to approximate a function f ∈ BV (U) \W 1,1(U) by a sequence

of smooth functions convergent with respect to the norm on BV (U). That

being said, the following holds.

Theorem 1.1.7 ( [Giu84]). Let f ∈ BV (U). There exists a sequence of

functions (fj | j ∈ N) in C∞(U) so that |fj − f |L1 → 0 and
∫
U |Dfj | →∫

U |Df | as j →∞.

From the Sobolev embeddings we obtain the following compactness re-

sult.

Theorem 1.1.8 ( [Giu84]). Let U ⊂ Rn be a bounded open set with Lips-

chitz boundary. Let (fj | j ∈ N) be a sequence of functions with supj |fj |BV <

∞. Then there is a subsequence (fj′) and a function f ∈ BV (U) so that

|fj′ − f |L1 → 0.

Let U ⊂ Rn be still an open set, and let E ⊂ Rn be a Borel-measurable

set, not necessarily contained inside U . Let 1E be the indicator function of E.

We de�ne the perimeter of E in U as Per(E,Ω) =
∫
U |D1E | = sup{

∫
E div ξ |

ξ ∈ C1
c (U ; Rn), |ξ| ≤ 1}. In the particular case U = Rn we reserve the

notation Per(E) = Per(E,Rn). Finally, we say that a set E has locally �nite

perimeter if for all bounded open U ⊂ Rn, Per(E,U) <∞. Sets with locally

�nite perimeter are also called Caccioppoli sets.

Example 1.1.9 ( [Giu84]). Let U ⊂ Rn be open, and let E ⊂ Rn

be a bounded open set, with Lipschitz boundary ∂E. Let ξ ∈ C1
c (U ; Rn)

be a vector �eld with |ξ| ≤ 1. Then
∫
E div ξ =

∫
∂E〈ξ, ν〉dH

n−1, where ν

is the outward unit normal to ∂E, de�ned Hn−1-a.e. along the boundary.

Therefore we �nd
∫
E div ξ ≤ Hn−1(∂E ∩ U), and passing to the supremum

over all such vector �elds we get Per(E,U) ≤ Hn−1(∂E ∩ U). In particular

the set E is a Caccioppoli set. If in fact we knew the boundary was smooth

(or even piecewise smooth) then we would have equality in the above, that

is Per(E,U) = Hn−1(∂E ∩ U).
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Proposition 1.1.10 ( [Giu84]). Let E,E1, E2 ⊂ Rn be a Caccioppoli

sets, and U ⊂ Rn be open.

(i) If V ⊃ U is open then Per(E,U) ≤ Per(E, V ).

(ii) Per(E1 ∪ E2, U) ≤ Per(E1, U) + Per(E2, U).

(iii) If Hn(E) = 0 then Per(E) = 0.

(iv) If Hn(E14E2) = 0 then PerE1 = PerE2.

Let E ⊂ Rn be a Caccioppoli set. Recall from the above that D1E is a

vector-valued Radon measure. One can show that sptD1E ⊂ ∂E. Moreover

the following formula holds. Let U ⊂ Rn be open, and ξ ∈ C1
c (U ; Rn) be a

vector �eld. Then
∫
E div ξ = −

∫
∂E〈ξ,D1E〉. If |ξ| ≤ 1 then this means that

Per(E ∩U) ≤ Hn−1(∂E ∩U), with the caveat that the right-hand side could

be in�nite even while the perimeter is �nite.

Theorems 1.1.6 and 1.1.8 can be combined to obtain an existence result

for area-minimising Caccioppoli sets.

Theorem 1.1.11 ( [DG61]). Let U ⊂ Rn be a bounded open set, and

let L ⊂ Rn be a Caccioppoli set. Then there is a Caccioppoli set E which

coincides with L outside U and so that PerE ≤ PerF for all sets with F = L

outside U .

1.1.4. Capacity. We work with subsets of Rn, and let p ∈ [1, n).

Remark 1.1.12. Most results will distinguish between the cases p = 1

and p ∈ (1, n). The most common application of these results will be for

p = 2, followed by the more complicated case where p = 1.

Following Section 4.7 of Evans�Gariepy [EG15] we de�ne

Kp = {f : Rn → R | f ≥ 0, f ∈ Lp∗ , Df ∈ Lp(Rn; Rn)},

where p∗ = np
n−p is the Sobolev conjugate of p.

Definition 1.1.13. If A ⊂ Rn, set

capp(A) = inf
{∫

Rn

|Df |p | f ∈ Kp, A ⊂ int{f ≥ 1}
}
,

and call this the p-capacity of A.

Remark 1.1.14. If f ∈ Kp then min{f, 1} ∈ Kp also, so that in De�-

nition 1.1.13 we could additionally have imposed that 0 ≤ f ≤ 1 Hn-a.e. in
Rn.

If the set A is compact, then the in�mum can be taken over smooth

compactly supported functions,

capp(A) = inf
{∫

Rn

|Df |p | f ∈ C∞c (Rn), f ≥ 1A

}
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We give a few elementary properties of capacity, taken from those listed

in Theorem 2, Section 4.7 of [EG15].

Theorem 1.1.15 ( [EG15]). Assume A,B ⊂ Rn. Then

(i) capp(A) = inf{capp(U) | U open, A ⊂ U},
(ii) capp(λA) = λn−p capp(A) for all λ > 0,

(iii) capp(A) ≤ C(n, p)Hn−p(A) for some constant C(n, p) > 0,

(iv) capp(A ∪B) + capp(A ∩B) ≤ capp(A) + capp(B),

(v) if (Ak | k ∈ N) is increasing, then limk→∞ capp(Ak) = capp(∪kAk),
(vi) if (Ak | k ∈ N) and every Ak is compact, then limk→∞ capp(Ak) =

capp(∩kAk).

Next we give two results which establish a link between capacity and

Hausdor� dimension. We state the cases 1 < p < n and p = 1 separately

to avoid any confusion. Both are again taken from Section 4.7 of [EG15],

Theorems 3 and 4.

Theorem 1.1.16 ( [EG15]). Assume 1 < p < n.

(i) If Hn−p(A) < +∞ then capp(A) = 0.

(ii) If capp(A) = 0 then Hs(A) = 0 for all s > n− p, that is dimHA ≤
n− p.

We may next combine this result with the fact that countably unions

of sets with capacity zero also have capacity zero, which can be seen for

instance by Theorem 1.1.15 (iv) and (v). For a �xed 1 < p < n, this yields

the following sets of inclusions for subsets of Rn:

{A ⊂ Rn | Hn−p(A) = 0}

⊂ {A ⊂ Rn | A countably (n− p)-recti�able or Hn−p(A) <∞}

⊂ {A ⊂ Rn | capp(A) = 0}

⊂ {A ⊂ Rn | dimHA ≤ n− p}.

These inclusions are all strict. Let us quickly make a remark on the �rst

inclusion. At �rst sight one might expect that a set with Hn−p(A) < ∞
would automatically be countably (n− p)-recti�able. This is not so, as one
�nds by considering the examples in [Fed69, 3.3.19] or [Mor16, Ch.3].

Although these inclusions remain valid in the case p = 1, in fact much

more is true. The following result, which can be found as Theorem 2 in

Section 5.6 of [EG15], justi�es singling this case out.

Theorem 1.1.17 ( [EG15]). Let A ⊂ Rn. Then cap1(A) = 0 if and only

if Hn−1(A) = 0.
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Let us brie�y return to the setting of Example 1.1.9 above, with the aim

of comparing the 1-capacity and perimeter.

Example 1.1.18. Let E ⊂ Rn be a bounded open set with piecewise

smooth boundary. Recall from Example 1.1.9 that PerE = Hn−1(∂E).

Here we want to supplement this with the observation that cap1E ≤ PerE.

We show this by explicitly giving a sequence of functions (ηj | j ∈ N) in

C1
c (Rn) with E ⊂ int{ηj ≥ 1} and

∫
|Dηj | → PerE. Note however that one

should in general expect this inequality to be strict. (Indeed this is the key

observation behind the improved estimates obtained in Corollary 3.3.6.)

De�ne a function d : x ∈ Rn 7→ dist(x,E), and consider its level sets

{d = t} for all t ≥ 0. We can then pick δE > 0 small enough in terms of E

that the function t ∈ (0, δE) 7→ Hn−1({d = t}) is bounded and continuous,

with limit Hn−1(∂E) as t→ 0.

Next de�ne a function η : R→ R

η(t) =


1 if t < 0

1− t if t ∈ [0, 1]

0 if t > 1

and for large enough j ∈ N that 2−j < δE de�ne ηj : x ∈ Rn 7→ η(2jd(x)).

These functions are all Lipschitz regular, and ηj ∈ K1 for all j. Using the

co-area formula we �nd∫
Rn

|Dηj | =
∫ 2−j

0

∫
{d=t}

|Dηj | dt(1.1)

≤
∫ 2−j

0
2jHn−1({d = t}) dt.

As the integrand is continuous near zero, given any ε > 0 we can take

δ ∈ (0, δE) small enough that for all t ∈ [0, δ),

|Hn−1(∂E)−Hn−1({d = t})| < ε.

Next update j to ensure 2−j < δ and deduce from (1.1) that
∫
Rn |Dηj | ≤

Hn−1(∂E) + ε.

To conclude the section we consider a compact set A ⊂ Rn with cappA =

0 for some 1 ≤ p < n and list the properties we may impose for a sequence

of functions (ηj | j ∈ N) which `cut out' A. For this purpose we write

(A)r = {x ∈ Rn | dist(x,A) < r}

for the open tubular neighbourhood of A of radius r. (Less frequently we

also use the notation [A]r = {x ∈ Rn | dist(x,A) ≤ r} for the closed tubular

neighbourhood of radius r.) We may impose that for all j,
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(1) ηj ∈ C1
c (Rn),

(2) 0 ≤ ηj ≤ 1,

(3) ηj ≡ 1 on (A)rj for some rj → 0,

(4) ηj → 0 Hn-a.e.,
(5)

∫
Rn |Dηj |p → 0.

Remark 1.1.19. Properties (1) and (3) can only be mandated when A is

compact, but if these are replaced respectively by ηj ∈ Kp and A ⊂ int{ηj =

1}, then the list of properties also holds for non-compact A.

The only property in the list that we did not see before is (4). This is a

simple consequence of the Sobolev embeddings. Indeed they give a constant

C(n, p) > 0 so that for all f ∈ Kp,

‖f‖Lp∗ (Rn) ≤ C(n, p)‖Df‖Lp(Rn).

Applying this here with f = ηj we obtain that ‖ηj‖Lp∗ (Rn) → 0 as j → ∞.

Although this does not strictly imply that ηj → 0 Hn-a.e., it allows us to
extract a subsequence for which this is true, con�rming (4).

Note next that if U is an open set which compactly contains A, then

we may additionally impose that spt ηj ⊂ U . Indeed there exists ϕ ∈
C1
c (U) with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on A, so that given a sequence (ηj |

j ∈ N) we may instead simply take (ηjϕ | j ∈ N). To see this, simply

note that
∫
|D(ηjϕ)|p ≤ 2p−1

∫
ηpj |Dϕ|p + ϕp|Dηj |p. The justi�cation that∫

|D(ηjϕ)|p → 0 is standard, using for example dominated convergence for

the �rst term and Hölder's inequality for the second.

1.2. Geometric measure theory: varifolds and currents

1.2.1. Varifolds. Let U ⊂ Rn+k be an open set. We write Grn(U) for

the n-dimensional Grassmann space on U , that is Grn(U) = U×Gr(n, n+k)

where we write Gr(n, n+ k) for the space of linear n-dimensional subspaces

of Rn+k. A general varifold V on U is a Radon measure on Grn(U). We say

that a sequence (Vj | j ∈ N) converges in the varifold topology to another

varifold V if for all f ∈ C1
c (Grn(U)),

∫
f dVj →

∫
f dV . The weight measure

of a varifold V is obtained by forgetting the Grassmann structure. Given any

test function f ∈ Cc(U) we obtain f̄ ∈ Cc(Grn(U)) by setting f̄(X,Π) =

f(X) for all (X,Π) ∈ Grn(U). Using this one de�nes a Radon measure

‖V ‖ on U by integrating
∫
f d‖V ‖ =

∫
f̄ dV . Denote the space of general

varifolds on U by V(U). Note that the compactness of the space of Radon

measures implies that V(U) is compact in the varifold topology. That is, if

(Vj | j ∈ N) if a sequence of general varifolds, with supj‖Vj‖(K) <∞ for all

compact K ⊂⊂ U then there is a subsequence (Vj′) and a general varifold

V ∈ V(U) such that Vj′ → V in the varifold topology.
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Moreover, from the elementary property of Radon measures one deduces

the following continuity results for the mass.

Proposition 1.2.1. Let (Vj | j ∈ N) be a sequence of varifolds in U

which converges weakly to V ∈ V(U). Then for all

(i) compact K ⊂ U , ‖V ‖(K) ≥ lim supj→∞‖Vj‖(K).

(ii) open W ⊂ U , ‖V ‖(W ) ≤ lim infj→∞‖Vj‖(W ),

(iii) Borel sets A ⊂ U with ‖V ‖(∂A) = 0, ‖V ‖(A) = limj→∞‖Vj‖(A).

This general notion is somewhat too broad to be useful in practise. For

this reason we de�ne countably n-recti�able varifolds as those varifolds in

U which are supported in a countably n-recti�able set M with
∫
f dV =∫

U f(X,TXM)θ(X) dHn(X) for some non-negative density function θ ∈
L1

loc(Hn M). If we substitute a test function f ∈ Cc(U) into this iden-

tity we �nd that the weight measures coincide, that is ‖V ‖ = ‖M‖.
If in fact θ(X) ∈ Z>0 atHn-a.e.X ∈M , then we say that V is an integer-

density countably n-recti�able varifold, or integral varifold (sometimes also

integer varifolds) for short. This is the class of varifolds we use essentially

exclusively in the remainder. We denote their space by IVn(U). Moreover

we say V ∈ IVn(U) has dimension n and codimension k. We frequently

write V = |M | for the varifold with density one supported in the set M ,

and more generally write V = θ|M | for the varifold with constant density

θ ∈ Z>0. Of course this has corresponding weight measure θ‖M‖.
The space of integral varifolds is not closed under varifold convergence.

That is, although from a sequence (Vj | j ∈ N) of Vj ∈ IVn(U) with locally

bounded mass one can extract a subsequence which converges weakly to a

limit V , this limit will in general not have integer multiplicity. Example 1.2.6

gives a sequence of one-dimensional integer varifolds for which this fails.

Below we de�ne what it means for a varifold to be stationary. Under this

condition, that is if the Vj ∈ IVn(U) are all additionally stationary in U ,

then the so-called Allard�Almgren compactness theorem holds [Alm65,All72].

Theorem 1.2.2 ( [Alm65,All72]). Let U ⊂ Rn+k be an open set, and

(Vj | j ∈ N) be a sequence of stationary integral varifolds with supj‖Vj‖(K) <

∞ for all compact K ⊂⊂ U . Then there is a subsequence (Vj′) and a sta-

tionary integral varifold V ∈ IVn(U) s.t. Vj′ → V in the varifold topology.

Let U,W ⊂ Rn+k be open sets, and Φ : U → W be an injective, proper

Lipschitz map. Let M ⊂ U be a recti�able set, and θ ∈ L1
loc(Hn M) be a

Z>0-valued density function. Write V ∈ IVn(U) for the varifold associated

to the couple (M, θ). Then we may de�ne the pushforward of V by Φ as

the integral varifold Φ#V ∈ IVn(W ) corresponding to the pair (Φ(M), θ ◦
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Φ−1). If f ∈ Cc(Grn(W )) then
∫
f dΦ#V =

∫
Φ(M) f(X,TXΦ(M))(θ ◦

Ψ−1)(X) dHn(X) =
∫
M f(Φ(Y ), DΦ(TYM))θ(Y ) Jac Φ(Y ) dHn(Y ), where

the integrand is weighted by the so-called Jacobian determinant Jac Φ(Y ) =

(det(DΦ(Y )t ◦ DΦ(Y ))1/2 and DΦ(Y ) : TYM → Rn+k is the Hn-almost

everywhere de�ned linear map induced by Φ.

Example 1.2.3 (Cylindrical varifolds). Let U ⊂ Rn+k be an open set,

and V be a general varifold in U , with dimension n. Let l ∈ Z>0 be a

positive integer. Then we can form the product V × Rl, which de�nes a

varifold in U ×Rl, as follows. Let f ∈ Cc(Grn+l(U ×Rl)). For any �xed

point Y ∈ Rl write f(·, Y ) ∈ Cc(U) for the restriction of f to U×{Y }. Then∫
f d(V × Rl) =

∫
Rl{
∫
f(·, Y ) dV } dHl(Y ). (This essentially corresponds

to the product measure of V with the Hausdor� measure Hl.) For us this

construction most often arises when V is a varifold in an open subset U ⊂ Rn,

which we identify with Rn×{0} ⊂ Rn+1. We then often denote the product

V ×R by V ×Ren+1 to emphasise that V is invariant under translations in the

vertical direction. Note moreover that if V ∈ IVn(U) then automatically V ×
Rl ∈ IVn+l(U). We call varifolds of this form cylindrical. More generally, let

E ⊂ Rn+k be a vector subspace, and for each e ∈ E consider the translation

map τe : X ∈ Rn+k 7→ X − e ∈ Rn+k. Suppose that the open set U ⊂ Rn+k

is invariant under τe for all e ∈ E. Take a varifold V ∈ IVn(U) with the

same property, τe#V = V for all e ∈ E. Say E has dimension d. Then there

exists a varifold V ′ ∈ IVn−d(U) so that V = V ′ × E, in the same sense as

described above.

The case in codimension one where E = Ren+1 = span{en+1} is of

particular importance to us. Let Ω ⊂ Rn × {0} be open, and U = Ω×R ⊂
Rn+1. Let moreover V ∈ IVn(Ω × R). If τten+1#V = V for all t ∈ R,

then there is V0 ∈ IVn−1(Ω) so that V = V0 ×Ren+1. Varifolds with this

property are called cylindrical in the vertical direction, or vertical for short.

Cylindrical varifolds are closed under weak convergence, and properties

such as stationarity also behave well, that is V = V ′×E is stationary if and

only if V ′ is. Hence if V ∈ IVn(U) is cylindrical, then so are tangent cones

at the points X ∈ U ∩ spt‖V ‖.

1.2.2. Currents. Let U ⊂ Rn+k be an open set. Write Dn(U) for the

space of smooth compactly supported n-forms in U . Equivalently we could

write Dn(U) = C∞c (U,ΛnRn+k) = Ωn
c (U). This space can be equipped

with a family of seminorms, simultaneously indexed by the compact subsets

K ⊂ U and multi-indices α ∈ Zn+k
≥0 , setting pK,α(ω) = supK |Dαω| for all

ω ∈ Dn(U), where we write Dαω = Dα1
1 · · ·D

αn+k

n+k ω.
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A linear map T : Dn(U)→ R is called n-dimensional current if it is con-

tinuous with respect to the family of seminorms {pK,α | K ⊂ U compact, α ∈
Zn+k
≥0 }. Explicitly this means that for every compact K ⊂ U there exist

CK > 0 and NK ∈ Z≥0 so that |T (ω)| ≤ CKpK,α(ω) for all ω ∈ Dn(U) with

sptω ⊂ K and all indices α ∈ Zn+k
≥0 with |α| ≤ NK .

The space of n-dimensional currents is sometimes denoted Dn(U). We

will seldom use this notation as we essentially exclusively work with the more

restrictive class of integer multiplicity currents, de�ned as follows.

Let M be a countably n-recti�able set, and θ ∈ L1
loc(Hn M) be a

density function taking values in Z>0. Suppose moreover that at Hn-a.e.
point X ∈ M we are given ξ(X) ∈ ΛnR

n+k so that ξ(X) = τ1 ∧ · · · ∧ τn,
where τ1, . . . , τn is orthonormal basis for TXM . We can use this triplet

(M, θ, ξ) to de�ne a current T in U by setting T (ω) =
∫
M 〈ξ, ω〉θ dHn =∫

M 〈ξ(X), ω(X)〉θ(X) dHn(X) for all ω ∈ Dn(U). We call all currents ob-

tained in this manner integer multiplicity countably n-recti�able currents, or

integer multiplicity currents for short. (In the literature these are sometimes

also called recti�able or locally recti�able currents, see for example [FF60,

Mor16,Fed69].) We also use the abbreviated notation T = JMK for a current
supported inM with density one, and more generally θJMK for currents with
constant density θ ∈ Z>0.

This is endowed with the topology induced by the family of seminorms

de�ned above. Equivalently we say that a sequence of currents (Tj | j ∈ N)

converges to a limit current T ∈ Dn(U) if for all ω ∈ Dn(U), Tj(ω)→ T (ω).

In the de�nition of the seminorms pK,α above there was a slight am-

biguity, as we did not give an explicit de�ning expression for the norm of

the n-form ω and its partial derivatives. We rectify this now. At a point

X ∈ U we de�ne the norm of ω(X) ∈ ΛnRn+k by setting the orthonormal

basis formed by vectors of the form eI = ei1 ∧ · · · ∧ ein to be orthonormal.

One easily extends this to arbitrary forms ω =
∑′

I ωIe
I by multilinearity,

where we used notation indicates that the sum ranges only over increasing

multi-indices. Finally one sets |ω| = supX∈U |ω(X)|. Using this we de�ne

the mass of a current as follows. Let W ⊂⊂ U be an open subset of U with

compact closure, and let T be an n-dimensional current in U . We then set

MW (T ) = sup{T (ω) | ω ∈ Dn(W ), |ω| ≤ 1}, and call this the mass in W of

T .

Sometimes in the literature a slightly di�erent convention is used, start-

ing by de�ning the so-called co-mass of n-forms, denoted ‖ω‖. This is equiv-
alent to our norm,

(
n+k
n

)−1/2|ω| ≤ ‖ω‖ ≤ |ω| for all n-forms. One can

then calculate the supremum of T (ω) taken over all forms with ‖ω‖ ≤ 1.
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Of course this is related to the mass we de�ne by a constant factor. See

e.g. [Sim84, Ch. 26] for a more in-depth discussion of this.

Regardless of which de�nition of mass is being used, one cannot in general

expect currents T ∈ Dn(U) to have even locally �nite mass. Indeed this is

the case if and only T can be represented by integration, that is if there

is a Radon measure µT and a Borel-measurable function ξ taking values in

ΛnR
n+k with |ξ| = 1 holding Hn-a.e. so that T (ω) =

∫
U 〈ω, ξ〉 dµT for all

n-forms ω ∈ Dn(U). This is the case for example when T is an integer

multiplicity current, when µT = ‖T‖ = θ Hn.
If T is an arbitrary n-dimensional current on U , we de�ne its boundary

to be the n − 1-dimensional current on U with ∂T (ω) = T (dω) for all ω ∈
Dm−1(U). The discussion from the previous paragraph also applies here.

Even if T is an integer multiplicity current, it is in general false that ∂T has

locally �nite mass. However, the following is true.

Theorem 1.2.4 ( [Sim84, Thm. 30.3]). Let T ∈ Dn(U) be an integer

multiplicity current. If MW (∂T ) < ∞ for all open W ⊂⊂ U with compact

closure then ∂T is an integer multiplicity current.

Such currents are called integral currents. That is, we say T ∈ Dn(U)

is integral, and write T ∈ In(U) if both T and ∂T have integer multiplicity.

This is the class of currents we mainly work with in the remainder. The

space In(U) satis�es the following useful compactness theorem, proved by

Federer and Fleming [FF60].

Theorem 1.2.5 ( [Sim84, Thm. 27.3]). Let (Tj | j ∈ N) be a sequence

of integral currents in U with supjMW (Tj) + MW (∂Tj) < ∞ for all open

W ⊂⊂ U with compact closure. Then there is a subsequence (Tj′) and an

integral current T ∈ In(U) such that Tj′ → T weakly in the current topology.

We can de�ne a forgetful map T ∈ In(U) 7→ |T | ∈ IVn(U) which in-

tegrates functions f ∈ Cc(U) like
∫
M fθ dHn. In fact this is de�ned for an

integer multiplicity current and maps the triple (M, θ, ξ) 7→ (M, θ). One

must be careful to keep in mind that this map is not continuous with respect

to the respective weak topologies, even for sequences as in Theorem 1.2.5.

Example 1.2.6. We brie�y sketch an example to illustrate this; see for

example [Whi14, Ex. 2.8] for a more thorough treatment. Consider a se-

quence of one-dimensional, integral currents Tj ∈ I1(D2
1) contained in the

two-dimensional unit disc D1 = D2
1 ⊂ R2. Construct these to all have

∂Tj = 0 in D1, as a broken line resembling a staircase, with step sizes going

to zero as j →∞. Using Theorem 1.2.5 above, one �nds that these converge

weakly as currents to another current, which we denote L ∈ I1(D1). One may
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set up this sequence in such a way that this limit current is a diagonal line,

with multiplicity one. Note that this has total mass
√

2, whereas the jagged

lines can be constructed to all have mass 2. In other words, the mass drops

in the limit. If we consider these jagged lines as one-dimensional integral var-

ifolds, |Tj | ∈ IV1(D1) then this sequence does not tend to the line |L| with
multiplicity one. In fact the sequence |Tj | does not converge to an integral

varifold at all. Instead one �nds that |Tj | →
√

2|L|, as the mass cannot be

lost in varifold convergence (see Proposition 1.2.1). (As the varifolds are not

stationary, there is no contradiction with the Allard�Almgren compactness

theorem, as stated in Theorem 1.2.2.) Thus in this example note that while

Tj → L weakly as currents, we do not have |Tj | → |L| weakly as varifolds.

In fact White [Whi14] remarks that the example can be constructed in such

a way that the mass diverges. This example conclusively demonstrates the

lack of continuity of the forgetful map T 7→ |T | de�ned above.

We close this chapter by brie�y comparing the topologies de�ned on the

space In(U), starting with the so-called �at metric topology. Let T1, T2 ∈
In(U). For all bounded open subsets W ⊂⊂ U we de�ne the pseudometric

dW (T1, T2) = inf{MW (S) + MW (R) | T1 − T2 = ∂R + S,R ∈ In+1(U), S ∈
In(U)}. Then In(U) can be equipped corresponding to the family dW of

pseudometrics indexed by all bounded open subsetsW ⊂⊂ U . This topology
is called the �at metric topology. This topology turns out to be equivalent

to the weak topology of currents.

Theorem 1.2.7 ( [Sim84, Thm. 31.2]). Let T ∈ In(U) be an integral

current, and let (Tj | j ∈ N) be a sequence of integral currents in U with

supjMW (Tj)+MW (∂Tj) <∞. Then T → Tj weakly in the current topology

if and only if dW (Tj , T )→ 0 for all bounded open W ⊂⊂ U .

There is another notion of convergence, called convergence in the mass

topology. This can in fact be de�ned in a more general setting, for integer

multiplicity currents. Let (Tj | j ∈ N) be a sequence of integer multiplicity

currents, and T ∈ Dn(U). We say that the sequence converges to T in a

strong sense if for all bounded open W ⊂⊂ U , MW (Tj − T )→ 0. Moreover,

one can show that the set of integer multiplicity currents in Dn(U) is com-

plete with respect to this topology, meaning the limit T automatically has

integer multiplicity [Sim84, Lem. 27.5]. We mainly state this for complete-

ness of our summary, we will not make of use this notion of convergence in

the remainder of the text.

Example 1.2.8 (Cylindrical currents). We can repeat the same construc-

tion as we did for varifolds in Example 1.2.3 in the context of currents. Let
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E ⊂ Rn+k be a vector subspace of dimension d ∈ Z>0. Let U ⊂ Rn+k be

an open set invariant under the translations τe, where e ranges over E. Let

moreover T ∈ Dn(U) be a current with the same property, that is τe#T = T

for all e ∈ E. (Recall that we write τe for the translation in −e, that is

mapping X 7→ X − e.) Then there is a current T ′ ∈ Dn−d(U) so that

T = T ′ × E. Currents of this form are called cylindrical in general, and

vertical in the special case where E = Ren+1. The subclasses of currents we

de�ned earlier behave well under this operation. For example T has integer

multiplicity if and only if T ′ does, ∂T = ∂T ′ × E and T ∈ In(U) if and

only if T ′ ∈ In−d(U). Let T ∈ In(U) be a cylindrical current, with addition-

ally ∂T = 0 and is stationary in U . Then the tangent cones in the current

topology are also are cylindrical.

1.2.3. The �rst variation formula and stationary varifolds. Let

U ⊂ Rn+k be an open set, and ξ ∈ C1
c (U ; Rn+k) be an arbitrary vector

�eld, with �ow (Φt). Let K ⊂⊂ U be a compact subset containing spt ξ.

Let V ∈ IVn(U) be an integral varifold, corresponding as usual to a couple

(M, θ). Its pushforwards Φt#V have locally �nite measure, and moreover

we can compute the derivative of the function t 7→ ‖Φt#V ‖(K), and express

this in terms of ξ as the �rst variation formula

(1.1)
d

dt

∣∣∣∣
t=0

‖Φt#V ‖(K) =

∫
M

(divM ξ)θ dHn =

∫
U

divM ξ d‖V ‖,

where the divergence with respect to M is de�ned at Hn-almost every point

X ∈ M by (divM ξ)(X) =
∑n+k

α=1〈eα,∇Mξα(X)〉, where (e1, . . . , en+k) is

the standard basis of Rn+k and ξα = 〈ξ, eα〉. If (τ1, . . . , τn) is an or-

thonormal basis for TXM , then the divergence can also be expressed as

divM ξ =
∑n

i=1〈Dτiξ, τi〉. Note that one can easily justify using a Lipschitz

vector �eld in (1.1) using a molli�cation argument for example. (Later we

will need to plug in even less regular functions into the formula, justifying

these substitutions as they become necessary.) We say that the varifold

V ∈ IVn(U) is stationary in U if
∫

divM ξ d‖V ‖ = 0 for all vector �elds

ξ ∈ C1
c (U,Rn).

The entire discussion above can also be made for general varifolds, es-

sentially the only necessary modi�cation being that the �rst variation would

then be d
dt

∣∣
t=0
‖Φt#V ‖ =

∫
divS ξ(X) dV (X,S), where the divergence with

respect to the plane S ∈ Gr(n, n + k) is de�ned using a formula analogous

to the above.

Example 1.2.9. Let U ⊂ Rn+k be an open set andM ⊂ U be a properly

embedded smooth manifold, with U ∩M \M = ∅ and θ ≡ 1. Then the
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varifold corresponding to the couple (M, θ) is stationary if and only if its

mean curvature vanishes identically, H ≡ 0.

Using (1.1) it is not hard to see that stationarity of varifolds is preserved

in the limit. In other words, let V ∈ IVn(U) and (Vj | j ∈ N) be a sequence

of varifolds in IVn(U) with Vj → V weakly. If the Vj are all stationary in

U , then so V .

Let still U ⊂ Rn+k be open, and take a stationary integral varifold V ∈
IVn(U). Fix some point X ∈ U , not necessarily contained in spt‖V ‖, and
write R = dist(X, ∂U). Testing the �rst variation formula with a suitable

test function one obtains the monotonicity formula:

‖V ‖(Bσ(X))/(ωnσ
n)− ‖V ‖(Bρ(X))/(ωnρ

n) =

∫
Bσ(X)\Bρ(X)

|∇⊥r|2

rn
d‖V ‖

for all 0 < ρ < σ < R where r(Y ) = |Y −X|. Hence the function ρ ∈ R>0 7→
‖V ‖(Bρ(X))/(ωnρ

n) is monotone increasing, with equality if and only if V

is invariant under homothetic rescalings around X. When this is the case V

is called a cone with vertex at X; we usually denote these cones by C or a

variant thereof.

As ρ→ 0 the function has a �nite limit, denoted

Θ(‖V ‖, X) = lim
ρ→0
‖V ‖(Bρ(X))/(ωnρ

n)

and called the density of V at X. The monotonicity formula furthermore

implies that the density function is upper semicontinuous, that is if X ∈ U
is a �xed point, then Θ(‖V ‖, X) ≥ lim supY→X Θ(‖V ‖, Y ).

For a moment assume that U = Rn+k, so that the monotonicity formula

is de�ned for all 0 < ρ < σ. Then we can take the limit as ρ → ∞, and

call this the density at in�nity at V . Occasionally this is denoted somewhat

colloquially as Θ(‖V ‖,∞). This does not depend on the point X ∈ Rn+k

around which we may measure the area ratios, but it may of course be

in�nite. Even when it is �nite, by monotonicity we have Θ(‖V ‖,∞) ≥
‖V ‖(Bρ(X))/(ωnρ

n) for all X ∈ Rn+k and ρ > 0.

Now return to the general case where U ⊂ Rn+k is an arbitrary open set.

Let (Vj | j ∈ N) be a sequence of stationary integral varifolds in U , which

converge weakly to a limit V ∈ IVn(U). Then their supports converge locally

with respect to the Hausdor� distance. That is, for all compact K ⊂⊂ U ,

distH(spt‖Vj‖ ∩ K, spt‖V ‖ ∩ K) → ∞ as j → ∞. This would fail if one

were given an arbitrary sequence of varifolds, even if one knew that they

were all countably recti�able. Indeed if the Vj are recti�able but θj are not

integer-valued, then one would relinquish control over those portions where

their density functions θj go to zero.



28 1. GEOMETRIC MEASURE THEORY

We state also the following result valid for sequences of currents Tj ∈
In(U) with |Tj | ∈ IVn(U). One may compare this with the stronger conclu-

sion of Proposition 2.2.1.

Proposition 1.2.10. Let (Tj | j ∈ N) be a sequence of integral currents

in U with ∂Tj = 0 and supjMW (Tj) < +∞ for all bounded open W ⊂⊂ U .

Suppose that |Tj | is stationary in U for all j. Then there exist T ∈ In(U)

and V ∈ IVn(U) and a subsequence (Tj′) so that Tj′ → T and |Tj′ | → V .

Moreover |T | � V .

Using Allard's regularity theorem for stationary integral varifolds near

multiplicity one planes, we obtain the following special case.

Proposition 1.2.11. Let (Tj | j ∈ N) be a sequence of integral currents

as above. Suppose that there are integers li,mi ∈ Z≥0 and distinct half-planes

πi so that Tj →
∑

i liJπiK and |Tj | →
∑

imi|πi| as j → ∞. Then li ≤ mi,

and there is equality if mi = 1.

Of course equality in li ≤ mi may also happen when mi ≥ 2, but the

essence of this result is that there cannot be loss of mass when the conver-

gence is with multiplicity one. Using terminology we introduce in the next

chapter, one could make the same analysis for general limits. The analogue

would then be the following. Under the same hypotheses as above, assume

that Tj → T and |Tj | → V as j → ∞. If a point X ∈ U ∩ reg V has

Θ(‖V ‖, X) = 1, then Θ(‖T‖, X) = 1 also.

1.2.4. Tangent and limit cones. Let again U ⊂ Rn+k be an arbitrary

open set, V ∈ IVn(U) be stationary and X ∈ U ∩ spt‖V ‖. Finally, let

(λj | j ∈ N) be a sequence of positive scalars with λj → 0 as j → ∞.

Consider the sequence (ηX,λj#
V | j ∈ N), de�ned on a sequence of open sets

ηX,λj (U). (Although the sequence is not necessarily increasing, note that

every compact set K ⊂ Rn+k eventually lies inside these sets.) Applying the

Allard�Almgren compactness theorem to this sequence, we �nd that there

is a subsequence (λj′) so that (ηX,λj′#V ) converges weakly in the varifold

topology. Moreover by the monotonicity formula the limit must be a cone,

say C: ηX,λj′#V → C as j′ →∞, weakly in the varifold topology of IVn(W )

for all bounded open W ⊂⊂ U .
More generally, we say that a cone C ∈ IVn(Rn+k) is tangent to V at X

if there exists a sequence of positive scalars so that ηX,λj#V → C as j →∞.

Apart from the usual terminology calling C a tangent cone to V at X we

sometimes also call it a blow-up cone, and call the sequence (ηX,λj#V | j ∈
N) a blow-up sequence at the point X ∈ spt‖V ‖ ∩ U . The set of all tangent
cones to V at X is denoted VarTan(V,X). In principle there could be several
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such cones, that is blowing V up at X along two di�erent sequences λj , µj →
0 of positive scalars could produce di�erent cones in the limit. To avoid any

confusion, let us brie�y return to the de�nition of recti�able sets. Indeed if

V ∈ IVn(U) is any integer varifold with support M = U ∩ spt‖V ‖ say, then
by de�nition there is at Hn-a.e. point X ∈ M a plane ΠX ∈ Gr(n, n + k)

so that VarTan(V,X) = {θ(X)ΠX}, where θ(X) = Θ(‖V ‖, X). At such

points the tangent cone is thus unique, and indeed is a plane with positive

multiplicity Θ(‖V ‖, X). Proving the uniqueness of tangent cones in general

remains a major open problem in geometric measure theory, in which all but

a few cases are unknown. For a non-exhaustive list of the positive results in

this area, see among others [AA81,Whi83,Sim83,Sim94,BK17].

Lemma 1.2.12. Let U ⊂ Rn+1 be an open set and Vj ∈ IVn(U) be a

sequence of integral varifolds with Vj → V as j →∞, weakly in the varifold

topology. Let X ∈ spt‖V ‖ ∩ U , and CX ∈ VarTan(V,X). After extracting a

subsequence we may �nd a sequence λj′ → 0 so that

ηX,λj′#Vj′ → CX as j′ →∞.

Proof. Let µk → 0 be a sequence of positive scaling parameters along

which ηX,µk#V → CX as k → ∞. The cone CX has bounded posi-

tive mass equal to Θ(‖V ‖, X), so for all λ > 0 small enough and j ≥
J(λ), 1/2Θ(‖V ‖, X) ≤ 1/(ωnλ

n)‖Vj‖(Bλ(X)) ≤ 2Θ(‖V ‖, X). We may thus

metrise both the convergence of the blow-up sequence to C and that of

Vj → V by some unspeci�ed distance function. For all R, ε > 0 there is

K = K(R, ε) ∈ N with the property that BµKR(X) ⊂ U and

dist(ηX,µKR#(V BµKR(X)), η0,R#(CX BR)) < ε/2.

These being �xed, we �nd J = J(R, ε,K) so that

dist(ηX,µKR#(Vj BµkR(X)), ηX,µKR#(V BµkR(X)) < ε/2

for all j ≥ J . To conclude let εi → 0, Ri →∞ be two independent positive

sequences, let Ki = K(εi, Ri) as above and set j′ = J(Ri, εi,Ki) and λj′ =

µKi . �

Let now T ∈ In(U) be an integral current with ∂T = 0, and suppose that

the varifold |T | is stationary. Using the monotonicity formula, we may again

take weakly convergent blow-up sequences at any point X ∈ U ∩ spt‖T‖,
whose limit in the current topology, say TX ∈ In(Rn+k), is still invariant

under homotheties. We still call TX a tangent cone to T at X, and denote

the set of all tangent cones by VarTan(T,X). Moreover we have the following

analogue for the result above.
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Lemma 1.2.13. Let Tj ∈ In(U) be a sequence of integral currents with

∂Tj = 0 ∈ In−1(U) and so that |Tj | is stationary in U . Suppose that Tj → T

as j → ∞ weakly in the current topology. Let X ∈ spt‖T‖ ∩ U , and TX ∈
VarTan(T,X). After extracting a subsequence we may �nd a sequence of

scalars λj′ → 0 so that

ηX,λj′#Tj′ → TX as j′ →∞.

These two lemmas motivate de�ning so-called limit varifolds and cur-

rents. Let U ⊂ Rn+1 be open and (Vj | j ∈ N) be a sequence of integer

varifolds in IVn(U) be a sequence of integral varifolds (resp. (Tj | j ∈ N) be

a sequence of integral currents in In(U)). Then an integral varifold V (resp.

an integral current T ) is called a limit varifold (resp. a limit current) of the

sequence if there is a subsequence (Vj′) (resp. (Tj′)) so that for some sequence

of points (Xj′) ∈ U and of positive scalars (λj′) we have ηXj′ ,λj′#Vj → V

(resp. ηXj′ ,λj′#Tj → T ). Often the varifold V (resp. the current T ) will be

invariant under homotheties, in which case we call them limit cones of the

sequence. Note however that even if λj′ → 0 or λj′ → ∞ the monotonicity

formula does not guarantee that the limit is scale-invariant, because to draw

this conclusion one needs to consider it with a �xed base point. (This is

true even if one considers a moving sequence of points (Xj | j ∈ N) along

a �xed varifold Vj = V , which one may moreover assume to converge to a

point X ∈ spt‖V ‖. When this rescaling procedure converges to a cone, this

is usually called a pseudotangent cone at the point X in the literature. We

mention this mainly for sake of completeness, and will not use this in the

remainder.)



Chapter 2

Regularity theory of minimal surfaces

2.1. Singular points and regularity of minimal surfaces

Let U ⊂ Rn+k be an open set, and V ∈ IVn(U) be a stationary integral

varifold. A point X ∈ U∩spt‖V ‖ is called regular if there is a radius ρ > 0 so

that Bρ(X)∩spt‖V ‖ is an embedded surface. A point which is not regular is

called singular. We denote the regular set reg V and the singular set sing V .

2.1.1. Regularity of stationary varifolds: Allard regularity. Al-

lard's regularity theorem is the foundational result in the regularity theory

of stationary varifolds in arbitrary codimension. (We will only use the codi-

mension one version.)

Theorem 2.1.1 ( [All72]). Let α ∈ (0, 1). There is ε = ε(n, k, α) > 0 so

that if V ∈ IVn(Bn+k
2 ) is stationary in B2 = Bn+k

2 and 0 ∈ spt‖V ‖ with

‖V ‖(B2)/(ωn2n) < 2− α∫
B2

dist(X,Π)2 d‖V ‖(X) < ε

for some n-dimensional plane Π ∈ Gr(n, n+k) then spt‖V ‖∩B1 ⊂ reg V . In

fact spt‖V ‖∩B1 ⊂ graphu ⊂ reg V for some function u ∈ C1,γ(Π∩B1; Π⊥)

with γ = γ(n, k, α) ∈ (0, 1). Moreover there is C = C(n, k, α) > 0 so that

|u|1,γ;B1∩Π ≤ C
(∫

B2

dist(X,Π)2 d‖V ‖(X)
)1/2

.

Naturally under the same hypotheses elliptic regularity gives that the

function u is smooth, and one obtains estimates of the form |u|l,γ;B1∩Π ≤
Cl(
∫
B2

dist(X,Π)2 d‖V ‖(X))1/2 for all l ∈ N, where Cl = C(n, k, α, l).

The following is an equivalent version of the theorem above, with the

formulation again taken from [Wic14b].

Theorem 2.1.2 ( [All72]). Let U ⊂ Rn+k be open and V ∈ IVn(U) be

a stationary integral varifold. Then there is 0 < ε = ε(n, k) < 1 so that if

Y ∈ U ∩ spt‖V ‖ has Θ(‖V ‖, Y ) < 1 + ε then Y ∈ reg V .

We will often apply Theorem 2.1.1 to sequences of integral varifolds, in

the following way. Let (Vj | j ∈ N) be a sequence of integral varifolds

in IVn(B2), so that |Vj | → |Π| B2 for some n-dimensional plane Π ∈
31
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Gr(n, n+ 1). Then provided j is large enough, we get spt‖Vj‖∩B1 ⊂ reg Vj

and there exists a function uj ∈ C∞(Π ∩ B1; Π⊥) so that spt‖Vj‖ ∩ B1 ⊂
graphuj ⊂ reg Vj . Moreover, for all l ∈ N, γ ∈ (0, 1) we get |uj |l,γ;B1∩Π → 0

as j →∞.

This only requires a slight modi�cation to hold for sequences convergent

to a smooth minimal surface. Let V ∈ IVn(U) be a stationary integral

varifold. Let W ⊂⊂ U \ sing V be a bounded open set, lying a positive

distance away from ∂U ∪ sing V . Suppose additionally that the normal bun-

dle to reg V , denoted T⊥ reg V , is trivialisable on W ∩ reg V . Given small

enough τ > 0 the tubular neighbourhood Wτ of W ∩ reg V with width τ is

di�eomorphic to regW ×Bk
τ , and in particular has Wτ ∩ spt‖V ‖ ⊂ reg V .

Corollary 2.1.3. Let U ⊂ Rn+k be open. Let (Vj | j ∈ N) be a

sequence of stationary integral varifolds in IVn(U), and suppose Vj → V .

LetW ⊂⊂ U\sing V and τ > 0 be as above, and suppose that for all Y ∈W∩
spt‖V ‖, Θ(‖V ‖, Y ) = 1. Then for large enough j ≥ J(τ), Wτ ∩ spt‖Vj‖ ⊂
reg Vj and there is a smooth function uj ∈ C∞(W ∩ reg V ;T⊥ reg V ) so that

Wτ ∩ spt‖Vj‖ ⊂ graphuj ⊂ reg Vj. Moreover for all l ∈ N, γ ∈ (0, 1),

|uj |l,γ;W∩reg V → 0 as j →∞.

2.1.2. Strati�cation of the singular set. Let U ⊂ Rn+k be an

open set, and V ∈ IVn(U) be a stationary integral varifold. Consider a

point X ∈ U ∩ sing V and a tangent cone C ∈ VarTan(V,X). This cone

C may be invariant under translation by vectors V ∈ Rn+1. The set

S(C) = {V ∈ Rn+k | τV#C = C} forms a vector space called the spine

of C. For all m = 0, . . . , n write Sm(V ) = {X ∈ U ∩ sing V | dimS(C) ≤
m for all C ∈ VarTan(V,X)}. If dimS(C) = m then there is a stationary

cone C′ ∈ IVn−m(Rn−m+k) so that C = C′ × S(C). Let C ∈ IVn(Rn+k)

be a stationary integral cone. Then for X ∈ spt‖C‖ \ {0} every tangent

cone CX ∈ VarTan(C, X) has S(CX) 6= {0} because R ·X ⊂ S(CX). This

means that there exists C′X ∈ IVn−1(Rn−1+k) so that CX = C′X ×R ·X.

Then we have the so-called Almgren�Federer strati�cation theorem.

Theorem 2.1.4 ( [Alm00]). Let U ⊂ Rn+k be open, and V ∈ IVn(U) be

a stationary integral varifold. Then dimH Sm(V ) ≤ m for all m = 0, . . . , n.

Under same hypotheses, Naber�Valtorta [NV15] improve this to the fol-

lowing.

Theorem 2.1.5 ( [NV15]). Let U ∈ Rn+k be open, and V ∈ IVn(U) be

a stationary integral varifold. Then Sm(V ) is countably k-recti�able for all

m = 0, . . . , n.
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In the literature both Sk(V ) and Sk\Sk−1(V ) are sometimes called strata

of the singular set of V . The singular set of a stationary V ∈ IVn(U) can

be divided like sing V = Sn−2(V ) ∪ (Sn \ Sn−2)(V ). By Naber�Valtorta's

result, the lower strata gathered into Sn−2(V ) can be excised by by a suitable

sequence of test functions using a capacity argument.

The top stratum Sn \ Sn−1(V ) is also called the branch set of V , and

denoted B(V ) or BV . A singular point X belongs to B(V ), and is called a

branch point if at least one cone C ∈ VarTan(V,X) is of the form C = Q|Π|
for some n-dimensional plane Π ∈ Gr(n, n + k) with multiplicity Q ∈ Z>0.

(By Allard regularity the multiplicity of such a branch point must be at least

two.) Note that if V were to coincide with a regular minimal surface Σ taken

with multiplicity two, that is V = 2|Σ| then the support of V is embedded

near all points in U ∩ spt‖V ‖. In our convention these points do not belong

to BV , although they are sometimes referred to as false branch points.

The next stratum Sn−1 \ Sn−2(V ) is formed by those points X ∈ U ∩
sing V near which at least one tangent cone C ∈ VarTan(V,X) is of the

form C =
∑D

i=1mi|πi| where the πi are n-dimensional half-planes meeting

along a common n − 1�dimensional axis L, and mi ∈ Z>0. We will call

such cones classical cones for lack of a better word. Note however that a

point X ∈ Sn−1 \ Sn−2(V ) is not necessarily a classical singularity. Indeed

so-called classical singularities are those where there are D embedded sheets

with boundary Σ1, . . . ,ΣD with respective multiplicities m1, . . . ,mD which

meet along a common n− 1-dimensional axis Γ say. We denote the classical

singular set by C(V ) or CV . An example of particular relevance to us is

where D = 4, m1, . . . ,m4 = 1 and the half-planes π1, . . . , π4 form a union

of two n-dimensional planes Π1,Π2 ∈ Gr(n, n + 1). In other words C =

|Π1|+ |Π2|. Such tangent cones arise for example at immersed singularities,

where there are two sheets Σ1,Σ2 which are separately embedded and meet

transversely along an n − 1�dimensional axis Γ = Σ1 ∩ Σ2 3 X. However,

note that in general it is not known whether for stationary varifolds such

cones can also arise at singularities which are not immersed. However in

some cases this result is known, for example when one additionally imposes

stability (as de�ned below) then this this is shown in [Wic20]. Moreover,

in the class of two-valued Lipschitz graphs (and arbitrary codimension) the

analogous result was proved by [BK17]. We will use both of these results in

our arguments.

2.1.3. The second variation formula and stability. Here let k = 1,

that is consider codimension one minimal surfaces. In the previous chap-

ter we calculated the �rst variation of the area of a varifold V ∈ IVn(U)

when perturbed in the direction of a vector �eld ξ ∈ C1
c (U ; Rn+1). In the
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same vein one can calculate the second derivative. When the �eld belongs to

C2
c (U ; Rn+1), there is a similar version of the �rst variation formula, express-

ing this in terms of only the �rst and second derivatives of the initial vector

�eld, see [Sim84, 9.4]. We are most interested in a variant of this formula

in which the second fundamental form of reg V appears. Suppose for this

that the regular set of V is orientable, or equivalently that there is a smooth

unit normal N de�ned on reg V . For this, suppose that spt ξ ∩ sing V = ∅.
Then its restriction to spt‖V ‖∩U can be expressed as ϕN for some function

ϕ ∈ C1
c (reg V ). Let K ⊂ U be a compact set containing sptϕ. Deforming

V in the direction of this vector �eld yields the second variation formula

(2.1)
d2

dt2

∣∣∣∣
t=0

‖Φt#V ‖(K) =

∫
K∩reg V

|∇V ϕ|2 − |AV |2ϕ2 d‖V ‖,

where ∇V and AV are the gradient operator and second fundamental form

on reg V respectively.

A varifold V ∈ IVn(U) is said to have stable regular part if this is

non-negative for all perturbations ϕ ∈ C1
c (reg V ), that is

∫
|AV |2ϕ2 d‖V ‖ ≤∫

|∇V ϕ|2 d‖V ‖. This is also called the stability inequality. Note that this

automatically yields L2-bounds for the curvature away from the singular

set. Indeed, let X ∈ U ∩ reg V be a point with dist(X, sing V ) > 2R. If we

let ϕ ∈ C1
c (B2R(X)) be a standard cuto� function, with ϕ = 1 on BR(X) and

|Dϕ| ≤ 2/R then (2.1) yields
∫

reg V ∩BR(X)|AV |
2 d‖V ‖ ≤ 4R−2‖V ‖(B2R(X)).

Note however that if V has a large singular set, then these bounds can in

general not be extended to hold across singular points, that is for balls with

BR(X) ∩ sing V 6= ∅.
We introduce a second notion of stability, which we call ambient stability.

Suppose that we know a priori the varifold V to have locally bounded curva-

ture. By this we mean that for all compactK ⊂ U ,
∫
K∩reg V |AV |

2 d‖V ‖ <∞.

Then we say that V is ambient stable if the inequality

(SV )

∫
U∩reg V

|AV |2ϕ2 d‖V ‖ ≤
∫
U∩reg V

|∇V ϕ|2 d‖V ‖

holds for all ϕ ∈ C1
c (U). We emphasise here that both the local bounds for

the curvature and the stability inequality hold for any compact subsets of U ,

not just those that avoid the singularities of V . Though it appears similar,

this notion of stability is signi�cantly stronger, and thus more constraining,

then those usually used in the literature. To give but one example, compare

it with the stability inequality [Wic14a, (3.2)] in Wickramasekera's regularity

theory, which is only mandated to hold for test functions ϕ ∈ C1
c (reg V ).

The advantage that ambient stability holds over this weaker notion of

stability is that (SV ) yields local L
2-estimates for the second fundamental
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form, which hold across the singular set, depending essentially on the mass

of the varifold.

This in turn allows the application of the theory developed by Hutchinson

in [Hut86], from whence we derive that ambient stability is preserved under

weak convergence of varifolds.

Proposition 2.1.6 ( [Hut86]). Let U ⊂ Rn+1 be open, and let (Vj | j ∈
N) be a sequence of stationary varifolds in U satisfying (SV ). Suppose that

Vj → V ∈ IVn(U) weakly in the varifold topology. Then V is stationary and

ambient stable.

Let us make a quick comment on the orientability of reg V we assumed

above. Although we initially assumed this in the derivation of the stability

inequality, note that (SV ) itself is well-de�ned regardless of whether the

regular part is orientable or not.

2.1.4. The Jacobi operator. We stay in codimension k = 1 as in the

previous section. Let U ⊂ Rn+1 be a bounded set, and V ∈ IVn(U) be

a stationary integer varifold with regular part reg V . In what follows we

furthermore assume that U ∩ reg V is connected and orientable. On reg V

we can de�ne the linear, elliptic operator LV = ∆V + |AV |2, commonly

called the Jacobi operator. Consider another open subset W ⊂⊂ U \ sing V

which lies a positive distance away from sing V . We may then study the

operator LV on the domain W ∩ reg V , and write (λp(W ) | p ∈ N) for

the spectrum of LV with zero Dirichlet eigenvalues on ∂W ∩ reg V . Recall

from the previous section that reg V is called stable if for all ϕ ∈ C1
c (reg V ),∫

U∩reg V |AV |
2ϕ2 d‖V ‖ ≤

∫
U∩reg V |∇V ϕ|

2 d‖V ‖. As we assumed U ∩ reg V is

connected, the Constancy Theorem [Sim84, Thm 41.1] allows us to say that

the density of V is constant everywhere on reg V , and the above inequality

becomes
∫
U∩reg V |AV |

2ϕ2 dHn ≤
∫
U∩reg V |∇V ϕ|

2 dHn. After integrating by

parts it is not hard to see that this is equivalent to requiring that the spec-

trum of LV is non-negative for all open W ⊂⊂ U \ reg V , that is λp(W ) ≥ 0

for all p ∈ N. The standard arguments for elliptic operators show that the

eigenfunctions of LV are smooth insideW∩reg V , and that the eigenfunction

corresponding to the least eigenvalue is strictly positive in W ∩ reg V .

On the other hand note that the symmetries of V lead to Jacobi �elds,

that is to functions f ∈ C2(reg V ) which solve ∆V f + |AV |2f = 0 in the

classical, pointwise sense. This is easiest to see for the translations of V

in the direction of the standard basis vectors e1, . . . , en+1 of Rn+1. The

correspondings �ows are just translations at unit speed, which preserve the

area of V as isometries. In particular the second variation is constant and

equals to zero, so that we �nd ∆V 〈N, ei〉+ |AV |2〈N, ei〉 = 0 for all i.
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Now consider the following special case. Let D1 ⊂ Rn be the unit

disc and U = D1 × R ⊂ Rn+1. Suppose also given on D1 the smooth

function u ∈ C2(D1) whose graph G = {(x, u(x)) | x ∈ D1} de�nes a

stationary varifold |G| ∈ IVn(D1 ×R). Note that in this case |G| is com-

pletely regular, and we can orient regG by the upward-pointing unit nor-

mal vector N = ν = (1 + |Du|2)−1/2(−Du, 1). In particular note that here

〈ν(X), en+1〉 = (1+|Du|(x))−1/2 > 0 at all points X = (x,Xn+1) ∈ G. Thus
f = 〈ν, en+1〉 de�nes a strictly positive solution of the equation LV f = 0. A

general principle for elliptic operators then shows that G is stable�see 3.2.5

for a second description of the argument. Assume, in order to obtain a con-

tradiction, that this fails and for some open subset W ⊂⊂ D1 ×R we have

λ1 = λ1(W ) < 0. There is a positive ϕ1 ∈ C2(W ∩ G) ∩ C0(W ∩ G) with

ϕ1 = 0 on ∂W ∩ G and ∆Gϕ1 + |AG|2ϕ1 = −λ1ϕ1. But then ϕ1 must be

a subsolution, because ∆Gϕ1 + |AG|2ϕ1 > 0. Comparing this to f yields

a contradiction with the maximum principle, and concludes our argument

that G is necessarily stable.

2.1.5. Regularity of stable minimal surfaces in codimension one.

Let k = 1, and let U ⊂ Rn+1 be open. Then [SS81] established the following.

Theorem 2.1.7 ( [SS81]). Let U ⊂ Rn+1 be open and let V ∈ IVn(U)

be a stationary integral varifold V ∈ IVn(U) with stable regular part. If for

all compact K ⊂⊂ U ,

Hn−2(sing V ∩K) <∞,

then the singular set sing V

(i) is empty if 1 ≤ n ≤ 6,

(ii) is discrete if n = 7,

(iii) and has dimH sing V ≤ n− 7 if n ≥ 8.

Technically in [SS81] the assumptions on the singular set were stated

as Hn−2(sing V ) = 0, although their arguments are also applicable if one

only knows that sing V has locally �nite Hn−2-measure or alternatively that

sing V is countably n−2�recti�able. Combining this with the result of [NV15]

cited above, this means that if V has stable regular part and Sn \ Sn−2(V )

is countably n− 2�recti�able then the conclusions of Theorem 2.1.7 hold.

Wickramasekera [Wic14a] later substantially generalised this result by

weakening the a priori assumption on the singular set of V , only assuming

that U ∩ sing V does not contain any so-called classical singularities, which

we de�ned above in (2.1.2). Of course this includes those stable varifolds

which have Hn−1(sing V ) = 0. That alone is a substantial generalisation

over the assumption that sing V is countably n− 2�recti�able.
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Theorem 2.1.8 ( [Wic14a]). Let U ⊂ Rn+1 be open and let V ∈ IVn(U)

be a stationary integral varifold with stable regular part. If sing V does not

contain any classical singularities, then it

(i) is empty if 1 ≤ n ≤ 6,

(ii) is discrete if n = 7,

(iii) and has dimH sing V ≤ n− 7 if n ≥ 8.

Wickramasekera [Wic14c] next used this regularity theory to establish a

sharp version of Ilmanen's singular maximum principle [Ilm96], which holds

in the following setting. Let V1, V2 ∈ IVn(U) be stationary integral varifold,

so that spt‖V2‖ lies locally on one side of reg V1 in the following sense.

Hypothesis K. For all Y ∈ reg V1 ∩ spt‖V2‖, there is ρ > 0

so that

(a) sing V1 ∩Bρ(Y ) = ∅,
(b) Bρ(Y ) \ spt‖V1‖ is disconnected,
(c) spt‖V2‖∩Bρ(Y ) belongs to one of the two connected com-

ponents in the complement of spt‖V1‖.

Theorem 2.1.9 ( [Wic14c]). Let U ⊂ Rn+1 be open and V1, V2 ∈ IVn(U)

be stationary integral varifolds satisfying Hypothesis K. If Hn−1(sing V1) =

0 then either spt‖V1‖ ∩ spt‖V2‖ = ∅ or spt‖V1‖ = spt‖V2‖.

2.1.6. Wickramasekera's branched sheeting theorem. Here we

are still working in codimension one, that is k = 1. Moreover recall Br =

Bn+1
r is the open ball of radius r > 0. The nature of the results listed in

this section requires us to use some notation for two-valued functions we

introduce later in 3.1, notably given a two-valued function u = {u1, u2} we
abbreviate u1 ∧ u2 = max{u1, u2} and u1 ∨ u2 = min{u1, u2}.

Theorem 2.1.10 ( [Wic20]). There is ε = ε(n) > 0 so that if V ∈
IVn(B2) is stationary with stable regular part, ‖V ‖(B2)/(ωn2n) < 2 + ε,

Θ(‖V ‖, Y ) 6= 3/2 for all Y ∈ B2 and

(i) either
∫
B2

dist(X,Π)2 d‖V ‖(X) < ε for some Π ∈ Gr(n, n+ 1),

(ii) or
∫
B2

dist(X,Π1)2 ∧ dist(X,Π2)2 d‖V ‖(X) +
∫
B2

dist(X, spt‖V ‖)2

d(‖Π1‖+ ‖Π2‖)(X) < ε for some Π1 6= Π2 ∈ Gr(n, n+ 1).

Then

(i) either B1 ∩ spt‖V ‖ ⊂ reg V ∪ CV ∪ BV and there is γ = γ(n, ε) ∈
(0, 1) and a two-valued function u ∈ C1,γ(B1 ∩ Π;A2(Π⊥)) so that

B1 ∩ spt‖V ‖ ⊂ graphu ⊂ reg V ∪ CV ∪ BV . Moreover there is C =

C(n, ε) > 0 so that |u|1,γ;B1∩Π ≤ C
( ∫

B2
dist(X,Π)2 d‖V ‖(X)

)1/2
.

(ii) or B1∩spt‖V ‖ ⊂ reg V ∪CV and there is γ = γ(n, ε) ∈ (0, 1) and two

single-valued functions ui ∈ C1,γ(B1∩Πi,Π
⊥
i ) so that B1∩spt‖V ‖ ⊂
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∪i graphui ⊂ reg V ∪ CV . Moreover there is C = C(n, ε) > 0 so

that |ui|1,γ;B1∩Π ≤ C
( ∫

B2
dist(X,Π1)2 ∧ dist(X,Π2)2 d‖V ‖(X) +∫

B2
dist(X, spt‖V ‖)1/2 d(‖Π1‖+ ‖Π2‖)(X).

)1/2
.

Elliptic regularity theory is not available for two-valued minimal graphs.

However, Simon�Wickramasekera [SW16] have shown that necessarily u ∈
C1,1/2(B1∩Π;A2(Π⊥)). Of course, in the second case described above, where

V is close to |Π1|+ |Π2| and V ∩ spt‖V ‖ ⊂ reg V ∪ CV the two functions ui

are in fact smooth. Moreover the usual, single-valued elliptic regularity ap-

plies, and gives that for all l ∈ Z>0 there is Cl = C(n, l) so that |ui|l,γ;B1∩Πi ≤
Cl
( ∫

B2
dist(X,Π1)2∧dist(X,Π2)2 d‖V ‖(X)+

∫
B2

dist(X, spt‖V ‖)1/2 d(‖Π1‖+
‖Π2‖)(X).

)1/2
Theorem 2.1.11 ( [Wic20]). Let U ⊂ Rn+1 be open and V ∈ IVn(U)

be stationary with stable regular part. Then there is ε = ε(n) ∈ (0, 1) so that

if Y ∈ U ∩ spt‖V ‖ has Θ(‖V ‖, Y ) < 2 + ε then Y ∈ reg V ∪ BV ∪ CV .

Let us quickly comment on these three possibilities. Let V ∈ IVn(U) be

as above, and let Y ∈ U ∩ spt‖V ‖ have Θ(‖V ‖, Y ) = 2. Then either Y ∈ BV
or else there is 0 < ρ < dist(Y, ∂U) so that

(1) either Bρ(X)∩ spt‖V ‖ ⊂ reg V and there is a smooth embedded Σ

so that V Bρ(X) = 2|Σ|,
(2) or Bρ(X) ∩ spt‖V ‖ ⊂ reg V ∪ CV is immersed and there are two

smooth embedded surfaces Σ1,Σ2 which meet transversely along

an axis of immersed, classical singularities, so that V Bρ(Y ) =

|Σ1|+ |Σ2| and sing V ∩Bρ(Y ) = Σ1 ∩ Σ2.

2.2. Single-valued minimal graphs and the Bernstein theorem

Let Ω ⊂ Rn be an open, possibly unbounded domain. We say that a

smooth function u ∈ C2(Ω) de�nes a minimal graph over Ω if it is a classical

solution to the minimal surface equation

(1 + |Du|2)∆u−
n∑

i,j=1

DiuDjuDiju = 0.

To distinguish between these and the two-valued minimal graphs which we

will introduce later, we will sometimes say that a minimal graph is single-

valued. Instead of saying that u ∈ C2(Ω) satis�es the minimal surface

equation, we sometimes abbreviate this and say that u is a minimal graph.

(Likewise in the two-valued setting we will sometimes say that a two-valued

function u ∈ C1,α(Ω;A2) is a two-valued minimal graph.) By the elliptic

regularity for quasilinear elliptic PDE, a single-valued function u as above is
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automatically smooth. This is not the case for two-valued minimal graphs,

whose regularity cannot be improved beyond C1,1/2(Ω;A2).

The asymptotic properties of entire, single-valued minimal graphs can

be studied most e�ciently using the theory of so-called area-minimising cur-

rents.

2.2.1. Area-minimising currents. Let U ⊂ Rn+k be an open set,

and T ∈ Dn(U) be an integer multiplicity current. We say that T is area-

minimising in U if for all bounded open W ⊂⊂ U , MW (T ) ≤MW (S) for all

S ∈ Dn(U) with ∂T = ∂S and spt(S − T ) a compact subset of W . Recall

that we write |T | ∈ IVn(U) for the integer varifold obtained from T by

`forgetting' its orientation. Suppose that ∂T = 0 and T is area-minimising

in U . Then |T | is stationary and stable in U , the latter in the ambient sense

where any compactly supported deformations are allowed. Area-minimising

currents satisfy the following useful compactness property.

Proposition 2.2.1 ( [Sim84, Thm 34.5]). Let (Tj | j ∈ N) be a sequence

of area-minimising currents in U , with supjMW (Tj)+MW (∂Tj) <∞ for all

bounded open W ⊂⊂ U . Then there is a subsequence (Tj′) and a minimising

current T ∈ Dn(U) so that Tj′ → T and |Tj′ | → |T | in the current and

varifold topologies respectively.

This is stronger than the general compactness theorem for sequences of

integral currents Tj ∈ In(U). There we were also assured the convergence

of a subsequence in both the current and varifold topologies, say Tj′ → T

and |Tj′ | → V , but in general one has only |T | � V , not |T | = V . (This is

precisely what happens in Example 1.2.6.)

Moreover, for Proposition 2.2.1 it is not su�cient for the |Tj | to be sta-

tionary, although we may recall the weaker result of Proposition 1.2.10, where

one is guaranteed the existence of a convergent subsequence with |Tj′ | → T

and |Tj′ | → V ∈ IVn(U), but in general one cannot improve upon |V | � |T |.
To see this one may simply consider a sequence of scaled-down catenoids

de�ned above the horizontal plane Π = Rn × {0} ⊂ Rn+1. In the varifold

topology the catenoids converge to 2|Π|, whereas in the current topology

there is mass cancellation. In the limit the two sheets of the catenoid cancel

each other out as they are oriented in opposite directions, and the limit is

the zero current.

From the above obtains the existence of tangent cones to area-minimising

currents, see for example [Sim84, Thm. 35.1]. We have that Θ(‖T‖, X)

exists at all point X ∈ U , the density function is upper semicontinuous and

for each X ∈ U ∩ spt‖T‖ and each sequence of positive scalars λj → 0

there is a subsequence (λj′) so that ηX,λj′T → TX to some integral current
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TX ∈ In(Rn+k) with ∂TX = 0. (A similar point was made in the discussion

preceding Lemma 1.2.13.)

In codimension one, that is when k = 1, one can obtain powerful reg-

ularity results, stronger even than those obtained for stable minimal hy-

persurfaces. This theory was developed during the 1960s, and was the re-

sult of the combined work of de Giorgi [DG61], Federer�Fleming [FF60],

Federer [Fed70], Reifenberg [Rei60], Fleming [Fle62], Almgren [Alm66] and

Simons [Sim68].

Theorem 2.2.2 ( [Fed69, Thm. 5.4.15]). Let 2 ≤ n ≤ 6, let T ∈ In(U) be

area-minimising in U ⊂ Rn+1 with ∂T = 0. Then sing T = ∅ and U∩spt‖T‖
is a smooth embedded surface in U .

The main technical result behind this theorem is a classi�cation of area-

minimising cones. In low dimensions, namely for n ≤ 6 one can show that

these can only be planes, see e.g. [Alm66] for n = 3 and [Sim68] for the cases

2 ≤ n ≤ 6.

The connection between such cones and minimal graphs was �rst estab-

lished by Fleming [Fle62], who showed that if there existed a non-linear, en-

tire single-valued minimal graph u ∈ C2(Rn), then there would exist a non-

planar area-minimising cone in Rn+1. Such cones can be obtained by taking

blowdown sequences of the graph of u. (Indeed from a modern vantage point

this follows from the compactness of area-minimising currents combined with

the monotonicity formula.) Next de Giorgi [DG61] showed that such cones

would necessarily be cylindrical of the form C = C′×Ren+1 ∈ In(Rn+1). As

C′ ∈ In−1(Rn) is also area-minimising, a non-linear entire minimal graph

u ∈ C2(Rn) in fact yields an area-minimising cone in Rn. Thus Simons'

classi�cation of area-minimising cones yields the following result.

Theorem 2.2.3 (Bernstein's theorem). Let n ≤ 7. Then every single-

valued minimal graph u ∈ C2(Rn) is linear.

In larger dimensions area-minimising currents can develop singularities.

The �rst example of this was the cone CS ⊂ R8 found by [BDGG69], with

link spt‖CS‖ ∩ S7 = {(X,Y ) ∈ R4 × R4 | |X| = |Y |} ∩ S7. The authors

also give a construction for an entire minimal graph de�ned on R8 which is

asymptotic at in�nity to CS ×Re9. The same methods work in every even

dimension. Later, Simon [Sim89] constructed a plethora of new examples of

entire minimal graphs.

Despite these examples of singular cones, a so-called dimension reduction

argument shows that the singular set of an area-minimising current T say

has codimension at least seven, that is dimH sing T ≤ n − 7. For stable
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minimal hypersurfaces, such a result is only possible if one a priori excludes

at least classical singularities, see Theorem 2.1.8 for a statement of the most

general available result, proved by [Wic14a]. This is one of the complicating

factors of working with two-valued minimal graphs, as these generally have

both branch points and classical singularities.

2.2.2. Minimal graphs and calibrations. Let Ω ⊂ Rn be an open

set, and u ∈ C2(Ω) de�ne a minimal graph. By elliptic regularity such a

function is automatically smooth. We de�ne a smooth n-form on Ω × R

by setting ω(x,Xn+1) = dx1 ∧ · · · ∧ dxn +
∑n

i=1(−1)iDiu(x) dx1 ∧ · · · ∧
dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1 at all X = (x,Xn+1) ∈ Ω × R. Equivalently

this can be de�ned by imposing that for any vectors V1, . . . , Vn ∈ Rn+1,

ω(V1, . . . , Vn) = det(V1, . . . , Vn, ν) where recall ν = (1 + |Du|2)−1/2(−Du, 1)

is the upward-pointing unit normal to G. (Note that the form ω is constant

along lines of the form {x} ×R where x ∈ Ω.)

Suppose that {V1, . . . , Vn} form an orthonormal family of vectors. From

the second characterisation we �nd that |ω(V1, . . . , Vn)| ≤ 1 with equality

if and only TXG = span{V1, . . . , Vn}. Additionally from the coordinate

de�nition one may check that ω is closed, that is dω = 0 in Ω ×R. These

two properties taken together make ω a so-called calibration. We will not

discuss the rich theory of calibrated currents further, but just explain how

to use ω to show that G = graphu is area-minimising. De�ne the current

JGK ∈ In(Ω ×R) using the upward-pointing unit normal. This current has

boundary ∂JGK = 0. The following is a standard, well-known fact.

Proposition 2.2.4. Let Ω ⊂ Rn be open, and u ∈ C2(Ω) de�ne a

minimal graph. Then JGK ∈ In(Ω×R) is area-minimising in Ω×R.

Proof. Let W ⊂⊂ Ω×R be a compactly contained bounded open set,

S ∈ In(Ω × R) be an integral current with spt(JGK − S) ⊂ W and ∂S =

0 = ∂JGK. On the one hand, as ω is closed we have
∫
W ω dS =

∫
W ω dJGK =

‖G‖(W ) = Hn(G ∩ W ). On the other hand,
∫
W ω dS ≤ ‖S‖(W ), which

yields the desired inequality. �

In particular we �nd that the varifold |G| = |graphu| ∈ IVn(Ω ×R) is

stationary in Ω×R. Let A < B ∈ R, and note that JGK is also minimising in

the bounded cylinder Ω× (A,B) ⊂ Ω×R, essentially by de�nition. In what

follows we need to slightly strengthen this property. Here we take Ω ⊂ Rn

a bounded open set with Lipschitz boundary, and u ∈ C2(Ω) ∩ C1(Ω). We

may consider JGK as a current in Rn+1, which now has non-zero boundary.

That being said, our hypotheses guarantee that ∂JGK ∈ In−1(Rn+1) is an

integral current supported inside ∂Ω×R. (To see this one need only check
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that the mass of the boundary is locally �nite.) Let moreover A < B ∈ R,

and de�ne the set GA,B = G ∩ Ω× (A,B).

Proposition 2.2.5. Let Ω ⊂ Rn, u ∈ C2(Ω) ∩ C1(Ω) de�ne a minimal

graph, A < B ∈ R and JGA,BK be as above. Let T ∈ In(Rn+1) be a current

with spt‖T‖ ⊂ Ω × R and ∂T = ∂JGA,BK. Then Hn(G ∩ Ω × (A,B)) ≤
‖T‖(Rn+1).

Remark 2.2.6. This result is perhaps slightly more subtle than meets the

eye, as it is not true in general thatHn(G∩Ω×(A,B)) ≤ ‖T‖(Ω×(A,B)), nor

even can it be bounded by ‖T‖(Ω×R), the mass of the current in the interior.

To see this, consider the following simple example. Take Ω = D1 equal to

the unit disc, and let u ∈ C2(Ω) ∩ C1(Ω) be so that Hn(G) > Hn(D1). Let

M > supD1
u, and consider the open set U = {(x,Xn+1) ∈ D1 ×R | u(x) <

Xn+1 < M}. This is a Caccioppoli set, and the corresponding current JUK
has boundary ∂JUK = −JGK + S, where spt(S − JD1 × {M}K) ⊂ ∂D1 ×R.

Then ∂(S − JGK) = 0, and yet ‖S‖(D1 ×R) = Hn(D1) < Hn(G).

Proof. We start by modifying T so as to ensure that it has compact

support. As the slab Rn × [A,B] is convex, the projection PA,B : Rn+1 →
Rn × [A,B] onto it does not increase mass. This is a proper Lipschitz map,

so we can consider the pushforward TA,B = PA,B#T . The current TA,B has

total mass ‖TA,B‖(Rn+1) ≤ ‖T‖(Rn+1), and sptTA,B ⊂ Ω× [A,B].

Let ξ be a Lipschitz compactly supported vector �eld in Rn+1 which van-

ishes on ∂GA,B and points into Ω×R at all other points of ∂(Ω× (A,B)).

Then the �ow Φt of ξ leaves the boundary invariant, and moves the remain-

der of TA,B inward. Therefore spt‖Φt#TA,B‖ ∩ ∂(Ω × (A,B)) = ∂GA,B,

and the total mass of Φt#TA,B lies in the interior of the region, that is

‖Φt#TA,B‖(Rn+1) = ‖Φt#TA,B‖(Ω × (A,B)). Then repeating the calcu-

lations from the previous proof we �nd that ‖Φt#TA,B‖(Ω × (A,B)) ≥
Hn(G∩Ω× (A,B)). We conclude that ‖TA,B‖(Rn+1) ≥ Hn(G∩Ω× (A,B))

by letting t→ 0. �

2.2.3. A Jenkins�Serrin type lemma. Let Ω ⊂ Rn be a convex,

bounded domain with piecewise smooth boundary. Let (Ωj | j ∈ N) be a

sequence of bounded open sets with distH(Ωj ,Ω) → 0 as j → ∞. These

need neither be convex, nor as regular as Ω. Suppose given, on every Ωj ,

a smooth function uj ∈ C2(Ωj) whose graph Gj is minimal. Depending

on whether we consider this endowed with an orientation or not, we can

associate to Gj the varifold |Gj | and the current JGjK in Rn+1. We have

|Gj | ∈ IVn(Rn+1) but in general it is only stationary inside Ωj × R. In

the same spirit JGjK ∈ In(Rn+1) but ∂JGjK is only zero in Ωj × R. We
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saw previously that the current JGjK is area-minimising inside the open set

Ωj ×R.

Let T = T0×Ren+1 ∈ In(Rn+1) be a vertical current with sptT0 ⊂ ∂Ω.

Suppose further T0, and hence also T , has piecewise smooth support. We

write sptT0 = N0 ∪ ∪k≤KΓ0
k where the Γ0

k ⊂ ∂Ω are smooth embedded and

N0 = ∪k≤K∂Γ0
k has Hn−1(N0) <∞. Likewise we write sptT = N ∪∪k≤KΓk

where N = N0 × R and Γk = Γ0
k × R. It is convenient, though slightly

imprecise, to abbreviate these as reg T0 = ∪kΓ0
k and sing T0 = ∪k∂Γ0

k. We

assume moreover that T, T0 have constant multiplicity one on their regular

part. We can write T0 = JΓ0K and T = JΓK = T ×Ren+1, where both are

oriented to point inwards, that is into Ω.

The following result is inspired by the work of Jenkins�Serrin in dimen-

sion n = 2, see [JS66a,JS66b].

Theorem 2.2.7. Let Ω,Ωj ⊂ Rn × {0}, and uj ∈ C2(Ωj) be as above.

Suppose that distH(Ωj ,Ω) → 0 and JGjK → T as j → ∞, and that for all

0 < τ < 1 < A there is J(τ,A) ∈ N so that for j ≥ J(τ,A),

(reg T )τ ∩ {|X|n+1 < A} ∩ spt ∂JGjK ⊂ (sing T )τ .

Then

‖T0‖ ≤ 1/2Hn−1(∂Ω).

Remark 2.2.8. The estimate is sharp, as can be seen by considering the

following example. Let n = 2, and consider Ω = (−π/2, π/2)×(−π/2, π/2) ⊂
R2 and de�ne a function

u(x1, x2) = log
(cosx1

cosx2

)
.

(This is the fundamental piece used to construct Scherk's doubly-periodic

surface, see [Sch35].) Note that this function u diverges to +∞ near the

sides {±π/2} × (−π/2, π/2) and to −∞ near the other sides of the square,

(−π/2, π/2) × {±π/2}. Then the graphs associated to uj = u − j, with

Ωj = Ω kept �xed, converge to the union of the two planes J{±π/2} ×
(−π/2, π/2)K × Re3 in the topology of currents. The length of the corre-

sponding portion of the boundary is 2π, precisely half of the total length of

the boundary ∂Ω.

Proof. We ultimately obtain the inequality by constructing a compari-

son surface. We begin the construction by making the following two assump-

tions:

(1) Ω ⊂ Ωj for all j,

(2) and for all 0 < τ < 1 < A there is J = J(τ,A) ∈ N so that

|uj | > 2A on Ω \ (sptT0)τ for all j ≥ J .
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We will explain later why this may be done without restriction of generality.

Let 0 < τ < σ < 1 < A be given, with the eventual aim of letting

σ, τ → 0 and A → ∞, and assume that j ≥ J(τ,A) is large enough to

guarantee the validity of (2). We may perturb both by a small amount to

guarantee that the level sets {uj = ±A} and the boundary of the tubu-

lar neighbourhood (sptT0)τ are smooth inside Ωj , justifying this by Sard's

lemma. (Note however that both are allowed to meet the boundary of Ωj

along a set which is not in general embedded.) For the remainder of the

proof whenever we adjust the values of τ, σ or A we assume that we do so in

a way which preserves this property.

The �rst adjustment we make to τ, σ is to take them small enough

that (sptT0)τ ∩ ∂Ω ⊂ sptT0 ∪ (sing T0)σ. This is possible because ∂Ω and

sptT0 are piecewise smooth. Moreover we may impose that (Γk)τ ∩ (Γl)τ ⊂
(sing T0)σ for all k 6= l which means that we can decompose sptT0 ∩ Eτ,σ =

∪k(Γk)τ ∩ Eτ,σ into a union of pairwise disjoint sets. Here and in what

follows we set Eτ,σ = (sptT0)τ \ [sing T0]σ = {x ∈ Rn | dist(x, sptT0) <

τ,dist(x, sing T0) > σ}. De�ne also the open set Ωj,τ,σ = (Ω ∪ (sptT0)τ ) ∩
Ωj \ [sing T0]σ. We may take J(τ, σ,A) ∈ N large enough that |uj | > 2A

in Ωj,τ,σ provided j ≥ J(τ, σ,A). (In fact even uj > 2A holds true in that

region.) From a geometric point of view this is equivalent to saying that

∂JGjK∩Ωj,τ,σ ∩ (−2A, 2A) = ∅. As a consequence we can restrict the graphs

to smaller set, making sure that |Gj | Ωj,τ,σ × (−3/2A, 3/2A) is station-

ary. In particular |Gj | Ωj,τ,σ × (−3/2A, 3/2A) is stationary in the open

set (Γ0
k)τ \ [∂Γ0

k]σ × (−3/2A, 3/2A) for all k. Using the Allard regularity

theorem we know that there is a function Uj,k = Uj,k,τ,σ,A ∈ C∞(Γk,Γ
⊥
k )

de�ned on some subset of Γk with values in the direction normal to it, so

that Gj ∩ (Γ0
k)τ \ [∂Γ0

k]σ × (−5/4A, 5/4A) ⊂ graphUj,k. (In principle from

Allard regularity one obtains only a function de�ned on an open domain of

Γk with this property. As graphUj,k \Ωj,τ,σ× (−5/4A, 5/4A) has no further

importance to us, we can extend this function smoothly to the whole surface

Γk in an arbitrary way.) Given any ε > 0 we can update J(τ, σ,A, ε) ∈ N to a

larger value which ensures that supΓk
|Uj,k| ≤ ε for all k and j ≥ J(τ, σ,A, ε).

(By elliptic regularity this could be extended to hold in any Hölder norm, as

indeed when one extends Uj,k to Γk one can do so in a way that preserves

the smallness of the function and its derivatives.)

Consider the open set Wj,τ,σ,A ⊂ Ωj,τ,σ × (−A,A) de�ned by

Wj,τ,σ,A = {(x,Xn+1) ∈ Ωj,τ,σ ×R | uj(x) ∨ −A < Xn+1 < A},
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where we abbreviate uj ∨−A = min{uj ,−A}. This is a Caccioppoli set, and
its topological boundary is contained inside, but in general not equal to, the

union of the following sets:

(1) ({uj < A} ∩ Ωj,τ,σ)× {A} and ({uj < −A} ∩ Ωj,τ,σ)× {−A},
(2) the boundary away from sptT0, ∂Ω\([sing T0]σ∪[sptT0]τ )×[−A,A],

(3) the boundaries of the tubular neighbourhoods, ∂(sing T0)σ∩Ωj,τ,σ×
[−A,A] ⊂ ∂(sing T0)σ × [−A,A].

(4) graphical portions near reg T0, Gj∩Ωj,τ,σ×[−A,A] = ∪kGj∩(Γk)τ \
(∂Γk)σ × [−A,A].

For a precise equality we decompose the current boundary into

−∂JWj,τ,σ,AK = J({uj < A} ∩ Ωj,τ,σ)× {A}K

+ J({uj < −A}) ∩ Ωj,τ,σ)× {−A}K

+ J∂Ω× (−A,A) \ ([sing T ]σ ∪ sptT )K

+ J∂Wj,τ,σ,A ∩ ∂(sing T )σK

+ JGj ∩ Ωj,τ,σ × (−A,A)K.

As we consider −∂JWj,τ,σ,AK on the left-hand side, the currents on the right-

hand side are oriented to point inwards into Wj,τ,σ,A. This aligns with the

orientation that we chose for the current T . We estimate the areas of all

the summands separately. Let a small δ > 0 be given. For the �rst two we

respectively �nd

Hn(({uj < ±A} ∩ Ωj,τ,σ)× {±A}) ≤ Hn(Ωj,τ,σ) ≤ Hn(Ωj).

Using the convergence Ωj → Ω in the Hausdor� distance, we �nd that there

is J = J(τ, σ,A, δ) ∈ N so that Hn(Ωj) ≤ Hn(Ω) + δ for all j ≥ J .
The third term, J∂Ω × (−A,A) \ ([sing T ]σ ∪ sptT )K does not actually

depend on j, whence we �nd that taking σ, τ small enough in terms of δ we

can ensure that

Hn(∂Ω× [−A,A] \ ([sing T ]σ ∪ [sptT ]τ ))

≤ 2A(Hn−1(∂Ω)−Hn−1(sptT0)) + 2Aδ.

We bound Hn(J∂Wj,τ,σ,A ∩ ∂(sing T )σK) ≤ Hn(∂(sing T )σ × {|X|n+1 ≤ A}).
To estimate this, take σ > 0 small enough that

Hn(J∂Wj,τ,σ,A ∩ ∂(sing T )σK) ≤ 2AHn−1(∂(sing T0)σ)

≤ 4πAσHn−2(sing T0) + 2Aδ.

Decompose the graph Gj inside Ωj,τ,σ × [−5/4A, 5/4A] into a union of

graphs like JGj∩Ωj,τ,σ×[−5/4A, 5/4A]K =
∑K

k=1JgraphUj,k∩(Γk)τ \[∂Γk]σ∩
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{Xn+1 < 5/4A}K. Considering every set (Γk)τ \ [∂Γk]σ ∩ {|Xn+1| < 5/4A}
separately we �nd that |Gj | (Γk)τ \ (∂Γk)σ ∩ {|Xn+1| < 5/4A} → |Γk|
(Γk)τ \ [∂Γk]σ ∩ {|Xn+1| < 5/4A} as j → ∞. Update j ≥ J(τ, σ,A, δ) so

that for all k,

Hn(Gj ∩ (Γk)τ \ [∂Γk]σ ∩ {|Xn+1| ≤ A}) ≥ 2AHn−1(Γ0
k \ (∂Γ0

k)σ)− 2Aδ,

and summing these we obtain

Hn(Gj ∩ Ωj,τ,σ × [−A,A])

≥ 2A(Hn−1(sptT0)−Hn−1((sing T0)σ))− 2KAδ

≥ 2A(Hn−1(sptT0)− 2πσHn−2(sing T0)− δ)− 2KAδ,

provided we change σ to a suitably small value in terms of δ.

We use these area bounds to compare the currents JGj∩Ωj,τ,σ×(−A,A)K
and

−Tj,A = −∂JWj,τ,σ,AK− JGj ∩ Ωj,τ,σ × (−A,A)K.

By construction these have ∂Tj,A = ∂JGj ∩ Ωj,τ,σ × (−A,A)K. By Proposi-

tion 2.2.5, we then have

Hn(Gj ∩ Ωj,τ,σ ∩ (−A,A)) ≤ ‖Tj,A‖(Rn+1) = Hn(sptTj,A).

Substituting our term-by-term calculations into this inequality we �nd

2A(Hn−1(sptT0)− 2πσHn−2(sing T0)− δ)− 2KAδ

≤ 2Hn(Ω)+2δ+2A(Hn−1(∂Ω)−Hn−1(sptT0))+2Aδ+4πAσHn−2(sing T0)+2Aδ,

whence after dividing by 2A we get

Hn−1(sptT0)− 2σπHn−2(sing T0)− δ(1 +K)

≤ Hn(Ω)/A+Hn−1(∂Ω)−Hn−1(sptT0)+2σπHn−2(sing T0)+δ(2+1/A).

This simpli�es to

2Hn−1(sptT0)

≤ Hn(Ω)/A+Hn−1(∂Ω) + 4σπHn−2(sing T0) + δ(K + 3 + 1/A).

The desired inequality follows after letting A → ∞, δ, σ, τ → 0 and j ≥
J(σ, τ, A, δ) → ∞. To conclude it only remains to justify the two assump-

tions (1) and (2).

(1) After translating Ω we may assume that it contains the origin. The

convexity of Ω and the piecewise regularity of its boundary ensure the fol-

lowing. For all τ > 0 there is δ > 0 so that η0,(1+δ)#Ω ⊂ Ω \ (∂Ω)τ and

(Ω)τ ⊂ η0,(1+δ)−1#Ω. Moreover as τ → 0 we may impose that δ → 0 also.
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Given τ > 0 take J(τ) ∈ N so that Ω \ (∂Ω)τ ⊂ Ωj ⊂ (Ω)τ . Taking δ > 0

as above we get that η0,1+δ#Ω ⊂ Ωj ⊂ η0,(1+δ)−1#Ω. After rescaling we �nd

a sequence (η0,1+δ#JGjK | j ≥ J(τ)) of single-valued minimal graphs respec-

tively de�ned over η0,1+δ#Ωj . Moreover η0,1+δ#JGjK → T as j → ∞ and

η0,1+δ#T → T as δ → 0. We may then diagonally extract a subsequence of

graphs JGj′K and �nd a sequence of positive scalars with δj′ → 0 as j′ →∞,

so that Ω ⊂ η0,1+δj′Ωj′ for all j
′ and η0,1+δj′#JGj′K → T as j′ → ∞. Upon

replacing our original sequence by this rescaled subsequence, we may assume

throughout that Ω ⊂ Ωj without restriction of generality.

(2) Consider a compactly contained open subset Ω′ ⊂⊂ Ω. We show

that there is J(Ω′, A) ∈ N so that |uj | > 2A on Ω′. This follows from a

simple contradiction argument. Suppose otherwise, and consider a sequence

of points Xj = (xj , X
n+1
j ) ∈ GjΩ

′ × [−2A, 2A]. We may then extract a

subsequence converging to a point X = (x,Xn+1) ∈ Ω
′× [−2A, 2A]. Let 0 <

ρ < dist(Ω′, ∂Ω), and note that ‖T‖(Bρ(X)) ≥ lim supj→∞‖Gj‖(Bρ(X)).

Take j ≥ J(ρ) so that |Xj − X| < ρ/2, and note that because Ω ⊂ Ωj

we have also that Bρ/2(Xj) ⊂⊂ Ωj × R. By the monotonicity formula we

�nd ‖Gj‖(Bρ/2(Xj)) ≥ ωn(ρ/2)n, whence also ‖T‖(Bρ(X)) ≥ ωn(ρ/2)n. As

sptT ⊂ ∂Ω, this is absurd. Now let δ > 0 be given, and consider the open

set Ω′ = Ω\ [∂Ω\(sptT0)]δ. Note that this is not compactly contained inside

Ω anymore. Take any 0 < τ < 1 < A. We may assume that τ < δ, and then

observe that Ω′ \ (sptT0)τ ⊂ Ω \ (∂Ω)τ lies a distance at least τ away from

∂Ωj , for all j. We can therefore argue in the same way as above. Namely,

consider a sequence Xj ∈ Ω′ \ (sptT0)τ × [−2A, 2A], which again we assume

convergent to a limit point X. This point lies in Ω
′ \ (sptT0)τ × [−2A, 2A],

and arguing as above we �nd ‖T‖(Bρ/2(X)) ≥ ωn(ρ/2)n for all 0 < ρ < τ ,

from whence a contradiction immediately follows. Therefore we can apply

the argument above to Ω′ to get Hn(sptT0 ∩ Ω′ ×R) ≤ 2Hn(∂Ω′), whence

after letting τ → 0 we �nd that Hn(sptT0) ≤ 1/2Hn(∂Ω), as required. �

The following special case is of particular importance in what follows. Let

π = π0 ×Ren+1, π
′ = π′0 ×Ren+1 be two n-dimensional half-planes which

do not form a plane. Suppose that they meet along an axis L = L0×Ren+1

at which they form a positive angle 0 < θ < π taken in the counterclockwise

direction. Let N,N ′ be their respective unit normals, which we both take

pointing in the counterclockwise direction. Further let p, p′ ∈ L⊥ be the

vectors which direct π, π′ respectively. Any point in Rn can be written x =

y+ z = y+ tp+ t′p with y ∈ L0, z ∈ L⊥0 . De�ne Q = {x = y+ z ∈ Rn | |y| <
1, |z| < 1} and the wedge-shaped region V = {x ∈ Q | 〈x,N〉 > 0, 〈x,N ′〉 <
0} = {x = y + z = y + tp + t′p′ ∈ Rn | |y| < 1, t, t′ > 0, t2 + t′2 < 1}. We
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then have the following result, for which the orientation of the half-planes is

crucial.

Lemma 2.2.9. Let π, π′ and V ⊂ Rn be as above, and let the current

T = Jπ ∪ π′ ∩ ∂V × RK ∈ In(Rn+1) be oriented inward. Then there does

not exist a sequence (Ωj | j ∈ N) of bounded open domains Ωj ⊂ Rn and a

sequence (uj | j ∈ N) of functions uj ∈ C2(Ωj) with Gj minimal and

distH(Ωj , V )→ 0 and JGjK→ T

and so that for all 0 < τ < 1 < A there is J(τ,A) ∈ N so that for all

j ≥ J(τ,A),

(π ∪ π′)τ ∩ {|Xn+1| < A} ∩ spt ∂JGjK ⊂ ({|y| ≤ 1, |z| = 0, 1})τ .

Proof. This is essentially a direct consequence of Theorem 2.2.7, al-

though we need to construct a subdomain ∆a ⊂ V to make the area com-

parison work, where 0 < a < 1/2 is a small parameter whose value we

leave undetermined for now. Let ∆a = {x = y + tp + t′p′ ∈ V | |y| <
1/2, t, t′ > 0, t + t′ < a} for 0 < a < 1/2. When we �x y0 ∈ L0 with

|y0| < 1/2 then ∆a ∩ {x = y0 + z} is an isosceles triangle with two sides

of length a. The domain ∆a is convex and has piecewise smooth boundary.

Moreover, apart from π ∩ ∂∆a and π′ ∩ ∂∆a, the boundary of ∆a contains

only two subsets Γ1,Γ2 with positive area, namely Γ1 = {|y| = 1/2} and
Γ2 = {|y| < 1/2, t+ t′ = a}. On the one hand

Hn−1(Γ1) = a2 sin θ and Hn−1(Γ2) = a sin(θ/2)ωn−22−n+3,

and on the other hand

Hn−1(π ∩ ∂∆a) = aωn−22−n+2 = Hn−1(π′ ∩ ∂∆a).

Comparing the two we have

Hn−1(Γ1 ∪ Γ2) = a(a sin θ + sin(θ/2)ωn−22−n+3)

< aωn−22−n+3 = Hn−1(π ∪ π′ ∩ ∂∆a)

provided a is small enough. Explicitly it su�ces to take it so small that

a sin θ < ωn−22−n+3(1 − sin(θ/2)). If there were a sequence of minimal

graphs uj ∈ C2(Ωj) as in the statement, then by restricting them to Ωj ∩∆a

and letting j →∞ we would obtain a contradiction to Theorem 2.2.7. This

concludes the proof. �



Chapter 3

Two-valued minimal graphs

3.1. Two-valued functions

3.1.1. Unordered pairs. Let A2(R) be the set of unordered pairs

of real numbers, abbreviated A2 when no confusion is possible. An el-

ement of A2(R) is written {x, y} = {y, x}. One can de�ne A2(R) as

the set obtained by taking the quotient of R2 under the action by the

group Z2 which transposes the two elements. The quotient map is then

R2 → A2(R) : (x, y) 7→ {x, y}. Alternatively one could de�ne A2(R) as the

non-empty subsets of R counting at most two elements. More generally we

can also take unordered pairs of elements of any set X, thus forming A2(X).

Here X is usually either a �nite-dimensional vector space E say or a subset

thereof. Apart from E = R we also use E = Rn+1 and E = L(Rn; R), the

space of linear functions Rn → R.

For any set X one can de�ne the diagonal map ∆ : x ∈ X 7→ {x, x} ∈
A2(X). Moreover, we can extend a map Φ : X → Y between two sets in

the obvious way, by de�ning Φ : A2(X) → A2(Y ) : {x, y} 7→ {Φ(x),Φ(y)}.
For example we de�ne |{u1, u2}| = {|u1|, |u2|} ∈ A2(R≥0). When X = E is

a vector space, then one can de�ne the center map η : {x, y} ∈ A2(E) 7→
x + y ∈ E. Given a pair {x1, x2} ∈ A2(R) of real numbers, we de�ne its

average and symmetric di�erence by xa = 1
2(x1 + x2) and xs = {±(x1 −

x2)} respectively. Moreover write x+ = max{x1, x2} = x1 ∨ x2 and x− =

min{x1, x2} = x1 ∧ x2.

Let X = E be a normed vector space with norm ‖·‖. For a pair {x, y} ∈
A2(E) we write ‖{x, y}‖ = ‖x‖ + ‖y‖. We de�ne a metric on A2(E) by

G : A2(E)×A2(E)→ R≥0 with

G(u, v) = min(‖u1 − v1‖+ ‖u2 − v2‖, ‖u1 − v2‖+ ‖u2 − v1‖).

The analogous construction works for arbitrary metric spaces.

3.1.2. Two-valued functions. Let A ⊂ Rn be an arbitrary set. A

two-valued function on A is a function A → A2(R). To u we can associate

its average ua = 1
2(u1 + u2) and symmetric di�erence us = {±1

2(u1 − u2)}.
Similarly we write u+ = max{u1, u2} = u1 ∧ u2 and u− = min{u1, u2} =

u1 ∨ u2.

49
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More generally we consider two-valued maps A→ A2(X) where X may

be arbitrary. Those taking values in A2(Rn) we shall call two-valued vector

�elds. Consider a map Φ : X → R. Given u : A → A2(X) we can compose

to Φ ◦ u : A→ A2(R). If we are given two di�erent functions Φ,Ψ : X → R

then we may take the sum (Φ ◦ u) + (Ψ ◦ u) := (Φ + Ψ) ◦ u, although in

general for two functions v1, v2 : A→ A2(R) their sum is not a well-de�ned

two-valued function. The same of course holds for other binary operations.

AsA2 is a metric space, endowing it with the corresponding topology and

Borel σ-algebra allows us to de�ne measurable and continuous two-valued

functions. Explicitly, we say that u : A → A2 is continuous at x ∈ A

if x is either isolated or for any sequence (xj | j ∈ N) in A with xj → x,

G(u(xj), u(x))→ 0 as j →∞. Let α ∈ (0, 1). We say that a two-valued func-

tion on A is α-Hölder continuous if lim supx 6=y∈A|x−y|−αG(u(x), u(y)) <∞,

and that u is Lipschitz continuous if this holds with α = 1. Let Ω ⊂ Rn be

open. We say that u is locally α-Hölder continuous if the restriction of u to

any compact subset K ⊂⊂ Ω is α-Hölder continuous. When this is the case

we write u ∈ C0,α(Ω;A2), and also let Lip(Ω;A2) be the similarly de�ned lo-

cally Lipschitz functions. Both notions are again de�ned for functions taking

values in A2(X) for any metric space (X, d), for example X = L(Rn; R).

We say that a function l : Rn → A2 is linear if there exist two single-

valued linear functions li ∈ L(Rn; R) so that l = {l1, l2}. A two-valued

function u : Ω→ A2 is called di�erentiable at x if there is a two-valued linear

function l = {l1, l2} so that t−1G(u(x+tv), {ui(x)+ li(tv)})→ 0 as t→ 0 for

all v ∈ Rn. If this exists, we write Du(x) = l and call this the derivative of u

at x. This de�nes a two-valued function Du : Ω→ A2(L(Rn; R)). Moreover

we write u ∈ C1(Ω;A2) if it is di�erentiable at all points x ∈ Ω and the

function Du is continuous, and for α ∈ (0, 1) we write u ∈ C1,α(Ω;A2) if

Du ∈ C0,α(Ω;A2(L(Rn; R))).

Let α ∈ (0, 1) and u : D1 → A2(R) be a two-valued function. We de�ne

the following norms:

(1) ‖u‖0;D1 = supD1
‖u‖,

(2) ‖u‖0,α;D1 = ‖u‖0;D1 + supx 6=y∈D1
|x− y|−αG(u(x), u(y)),

(3) ‖u‖1;D1 = ‖u‖0;D1 + supD1
‖Du‖,

(4) ‖u‖1,α;D1 = ‖u‖1;D1 + supx 6=y∈D1
|x− y|−αG(Du(x), Du(y)).

For two-valued functions de�ned on an arbitrary bounded open domain

Ω ⊂ Rn one de�nes the analogous norms in precisely the same way. Al-

though we shall not require this here, note that one de�nes scale-invariant

analogues of these norms on discs Dr ⊂ Rn of any positive radius in the

usual way, for example one would set ‖u‖1,α;Dr = supDr‖u‖+r supDr‖Du‖+
r1+α supx 6=y|x− y|−αG(Du(x), Du(y)).
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One de�nes the functions spaces C0(D1;A2), C0,α(D1;A2), C1(D1;A2)

and C1,α(D1;A2) in the usual way as those functions for which the norms

are respectively �nite, proceeding in the same way for arbitrary bounded

open Ω ⊂ Rn.

Consider a two-valued function u : Ω → A2, and let Ω′ ⊂ Ω be an

open subset. We say that two functions u1, u2 : Ω → A2 de�ne a selection

for u on Ω′ if u = {u1, u2} on Ω′. Most often one seeks selections with

favourable properties. We say that u1, u2 de�ne a continuous selection if

u1, u2 ∈ C0(Ω′), a C1 selection if u1, u2 ∈ C1(Ω′), and a smooth selection if

u1, u2 ∈ C∞(Ω′).

Let α ∈ (0, 1) and consider u ∈ C1,α(Ω;A2). We de�ne Ku = {x ∈ Ω |
u1(x) = u2(x), Du1(x) = Du2(x)}. For every point y ∈ Ω\Ku there is σ > 0

so that on Dσ(y) there are two smooth functions u1,y, u2,y ∈ C∞(Dσ(y)) so

that u = {u1,y, u2,y}. (By the above, we could equivalently state that u

admits a smooth selection on Dσ(y) when this is the case.) A point x ∈ Ω is

called a branch point (sometimes also true branch point) if there is no radius

σ > 0 for which u admits a smooth selection on Dσ(x). They form a set

written Bu, which is contained inside Ku. Points in Ku \ Bu are called false

branch points. We also de�ne the touching set Zu = {x ∈ Ω | u1(x) = u2(x)}
and set of classical singularities Cu = {x ∈ Ω | u1(x) = u2(x), Du1(x) 6=
Du2(x)}. By de�nition Cu = Zu \ Ku. Moreover, Cu is relatively open

inside Zu, whereas Bu,Ku ⊂ Zu are relatively closed in Zu, and hence closed

subsets of Ω as well.

Let u : Ω→ A2 be a two-valued function. Its graph G ⊂ Ω×R is

graphu = G = {(x,Xn+1) ∈ Ω×R | Xn+1 ∈ {u1(x), u2(x)}}.

This may be considered as a varifold inside Ω ×R, in which case we write

|G| = |graphu| ∈ IVn(Ω×R) as is customary. (We emphasise that through-

out we do not consider the graph as a subset of Ω×A2(R), as one might ex-

pect by interpreting the term more literally.) In general of course the varifold

|G| will not be regular, and instead admit singular points which are related

to the singularities of u as follows via the orthogonal projection P0 onto Rn.

If u ∈ C1(Ω;A2) then P0(singG ∪ {X ∈ regG | Θ(‖G‖, X) = 2}) = Zu,
P0(BG ∪ {X ∈ regG | Θ(‖G‖, X) = 2}) = Ku, and P0(CG) = Cu.

We close with a remark on the case where n = 1 and Ω = I ⊂ R is an

open interval in the real line. Let u ∈ C1(I;A2). This automatically has

Bu = ∅, even while Ku may be non-empty. In other words, we can always �nd

u1, u2 ∈ C1(I) so that u = {u1, u2} on I, although some arbitrary choices

have to be made if Ku 6= ∅. We will later use this elementary observation

in the following context. Let Ω ⊂ Rn be open, and u ∈ C1(Ω;A2). Let
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y ∈ Ω and v ∈ Rn be arbitrary. Write ly ⊂ {y + tv | t ∈ R} ∩ Ω for the

connected component containing y. This corresponds to an interval I ⊂ R.

Via this identi�cation, the restriction of u to ly de�nes a two-valued function

in C1(I;A2). Hence we can �nd two functions u1,y, u2,y ∈ C1(I) so that

u(y + tv) = {u1,y(t), u2,y(t)} even though possibly ly ∩ Bu 6= ∅. Moreover if

u ∈ C1,α(Ω;A2) for some α ∈ (0, 1) then we can impose u1,y, u2,y ∈ C1,α(I)

as well.

3.1.3. Integrals of two-valued functions. Let p ∈ [1,+∞). We

write Lp(Ω;A2) for the space of two-valued functions u : Ω → A2 with∫
Ω‖u‖

p <∞, and L∞(Ω;A2) for those functions for which ‖u‖ is essentially
bounded. We de�ne the integral of a two-valued function u ∈ L1(Ω;A2) by∫

Ω u = 2
∫

Ω ua =
∫

Ω u1 + u2. Sometimes we also write
∫

Ω u(x) dx =
∫

Ω u.

Let u ∈ C1(Ω;A2) and Φ : R → R be so that Φ ◦ u ∈ L1(Ω;A2). Then

we have that
∫

Ω(Φ◦u)(1 + |Du|2) =
∫
G Φ dHn, where on the right-hand side

the integral is over G = graphu ⊂ Ω×R.

Consider u ∈ L1(Ω;A2), A ⊂ R be a Borel subset, and 1A be its in-

dicator function. As u takes values in A2, the pre-image of A under u is

not de�ned. However, we can de�ne the integral
∫
u∈A u :=

∫
u(1A ◦ u) =∫

u1(1A ◦ u1) + u2(1A ◦ u2). This can be generalised further if we con-

sider Φ : R → R so that Φ ◦ u ∈ L1(Ω;A2), by setting
∫
u∈A Φ ◦ u =∫

(Φ◦u)(1A◦u), where recall the product of the two functions is a well-de�ned

two-valued function in this speci�c context. We will often use a variant of

this, where in fact Φ : Ω × Rn × R → R is so that the two-valued func-

tion x ∈ Ω 7→ Φ(x,Du(x), u(x)) is integrable, and we consider integrals of

the form
∫
u∈A Φ(x,Du(x), u(x)) dx, or say

∫
u∈A,Du∈B Φ(x,Du(x), u(x)) dx

where B ⊂ Rn is another Borel subset.

3.1.4. Some results for two-valued functions. Using a general form

of the Arzelà�Ascoli theorem, for example [Mun00, Thm. 47.1], we obtain

a two-valued statement; note that we only use the following weaker version

valid for Lipschitz functions.

Lemma 3.1.1. Let (fj | j ∈ N) be a sequence of two-valued Lipschitz

functions on D1. If supj‖fj‖1;D1 < ∞ then there is a subsequence which

converges locally uniformly to a Lipschitz function f ∈ Lip(D1;A2).

Moreover, if we are given a sequence (fj | j ∈ N) as in Lemma 3.1.1 then

the single-valued sequences (fj,± | j ∈ N) inherit their Lipschitz bound. We

may thus diagonally extract a common convergent subsequence using the

classical, single-valued Arzela�Ascoli theorem with respective limits f±.



3.2. TWO-VALUED MINIMAL GRAPHS 53

Lemma 3.1.2. Let f ∈ Lip(D1;A2) be a two-valued Lipschitz function.

Then f is di�erentiable Hn-a.e. in D1.

Proof. The single-valued Rademacher theorem implies that f± are sep-

arately di�erentiable Hn-a.e. in D1. Let E± ⊂ D1 be the sets where they are

respectively not di�erentiable. Then f is di�erentiable onD1\(E+∪E−). �

3.2. Two-valued minimal graphs

3.2.1. De�nition and basic properties. Let Ω ⊂ Rn be an open set,

and let α ∈ (0, 1). We say that u ∈ C1,α(Ω;A2(R)) de�nes a two-valued

minimal graph if its graph

|G| = |graphu| ∈ IVn(Ω×R)

is stationary as a varifold in the open cylinder Ω×R. We will often abbreviate

this by saying that u ∈ C1,α(Ω;A2) is a two-valued minimal graph. Ulti-

mately we are interested in the classi�cation of so-called entire two-valued

minimal graphs, by which we mean that they are globally de�ned on Rn.

As the graphs of two-valued linear functions are minimal, the existence of

such entire graphs is beyond question. Here instead we are concerned with

their classi�cation: we want to show that a two-valued minimal graph of

u ∈ C1,α(Rn;A2) must be linear. However we often work with functions

that are de�ned on domains Ω ⊂ Rn; in particular a lot of the results de-

veloped in preparation in anticipation of our end goal also hold in a local

setting.

When an open subdomain Ω′ ⊂ Ω \ Bu is simply connected then there

is a selection u1, u2 ∈ C2(Ω′) so that u = {u1, u2} in Ω′. Inside Ω′ ×R the

graph can be decomposed like

|G| = |graphu1|+ |graphu2|,

which we abbreviate as G1 and G2 from now on.

The stationarity of |G| is inherited by |G1| and |G2|. By elliptic regularity
this in turn means that u1, u2 are both smooth, that is u1, u2 ∈ C∞(Ω′) and

they separately solve the minimal surface equation

(3.1) div T (Dui) = 0 in Ω for i = 1, 2,

where here and throughout we write, for all p ∈ Rn

Tk(p) =
pk√

1 + |p|2
for k = 1, . . . , n.

The vector T (Du) ∈ Rn is the horizontal part of −ν, the downward-pointing
unit normal to the graph G. We habitually write v =

√
1 + |Du|2, so that

also T (Du) = Du/v.
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If we interpret the equation (3.1) in a weak sense we can show that for

all test functions φ ∈ C1
c (Ω \ Bu)

(3.2)

∫
Ω
〈T (Du), Dφ〉 = 0,

using a partition of unity argument to reduce to the case where φ is sup-

ported in a simply connected domain Ω′ ⊂ Ω \ Bu. Note that as u is a two-

valued function, the integral above is understood to mean
∫

Ω〈T (Du), Dφ〉 =∫
Ω(〈T (Du), Dφ〉)a as explained in Subsection 3.1.3.

Using the properties of the branch set respectively developed by Simon�

Wickramasekera [SW16] and Krummel�Wickramasekera [KW20], listed be-

low in (3.2.3) we can extend this through the branch set. Let φ ∈ C1
c (Ω) be

arbitrary, and K ⊂⊂ Ω be so that φ vanishes identically outside K. Take a

sequence (ηj | j ∈ N) of functions in C1
c (Ω) with

(1) 0 ≤ ηj ≤ 1 in Ω for all j,

(2) ηj ≡ 1 on Bu ∩K for all j,

(3) ηj → 0 Hn-a.e. in Ω,

(4)
∫

Ω|Dηj | → 0 as j →∞.

Such a sequence exists because Hn−1(Bu) = 0 and Bu is a compact subset

of Ω, see 3.2.3. Actually by [KW20] the branch set is countably (n − 2)-

recti�able, and we use this below to �nd sequences of cut-o� functions with

�ner properties than we just listed. Following the proof of Proposition 3.2.1

below one �nds that∫
Ω
〈T (Du), Dφ〉 = 0 for all φ ∈ C1

c (Ω)

whenever u is a two-valued minimal graph. We skip over the details of this,

and move on to the proof of the more general identity, where the test function

is allowed to depend on u.

Proposition 3.2.1. Let u ∈ C1,α(Ω;A2) ∩ C0(Ω;A2) be a two-valued

minimal graph and let Φ ∈ C0(Ω × R × Rn) ∩ Liploc(Ω × R × Rn) have

spt Φ ⊂ Ω′ ×R×Rn for some Ω′ ⊂⊂ Ω. If

(3.3)

∫
Ω\Bu
|D(Φ(x, u,Du))| < +∞

then

(3.4)

∫
Ω
〈T (Du), D(Φ(x, u,Du))〉 = 0.

Proof. De�ne a function φ ∈ C1
c (Ω) by setting φ(x) = Φ(x, u,Du) for

all x ∈ Ω. This is smooth away from Bu and has support contained inside

Ω′. Let (ηj | j ∈ N) be a sequence with the same properties as above. As
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(1− ηj)φ vanishes near Bu it is a valid test function in the integral identity

(3.2), yielding
∫

Ω〈T (Du), Dφ〉(1− ηj)−
∫

Ω〈T (Du), Dηj〉φ = 0.

That the second integral goes to zero is a direct application of Hölder's in-

equality. For the �rst integral, we can bound the integrand by |〈T (Du), Dφ〉(1−
ηj)| ≤ |Dφ| almost everywhere in Ω�on Ω \Bu to be precise. The bounding
function is integrable by assumption, so that again we can use dominated

convergence to let j → ∞ and deduce that
∫

Ω〈T (Du), D(Φ(x, u,Du))〉 =

0. �

3.2.2. Orientation and the current structure. Let Ω ⊂ Rn be an

open set, α ∈ (0, 1) and let u ∈ C1,α(Ω;A2) de�ne a two-valued minimal

graph in Ω ×R. We saw above that G = graphu gives a well-de�ned and

stationary integer varifold |G| = |graphu| ∈ IVn(Ω×R). We can also endow

the graph with an orientation and a current structure. At all regular points

X = (x,Xn+1) ∈ regG∩Ω×R there is a well-de�ned upward-pointing unit

normal written ν(X). In terms of a smooth selection u = {u1, u2} for u on

a small disc Dρ(x) we have ν(x, ui(x)) = (1 + |Dui(x)|2)−1/2(−Dui(x), 1).

Hence we �nd that the unit normal is also de�ned at all branch points X ∈
BG∩D2×R, and ν de�nes a continuous vector �eld on (regG∪BG)∩Ω×R,

which is moreover smooth on regG. However ν cannot be continuously

extended to the set of classical singularities CG ∩ Ω×R.

As this set has Hn(CG∩Ω×R) = 0 we can however still de�ne an integer

multiplicity recti�able current JGK ∈ Dn(Ω × R) by integrating solely on

regG ∩ Ω × R. To verify that this current has no boundary inside Ω × R

we need to take the classical singular set into consideration, because it has

codimension one inside the support of JGK.

Proposition 3.2.2. Let Ω ⊂ Rn be an open set and α ∈ (0, 1). Let

u ∈ C1,α(Ω;A2) be a two-valued minimal graph, and JGK be the corresponding
current. Then ∂JGK = 0 and JGK ∈ In(Ω×R).

Proof. The current boundary ∂JGK is necessarily supported inside CG∩
Ω × R. Let X = (x,Xn+1) ∈ CG and ρ > 0 be small enough that in the

disc Dρ(x) there is a smooth selection u1, u2 ∈ C2(Dρ(x)) for u. Then

JGK Dρ(x) × R = JG1K + JG2K, where we write Gi = graphui. Neither

current has a non-zero boundary, that is ∂JGiK = 0. As ∂JGK Dρ(x) =

∂JG1K + ∂JG2K = 0 and the point X was chosen arbitarily, this concludes

the proof. �

Remark 3.2.3. This result used the minimality of the graph only in-

sofar as it allows both dimension bounds for the singular set and a precise

description for the singular set near the classical singularities.
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3.2.3. Properties of the branch set. Let α ∈ (0, 1), and let u ∈
C1,α(Ω;A2) be an arbitrary two-valued minimal graph. Using an approach

based on a so-called frequency functional, Simon�Wickramasekera [SW16]

proved the following.

Theorem 3.2.4 ( [SW16]). Let α ∈ (0, 1) and u ∈ C1,α(Ω;A2) be a two-

valued minimal graph. Then the branch set of u is either empty or dimH Bu =

n− 2 and Hn−2(Bu) 6= 0.

In particular Hs(Bu) = 0 for all s > n − 2. We use the fact that

Hn−1(Bu) = 0 to derive our area estimates.

Corollary 3.2.5 ( [SW16]). Let α ∈ (0, 1) and u ∈ C1,α(Ω;A2) be a

two-valued minimal graph. If G is not equal to the union of two distinct

single-valued minimal graphs then dimHKu = n− 2 and Hn−2(Ku) 6= 0.

Starting also from a frequency functional, this was taken further by

Krummel�Wickramasekera [KW20], who proved the following.

Theorem 3.2.6 ( [KW20]). Let α ∈ (0, 1) and u ∈ C1,α(Ω;A2) be a

two-valued minimal graph de�ned on Ω ⊂ Rn. Then Bu is either empty or

is countably n− 2-recti�able. Moreover if G is not equal to the union of two

distinct single-valued minimal graphs then Ku is countably n− 2-recti�able.

This represents a signi�cant improvement over [SW16] as it means that

the 2-capacity of Bu is zero. This in turn allows the branch set to be excised

using cuto� functions with properties as described below in Lemma 3.2.7

and Corollary 3.2.8.

Lemma 3.2.7. Let α ∈ (0, 1), and u ∈ C1,α(D2;A2) be a two-valued

minimal graph. Then there is a sequence of functions (ηj | j ∈ N) with for

all j,

(i) ηj ∈ C1
c (D2),

(ii) 0 ≤ ηj ≤ 1 on D2,

(iii) ηj ≡ 1 on (Bu)rj ∩D1 for some rj → 0,

(iv) ηj → 0 Hn-a.e. as j →∞,

(v)
∫
D2
|Dηj |2 → 0 as j →∞.

Proof. The set Bu∩D1 is compactly contained inside the open disc D2.

The result then follows because cap2 Bu = 0 by [KW20], see the discussion

at the end of 1.1.4. �

In the same way as for the results cited above, one obtains a version

of this valid for the set Ku provided the set G is not equal to a single-

valued minimal graph. Moreover, In various places it is useful to modify the

sequence from Lemma 3.2.7 and construct it on the graph itself.
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Corollary 3.2.8. Let α ∈ (0, 1), and u ∈ C1,α(D2;A2) be a two-valued

minimal graph. If BG 6= ∅ then there is a sequence of functions (ηj | j ∈ N)

with for all j,

(i) ηj ∈ C1
c (D2 ×R),

(ii) 0 ≤ ηj ≤ 1 on D2 ×R,

(iii) ηj ≡ 1 on (BG)rj ∩D1 ×R for some rj → 0,

(iv) ηj → 0 Hn-a.e. on regG ∩D2 ×R as j →∞,

(v)
∫

regG∩D2×R|∇Gηj |
2 dHn → 0 as j →∞.

Proof. Let (η0
j | j ∈ N) be a sequence satisfying the properties listed

in Lemma 3.2.7, except we additionally impose that spt η0
j ⊂ D3/2 for all j.

Inside this disc there is A > 0 so that −A < minD3/2
u− ≤ maxD3/2

u+ < A,

where u− = min{u1, u2} and u+ = {u1, u2}. Let τ ∈ C1
c (R) be a classical

cuto� function with τ ≡ 1 on [−1, 1], spt τ ⊂ [−2, 2] and |τ ′| ≤ 2. For all

j ∈ N, extend η0
j to D2 ×R by setting ηj(x,X

n+1) = η0
j (x)τ(Xn+1/A) at

all X = (x,Xn+1) ∈ D2 ×R.

To obtain the last two properties, let δ > 0 be given, and dG be the

unsigned distance function to G ∩ D2 × R. For any j we may replace ηj

with η̄j , de�ned by η̄j,δ(X) = ηj(X)τ(dG(X)/δ) at all X ∈ D2 × R. This

additionally has spt η̄j,δ ⊂ (G)2δ ∩ D2 × R. This function inherits most

properties from ηj , but it is only Lipschitz regular because of dG. This

however can be easily remedied by a standard molli�cation argument, taking

care to choose the molli�cation parameter small enough in terms of rj , δ > 0.

Finally, we may pick any sequence sj → 0 and apply the construction above

with δ = sj/2, letting η̄j = η̄j,sj/2 to conclude. �

Let us conclude by pointing out the following consequence of [KW20],

obtained by combining it with the results of [Wic20], see Theorem 2.1.10.

Recall for this that BV is the set of singular branch points of V , meaning the

points X ∈ sing V at which there is at least one tangent cone of the form

2|ΠX | for some n-dimensional plane ΠX ∈ Gr(n, n+ 1).

Corollary 3.2.9. Let V ∈ IVn(B1) be a stationary varifold with stable

regular part. Then BV ∩ {Θ(‖V ‖, ·) ≤ 2} is countably n− 2�recti�able.

3.2.4. Immersion away from the branch set. Let α ∈ (0, 1) and

n ≥ 1 be arbitrary. Let Ω ⊂ Rn be a connected open set, and let u ∈
C1,α(Ω;A2) be a two-valued function so that |G| = |graphu| ∈ IVn(Ω×R)

is a stationary varifold.

In this section we construct a smooth n-dimensional manifold M and a

minimal immersion ι : M → Rn+1 with image

ι(M) = regG ∪ CG = G \ BG,
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using a standard gluing construction.

Let (Uα | α ∈ A) be an open cover of Ω \ Bu, chosen so that every Uα

is simply connected. For every open set Uα in this collection we can make a

smooth selection uα,1, uα,2 ∈ C1(Uα) so that

u = {uα,1, uα,2} in Uα.

Write Gα,1 = graphuα,1 and Gα,2 = graphuα,2, so that accordingly

G ∩ Uα ×R = Gα,1 ∪Gα,2.

We then consider the disjoint union of these sets (Gα,i | α ∈ A, i = 1, 2), each

of which is endowed with an obvious map ια,i : Gα,i → Rn+1, which may also

be composed with the projection P0 : Rn+1 → Rn×{0} to obtain bijections

P0 ◦ ια,i : Gα,i → Uα,i. We glue these together using the equivalence relation

∼ de�ned as follows.

Two points X ∈ Gα,i and Y ∈ Gβ,j are equivalent if P0 ◦
ια,i(X) = P0 ◦ ιβ,j(Y ) and there is a neighbourhood of this

point where uα,i and uβ,j coincide.

Given this we simply set

M =
⊔
α∈A
i=1,2

Gα,i/ ∼ .

Write p for the projection tGα,i → M . By construction the map tια,i :

tUα,i → Rn+1 passes to the quotient by ∼, thus de�ning a map

ι : M → Rn+1.

This map has the property that for every set Uα,i and all x ∈ Uα,i, ι◦p(x) =

ια,i(x). Then it is not hard to see thatM is a smooth n-dimensional manifold,

with charts given by the collection {(p(Uα,i), P0 ◦ ι) | α ∈ A, i = 1, 2}.

Lemma 3.2.10.

(i) The map ι is a smooth immersion, injective away from ι−1(CG).

(ii) The immersion can be oriented by the upward unit normal ν.

(iii) The map ι is proper into Rn+1 \ BG, but not into Rn+1 unless

BG = ∅.
(iv) The manifold M is connected unless G is the union of two distinct

single-valued graphs.

Proof. The �rst two properties follow by construction.

(iii) Let K ⊂ Rn+1 \ BG be a compact set, and consider a sequence of

points (Xj | j ∈ N) in ι−1(K ∩ G). Write Yj = ι(Xj) for all j, and extract

a convergent subsequence from this, with limit say Yj′ → Y ∈ regG∪ CG. If
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Y ∈ regG then there is ρ > 0 so that the restriction of ι to ι−1(Bρ(Y ) ∩G)

is a homeomorphism onto Bρ(Y ) ∩G, from whence the property follows. If

instead Y ∈ CG then we can decompose ι−1(Bρ(Y ) ∩ G) = W1 ∪W2 into

two disjoint open sets, so that the restriction of ι to either of them is again

a homeomorphism. As one of W1,W2 contains in�nitely many terms in the

sequence, the conclusion follows.

(iv) The map P0 ◦ ι : M → Ω is a double cover, so M has at most two

connected components. Hence when indeed M is disconnected, then M =

M1 ∪M2 and the restriction of P0 ◦ ι to either of them is a homeomorphism,

and their images are two single-valued graphs. �

Of course we can pull back the metric on regG to a metric de�ned on

ι−1(regG) ⊂M , which we can then extend to the entire manifold by conti-

nuity. Given this all associated quantities are de�ned also, e.g. the covariant

derivative or the volume form. We use these in the following section.

3.2.5. Stability of two-valued minimal graphs. Let |G| be the var-
ifold associated to the graph of u. Its singular set admits a particularly

simple form:

singG = BG ∪ CG,

where BG are the branch points of |G|, that is the points where |G| admits a

multiplicity two tangent plane, and CG are the classical singularities. These

take a much simpler form than in the setting of general varifolds. Indeed

a point X ∈ G belongs to CG precisely if there is some radius r > 0 such

that G Br(X) is the union of two smooth embedded minimal graphs. In

other words, CG is the set of singular points of |G| near which its support is

smoothly immersed.

The minimal immersion constructed in the previous section, of M into

Rn+1 moreover admits a positive Jacobi �eld, namely 〈ν, en+1〉. Thus it is

stable, meaning that for all φ ∈ C1
c (M),

(3.5)

∫
M
|AM |2φ2 ≤

∫
M
|∇Mφ|2.

Indeed, we may justify the stability via the following elementary argument,

already used in 2.1.4. Pick any non-negative function ϕ 6= 0 ∈ C2
c (M). As ϕ

is compactly supported, there is a positive δ > 0 so that 〈ν, en+1〉 ≥ δ > 0 on

sptϕ. Let T = max{t ∈ R | tϕ ≤ 〈ν, en+1〉}. This is positive by the above,

and by construction 〈ν, en+1〉 − Tϕ is a non-negative function, attains the

value zero at least once in M , but does not vanish identically. If ϕ had

(∆M + |AM |2)ϕ ≥ 0, then (∆M + |AM |2)(〈ν, en+1〉 − Tϕ) ≤ 0, which would

contradict the strong maximum principle. This proves stability, because if
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there existed a function ϕ ∈ C1
c (M) with

∫
M |AM |

2ϕ2 >
∫
M |∇Mϕ|

2 then

we could mollify it to a smooth compactly supported satisfying the same

inequality. This is impossible by our argument above, and con�rms the

stability inequality (3.5).

If ϕ is any function in C1
c (Rn+1 \BG), then its pullback φ = ϕ ◦ ι by the

immersion is compactly supported in M (because ι is proper away from the

branch set). If we equate the integrals on M with ones on G we obtain that∫
regG
|AG|2ϕ2 ≤

∫
regG
|∇Gϕ|2

for all ϕ ∈ C1
c (Rn+1\BG). Extending this to arbitrary test functions requires

a capacity argument.

Lemma 3.2.11. Let U ⊂ Rn+1 be an open set, and G ⊂ U be a two-

valued minimal graph. Then G is stable with respect to compactly supported

ambient deformations in the sense that for all ϕ ∈ C1
c (U),

(SG)

∫
regG∩U

|AG|2ϕ2 ≤
∫

regG∩U
|∇Gϕ|2.

Proof. If ϕ ∈ C1
c (U) is so that

sptϕ ∩ BG = ∅,

then ϕ ◦ ι ∈ C1
c (M) and it has∫

M
|AM |2(ϕ ◦ ι)2 ≤

∫
M
|∇M (ϕ ◦ ι)|2.

Translating this back to the graph we obtain the desired inequality (SG).

If however the support of ϕ contains branch points, meaning sptϕ∩BG 6=
∅ then we cut this part o� using a sequence (ηj | j ∈ N) of functions in C1

c (U)

with properties as listed in Lemma 3.2.7. Indeed then (1−ηj)ϕ ∈ C1
c (U \BG)

and thus (SG) holds with this test function,

(3.6)

∫
regG∩U

|AG|2(1− ηj)2ϕ2 ≤
∫

regG∩U
|∇G{(1− ηj)ϕ}|2.

The right-hand side can be bounded uniformly in j because∫
regG∩U

|∇G{(1− ηj)ϕ}|2 ≤ 2

∫
regG∩U

|∇Gηj |2ϕ2 + (1− ηj)2|∇Gϕ|2

and as j →∞ we can separately estimate

(3.7)

∫
regG∩U

|∇Gηj |2ϕ2 → 0

and by dominated convergence

(3.8)

∫
regG∩U

(1− ηj)2|∇Gϕ|2 →
∫

regG∩U
|∇Gϕ|2.
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In fact we can compute the bounding integral in (3.6) more precisely and

show that the cross-term also has

(3.9) 2

∫
regG∩U

(1− ηj)ϕ〈∇G(1− ηj),∇Gϕ〉 → 0 as j →∞.

On the left-hand side of (3.6) we may pass to the limit by Fatou's lemma,

so that letting j →∞ we obtain the desired inequality

�
∫

regG∩U
|AG|2ϕ2 ≤

∫
regG∩U

|∇Gϕ|2.

Remark 3.2.12. In fact (SG) holds for larger class of test functions,

which allow us to move the two sheets near a classical singularity X ∈ CG
independently. Indeed if r > 0 is small enough that we can decompose

G ∩ Br(X) = Σ1 ∪ Σ2 into two smooth, single-valued graphs intersecting

transversely along the classical axis singG∩Br(X) = CG∩Br(X) = Σ1∩Σ2,

then their respective pre-images ι−1(Σi) ⊂ M are disjoint, and we could

glue together any two ϕi ∈ C1
c (ι−1(Σi)) to a function de�ned on the whole

manifold M .

We refer to the inequality (SG) in this lemma as the stability inequality.

Using [Hut86] we have the following immediate corollary for sequences of

two-valued minimal graphs; see (SV ) on page 25 for the de�nition of ambient

stability.

Corollary 3.2.13. Let (uj | j ∈ N) be a sequence of two-valued minimal

graphs uj ∈ C1,α(D2;A2), and suppose that their graphs converge weakly in

the varifold topology to a limit varifold V ∈ IVn(D2 ×R),

|Gj | = |graphuj | → V as j →∞.

Then V is stationary and ambient stable.

3.3. Area estimates for two-valued minimal graphs

3.3.1. Area bounds for two-valued minimal graphs. Here we ex-

tend the classical area estimates, which are well-known for single-valued

minimal graphs, to two-valued minimal graphs by adapting the arguments

presented in [GT98, Ch. 16].

Proposition 3.3.1. Let α ∈ (0, 1/2), and let u ∈ C1,α(D2r;A2) be a

two-valued minimal graph. Then

Hn(G ∩Br) ≤ 2ωn(1 + n)rn,

where ωn = Hn(D1).
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Proof. Let η ∈ C1
c (D2r) be a test function with η ≡ 1 on Dr and

|Dη| ≤ 2/r. Next de�ne Φ(x, z) = η(x)zr, where

(3.1) zr =


r if z > r

z if − r ≤ z ≤ r

−r if z < −r.

Then by the (two-valued) chain rule we get

D(Φ(x, u)) = Dη(x)ur + {DzΦ(x, ui(x))Dui(x)}.

This is clearly well-de�ned at any x ∈ D2r \ Bu; in fact the same is true at

branch points x ∈ Bu because the two components ofDu(x) ∈ A2(L(Rn; R))

agree there. We evaluate this expression to be

D(Φ(x, u)) = Dη(x)ur(x) + η(x)1|u|<rDu(x).

As η is compactly supported inside D2r we get
∫
D2r\Bu |D(Φ(x, u))| < +∞.

Then Proposition 3.2.1 justi�es

(3.2)

∫
D2r

ur〈T (Du), Dη〉+ η〈T (Du), Du〉1|u|<r = 0,

so that

(3.3)

∫
Dr

1|u|<r
|Du|2

v
≤ 2r

∫
D2r

|Dη|.

The area of the graph is bounded by the integral Hn(G∩Br) ≤
∫
v1|u|<r,

which we split as∫
Dr

1

v
1|u|<r +

∫
Dr

|Du|2

v
1|u|<r ≤ 2(Hn(Dr) + r cap1(Dr)),

whence we conclude by replacing cap1(Dr) = Hn−1(Sn−1
r ) = nωnr

n−1. �

A similar argument yields area bounds in the cylinder above the disc

Dr. A detailed proof in the single-valued case is given in [GT98, Ch. 16], to

adapt it to two-valued graphs one makes the same modi�cations as above.

These will be used in the proof of the gradient estimates (see the proof of

Lemma 3.4.2).

Lemma 3.3.2. Let α ∈ (0, 1) and u ∈ C1,α(D2r;A2) be a two-valued

minimal graph. Then

Hn(G ∩Dr ×R) ≤ 2ωnr
n(1 + nr−1 sup

D2r

‖u‖).

3.3.2. Improved estimates for convergent sequences. Let (uj |
j ∈ N) be a sequence of two-valued minimal graphs uj ∈ C1,α(D2r;A2).

Suppose additionally that the corresponding sequence of varifolds |Gj | =
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|graphuj | converges to a stationary integral varifold V ∈ IVn(D2r × R).

Suppose additionally that V is vertical, that is cylindrical of the form

V = V0 ×Ren+1

for a stationary varifold V0 ∈ IVn−1(D2r). (This scenario typically�though

not always�arises when the sequence (uj | j ∈ N) is obtained as the blow-

down sequence of a single entire graph u ∈ C1,α(Rn;A2).) When this arises

we can sharpen the estimates of Proposition 3.3.1.

Corollary 3.3.3. Let (uj | j ∈ N) be a sequence of two-valued mini-

mal graphs uj ∈ C1,α(D2r;A2). Suppose that they converge to a stationary

varifold V ∈ IVn(D2r ×R),

|Gj | = |graphuj | → V = V0 ×Ren+1 as j →∞.

Then

(3.4) lim sup
j→∞

Hn(Gj ∩Br) ≤ 2nωnr
n.

Proof. The proof is the same as for Proposition 3.3.1, splitting the

integral bound of Hn(Gj ∩Br) ≤
∫
Dr
vj1|uj |<r into∫

Dr

vj1|uj |<r =

∫
Dr

1

vj
1|uj |<r +

∫
Dr

|Duj |2

vj
1|uj |<r.

The second integral can be bounded like
∫
Dr

|Duj |2
vj

1|uj |<r ≤ 2r
∫
D2r
|Dη|,

where η ∈ C1
c (D2r) has η = 1 on Dr.

To con�rm that the �rst integral goes to zero as j → ∞ we use the

varifold convergence |Gj | → V0 ×Ren+1. Let K ⊂ D2r be a compact subset

containing Dr and τ > 0 be a small constant. Then de�ne a subset Eτ,r ⊂
Grn(D2r ×R) = D2r ×R×Gr(n, n+ 1) by

Eτ,r = {(X,S) = (x,Xn+1, S) ∈ Grn(K×R) | |Xn+1| ≤ r, |〈NS , en+1〉| ≥ τ},

where we write NS for the (unoriented) unit normal to S.

As (V0×Ren+1)(Eτ,r) = 0 and the set Eτ,r is compact the weak conver-

gence |Gj | → V means that given any ε > 0 we can impose j ≥ J(τ, r, ε,K)

to ensure |Gj |(Eτ,r) < ε. De�ne next a subset Eτ,r,j ⊂ D2r ×R by

Eτ,r,j = {X = (x,Xn+1) ∈ regGj ∩K ×R | |Xn+1| ≤ r, νn+1
j (X) ≥ τ}

so that Hn(Eτ,r,j ∩K ×R) < ε provided j ≥ J(τ, r, ε,K). Push forward the

integral
∫
Dr

1
v1|u|<r to an integral on the graph Gj , which we then divide by

conditioning on the set Eτ,r,j , meaning∫
Dr

1

vj
1|uj |<r =

∫
Eτ,r,j∩Dr×(−r,r)

1

v2
j

dHn +

∫
(Gj\Eτ,r,j)∩Dr×(−r,r)

1

v2
j

dHn.
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These can be bounded separately; the �rst simply has∫
Eτ,r,j∩Dr×(−r,r)

1

v2
j

dHn ≤ Hn(Eτ,r,j) < ε

whereas for the second we can use the gradient lower bounds v2
j > τ−2 in

(Gj \ Eτ,r,j) ∩Dr × (−r, r) to deduce∫
(Gj\Eτ,r,j)∩Dr×(−r,r)

1

v2
j

dHn

≤ Hn(Gj ∩Dr × [−r, r])τ2 ≤ 2‖V ‖(Dr × [−r, r])τ2

at least for j ≥ J(τ, ε, r,K), updated to ensure that the area of Gj inside

Dr × [−r, r] can be bounded in terms of ‖V ‖. Now letting τ, ε → 0 and

accordingly J →∞ we obtain that
∫
Dr

1
vj
1|uj |<r → 0 as j →∞.

Thus we obtain lim supj→∞
∫
Dr

|Duj |2
vj

1|uj |<r ≤ 2
∫
D2r
|Dη|. Varying over

functions with η ∈ C1
c (D2r) with η = 1 on Dr we obtain lim supj→∞Hn(Gj∩

Br) ≤ 2r cap1(Dr) = 2rHn−1(Sn−1
r ) = 2nωnr

n. �

This estimate is easily improved to strict inequality, valid under identical

hypotheses. Indeed, revisiting the proofs of the original area bounds of

Proposition 3.3.1 we notice that these in fact yield estimates for the area

inside the cylinder Dr×(−r, r). The same is true for the sharpened estimates

we just derived. As V is vertical, its weight measure ‖V ‖ charges the region
Dr × (−r, r) \ Br by a positive amount. This is precisely the amount by

which the inequality can be improved. However, this improvement cannot

be estimated precisely because the mass of V could be unevenly distributed,

with a larger concentration near the origin.

This problem is avoided when it is known that the limit is a cone, that

is V = C = C0 × Ren+1. Indeed then a simple calculation, the details

of which are provided below in the proof of Corollary 3.3.4, shows that

‖C‖(B1)/‖C‖(D1 × (−1, 1)) =
∫ π/2

0 cosn θ dθ, which in what follows we de-

note In ∈ (0, 1). This can be expressed in terms of Euler's Γ-function, and

comparing it with the expression for ωn we �nd that In = ωn/(2ωn−1). The

well-known values of these let us give exact expressions for the achievable

improvement, given in Table 1.

Notice that the value of In decreases with n. Nonetheless the improved

bounds, which we state in Corollary 3.3.4 increase with n. This is because the

estimates previously obtained increase quicker than In. For large n one may

use the well-known asymptotics for the Γ-function to �nd In ∼
√
π/(2n),

whence the estimates grows like 2nIn ∼
√

2πn as n → ∞. Luckily we are

most interested in the values of 2nIn for small values of n, up to seven. For

this range the estimates obtained in Corollary 3.3.4 are e�ective, and crucial
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Table 1. Values for the volume ωn of the n-dimensional unit
ball for 2 ≤ n ≤ 7, along with the improvements In obtained
in the area estimates and their approximations [In]2 up to
two decimal places.

n 2 3 4 5 6 7

ωn π 4π/3 π2/2 8π2/15 π3/6 16π3/105
In π/4 2/3 3π/16 8/15 5π/32 16/35

[In]2 0.79 0.67 0.59 0.53 0.49 0.46

Table 2. Values of the improved estimates 2nIn for the area
of two-valued minimal graphs in the unit ball Bn+1

1 (up to
multiplication by ωn) for 2 ≤ n ≤ 7 along with their approx-
imations up to two decimal places.

n 2 3 4 5 6 7

2nIn π 4 3π/2 16/3 15π/8 32/5
[2nIn]2 3.14 4 4.71 5.33 5.89 6.4

for the remainder of the text. Their expressions and approximate values are

given in Table 2.

Corollary 3.3.4. Let (uj | j ∈ N) be a sequence of two-valued minimal

graphs uj ∈ C1,α(D2;A2). Suppose that

|Gj | → C = C0 ×Ren+1 as j →∞

to a stationary cylindrical cone. Then

(3.5) lim sup
j→∞

Hn(Gj ∩B1) ≤ 2nInωn

where In =
∫ π/2

0 (cos θ)n dθ.

Proof. Note �rst that the area bounds of Proposition 3.3.1, as well

the sharpened bounds of Corollary 3.3.3 in fact yield bounds in the cylin-

drical region Dr × (−r, r). Thus from (3.4) we could in fact infer that

lim supj→∞Hn(Gj∩Dr×(−r, r)) ≤ 2nωnr
n. This is because area bounds we

prove here all start with the bound Hn(Gj ∩Br) ≤
∫
Dr
vj1|uj |<r; in this case

with the value r = 1. Simply noticing that in fact Hn(Gj ∩D1 × (−1, 1)) ≤∫
D1
vj1|uj |<1 allows us to use the initial arguments of the proof of Corol-

lary 3.3.3 to conclude the weak inequality

(3.6) ‖C‖(D1 × (−1, 1)) ≤ 2nωn.
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Next, as C is invariant under homothetic rescalings, we can precisely

calculate the ratio to be

(3.7) ‖C‖(B1)/‖C‖(D1 × (−1, 1)) = In

provided this is not the zero measure. Indeed, we may use the co-area formula

under the guise of Lemma 28.1 in [Sim84] to `slice' the cone by the level sets

of the function X = (x,Xn+1) 7→ |x|, meaning the sets ∂Dr × R where

0 < r ≤ 1 in our case. This yields a family of varifolds (C(r) | 0 < r ≤ 1) of

codimension two so that for all open sets U ⊂ D1 ×R,

‖C‖(U) =

∫ 1

0
‖C(r)‖(U ∩ ∂Dr ×R) dr.

As the limit cone is cylindrical of the form C = C0 ×Ren+1, the same

holds for the C(r) = C
(r)
0 ×Ren+1, and we may use the co-area formula again

with respect to the height function (x,Xn+1) 7→ Xn+1,

‖C‖(U) =

∫ 1

0

∫ 1

−1
‖C(r)

0 ‖(U ∩ ∂Dr × {z}) dz dr,

where we use a slight abuse of notation to simplify the integrated expression.

We apply this formula with U = B1 and D1 × (−1, 1) respectively, and

use the homothetic invariance of C to rewrite

‖C‖(B1) = 2‖C(1)
0 ‖(∂D1)

∫ 1

0
rn−2(1− r2)1/2 dr,

‖C‖(D1 × (−1, 1)) = 2‖C(1)
0 ‖(∂D1)

∫ 1

0
rn−2 dr.

We may evaluate the former integral via a simple change of variable, yielding∫ 1
0 r

n−2(1− r2)1/2 dr = (n− 1)−1
∫ π/2

0 (cos θ)n dθ, which we also denote (n−
1)−1In. Comparing the two equations con�rms the identity (3.7) that was

claimed above.

Combining this with the initial bounds from (3.6) we obtain

‖C‖(B1) = In‖C‖(D1 × (−1, 1)) ≤ 2nInωn.

This is equivalent to (3.5) because the weight measure ‖C‖ of the limit cone

does not charge ∂B1. �

Although these improved estimates hold in the relatively general setting

described above, we essentially exclusively apply them in situations where

the structure of the limit C = C0 ×Ren+1 is known a priori. Speci�cally

we consider the case were the limit is P = P0 ×Ren+1 is a sum of vertical

planes Πj = Π0
j ×Ren+1, where each plane has multiplicity mj either one or

two. We point out that we do not additionally assume that the planes meet

along a common axis, although this case is included in our analysis. The
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proof of the improved estimates is somewhat more straightforward under

these hypotheses. This motivates restating the estimates as a stand-alone

result.

Proposition 3.3.5. Let uj ∈ C1,α(D2;A2) be a sequence of two-valued

minimal graphs with |Gj | → P =
∑

jmj |Π0
j | × Ren+1. Then

∑
jmj ≤

b2nInc.

Proof. Every plane Πj = Π0
j×Ren+1 contributes precisely 2mjωn−1 to

the total weight ‖P‖(D1 × (−1, 1)) in the cylinder. This in turn is bounded

by the area estimates from Corollary 3.3.3, whence
∑

j 2mjωn−1 ≤ 2nωn, or

indeed
∑

jmj ≤ nωn/ωn−1 = 2nIn. �

3.3.3. Further qualitative improvements. Let α ∈ (0, 1) be �xed,

and uj ∈ C1,α(D2;A2) be a sequence of two-valued minimal graphs. We

return once again to the original setting of the previous section, where we

obtained improved estimates under the a priori assumption that the se-

quence converges to a vertical varifold V = V0×Ren+1 ∈ IVn(D2×R). We

obtain a tiny further improvement on the area estimates derived there.

Corollary 3.3.6. Let α ∈ (0, 1), and uj ∈ C1,α(D2;A2) be a sequence

of two-valued minimal graphs with |Gj | → V = V0×Ren+1 as j →∞. Then

there is δV > 0 so that lim supj→∞Hn(Gj ∩D1 × (−1, 1)) ≤ (1− δV )2nωn.

Proof. We �rst explain how to obtain these estimates, under the as-

sumption that there is an open set U ⊂ D1 with spt‖V0‖ ∩ D1 ⊂ U and

Per(U) < Per(D1).

Given arbitrarily small δ > 0, there is η ∈ C1
c (D2) with η ≡ 1 on U

and
∫
D2
|Dη| ≤ (1 + δ) Per(U). Let τ > 0 be small, and recall that we write

(U)τ = {X ∈ Rn | dist(X,U) < τ} for the tubular neighbourhood of U with

width τ . Now �rst take τ > 0 small enough that (U)τ ⊂ {η = 1}, and next

take the index j ≥ J(τ) large enough that Gj∩D1×(−1, 1) ⊂ (U)τ×(−1, 1).

From here on we can proceed essentially in the same way as in the proof

of Corollary 3.3.3. The �rst step is to substitute the test function η as

above into the into the inequality (3.2). Having taking the index as large as

above guarantees that the following inequality (3.3) remains valid, meaning

that here we get
∫
D1

1|uj |<1
|Duj |2
vj

≤ 2
∫
D2
|Dη|. Hence

∫
D1

1|uj |<1
|Duj |2
vj

≤
2(1 + δ) Per(U). Now let δV > 0 be small enough that (1 + δV ) Per(U) ≤
(1− δV ) Per(D1), and take δ = δV in the above.

The area of Gj inside the cylinder D1× (−1, 1) can be split into the sum∫
D1

1|uj |<1
1
vj

+
∫
D1

1|uj |<1
|Duj |2
vj

. Precisely as in the proof of Corollary 3.3.3

it su�ces to note that the �rst of the integrals tends to zero as j → ∞,
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whence we �nd that lim supj→∞Hn(Gj ∩ D1 × (−1, 1)) ≤ (1 − δV )2nωn,

precisely as required.

We now turn to the construction of an open set with properties as de-

scribed above. This is particularly simple if one is not concerned about

precise estimates for the ratio PerU/PerD1 = PerU/Hn−1(Sn−1), as in-

deed here we are not. Pick some point x ∈ ∂D1 lying a distance 2r > 0 away

from spt‖V0‖. Inside the disc Dr(x) consider the Caccioppoli set Dr(x)∩D1.

As Dr(x) is mean convex, we may combine for example the results of [DG61]

with [Whi00, Lem. 3.4] (see also [Giu84, Thm. 1.20]) to show that there is

a Caccioppoli set E which agrees with D1 outside Dr(x) but has strictly

smaller perimeter: PerE < PerD1. Heuristically this corresponds to cut-

ting out the portion ∂D1 ∩ Dr(x) from ∂D1 and replacing it by a �at cap

with the same boundary. To conclude simply let U be the interior of E.

The construction depends only on spt‖V ‖, so one can indeed �nd a constant

δV > 0 depending only on V so that (1 + δV ) PerU ≤ (1− δV ) PerD1. �

Remark 3.3.7. Should one so desire, one could make the construction

above self-contained, at the price of producing a slightly less streamlined

argument. A construction by hand could go as follows. Choose a point

x ∈ ∂D1 \ spt‖V0‖ as above, with dist(x, spt‖V0‖) = 2r. Write Π for the

plane tangent to ∂D1 at x. Provided r < 1, one sees that ∂D1 ∩ Dr(x)

is a single-valued graph of a smooth function de�ned on an open, mean

convex subset Ω ⊂ Π, with values in Π⊥. We denote this function f ∈
C∞(Ω; Π⊥), which thus has ∂D1 ∩Dr(x) = graph f . We may then solve the

Dirichlet problem for the minimal surface equation on Ω, and �nd a function

u ∈ C∞(Ω; Π⊥) with f on ∂Ω, which by construction has Hn−1(graphu) <

Hn−1(graph f) = Hn−1(∂D1 ∩ Dr(x)). As ∂Dr(x) is mean convex, we can

justify graphu ⊂ ∂Dr(x) by a maximum principle-type argument. Orient

Π⊥ to point outward, and let V ⊂ Dr(x) be the set of points lying below

graphu. The set U = V ∪ D1 \ Dr(x) has the desired property, namely

PerU < PerD1.

The estimates of Corollary 3.3.6 are called qualitative because we allow

the constant δV > 0 to depend on V , rather trying to compute a value

valid for all limits, for instance depending only on n. Nonetheless they allow

for a rather useful improvement to the estimates of Proposition 3.3.5 for

two-valued graphs in dimension n+ 1 = 4.

Corollary 3.3.8. Let n = 3, and uj ∈ C1,α(D2;A2) be a sequence

of two-valued minimal graphs with |Gj | → P =
∑

jmj |Π0
j | × Re4. Then∑

jmj ≤ 3.
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Proof. Let δ > 0 be the constant for V = P we obtain from Corol-

lary 3.3.6. Using the same calculations as in the proof of Proposition 3.3.5

we �nd
∑

jmj ≤ (1 − δ)3ω3/ω2 = 4(1 − δ). Taking integer values we �nd∑
jmj ≤ 3. �

3.4. Gradient estimates for two-valued minimal graphs

Let α ∈ (0, 1) and the dimension n ≥ 1 be arbitrary. Let u ∈ C1,α(D2;A2)

be a two-valued minimal graph. In this section we derive an interior gradi-

ent estimate analogous to the classical estimates for smooth, single-valued

graphs. These can be found for example in Section 16.2 of [GT98], which we

also follow for the structure of the argument. These gradient bounds stem

from integral estimates for the function w, de�ned on regG by the expres-

sion (3.1). To ensure the validity of these in the presence of branch points

(which are absent in the single-valued case), we rely on the �ne properties

of the branch set proved by [KW20], speci�cally that it has zero 2-capacity.

The main result in this section is the following.

Lemma 3.4.1. Let α ∈ (0, 1) and let u ∈ C1,α(D2;A2) be a two-valued

minimal graph. Then there exists C = C(n) > 0 so that

max
D1

‖Du‖ ≤ C exp(C sup
D2

‖u‖).

We prove the equivalent version below, for discs of arbitrary radius r > 0.

Lemma 3.4.2. Let u ∈ C1,α(D3r;A2) be a two-valued minimal graph.

Then there is a constant C = C(n) > 0 so that

max{|Du1(0)|, |Du2(0)|} ≤ C exp(C max
D2r

‖u‖/r).

3.4.1. Integral estimates and a mean value inequality for w.

De�ne a function w at all points X ∈ regG ∩D2 ×R by

(3.1) w(X) = log v(X) = − log〈ν(X), en+1〉,

where ν(X) is the upward-pointing unit normal to regG at X and v(X) =

〈ν(X), en+1〉−1.

Lemma 3.4.3. For all compact K ⊂ D2 ×R,

(3.2) sup
K∩regG

w +

∫
K∩regG

|∇Gw|2 < +∞

and w satis�es ∆Gw = |∇Gw|2 + |AG|2 weakly in the sense that for all

ϕ ∈ C1
c (D2 ×R),

(3.3) −
∫

regG∩D2×R
〈∇Gw,∇Gϕ〉 =

∫
regG∩D2×R

(|∇Gw|2 + |AG|2)ϕ.
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Proof. Let K ⊂ D2 × R be an arbitrary compact subset. As the

gradient of u is locally bounded, we get

sup
regG∩K

w < +∞.

To prove ∫
regG∩K

|∇Gw|2 < +∞

we use the minimal immersion ι : M → Rn+1 with image ι(M) = G \ BG =

regG ∪ CG that we constructed in 3.2.4.

Pull back w to w ◦ ι ∈ C∞(ι−1(regG)), which we subsequently extend

across ι−1(CG) to yield a function in C∞(M), still denoted by w ◦ ι. This

function satis�es the PDE

(3.4) ∆M (w ◦ ι)− |∇M (w ◦ ι)|2 − |AM |2 = 0

pointwise (and thus also weakly) onM . From this we may deduce the bound

(3.5)

∫
M
|∇M (w ◦ ι)|2φ2 ≤ 4

∫
M
|∇Mφ|2,

valid for all φ ∈ C1
c (M).

Indeed if we ignore the curvature term in (3.4)�as we may because it

has a favourable sign�and integrate against an arbitrary φ ∈ C1
c (M) we see

that ∫
M
|∇M (w ◦ ι)|2φ ≤ −

∫
M
〈∇M (w ◦ ι),∇Mφ〉.

Instead of φ we may also use its square as a test function, for which we

obtain∫
M
|∇M (w ◦ ι)|2φ2

≤ −2

∫
M
φ〈∇M (w◦ι),∇Mφ〉 ≤ 2

( ∫
M
φ2|∇M (w◦ι)|2

)1/2( ∫
M
|∇Mφ|2

)1/2
.

Unless
∫
M |∇M (w ◦ ι)|2φ2 = 0 we may divide both sides by its square root,

yielding (3.5). (If the integral vanishes then the inequality is trivially satis-

�ed.)

In particular, if we take ϕ ∈ C1
c (D2 × R \ BG) and let φ = ϕ ◦ ι and

translate (3.5) to the graph, we obtain

(3.6)

∫
regG∩D2×R

|∇Gw|2ϕ2 ≤ 4

∫
regG∩D2×R

|∇Gϕ|2.

To extend this through the branch point singularities of G, we once again em-

ploy the sequence (ηj | j ∈ N) with properties as described in Lemma 3.2.7.
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Then proceed as in the proof of Lemma 3.2.11, namely take ϕ ∈ C1
c (D2×

R) and substitute the test function ϕ(1− ηj) into (3.6), yielding∫
regG∩D2×R

|∇Gw|2ϕ2(1− ηj)2

≤ 4

∫
regG∩D2×R

ϕ2|∇Gηj |2+2ϕ(1−ηj)〈∇Gϕ,∇G(1−ηj)〉+|∇Gϕ|2(1−ηj)2.

The terms on the right-hand side are identical to those on the right-hand side

of (3.6), so that we may justify passing to the limit j →∞ as in (3.7),(3.8)

and (3.9). We thus obtain

(3.7)

∫
regG∩D2×R

|∇Gw|2ϕ2 ≤ 4

∫
regG∩D2×R

|∇Gϕ|2,

justifying passing to the limit on the left-hand side by an application Fatou's

lemma, again as in the proof of Lemma 3.2.11. This justi�es (3.2).

To show that w is a weak solution of the PDE ∆Gw = |∇Gw|2 + |AG|2

we proceed in much the same way. The integral identity (3.3) is obtained

for test functions ϕ ∈ C1
c (D2 ×R \ BG) by working with the immersed M

instead, as above. Using the same sequence (ηj | j ∈ N) of functions, we

then obtain

−
∫

regG∩D2×R
〈∇Gw,∇{(1−ηj)ϕ}〉 =

∫
regG∩D2×R

(|∇Gw|2+|AG|2)ϕ(1−ηj).

For the right-hand side of the identity, we may let j → ∞ by dominated

convergence, which we can justify using our previously established local L2-

bounds for AG and |∇Gw| from (SG) and (3.2) respectively.

For the left-hand side of the identity, we expand

−
∫

regG∩D2×R
〈∇Gw,∇{(1− ηj)ϕ}

=

∫
regG∩D2×R

〈∇Gw,∇Gηj〉ϕ− 〈∇Gw,∇Gϕ〉(1− ηj),

and repeat calculations akin to those in the �rst part of the proof, noting

that the bounds of (3.2) justify both the limit∫
regG∩D2×R

〈∇Gw,∇Gηj〉ϕ

≤ sup
D2×R

|ϕ|
( ∫

regG∩D2×R
|∇Gw|2

)1/2( ∫
regG∩D2×R

|∇Gηj |2
)1/2 → 0 as j →∞

and the application of dominated convergence to deduce that∫
regG∩D2×R

〈∇Gw,∇Gϕ〉(1− ηj)→
∫

regG∩D2×R
〈∇Gw,∇Gϕ〉 as j →∞.
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Thus we have derived the identity (3.3), which concludes the proof of the

lemma. �

Remark 3.4.4. We could have derived the integral estimate for |∇Gw|
in (3.2) di�erently, using the local curvature bounds that follow from the

stability inequality (SG). Indeed at all regular points 〈ν, en+1〉 > 0, hence

(3.8) |∇Gw|2 ≤ |AG|2(〈ν, en+1〉−2 − 1) on regG,

where we used the fact that |∇G〈ν, en+1〉|2 ≤ |AG|2(1 − 〈ν, en+1〉2). Given

any compact subset K ⊂ D2 ×R, the term 〈ν, en+1〉 is bounded below, say

〈ν, en+1〉 ≥ δK on regG ∩K. Then integrating (3.8) we obtain

(3.9)

∫
regG∩ K

|∇Gw|2 ≤ (δ−2
K − 1)

∫
regG∩K

|AG|2,

whence we get
∫

regG∩K |∇Gw|
2 ≤ CK for some CK > 0 using (SG).

We chose to include the longer derivation in our proof, as it yields the

more precise
∫

regG∩D2×R|∇Gw|
2ϕ ≤ 4

∫
regG∩D2×R|∇Gϕ|

2, valid for all ϕ ∈
C1
c (D2 ×R). We will also use this in the derivation of the interior gradient

estimates (see the proof of Lemma 3.4.2 below). Compare this with the less

useful inequality derived by arguing as above, essentially combining (3.9)

with the stability inequality (SG) to yield
∫

regG∩D2×R|∇Gw|
2ϕ2 ≤ (δ−2

K −
1)
∫

regG∩D2×R|∇Gϕ|
2, where ϕ ∈ C1

c (D2 ×R) and sptϕ ⊂ K.

Let us quickly comment on a subtlety in the proof. The function w =

− log〈ν, en+1〉 is only de�ned on the regular part regG∩D2×R, and cannot

be extended continuously across CG ∩D2×R. However after pulling w back

via the immersion ι : M → G \ BG we obtain a function w ◦ ι which we can

extend smoothly through ι−1(CG). This in turn allowed us to integrate by

parts, yielding formulas which translate to G.

This way one obtains the following identity, valid for all ϕ ∈ C2
c (D2 ×

R \ BG):

(3.10)∫
regG∩D2×R

(∆Gϕ)w = −
∫

regG∩D2×R
〈∇Gϕ,∇Gw〉 =

∫
regG∩D2×R

ϕ∆Gw.

From this, we may verify using a capacity argument that for ϕ ∈ C2
c (D2×R),

(3.11) −
∫

regG∩D2×R
〈∇Gϕ,∇Gw〉 =

∫
regG∩D2×R

ϕ∆Gw.

Let again (ηj | j ∈ N) be a sequence of functions with properties as de-

scribed in Lemma 3.2.7. By a molli�cation argument for example, we may

additionally impose that ηj ∈ C∞c (D2 × R) for all j. If ϕ ∈ C2
c (D2 × R)

then (1− ηj)ϕ ∈ C2
c (D2 ×R \ BG) is a valid test function in (3.10).
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Focus on the two integrals in (3.11). For the �rst, we may justify taking

the limit∫
regG∩U

〈∇G{(1− ηj)ϕ},∇Gw〉 →
∫

regG∩U
〈∇Gϕ,∇Gw〉 as j →∞

as usual, whereas for the second note that on regG,

|ϕ(1− ηj)∆Gw| ≤ |ϕ|(|∇Gw|2 + |AG|2) for all j.

As K = sptϕ is compact, by stability and (3.2) there is a CK > 0 so that∫
regG∩K

|∇Gw|2 + |AG|2 ≤ CK .

Finally, dominated convergence allows taking the limit∫
regG∩U

ϕ(1− ηj)∆Gw →
∫

regG∩U
ϕ∆Gw as j →∞,

which con�rms the identity (3.11) claimed above.

By dropping the curvature term from the (weakly satis�ed) PDE ∆Gw =

|∇Gw|2 + |AG|2 one sees that w is weakly subharmonic on G through the

branch set. As a consequence it satis�es the following mean value inequality.

Corollary 3.4.5. Let X = (x,Xn+1) ∈ D2 ×R. Then for all 0 < σ <

ρ < 2− |x|

(3.12) ρ−n
∫

regG∩Bρ(X)
w − σ−n

∫
regG∩Bσ(X)

w

≥
∫

regG∩Bρ(X)\Bσ(X)
w|D⊥r|2r−n ≥ 0.

Remark 3.4.6. Similar, though not identical, inequalities can be found

for example in [Sim84, Ch.18]. However, the literature does not seem to

contain a proof of the above under the hypotheses we consider, so we give a

detailed derivation following the steps of Simon's proof of the monotonicity

formula for area [Sim84, Ch.17].

Proof. To simplify notation, we may assume without loss of generality

that the point X lies at the origin and ρ < 2. We use a two-parameter family

of Lipschitz cuto� functions (γδ,s | δ ∈ (0, 1), s ∈ (0, ρ)) constructed by �rst

setting

γδ(t) =


1 if t ≤ 1− δ,

(1− t)/δ if 1− δ < t < 1,

0 if t ≥ 1

and then rescaling

γδ,s(t) = γδ(t/s) for all t ∈ R.
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Moreover we write r = |X| and de�ne the radial functions

γδ,s(X) = γδ,s(r) for all X ∈ D2 ×R,

which all have spt γδ,s ⊂⊂ Bρ ⊂ D2 ×R. Fix δ ∈ (0, 1) and s ∈ (0, ρ), with

the eventual aim of letting δ tend to zero.

Although the vector �eld γδ,s(r)Xw is not Lipschitz we can justify its

use in the �rst variation formula using a quick capacity argument. Let

(ηj | j ∈ N) be a sequence of cuto� sequences with properties essentially as

described in Corollary 3.2.8, namely ηj ∈ C1
c (D2×R∩regG) with 0 ≤ ηj ≤ 1

and ηj ≡ 1 on (BG)rj ∩Bρ for some rj → 0. Moreover as j →∞, ηj → 0 Hn-
a.e. on regG ∩ Bρ and

∫
regG∩Bρ |∇Gηj |

2 → 0. As these cut out the branch

set, the vector �eld (1 − ηj)γs,δXw is a valid choice in the �rst variation

formula, and yields
∫

regG∩Bρ divG
(
(1−ηj)γs,δXw

)
= 0. We can expand this

expression to get |
∫

(1 − ηj) divG(γs,δXw)| ≤
∫
|γs,δXw||∇Gηj |. The right-

hand side tends to zero by the Cauchy�Schwarz inequality. On the left-hand

side we justify the convergence
∫

(1 − ηj) divG(γs,δXw) →
∫

divG(γs,δXw)

by dominated convergence, after noticing that
∫
|divG(γs,δXw)| <∞. Hence

we have

(3.13)

∫
regG∩D2×R

divG(γδ,sXw) = 0.

Following the computations in [Sim84, p. 83] we see that divG(γδ,sX) =

nγδ,s + rγ′δ,s(1− |D⊥r|2) pointwise, and (3.13) leads to

(3.14) n

∫
regG∩D2×R

γδ,sw +

∫
regG∩D2×R

rγ′δ,sw

=

∫
regG∩D2×R

rγ′δ,sw|D⊥r|2 −
∫

regG∩D2×R
γδ,s〈∇Gw,X〉.

To somewhat abbreviate this integral identity we de�ne the two functions

Iδ, Jδ : (0, ρ)→ R by setting, for all s ∈ (0, ρ),

Iδ(s) =

∫
regG∩D2×R

γδ,sw,

Jδ(s) =

∫
regG∩D2×R

γδ,sw|D⊥r|2.

Notice that these are both di�erentiable in s with respective derivatives

I ′δ(s) =
∫ ∂γδ,s

∂s w and J ′δ(s) =
∫ ∂γδ,s

∂s w|D
⊥r|2. Note γ′δ,s(r) = 1/sγ′δ(r/s) =

1/(rs)γ′δ(r/s), so that rγ
′
δ,s(r) = −s ∂∂sγδ,s(r). Thus we can rewrite (3.14) as

nIδ(s)− sI ′δ(s) = −sJ ′δ(s)−
∫

regG∩D2×R
γδ,s〈∇Gw,X〉 for all s ∈ (0, ρ).
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Multiply this equation by s−n−1 and notice that this is

d

ds
(s−nIδ(s)) = s−nJ ′δ(s) + s−n−1

∫
regG∩D2×R

γδ,s〈∇Gw,X〉.

Integrate this identity for s ∈ (σ, ρ) to get

(3.15)

ρ−nIδ(ρ)− σ−nIδ(σ) =

∫ ρ

σ
s−nJ ′δ(s) +

∫ ρ

σ
s−n−1

∫
regG∩D2×R

γδ,s〈∇Gw,X〉.

The eventual aim is to let δ → 0 in this identity; this will yield (3.12) and

conclude the proof. Before we do this, we separately integrate both integrals

on the right-hand side by parts. For the �rst, we obtain

∫ ρ

σ
s−nJ ′δ(s) = ρ−nJδ(ρ)− σ−nJδ(σ) + n

∫ ρ

σ
s−n−1Jδ(s)

(3.16)

=

∫
regG∩D2×R

w|D⊥r|2
{
ρ−nγδ,ρ − σ−nγδ,σ + n

∫ ρ

σ
s−n−1γδ,s

}
dHn.

For the second integral, �rst �x s ∈ (0, ρ) and notice that ∇G(r2− s2) =

2XT . The identity
∫
D2×R∩regG divG(γδ,s(r

2 − s2)∇Gw) = 0 is equivalent to

2

∫
regG∩D2×R

γδ,s〈∇Gw,X〉

= −
∫

regG∩D2×R
(∆Gw)γδ,s(r

2−s2)−
∫

regG∩D2×R
(r2−s2)〈∇Gγδ,s,∇Gw〉.

The �rst integral on the right-hand side is equal to −
∫

regG∩D2×R(|AG|2 +

|∇Gw|2)γδ,s(r
2 − s2), and is non-negative. From the identity we only retain

the inequality

2

∫
regG∩D2×R

γδ,s〈∇Gw,X〉 ≥ −
∫

regG∩D2×R
(r2 − s2)〈∇Gγδ,s,∇Gw〉.

Notice that

∇Gγδ,s = −(sδ)−1X
T

r
1Bs\B(1−δ)s

,

so using the co-area formula we can estimate the integral on the right-hand

side like∫
regG∩D2×R

(r2 − s2)〈∇Gγδ,s,∇Gw〉

=

∫ s

(1−δ)s
(sδ)−1(s2 − θ2)

{∫
∂Bθ∩regG

〈
∇Gw,

X

θ

〉}
dθ.
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As θ ∈ (s(1− δ), s) we get s2 − θ2 ≤ s2δ(2− δ) and∫
regG∩D2×R

(s2 − r2)|〈∇Gγδ,s,∇Gw〉|

≤
∫ s

(1−δ)s

∫
∂Bθ∩regG

(2− δ)s|∇Gw| = (2− δ)s
∫

regG∩Bs\B(1−δ)s

|∇Gw|.

Then integrating this over s ∈ (σ, ρ) we obtain a bound for the second

integral in (3.15),

(3.17)
∣∣∣ ∫ ρ

σ
s−n−1

∫
regG∩D2×R

γδ,s

∣∣∣ ≤ 2

∫ ρ

σ
s−n

∫
regG∩Bs\B(1−δ)s

|∇Gw|.

As we announced above, we may now let δ → 0 at the same time on the

left-hand side of (3.15), in (3.16) and (3.17), justifying the convergence each

time by dominated convergence. Thus

ρ−nI(ρ)− σ−nI(σ) ≥ lim
δ→0

{∫ ρ

σ
s−nJ ′δ(s)

}
,

where we write I(s) =
∫

regG∩Bs w for all s ∈ (0, ρ). We conclude by evalu-

ating the limit on the left-hand side, which is∫
regG∩Bρ

w|D⊥r|2
{
ρ−n − σ−n1r<σ + (r ∨ σ)−n − ρ−n

}
=

∫
regG∩Bρ\Bσ

w|D⊥r|2r−n.

Therefore we obtain

ρ−nI(ρ)− σ−nI(σ) ≥
∫

regG∩Bρ\Bσ
w|D⊥r|2r−n,

which establishes (3.12) and concludes the proof. �

3.4.2. Proof of the gradient bounds. We place ourselves in the sit-

uation described in Lemma 3.4.2. Let u ∈ C1,α(D3r;A2) be a two-valued

minimal graph. Write u1(0), u2(0) for the two values of u at 0 ∈ Rn, with

corresponding Du1(0), Du2(0) ∈ Rn. Note that we may consider w as a

two-valued function de�ned on D3r, including at the singular points of u.

Applying the mean value inequality at either point Xi = (0, ui(0)) we

obtain ρ−n
∫
G∩Bρ(Xi)

w−σ−n
∫
G∩Bσ(Xi)

w ≥ 0 for all 0 < σ < ρ < 3r. Fixing

ρ = r and letting σ → 0 we �nd

lim
σ→0

{
(ωnσ

n)−1

∫
regG∩Bσ(Xi)

w
}
≤ (ωnr

n)−1

∫
regG∩Br(Xi)

w.

If Xi is regular, then the limit on the left-hand side is wi(0) whereas if Xi is

singular then it is equal w1(0) + w2(0). Translate the graph so that 0 ∈ G
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and w the larger of its two values there. In both cases

(3.18) 2 max{w1(0), w2(0)} ≤ (ωnr
n)−1

∫
regG∩Br

w.

This allows us to reduce the proof of Lemma 3.4.2 to an estimation of the

integral on the right-hand side of (3.18).

Claim 1. There is a constant C = C(n) so that if u ∈ C1,α(D3r;A2) is

a two-valued minimal graph with 0 ∈ G then

r−n
∫

regG∩Br
w ≤ C(1 + r−1 sup

D2r

‖u‖).

Proof. We split the integral
∫

regG∩Br w =
∫
|x|2+u2<r2 wv into the sum

of
∫
|x|2+u2<r2 w and

∫
|x|2+u2<r2

|Du|2
v w. The former is easier to estimate, as

w ≤ v. Therefore
∫
|x|2+u2<r2 w ≤ Hn(G ∩ Br) ≤ C(n)rn, using the area

bounds of Proposition 3.3.1.

We estimate the latter under the weaker restriction that |x| < r, |u| < r,

for notational convenience. Let η ∈ C1
c (D2r) be a standard cuto� function

with η ≡ 1 on Dr and |Dη| ≤ 2r−1. We write

Φ(x, z, p) =
1

2
log(1 + |p|2)(zr + r)η(x),

where zr is de�ned as in (3.1), meaning that here

zr + r =


2r if z > r,

z + r if −r ≤ z ≤ r,

0 if z < −r.

One may then check that Φ satis�es the required hypotheses laid out in

Proposition 3.2.1 to justify its use as a test function in the equation (3.4).

The only hypothesis we check here is (3.3),

(3.19)

∫
D3r\Bu

|D(Φ(x, u,Du))| < +∞.

As Φ(x, u,Du) = (ur + r)ηw we calculate its derivative as

(3.20) DΦ(x, u,Du) = Du1|x|<r,|u|<rηw +Dη(ur + r)w +Dw(ur + r)η.

Only the last term is not locally bounded. Instead we �nd the following

integral bound. (The main observation underlying this bound, as proved in

Claim 2, is the pointwise inequality (3.23). The unwieldiness of the proof is

caused by the possibility of branch points in D3r.)

Claim 2. For all compact K ⊂ D3r there is a constant CK > 0 so that

(3.21)

∫
K\Bu

|Dw| ≤
∫

regG∩K×R
|∇Gw| ≤ CK .
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Proof. This essentially follows from the integral estimates for |∇Gw| in
(3.2). To justify this rigorously we proceed as follows. First we extend the

two-valued function

w = {w1, w2} =
1

2
{log(1 + |Du1|2), log(1 + |Du2|2)}

to a two-valued function de�ned on the cylinderD3r×R by setting it constant

in the vertical variable,

(3.22) w(x,Xn+1) = w(x) = {w1(x), w2(x)}

for all (x,Xn+1) ∈ D3r ×R.

Near points x ∈ D3r \ Bu we can make a local selection for u by say

ux1 , u
x
2 ∈ C∞(Dσ(x)) so that u = {ux1 , ux2} in Dσ(x). This selection is also

valid for w, meaning that also w = {wx1 , wx2}. Of course this relation also

holds for the extension of w to Dσ(x)×R.

In the cylinder Dσ(x)×R we split the graph into the transverse union

G ∩Dσ(x)×R = graphux1 ∪ graphux2 .

Abbreviating Gxi = graphuxi for i = 1, 2 we can separately calculate

|∇Gxi w
x
i (y, Y n+1)|2 = |Dwxi (y, Y n+1)|2 − |〈νGxi , Dw

x
i (y, Y n+1)〉|2

at all Y = (y, Y n+1) ∈ Dσ(x) ×R. As the wxi are both independent of the

vertical variable we obtain that for i = 1, 2,

(3.23) |〈νGxi , en+1〉||Dwxi | ≤ |∇Gxi w
x
i | on Dσ(x)×R.

Next we split the integral
∫
Dσ(x)|Dw| =

∫
Dσ(x)|Dw

x
1 | +

∫
Dσ(x)|Dw

x
2 |, and

separately bound the two terms using (3.23), that is for i = 1, 2,∫
Dσ(x)

|Dwxi | =
∫
Gxi ∩Dσ(x)×R

|Dwxi |
vxi

≤
∫
Gxi ∩Dσ(x)×R

|∇Gxi w
x
i |.

where recall vxi = (1 + |Duxi |2)1/2 = 〈νGxi , en+1〉−1. Thus we obtain∫
Dσ(x)

|Dw| ≤
∫

regG∩Dσ(x)
|∇Gw|,

which is �nite by (3.2) for example.

We may now return to the original problem of estimating the integral∫
K\Bu |Dw|. We may take a countable cover of the set K \ Bu by some

collection of discs (Dσj (xj) | j ∈ N) centered at points xj ∈ K \ Bu with

Dσj (xj) ⊂ D3r \ Bu,

and let (ρj | j ∈ N) be a partition of unity subordinate to the cover. Justi-

fying the permutation of the sum and the integral by monotone convergence
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for example, we can decompose
∫
K∩D3r\Bu |Dw| like

(3.24)

∫
K∩D3r\Bu

|Dw| =
∑
j∈N

∫
K∩D3r\Bu

|Dw|ρj .

Arguing as in our derivation of the inequality (3.24) we can bound each of

the integrals on the right-hand side by∫
K\Bu

|Dw|ρj ≤
∫

regG∩Dσj(xj)×R

|∇Gw|ρj ,

where we extend ρj to a function de�ned onDσj(xj)×R by setting it constant

in the vertical variable, as we did for w in (3.22). Finally we may use

monotone convergence once again to permute sums with integrals, yielding

the desired ∫
K\Bu

|Dw| ≤
∫

regG∩K×R
|∇Gw| ≤ CK ,

where the last inequality comes from (3.2). �

As we imposed that spt η ⊂ D2r, the inequality (3.21) from the claim

applied with K = D2r con�rms the boundedness required by (3.19). We

may thus substitute the expression (3.20) we calculated for DΦ(x, u,Du)

into (3.4) to get∫
D3r

〈Du
v
,Du1|x|<r,|u|<rηw +Dη(ur + r)w +Dw(ur + r)η

〉
= 0,

so that ∫
|x|<r,|u|<r

|Du|2

v
w ≤ 2r

∫
|x|<2r,u>−r

|Dη|w + |Dw|η.

To justify the expression on the left-hand side, simply note that for i = 1, 2,

wherever ui > −r we have (ui)r + r ≤ 2r, and if ui ≤ −r then (ui)r + r = 0.

The proof then boils down to separately estimating the two integrals∫
|x|<2r,u>−r

|Dη|w and

∫
|x|<2r,u>−r

|Dw|η.

The �rst integral is easier. Indeed using the fact that w ≤ v and the area

bounds of Lemma 3.3.2 we get∫
|x|<2r,u>−r

|Dη|w ≤ 2r−1Hn(G ∩D2r ×R) ≤ C(n)rn−1(1 +Mr−1),

where we set M = supD2r
‖u‖.

For the second integral
∫
u>−r|Dw|η we may start by arguing as in the

proof of Claim 2 to justify that

(3.25)

∫
u>−r

|Dw|η ≤
∫

regG∩D2r×(−r,∞)
|∇Gw|η.
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To estimate this, recall the helpful integral inequality (3.7) we used in the

proof of Lemma 3.4.3. To use it in the present context, we extend η to a test

function compactly supported in the cylinder D2r ×R by multiplying by a

cuto� function τ ∈ C1
c (R) in the vertical direction. We further impose that

τ ≡ 1 on (−r,M) and spt τ ⊂ (−2r,M + r) with |τ ′| ≤ 2r−1. Then from

(3.7) we obtain

(3.26)∫
regG
|∇Gw|2τ2η2 ≤ 8

∫
regG
|∇Gτ |2η2 + τ2|∇Gη|2 ≤ 64r−2Hn(G ∩ sptφ).

Estimate the right-hand side of (3.25) with Hölder's inequality,∫
regG∩D2r×(−r,∞)

|∇Gw|η

≤ (Hn(G ∩D2r × (−2r,M + r))1/2
(∫

G∩D2r×(−r,M)
|∇Gw|2η2

)1/2
,

and combining this with (3.26),∫
regG∩D2r×(−r,∞)

|∇Gw|η ≤ 8r−1Hn(G ∩D2r ×R).

This in turn can be bounded using the area estimates from Lemma 3.3.2:

Hn(G ∩D2r ×R) ≤ C(n)rn(1 + Mr−1). This yields the desired bound for∫
u>−r|Dw|η via (3.25), and concludes the proof of the claim. �

3.5. A regularity lemma for two-valued minimal graphs

3.5.1. A maximum principle near branch point singularities.

Lemma 3.5.1. Let α ∈ (0, 1) and u ∈ C1,α(D2;A2) be a two-valued

minimal graph. Suppose that at the origin

u(0) = {0, 0} and Du(0) = {0, 0}.

Let e ∈ Rn × {0} be a unit vector. If 〈Du, e〉 ≤ 0 on D2 then 〈Du, e〉 = 0.

Proof. To be precise by 〈Du, e〉 ≤ 0 we mean that 〈Dui(x), e〉 ≤ 0

for i = 1, 2 and all x ∈ D2. This is equivalent to 〈ν(X), e〉 ≥ 0 for all

X ∈ regG∩D2×R, where ν is the upward-pointing unit normal to graphu.

We argue by contradiction, assuming that 〈ν, e〉 is non-negative but does not
vanish identically. It is well-known that the function 〈ν, e〉 is a Jacobi �eld

for G, that is it satis�es the equation ∆〈ν, e〉+|AG|2〈ν, e〉 = 0 both pointwise

on regG and weakly through singularities of G. (The justi�cation for this

can be made in essentially the same way as when working with 〈ν, en+1〉 in
the above.) Moreover, by the standard strong maximum principle, we know

that 〈ν, e〉 > 0 on regG, meaning that we can de�ne a smooth function
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we ∈ C2(regG) by

we(X) = − log〈ν(X), e〉 at all X ∈ regG.

The hypotheses of the claim ensure that 〈ν(0), e〉 = 0 at the origin, which

also means that we diverges there. To avoid technical di�culties related to

this, we perturb the vector e slightly. Let θ > 0 be a small angle, through

which we rotate e in the two-dimensional plane span{e, en+1}, yielding the

vector

eθ = (cos θ)e+ (sin θ)en+1.

Unless we are in the pathological case where u diverges near the boundary

of D2, the function 〈ν, en+1〉 = 1√
1+|Du|2

is positive and bounded below, say

〈ν, en+1〉 ≥ α > 0 on regG ∩B1.

Should u in fact diverge near the boundary, we can rescale it around the

origin by a factor λ > 1 close to one, and restrict the resulting function to

D2 to reduce to the case where u is bounded near the origin.

As a consequence the rotated vector eθ also has

〈ν, eθ〉 ≥ α sin θ > 0 on regG ∩B1.

We can then de�ne the function

wθ(X) = − log〈ν(X), eθ〉 at all X ∈ regG

without running the risk of it diverging anywhere. This function has, locally

for all compact K ⊂ D2 ×R that∫
K∩regG

w2
θ + |∇wθ|2 < +∞,

and it satis�es the following equation weakly:

∆wθ − |∇wθ|2 − |AG|2 = 0.

(These facts can be checked in much the same way as we did for the function

− log〈ν, en+1〉 in Section 3.4, see Lemma 3.4.3.)

In particular the function wθ is weakly subharmonic on G, and thus by

the mean value inequality, we get that for all 0 < r < s < 1 and all points

X ∈ B1,

1

ωnrn

∫
regG∩Br(X)

wθ ≤
1

ωnsn

∫
regG∩Bs(X)

wθ.
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Applying this at the origin and letting r → 0 (as is justi�ed by Fatou's

lemma), we obtain that for all 0 < s < 1,

(3.1) 2wθ(0) ≤ 1

ωnsn

∫
regG∩Bs

wθ.

For all θ > 0 we write

Mθ = sup
regG∩B1

wθ and mθ = inf
regG∩B1

〈ν, eθ〉,

which are related by Mθ = − logmθ. Then

wθ(0) ≥Mθ + logα,

where recall α = inf〈ν, en+1〉. Indeed at the origin 〈ν(0), eθ〉 = sin θ, whereas

mθ ≥ α sin θ. Therefore 〈ν(0), eθ〉 ≤ mθ/α. Translating this to wθ we obtain

wθ(0) ≥ − log(mθ/α) = − logmθ + logα. Let δ > 0 be given. As Mθ → ∞
as θ → 0, we may choose a small value θ0 > 0 in terms of α, δ so that for all

θ ∈ (0, θ0) we also have

wθ(0) ≥ (1− δ/2)Mθ.

Substitute this into the mean value inequality (3.1) with radius s = 1, ob-

taining that

(2− δ)Mθ ≤
1

ωn

∫
regG∩B1

wθ.

Let λ > 0 be a parameter whose value we will �x later. Then we may

split the integral on the right-hand side by conditioning on the event that

{wθ ≥ λ}, obtaining two integrals which we can separately bound by

1

ωn

∫
regG∩B1∩{wθ>λ}

wθ ≤Mθ/ωnHn(regG ∩B1 ∩ {wθ > λ})

1

ωn

∫
regG∩B1∩{wθ≤λ}

wθ ≤ λ/ωnHn(regG ∩B1 ∩ {wθ ≤ λ}).

Recall that w is large only near {〈ν, e〉 = 0} ⊂ singG ∩B1, and hence is

bounded away from the singular set. Since the functions wθ converge to w

pointwise on regG∩B1, and uniformly in compact subsets K ⊂ regG∩B1,

we obtain uniform bounds for the sequence too: for all compact K ⊂ regG∩
B1 there exist θK > 0 and DK > 0 so that for all θ ∈ (0, θK)

(3.2) wθ ≤ DK on K.

Working in the larger ball B3/2, we see that Hn(singG ∩B3/2) = 0. There-

fore given any ε > 0 we may �nd a �nite open cover of singG ∩ B3/2 by

balls B(X1, r1), . . . , B(XN , rN ) with
∑N

k=1 r
n
k ≤ ε. Perhaps after slightly

increasing the radii of the balls in the cover, we may arrange for regG∩B1 \
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∪Nk=1B(Xk, rk) to lie a positive distance away from the singular set. Using

the bound above in (3.2), we see that there must be a constant D > 0 so

that for all θ ∈ (0, θ0)

wθ(X) ≤ D at all X ∈ regG ∩B1 \ ∪Nk=1B(Xk, rk),

after adjusting θ0 to a smaller value if necessary. We may then set λ = D,

and see that for all θ ∈ (0, θ0),

(3.3) Hn(regG ∩B1 ∩ {wθ > D}) ≤
N∑
k=1

ωnr
n
k ≤ ωnε.

The divergence ofMθ as θ → 0 additionally lets us impose that θ be small

enough thatMθ ≥ C(n)D, where C(n) is a constant so thatHn(regG∩B1) ≤
ωnC(n), available via the area bounds of Proposition 3.3.1. With θ as small

as this, we get

(3.4) D/ωnHn(regG ∩B1 ∩ {wθ ≤ D}) ≤Mθ.

Substituting (3.3) and (3.4) into our decomposition for 1/ωn
∫

regG∩B1
wθ

we obtain the inequality

(2− δ)Mθ ≤
1

ωn

∫
regG∩B1

wθ ≤
(
ε+ 1

)
Mθ,

which is absurd provided δ, ε are small enough. �

The analogous statement is a lot easier to prove for single-valued, smooth

minimal graphs. In fact, this is an immediate application of the classical,

strong maximum principle, and we used this in the proof above to deduce

that 〈ν(X), e〉 > 0 for all regular points X ∈ regG ∩D2 ×R.

3.5.2. Regularity by a geometric argument. Here we show that

Lipschitz two-valued minimal graphs are automatically regular. This is some-

what well-known among experts in the �eld, although an explicit proof is

absent from the literature. Here we follow a strategy suggested to us by S.

Becker-Kahn, using the results developed in his thesis [BK17]. Our aim is to

prove the following two results simultaneously, using an inductive argument

on the dimension n.

Theorem 3.5.2. Let u ∈ Lip(D2;A2) be a two-valued minimal graph

with Lipschitz constant L. Then there is α = α(L, n) ∈ (0, 1) so that

u ∈ C1,α(D2;A2).

This turns out to be equivalent to the following, seemingly weaker lemma.
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Lemma 3.5.3. Let u ∈ Lip(Rn;A2) be a two-valued minimal graph with

Lipschitz constant L. If additionally u is homogeneous,

(3.5) u(λx) = λu(x) for all λ > 0, x ∈ Rn,

then u is linear.

Proof. Before moving on to the inductive argument, let us explain how

Lemma 3.5.3 implies Theorem 3.5.2. Let u ∈ Lip(D2;A2) be a two-valued

minimal graph with Lipschitz constant L. This is smooth away from away

from Bu, so consider an arbitrary x ∈ Bu ∩ D2. Write X = (x,Xn+1) ∈
BG be the corresponding point in the graph, at height Xn+1 = u1(x) =

u2(x). For any tangent cone CX ∈ VarTan(|G|, X)�a priori these are not

unique�, there is a two-valued Lipschitz function UX ∈ Lip(Rn;A2) with

the same Lipschitz constant, so that CX = |graphUX |. This function UX is

homogeneous as in (3.5), and thus by Lemma 3.5.3 this must be linear. In

other words there is ΠX ∈ Gr(n, n+1) so that CX = 2|ΠX |. Then by [BK17]
there is 0 < γ = γ(n,L) < 1 so that for some ρ > 0, u ∈ C1,γ(Dρ(x);A2). As

the branch point x was chosen arbitrarily and α(n,L) := γ does not depend

on it, we get u ∈ C1,α(D2;A2).

The base of the inductive argument is simple, as when n = 1 then two-

valued minimal graphs are automatically linear. For the induction step, as-

sume that Theorem 3.5.2 holds in dimension n−1 ≥ 1. We prove Lemma 3.5.3

in dimension n, and for that purpose consider an arbitrary minimal graph

u ∈ Lip(Rn;A2), homogeneous as in (3.5). We claim that there is γ =

γ(n,L) > 0 so that u ∈ C1,γ(Rn \{0};A2). To see this, let X = (x,Xn+1) 6=
0 ∈ singG ∩D2 ×R. Every tangent cone CX ∈ VarTan(G,X) is the graph

of a two-valued function UX ∈ Lip(Rn;A2) with the same Lipschitz con-

stant. By a standard dimension reduction argument, CX is invariant under

translation by tX for all t ∈ R. By the induction hypothesis UX is linear,

and CX is

(1) either a sum of two multiplicity one planes, CX = |ΠX
1 |+ |ΠX

2 |,
(2) or a single multiplicity two plane, CX = 2|ΠX

1 |.

By [BK17] there exists 0 < γ = γ(n,L) < 1 so that for some 0 < ρ < |x|,
u ∈ C1,γ(Dρ(x);A2) regardless of whetherX = (x,Xn+1) is a classical singu-

larity or a branch point. As x is arbitrary and γ can be chosen independently

of it, we get u ∈ C1,γ(Rn \ {0};A2).

To extend this across the origin, de�ne a function w on the regular set,

(3.6) w(X) = − log〈ν(X), en+1〉 for all X ∈ regG.
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This is non-negative and bounded, and we may let

(3.7) M = sup
regG∩∂B1

w > 0,

and consider a sequence of points Xi ∈ regG∩ ∂B1 with Xi → Z ∈ G∩ ∂B1

and w(Xi)→M as i→∞.

Claim 3. If Z = (z, Zn+1) /∈ BG ∩ ∂B1 then u is locally linear near Z

in the sense that there is ρ > 0 and a smooth selection u1, u2 ∈ C∞(Dρ(z))

with u1 linear and Z ∈ graphu1.

Proof. As the graph |G| is invariant under homotheties, so is w, whence

if X ∈ regG then λX ∈ regG and w(λX) = w(X) for all λ > 0. There-

fore (3.7) also means M = supregG∩B1
w.

When Z ∈ regG ∩ ∂B1 then by the classical strong maximum principle

w is locally constant near Z, and thus so is so |Du|. Pick a small radius

ρ > 0 so that a smooth selection {u1, u2} can be made for u on Dρ(z). We

arrange for Z ∈ graphu1. As |Du1| is constant in Dρ(z), it is harmonic

by inspection. By the Bochner formula, |D2u1|2 = ∆|Du1|2 ≡ 0 on Dρ(z).

Thus u1 is a�ne linear, and the homothety-invariance of G means that it

must in fact be linear.

The argument is similar when Z ∈ CG ∩ ∂B1. Make a smooth selection

{u1, u2} for u on Dρ(z) and write Gi = graphui. De�ne the two functions

w1, w2 on G1, G2 respectively, using the analogue of (3.6). Without loss of

generality assume that G1 contains in�nitely many points of {Xi | i ∈ N}.
As w1 is continuous at the point Z, we get w1(Z) = M . From then on, one

can argue in the same way as when Z is regular. �

Now suppose Z ∈ BG ∩ ∂B1. This argument is a bit more involved, but

revolves around the same idea. Because Du1(z) = Du2(z), the function w

can be continuously extended to Z. (The same is true for all branch points.)

Write ν(Z) ∈ Rn+1 for the unit normal, and 2|ΠZ | ∈ VarTan(|G|, Z) for the

tangent plane to G at Z. As w(Z) = M > 0, this plane is not horizontal,

and ν(Z) 6= en+1. Let P = span{en+1, ν(Z)} ⊂ Rn+1. This intersects ΠZ

in a one-dimensional line, from which we pick a vector e ∈ ΠZ ∩ Π with

〈e, en+1〉 > 0. Write e = aen+1 + bν(Z) for a, b ∈ R, which are constrained

by 0 = 〈e, ν(Z)〉 = a〈en+1, ν(Z)〉 + b, or equivalently b = −a〈en+1, ν(Z)〉.
Let X ∈ regG be an arbitrary regular point near Z. Then

〈ν(X), e〉 = 〈ν(X), aen+1 − a〈en+1, ν(Z)〉ν(Z)〉(3.8)

= a
(
〈ν(X), en+1〉 − 〈en+1, ν(Z)〉〈ν(X), ν(Z)〉

)
.

Take X close enough to Z that 0 < 〈ν(Z), ν(X)〉 ≤ 1, say this holds for

X ∈ regG ∩ Bρ(Z) for example. Moreover by construction 〈en+1, ν(Z)〉 ≤
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〈en+1, ν(X)〉, and hence

(3.9) 〈ν(X), e〉 ≥ 0 for all X ∈ regG ∩Bρ(Z).

Upon decreasing ρ > 0 we �nd UZ ∈ C1,γ(Bρ(Z)∩(Z+ΠZ); Π⊥Z ) so that G∩
Bρ(Z) ⊂ graphUZ . By construction e ∈ ΠZ , and we can apply Lemma 3.5.1

to UZ to deduce from (3.9) that 〈ν(X), e〉 = 0 for all X ∈ regG ∩ Bρ(Z).

Returning to (3.8) we see that this is only possible if for these points we

have both 〈ν(X), en+1〉 = 〈ν(Z), en+1〉 and 〈ν(Z), ν(X)〉 = 1. Either would

su�ce to conclude that w(X) = w(Z) for all X ∈ regG ∩ Bρ(Z). Once we

have derived this, we may reason as in the proof of Claim 3 to draw the

analogous conclusion.

We use this to show that G must be a union of planes, using an argument

similar to that used to prove Lemma 5.1.4. Let R be the set of connected

components of regG, of which there are at most countably many. Among

them we write Rf ⊂ R for those Σ ∈ R that are �at, meaning |AΣ| ≡ 0. The

rest is denoted Rc = R \Rf . We decompose |G| = Cf + Cc ∈ IVn(Rn+1),

respectively de�ned by Cf =
∑

Σ∈Rf ΘΣ|Σ| and Cc =
∑

Γ∈Rc ΘΓ|Γ|. Here

given Σ ∈ R we write ΘΣ ∈ Z>0 for its multiplicity, which is constant

by [Sim84, Thm. 41.1]. Both Cf ,Cc are invariant under homotheties, and

stationary. To justify the latter, it su�ces to prove that Cf ,Cc are stationary

near points in CG, as the other singularities do not contribute to the �rst

variation. Pick some point X ∈ spt‖Cf‖ ∩ ‖Cc‖ ∩ CG, and let ρ > 0 be so

that we can decompose G ∩ Bρ(X) = Σ1 ∪ Σ2 into a union of two surfaces

embedded in Bρ(X), which meet transversely along singG ∩ Bρ(X). By a

unique continuation argument we may arrange for Σ1 ⊂ spt‖Cf‖ and Σ2 ⊂
spt‖Cc‖. Both Σi are stationary in Bρ(X), whence Cf ,Cc are stationary

inside Bρ(X) too. As X was arbitrary, they are stationary in Rn+1. The

argument above shows that Rf 6= ∅ and Cf 6= 0, and by Lemma 5.2.3 it is

supported in a union of planes, say spt‖Cf‖ = Π1 ∪ · · · ∪ΠD with D ≤ 2. If

Cc = 0 then we are done, otherwise D = 1 and Cf = |Π1|. In this case too

one ultimately �nds that |G| = |Π1|+ |Π2|, for instance using [Sim77]. �



Chapter 4

Limit cones

4.1. Multiplicity and branch points of limit cones

Let α ∈ (0, 1) and (uj | j ∈ N) be a sequence of two-valued minimal

graphs with uj ∈ C1,α(D2;A2). Here we examine the situation in which these

graphs converge to a plane weakly in the varifold topology, |Gj | → m|Π| as
j →∞, where Π ∈ Gr(n, n+ 1) and m ∈ Z>0.

4.1.1. An a priori multiplicity bound.

Lemma 4.1.1. If |Gj | = |graphuj | → m|Π| D2 ×R then m ≤ 2.

Proof. We prove �rst the easier case where the plane Π ∈ Gr(n, n+ 1)

is not vertical, that is where it is not cylindrical of the form Π = Π0×Ren+1.

The plane must have integer multiplicity m ∈ Z>0 say. There is nothing to

prove ifm = 1, so we may assume thatm ≥ 2. Let a small constant 0 < τ < 1

be given, and take j ≥ J(τ) large enough that Gj ∩ (Π)1 ⊂ (Π)τ . In fact we

have the same control over Gj in the whole cylinder, that is Gj ∩D2 ×R ⊂
(Π)τ . Indeed, if this were to fail then Gj ∩D2 ×R would be disconnected,

and we could write Gj ∩ D2 × R = Γj,1 ∪ Γj,2 where Γj,1 ∩ (Π)τ 6= ∅ and
Γj,2 ∩ (Π)1 = ∅. But then Hn(Gj ∩D2 ×R ∩ (Π1)1) ≤ Hn(Γj,1), and taking

limits as j → ∞ would yield m = 1. This is absurd as we initally assumed

thatm is at least two, and hence we have con�rmed that Gj∩D2×R ⊂ (Π)τ .

Let L = max{Xn+1 | X = (x,Xn+1) ∈ Π∩D2×R}, then ‖uj(x)‖ ≤ 2(τ+L)

for all x ∈ D2. Using the interior gradient estimates of Lemma 3.4.1 we �nd

that there is a constant C = C(n,L) so that eventually ‖uj‖1;D1 ≤ C. Up

to extracting a subsequence we �nd that the uj converge to a two-valued

Lipschitz graph de�ned on D1. As by assumption |Gj | → m|Π| we can

conclude that m = 2.

We can now turn to the case where the limit plane Π is vertical, that is

of the form Π = Π0 ×Ren+1 for some (n− 1)-dimensional plane Π0 ⊂ Rn.

The argument is simpli�ed by working with the open cubes of the form Ik =

(−1, 1)k × {0}n−k, and in particular In+1, In and their respective closures.

Moreover we assume without loss of generality that Π = {X1 = 0}. Indeed
we may reduce ourselves to this situation by rotating both the two-valued

87
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graphs and Π. Given τ > 0 de�ne

Eτ = {(X,S) ∈ Grn(I
n+1

) | |〈NS , en+1〉| ≥ τ},

where NS is the (unoriented) unit normal to S. As |Π|(Eτ ) = 0 and Eτ is

compact, given any ε > 0 we can take j ≥ J(τ, ε) large enough to guarantee

that |Gj |(Eτ ) < ε by virtue of the weak convergence |Gj | → m|Π|. In what

follows the argument is notationally simpler if we de�ne the sets

Eτ,j = {X ∈ regGj ∩ I
n+1 | |〈νj , en+1〉| ≥ τ},

which provided j ≥ J(τ, ε) have Hn(Eτ,j) < ε. Let additionally δ > 0 be

given, and update j ≥ J(τ, ε, δ) to guarantee that also Gj ∩ I
n+1 ⊂ (Π)δ.

Split the graph Gj by conditioning on the set Eτ,j ,

Hn(Gj ∩ I
n+1

) = Hn(regGj ∩ I
n+1

)

= Hn(Eτ,j) +Hn(regGj ∩ I
n+1 \ Eτ,j).

Then Hn(Eτ,j) < ε and

Hn(regGj ∩ I
n+1 \ Eτ,j)

=

∫
In,|uj |≤1,〈νj ,en+1〉<τ

1

vj
+

∫
In,|uj |≤1,〈νj ,en+1〉<τ

|Duj |2

vj
,

where we abbreviate vj = (1 + |Duj |2)1/2. The �rst of the two is bounded

like ∫
In,|uj |≤1,〈νj ,en+1〉<τ

1

vj
≤ Hn(In)τ = 2nτ.

For the second integral we do not need 〈νj , en+1〉 < τ . Instead we bound∫
In,|uj |≤1

|Duj |2
vj

, using a modi�cation of the arguments used to prove the a

priori area estimates, starting with the integral identity (3.2) with r = 1.

As Gj ∩ I
n+1 ⊂ (Π)δ the two-valued indicator function 1|uj |≤1 is supported

inside the closure of In ∩ (Π0)δ. Instead of the usual test function, we may

thus take η ∈ C1
c (D2) with 0 ≤ η ≤ 1 on D2 and η = 1 on In ∩ (Π0)δ and

deduce

(4.1)

∫
D2,|uj |≤1

|Duj |2

vj
≤
∫
D2,|uj |≤1

η
|Duj |2

vj
≤ 2

∫
D2

|Dη|.

By varying η among all test functions identically equal to 1 on (Π0)δ∩In the
integral on the right-hand side can be made arbitrarily close to the perimeter

of (Π0)δ ∩ In. We calculate this to be

Hn−1(∂{(Π0)δ ∩ In}) = 2Hn−1(In−1) + 2(n− 1)(2δ)Hn−2(In−2)

= 2n + (n− 1)2nδ,



4.1. MULTIPLICITY AND BRANCH POINTS OF LIMIT CONES 89

because (Π0)δ ∩ In is an n-dimensional cube with 2n faces, all but two of

which are isometric to (−δ, δ) × In−2. These `thin' faces each contribute

Hn−1((−δ, δ)× In−2) = 2δHn−2(In−2) to the perimeter. The two remaining

`large' faces are {±δ}×In−1, each adding Hn−1(In−1). Combining this with

the inequality (4.1) we obtain∫
D2,|uj |≤1

|Duj |2

vj
≤ 2n+1 + (n− 1)2n+1δ = 2Hn(In) + C(n)δ.

Summarising the estimates we obtain that for j ≥ J(τ, ε, δ)

Hn(Gj ∩ In+1) = Hn(Eτ,j) +Hn(regGj ∩ In+1 \ Eτ,j)

≤ ε+ 2Hn(In) + C(n)(δ + τ).

As In+1 is open we can let τ, ε, δ → 0 and J(τ, ε, δ)→∞ to get

mHn(In) = m|Π|(Grn(In+1))

≤ lim inf
j→∞

Hn(Gj ∩ In+1) = 2Hn(In). �

4.1.2. Multiplicity in limit varifolds. Combining the previous lemma

with a diagonal extraction argument, we obtain the following result.

Corollary 4.1.2. Let α ∈ (0, 1), and let (uj | j ∈ N) be a sequence

of two-valued minimal graphs in C1,α(D2;A2). Suppose that there are half-

planes πi and mi ∈ Z>0 so that |Gj | →
∑

imi|πi|. Then mi ≤ 2.

Similarly, though in a more general context, we can combine the estimate

from Lemma 4.1.1 with the work of Krummel�Wickramasekera [KW20],

quoted in Theorem 3.2.6. Recall here that for a stationary varifold V we

write BV for the top stratum of the singular set, that is BV denotes the set

of points X ∈ sing V where at least one tangent cone is of the form 2|ΠX |
for an n-dimensional plane ΠX ∈ Gr(n, n+ 1).

Corollary 4.1.3. Let Gj = graphuj be a sequence of two-valued mini-

mal graphs, where uj ∈ C1,α(D2;A2) for all j for some α ∈ (0, 1). Suppose

that |Gj | → V ∈ IVn(D2 × R) weakly in the topology of varifolds. Then

for all Z ∈ reg V , Θ(‖V ‖, Z) ≤ 2. If Z ∈ BV then Θ(‖V ‖, Z) = 2, and the

branch set is countably n− 2-recti�able.

4.1.3. Local description near vertical planes. We return to the

situation where |Gj | → 2|Π| to some vertical plane Π = Π0 × Ren+1 ∈
Gr(n, n + 1). The limit in the current topology is supported in the same

plane, JGjK→ lJΠK for some non-negative l ∈ Z with l ≤ 2. By Allard's reg-

ularity theorem the multiplicity is either l = 0 or 2, see Proposition 1.2.11.

The following result considers the case where the mass of the currents van-

ishes in the limit.
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Lemma 4.1.4. Let α ∈ (0, 1), uj ∈ C1,α(D2;A2) be a sequence of two-

valued minimal graphs, and let Π = Π0×Ren+1 be a vertical plane. Suppose

|Gj | → 2|Π| and JGjK→ 0 as j →∞. Then for large enough j,

B(Gj) ∩B1 = ∅.

Proof. Let N be either unit normal to Π, and de�ne fj = 〈νj , N〉 on
regGj . Given any δ > 0, fj restricted to regGj ∩ B3/2 takes values in

[−1,−1 + δ) ∪ (1 − δ, 1] by [Wic20], at least for large enough j ≥ J(δ).

Write Rj for the connected components of regGj ∩ B3/2, which we further

divide into R±j according to the sign of fj . Accordingly we may decompose

JGjK = T+
j + T−j into the sum of the two currents obtained by integrating

over R±j respectively, in a way that JGjK = T+
j + T−j and |Gj | = |T+

j | +
|T−j |. The two currents only meet along classical, immersed singularities

of Gj , where they moreover intersect transversely. Therefore they are both

separately stationary with ∂T±j = 0 in B3/2. By assumption T+
j + T−j →

0 and |T+
j | + |T

−
j | → 2|Π| B3/2 as j → ∞ in the current and varifold

topologies respectively. Moreover by Federer�Fleming compactness T±j →
T± separately as j → ∞. The limit currents satisfy T+ + T− = 0, and

thus they are equal to the plane Π with multiplicity, but with opposite

orientations. By Allard regularity both T+
j B1 and T

−
j B1 can be written as

smooth graphs de�ned on Π, and thus do not support any branch points. �

Return to the general case, where |Gj | → m|Π| and JGjK→ lJΠK for some

vertical plane Π = Π0×Ren+1. If l 6= 0 then we let N be the unit normal to

Π corresponding to the orientation induced on the plane by JGiK, and if l = 0

then we pick our orientation arbitrarily. Thus we can divide D1 \ Π0 ⊂ Rn

into two connected components D±1 = {x ∈ D1 | ±〈x,N〉 > 0}.
For each j de�ne a function Fj : D1 → {0, 1, 2} by

(4.2) Fj(x) =
∑

X∈P−1
0 ({x})

Xn+1<−1

Θ(‖Gj‖, X).

This returns the number of points inGj which lie below x ∈ D1, counted with

multiplicity. (We could equally well have worked with a function counting

the points lying above x ∈ D1, although formulas such as (4.3) would have

the opposite sign.) These functions are eventually locally constant away

from the plane Π0, in the following sense.

Claim 4. Let τ > 0 be arbitrary. Then there is j ≥ J(τ) so that Fj is

constant on the two components D±1 \ (Π0)τ .

Proof. The proof is identical for both components, so we just work

with D+
1 . By the convergence of the graphs Gj in the Hausdor� distance,
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we may take j ≥ J(τ) large enough that Gj ∩D1 × (−1, 1) ⊂ (Π)τ . Hence

eventually Gj ∩D+
1 ×R \ (Π)τ ⊂ {|Xn+1| > 1}.

There are three possibilities:

(1) either Gj ∩D+
1 ×R \ (Π)τ ∩ {Xn+1 < −1} = ∅,

(2) or Gj ∩D+
1 ×R \ (Π)τ ⊂ {Xn+1 < −1},

(3) or Gj ∩D+
1 ×R \ (Π)τ contains points with positive and negative

values for Xn+1.

Going through these cases in the same order we �nd that at all points x ∈
D+

1 \ (Π)τ the function Fj(x) takes the values 0, 2 or 1. �

Lemma 4.1.5. Let α ∈ (0, 1), uj ∈ C1,α(D2;A2) be a sequence of two-

valued minimal graphs, and Π = Π0 × Ren+1 be a vertical plane. Suppose

that |Gj | → m|Π| and JGjK → lJΠK as j → ∞. Then the Fj are eventually

constant away from Π0, taking the values F± on D±1 respectively, and

(4.3) F+ − F− = l.

Proof. There are three possible cases:

(1) either m = 2 and l = 2,

(2) or m = 2 and l = 0,

(3) or m = 1 and l = 1.

The proof is basically the same in all three cases, so we only consider the

�rst. Consider the line L ⊂ Rn×{0} directed by N and passing through the

origin. Identify L with R via a unit-speed parametrisation. Then there exist

two functions u1
j,L, u

2
j,L ∈ C1(R) so that uj(tN) = {u1

j,L(tN), u2
j,L(tN)} for

all t ∈ R. Moreover, as l = 2 we get that u1
j,L(t) ∧ u2

j,L(t) < −1 on (1/2, 1)

and u2
j,L(t) ∨ u2

j,L(t) > 1 for t ∈ (−1,−1/2), provided j is large enough.

Now let 0 < τ < 1 be an arbitrary small constant. By Claim 4, the

function Fj is constant on the two components of D1\(Π)τ , at least provided

j ≥ J(τ) is chosen large enough. Combining this with our calculations above,

we �nd that for points x ∈ D1 \ (Π)τ , Fj(x) = 2 if x ∈ D+
1 and Fj(x) = 0

if x ∈ D−1 . These values do not change with large values of j, and we may

set F+ = 2, F− = 0, which con�rms that indeed F+ − F− = 2 = l. As

explained above, the other cases can be argued similarly. �

4.2. Classical limit cones: initial analysis

Let α ∈ (0, 1), and (uj | j ∈ N) be a sequence of two-valued minimal

graphs, with uj ∈ C1,α(D2;A2) for all j. We assume that they converge to a

classical cone in the varifold topology, say |Gj | → P. By this we mean that

there are n-dimensional half-planes π1, . . . , πN meeting along a commmon

n− 1�dimensional axis L ∈ Gr(n− 1, n+ 1) and integers m1, . . . ,mN ∈ Z>0
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so that P =
∑

imi|πi|. By the graphs are endowed with the orientation

corresponding to their upward-pointing unit normal we obtain a sequence of

currents which we may also assume convergent, say JGjK→ T ∈ In(D2×R),

extracting a subsequence if necessary. This limit too has a similar form to

the above, namely T =
∑

i liJπiK where 0 ≤ li ≤ mi. Here the half-planes are

given the orientations induced by T , where we pick an arbitrary orientation

for those πi which have li = 0. Our main theorem in this section is the

following.

Theorem 4.2.1. Let α ∈ (0, 1), and let (uj | j ∈ N) be a sequence of

two-valued minimal graphs with uj ∈ C1,α(D2;A2). Suppose that |Gj | → P

and JGjK → T as j → ∞, where P and T are classical cones. Then there

exist planes Π1, . . . ,ΠD ∈ Gr(n, n+ 1) and integers 0 ≤ li ≤ mi ≤ 2 so that

P =
D∑
i=1

mi|Πi| and T =
D∑
i=1

liJΠiK.(4.1)

Our approach is similar to the arguments employed in the last section

of [SS81], the main di�erence being the possible presence of classical and

branch point singularities in the present setting. Thus one replaces their

stable sheeting theorem with a new result of Wickramasekera [Wic20], which

holds close to multiplicity two planes without the a priori exclusion of either

of these singularities. We nonetheless repeat the details of their arguments

here, trying to preserve the structure of the proof in [SS81] in order to high-

light the similarities.

For the remainder of the proof the structure of the |Gj | as two-valued
graphs is of secondary importance. For this reason, we may simplify notation

by rotating through some ambient isometry A of Rn+1. We may do this in

such a way as to map the axis L of P onto Rn−1 × {0}2, meaning that

(4.2) A#|Gj | = Rn−1 ×
N∑
i=1

mi|Ri|,

where each Ri is a ray of the form Ri = {λpi | λ > 0} with pi ∈ S1 ⊂ R2.

Write Vj = A#|Gj |, and Nj = A#νj for the image of the upward-pointing

unit normal to the graphs, de�ned at every point of reg Vj .

Let σ > 0 be arbitrary. For su�ciently large j ≥ J(σ),

A#Gj ∩ {x} × {y ∈ R2 | σ/2 < |y| < σ} = ∪M̄k=1γ
k
j,x,

for each x ∈ Rn−1 with |x| ≤ 1, where M̄ =
∑N

k=1mk. The γkj,x are C1,α

embedded Jordan arcs with endpoints in {x} × {y ∈ R2 | |y| = σ/2 or σ}.
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Moreover as j →∞ we have the uniform limits

distH(∪kγkj,x, {x} × ∪Ni=1{λpi | σ/2 < λ < σ})→ 0

and

(4.3) min
i∈{1,...,N}

sup
X∈γkj,x

|〈Nj(X), (0, pi)〉| → 0,

for all x ∈ Rn−1 with |x| ≤ 1, the latter being justi�ed either by Allard

regularity or [Wic20] depending on the multiplicity of the ray.

Let τ ∈ (0, 1) be small enough that the tubular neighbourhoods
(
{λpi |

σ/2 < λ < σ}
)
τ
are two-by-two disjoint. By then taking j ≥ J(τ, σ) large

enough that distH(γkj,x, {x} × ∪Ni=1{λpi | σ/2 < λ < σ}) < τ we ensure that

there lie precisely mi Jordan arcs near every line segment {λpi | σ/2 < λ <

σ}.
By [KW20] the branch set of the two-valued graphs is countably n− 2-

recti�able for all j. Of course the same remains true for the Vj after rotating

through by A. Let Pn−1 be the orthogonal projection onto Rn−1 × {0}2.
The projection of the branch set onto Rn−1 × {0}2 is a compact Hn−1-null

set, that is

(4.4) Hn−1(Pn−1(B(Vj) ∩B
n−1
1 (0)× {y ∈ R2 | |y| ≤ 1})) = 0.

Combining this observation with Sard's theorem, we �nd that there is an

open subset Uj ⊂ Bn−1
1 (0)×{0}2 of full Hn−1-measure, so that for all x ∈ Uj

spt‖Vj‖ ∩ {x} × {y ∈ R2 | |y| < σ} = ∪Pk=1Υk
j,x ∪ ∪

Q
l=1∆l

j,x,

where the Υk
j,x are smooth properly embedded Jordan arcs with endpoints

in {x} × {y ∈ R2 | |y| = σ} and the ∆l
j,x are smooth properly embedded

Jordan curves. We call the points in Uj unbranched.

Lemma 4.2.2. If P or T are not of the form (4.1) then there exist ϕ ∈
(0, 1) independent of σ, and J(σ) ∈ N so that if j ≥ J(σ) then for all x ∈ Uj,

(4.5) ϕ ≤ max
k∈{1,...,P}

sup
X,Y ∈Υkj,x

|Nj(X)−Nj(Y )|.

Proof. A list of properties must hold for P and T to conform to (4.1).

We go through them one by one, assuming every time that they fail and

obtaining a lower bound akin to (4.5). First, we consider the case where

there do not exist planes Π1, . . . ,ΠD so that

(4.6) spt‖P‖ = ∪Di=1Πi.

Rotate through by an isometry A to consider Vj = A#|Gj | instead as we

did above in (4.2). Let p1, . . . , pM ∈ S1 ⊂ R2 be as above, and consider
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their indices modulo M for notational convenience. After doing this, we

see that (4.6) fails precisely if there is no way of dividing these points into

antipodal pairs. meaning that there exists pi so that −pi /∈ {p1, . . . , pM}.
Relabel the points in such a way that this is the case for p0. Let Υk0

j,x be a

Jordan arc with at least one endpoint near the line segment {λp0 | σ/2 <
λ < σ}. We may take j ≥ J(τ, σ) large enough that this must exist, and

moreover has

(4.7) |〈Nj(X), (0, p0)〉| ≤ τ

for all X ∈ Υk0
j,x ∩ ({λp0 | σ/2 < λ < σ})τ . The other endpoint of Υk0

j,x must

lie either near the same line segment, or near a line segment corresponding

to some other pi 6= p0. By assumption also pi 6= −p0, and the normals to the

rays R0 and Ri must therefore be di�erent. Thus if Υk,0
j,x had its endpoints

lying near the rays corresponding to p0, pi then picking τ > 0 small and

j ≥ J(τ, σ) large enough, we may impose that (4.7) also hold for points in

X ∈ Υk0
j,x ∩ ({λpi | σ/2 < λ < σ})τ . Therefore

(4.8) ϕ1 ≤ sup
X,Y ∈Υ

k0
j,x

|Nj(X)−Nj(Y )|,

where ϕ1 > 0 is a positive constant depending only on the di�erence between

the normals to R0 and Ri. If instead both endpoints of Υk0
j,x lie near R0, then

the value of this constant can be taken to be ϕ1 = 1 for example.

The inequality (4.8) being established when (4.6) fails, we may for the

remainder of the proof assume instead that in fact it holds. Next we show

that in fact P is equal to a sum of planes. We proceed similarly in the

next situation where we try to deduce (4.5). Note �rst that N = 2D, and

we may decompose every plane in spt‖P‖ into two closed half-planes lying

on either side of L, so that for all i = 1, . . . , D, Πi = πi ∪ πi+D, possibly
after relabelling the half-planes. Then the only way P could fail to be the

sum of planes is that mi = mi+D for at least one i. Choose a small τ > 0

as above to ensure that the tubular neighbourhoods are disjoint. For large

enough j ≥ J(τ, σ), preciselymi of the Jordan arcs lie {γ1
j,x, . . . , γ

N
j,x} lie near

Ri. Similarly mi+D of them lie near Ri+D. If the multiplicities disagree,

mi 6= mi+D, then a pigeonhole argument demonstrates the existence of a

Jordan arc Υk0
j,x ∈ {Υ1

j,x, . . . ,Υ
P
j,x} satisfying one of the following. Either

Υk0
j,x has both endpoints lying near the ray Ri, or both endpoints lying near

Ri+D, or else it has one endpoint lying near one of Ri, Ri+D, and the other

lying near a third ray R′. Thus we obtain again the existence of a constant



4.2. CLASSICAL LIMIT CONES: INITIAL ANALYSIS 95

ϕ2 > 0 so that for all x ∈ Uj ,

ϕ2 ≤ sup
X,Y ∈Υ

k0
j,x

|Nj(X)−Nj(Y )|

for some k0 ∈ {1, . . . , P}, at least if j ≥ J(τ, σ) is large enough. In either of

the �rst two cases we may take ϕ2 = 1, and in the last case ϕ2 only depends

on the di�erence between the normals to Ri, Ri+D and the normal to the

third ray R′.

In the remainder we may assume that P =
∑

imi|Πi|. We next prove

the analogous results for the current T , that is show that we may �nd a

positive constant ϕ3 for which (4.5) holds unless T =
∑

i liJΠiK for some

integers 0 ≤ li ≤ mi ≤ 2. There are two complicating factors in this case:

uneven mass cancellation and misaligned orientations of the half-planes.

We exclude the former �rst. Recall that 0 ≤ li ≤ mi, and if mi = 2

then li could be zero or two. Therefore, although mi = mi+D one could have

li = 0 but li+D = 2. This is what we seek to show is impossible. Label

the half-planes as above, so that Πi = πi ∪ πi+D for all i = 1, . . . , D, and

recall that for notational convenience we consider these indices modulo N .

For all i = 1, . . . , D we write ni ∈ S1 ⊂ R2 for the common unit normal of

the two rays Ri, Ri+D. (Whether we pick ni or −ni has no bearing on what

follows�remember that for now we cannot assume that the two half-planes

πi, πi+D inherit the same orientation from the JGjK as j → ∞, nor indeed

that they inherit any orientation at all.)

Without loss of generality, suppose that l0 = 0 but lD = 2. Let δ > 0

be given. The uniform limit (4.3) ensures that if j ≥ J(δ, τ, σ) is taken

large enough then |〈Nj(X), n0〉| > 1 − δ for all X ∈ spt‖Vj‖ ∩ ({λp | p =

p0, pD, σ/2 < λ < σ})τ . Arguing as in the proof of Lemma 4.1.4 we �nd that

〈Nj , n0〉 must take both positive and negative values near the ray R0. For

σ, τ > 0 small and j ≥ J(τ, σ) there lie precisely two of the Jordan arcs from

{γ1
x,j , . . . , γ

M̄
x,j} inside ({λp0 | σ/2 < λ < σ})τ and ({λpD | σ/2 < λ < σ})τ

respectively. Arguing as above, we may assume that there are two Jordan

arcs Υ± ∈ {Υ1
j,x, . . . ,Υ

P
j,x} so that spt‖Vj‖ ∩ ({λp | p = p0, pD, σ/2 < λ <

σ})τ ⊂ Υ+ ∪Υ−. Moreover we may assume Υ+,Υ− both have one endpoint

near R0 and another RD, otherwise again we may �nd a positive constant

ϕ3 > 0 so that ϕ3 ≤ minΥ∈{Υ±} supX,Y ∈Υ|Nj(X) − Nj(Y )|. If there were

no mass cancellation at πD (that is, if lD = 2) then 〈Nj(X), n0〉 would take

the same sign for all X ∈ spt‖Vj‖ ∩ ({λpD | σ/2 < λ < σ)τ . Without loss of

generality, we may thus assume that 〈Nj(X), n0〉 > 1 − δ for these points.

Label Υ± in such a way that they respectively contain the points near R0

with ±〈Nj , n0〉 > 1− δ. As 〈Nj , n0〉 changes sign along Υ−, the normal Nj
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varies enough along Υ− that 1 ≤ supX,Y ∈Υ− |Nj(X)−Nj(Y )|. Thus we have
established that (4.8) holds with some positive constant ϕ3 > 0 unless li = 0

if and only if li+D = 0 for all i = 1, . . . , D.

For the last step we may assume that the limit current is of the form

T =
∑D

i=1 li(JπiK + Jπi+DK), where we do not specify which orientation is

chosen for πi, πi+D. Assume that there is at least one pair of half-planes, say

π0, πD, whose orientations are misaligned. Let π0 be oriented by n0 and πD

by −n0. There cannot be any mass cancellation at these half-planes, and for

large j ≥ J(δ, τ, σ) we have 〈Nj(X), n0〉 > 1− δ for all X ∈ spt‖Vi‖∩ ({λp0 |
σ/2 < λ < σ})τ , and 〈Nj , n0〉 < −1 + δ near RD. We may then argue

precisely as above, when we derived the lower bound (4.8) with the constant

ϕ3. Write ϕ4 for the constant obtained for the lower bound here. This

exhausts all the possible ways in which (4.1) can fail, and we conclude by

letting ϕ = min{ϕ1, ϕ2, ϕ3, ϕ4} > 0. �

Next we use this result to give a proof of Theorem 4.2.1.

Proof. We argue by contradiction, supposing that either P or T (or

both) is not of the desired form. Using Lemma 4.2.2, we pick any unbranched

point x ∈ Uj and �nd Υ ∈ {Υ1
j,x, . . . ,Υ

P
j,x} with ϕ ≤ supX,Y ∈Υ|Nj(X) −

Nj(Y )|. Identify Υ with a smooth parametrisation de�ned on [0, 1]. We

may then take sj < tj ∈ (0, 1) so that ϕ
2 ≤ |Nj(Υ(tj))−Nj(Υ(sj))|. Then

ϕ

2
≤
∫ tj

sj

|(Nj ◦Υ)′(t)| dt =

∫ tj

sj

|〈∇VjNj(Υ(t)),Υ′(t)〉|dt,

which in turn can be bounded in terms of the second fundamental form to

yield

(4.9)
ϕ

2
≤
∫ tj

sj

|AVj |(Υ(t))|Υ′(t)|dt ≤
∫

Υ
|AVj |dH1 ≤

∫
reg Vj∩{x}×B2

σ

|AVj |dH1.

As the point x ∈ Uj was chosen arbitrarily, we can use the coarea formula
to integrate the lower bound (4.9) over Uj ⊂ Bn−1

1 ×{0}, combining this with
the Cauchy�Schwarz inequality to get

(4.10) ϕωn−1 ≤ 2

∫
reg Vj∩Uj×B2

σ

|AVj | dHn

≤ 2Hn(reg Vj ∩Bn−1
1 ×B2

σ)1/2
(∫

reg Vj∩Bn−1
1 ×B2

σ

|AVj |2 dHn
)1/2

.

The last integral can be bounded via the stability inequality, using a test

function φ ∈ C1
c (Bn−1√

7/2
× B2

1/2) with 0 ≤ φ ≤ 1, |Dφ| ≤ 8 and φ ≡ 1 on
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Bn−1
(
√

7−1)/2
×B2

1/4. Provided σ ∈ (0, 1/4) we get∫
reg Vj∩Bn−1

1 ×B2
σ

|AVj |2 dHn ≤
∫

reg Vj∩Bn−1

(
√

7−1)/2
×B2

1/4

|AVj |2 dHn,

≤
∫

reg Vj∩Bn−1√
7/2
×B2

1/2

|∇Vjφ|2 dHn

≤ 64Hn(reg Vj ∩Bn−1√
7/2
×B2

1/2)

≤ 128‖P‖(Bn−1√
7/2
×B2

1/2).

This in turn is equal to 32ωn−1(
√

7/2)n−1
∑

imi, although from this we

only retain that there is a constant B > 0 independent of j and σ so that∫
reg Vj∩Bn−1

1 ×B2
σ
|AVj |2 ≤ B for all large enough j. A similar mass bound gives

Hn(reg Vj ∩ Bn−1
1 ∩ B2

σ) ≤ ‖P‖(Bn−1
1 × B2

σ) = 2ωn−1σ
∑

imi. Substituting

both back into (4.10) we get that∫
reg Vj∩Bn−1

1 ×B2
σ

|AVj | dHn ≤ Bσ1/2,

for some constant B independent of j and σ. This is absurd provided σ > 0

is small and j is large enough, which concludes the proof. �

4.3. Classical limit cones: non-vertical cones

Let α ∈ (0, 1) and (uj | j ∈ N) be a sequence of two-valued minimal

graphs with uj ∈ C1,α(D2;A2). Let D ∈ Z>0 and for i = 1, . . . , D let

Πi ∈ Gr(n, n + 1) be n-dimensional planes which meet along a common

axis L ∈ Gr(n − 1, n + 1). Recall a plane is called vertical if it is of the

form Π = Π0 ×Ren+1. Suppose that not all planes Π1, . . . ,ΠN are vertical.

Equivalently, at most one of the planes is vertical. We may relabel the planes

to arrange for Π1 to be non-vertical. Assume that |Gj | →
∑D

i=1mi|Πi| =

P and JGjK →
∑D

i=1 liJΠiK = T as j → ∞. Note that we allow for the

possibility thatD = 1 and the cones are supported in a single plane, although

technically these would not be called classical.

4.3.1. Slicing at an acute angle. Broadly speaking we again use an

approach based on [SS81]. However from a technical standpoint the argu-

ments from the previous section are maladapted to the current situation,

as we want to exploit the two-valued graphicality of the Gj . Instead of

taking slices orthogonal to the axis L of the cone, we proceed as follows.

Let v ∈ Rn+1 be a unit vector with 〈v, en+1〉 = 0, so that v, en+1, L span

Rn+1. Let V = span{v, en+1}, and write Z = tv + zen+1 ∈ V . Then

Rn+1 = L + V , and every point X ∈ Rn+1 can uniquely by written X =

Y +Z = y+Y n+1en+1+tv+zen+1. We emphasise that in general L and V do
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not meet at a right angle, and this decomposition is not orthogonal. (The ex-

ception being the case where L = Rn×{0}.) The slices we take are adapted

to this decomposition, using sets of the form {Y + Z | Z ∈ V, |Z| < σ},
where 0 < σ < 1 and Y = (y, Y n+1) ∈ L is a �xed point with |y| < 1. We

abbreviate this {Y + Z | |Z| < σ}, and in the same vein write for example

{|y| < 1, |Z| < σ} = {Y + Z | Y ∈ L,Z ∈ V, |y| < 1, |Z| < σ}.
The corresponding projection map is written Q : X = Y +Z ∈ Rn+1 7→

Y . Analogously to (4.4) we have Hn−1
(
Q(B(Gj) ∩ {|y| ≤ 1, |Z| ≤ 1})

)
= 0.

Let σ > 0 be given. Together with Sard's theorem we �nd that for all j there

is an open subset Vj,σ ⊂ L∩ {|y| ≤ 1} \Q(B(Gj)∩ {|y| ≤ 1, |Z| ≤ 1}) of full
measure, so that for all Y ∈ Vj,σ, Gj ∩ {Z + Y | |Z| < σ} = ∪Pk=1Υk

j,Y where

the Υk
j,Y are smooth properly embedded Jordan arcs with endpoints in the

set {Y +Z | |Z| = σ}. (This cannot contain any Jordan curves because of the
graphicality of Gj .) In the same vein, given κ > 0 we write Vj,σ(κ) ⊂ Vj,σ
for the measurable subset of Vj,σ formed by those points Y ∈ Vj,σ with∫

regGj∩{Z+Y ||Z|<σ}|AGj |dH
1 < κ.

Lemma 4.3.1. For all κ > 0, Hn−1(Vj,σ \ Vj,σ(κ)) → 0 as σ → 0 and

j ≥ J(σ)→∞.

Proof. By de�nition of Vj,σ(κ), we can integrate over points Z ∈ Vj,σ \
Vj,σ(κ) to obtain the inequality

(4.1) Hn−1(Vj,σ \ Vj,σ(κ))κ

≤
∫
Vj,σ\Vj,σ(κ)

{∫
regGj∩{Z+Y ||Z|<σ}

|AGj | dH1
}

dHn−1(Y ).

On the right-hand side we may increase the domain of integration to now

be over the set {|Y | < 1, |Z| < σ}. By the Cauchy�Schwarz inequality, this

larger integral is bounded like

(4.2)

∫
regGj∩{|Y |<1,|Z|<σ}

|AGj |dHn

≤ Hn(regGj ∩ {|Y | < 1, |Z| < σ})
(∫

regGj∩{|Y |<1,|Z|<σ}
|AGj |2 dHn

)1/2

From here on, although the notation is di�erent, the proof is essentially

identical to the argument used to conclude Theorem 4.2.1. Using the stability

inequality along with area estimates in terms of the limit cone, we �nd

a constant B > 0 independent of j, σ so that provided σ ∈ (0, 1/4) and

j ≥ J(σ), ∫
regGj∩{|Y |<1,|Z|<σ}

|AGj |2 dHn ≤ B.
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Combining this with the fact that there is another constant C > 0, also

independent of j, σ so that

Hn(regGj ∩ {|Y | < 1, |Z| < σ}) ≤ Cσ

provided again j ≥ J(σ), we �nd combining the two with (4.2) that there is

a constant D > 0 so that for all j ≥ J(τ),∫
regGj∩{|Y |<1,|Z|<σ}

|AGj |dHn ≤ Bσ1/2.

Comparing this with the initial inequality (4.1) we �nd that

Hn−1(Vj,σ \ Vj,σ(κ))κ ≤ Bσ1/2,

at least for j ≥ J(σ) large enough. To force Hn−1(Vj,σ \ Vj,σ(κ)) → 0, it

su�ces to let σ → 0 and j ≥ J(σ)→∞. �

Using this lemma, we see in particular that given any κ > 0, we can

choose j large enough to ensure that Vj,σ(κ) 6= ∅. The resulting integral

curvature estimates in the slice {Z + Y | |Z| < σ} at one of these points

Y ∈ Vj,σ(κ) give us good control over Gj in the same region. This in turn,

we will later see, is the �rst step of our contradiction arguments.

Lemma 4.3.2. Let G → P =
∑

imi|Πi|. There is a constant ϕ > 0

depending only in P so that given any τ > 0 and large enough j ≥ J(τ, σ)

the following holds. If Y ∈ Vj,σ(ϕ) then for each Υ ∈ {Υ1
j,Y , . . . ,Υ

P
j,Y } there

is a plane Π ∈ {Π1, . . . ,ΠD} so that

(4.3) distH(Υ,Π ∩ {Z + Y | |Z| < σ}) ≤ τ.

Proof. Given some τ > 0, no harm is done by adjusting its value to

ensure that τ < σ/2. For j ≥ J(τ, σ) su�ciently large we �nd that for all

Y ∈ Vj,σ,

Gj ∩ {Y + Z | τ < |Z| < σ} = ∪M̄k=1γ
k
j,Y ,

where M̄ =
∑D

k=1mi and the γkj,Y are smooth embedded Jordan arcs with

endpoints in {Y + Z | |Z| = τ or σ}. Let δ > 0 be a small constant,

depending only on the cone, so that the regions (Πi)δτ∩{Y +Z | τ < |Z| < σ}
are two-by-two disjoint, and each has two connected components, which

respectively contain mi curves.

Perhaps after updating j ≥ J(τ, σ) to a yet larger value, we may write

distH(∪kγkj,Y , {Y + Z | τ < |Z| < σ}) < δτ.

Moreover, using either Allard regularity near those planes in the support

with multiplicity one, or Wickramasekera's stable sheeting theorem [Wic20]
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near those with multiplicity two, we �nd that we may assume that say

min
i∈{1,...,D}

sup
X∈γkj,Y

|νj(X)−Ni| < τ,

where Ni is a unit normal to Πi.

If ϕ > 0 is picked small enough in terms of P, then arguing as in the proof

of Lemma 4.2.2 we �nd that for all Υ ∈ {Υ1
j,Y , . . . ,Υ

P
j,Y } there is a plane

Π ∈ {Π1, . . . ,ΠN} so that dist(Υ∩ {Z + Y | τ < |Z| < σ},Π∩ {Z + Y | τ <
|Z| < σ}) < δτ . (For example τ, ϕ < 1/3 mini 6=j∈{1,...,D}|Ni ± Nj | ensures
that this is true.) We relinquish precise control over Υ close to the axis,

but there automatically Υ ∩ {Z + Y | |Z| < τ} ⊂ (Π)τ . Finally, conclude

by noting that the reverse inclusion required for (4.3) holds essentially by

construction, as the curves Υ ∈ {Υ1
j,Y , . . . ,Υ

P
j,Y } are all connected. �

4.3.2. Initial reduction. If at least one of the planes in spt‖P‖ is

non-vertical, then the axis L along which the planes meet cannot be vertical

either. However, any vertical Π ∈ {Π1, . . . ,ΠD} must contain L, and thus

be of the form Π = span{L, en+1}. This uniquely determines the plane, and

thus at most one plane in the support of P is vertical.

Lemma 4.3.3. Suppose Gj →
∑

imi|Πi|, and that Π1 is not vertical.

(i) If Π2 is vertical then P = |Π1|+m2|Π2|.
(ii) If Π2 is not vertical then P = |Π1|+ |Π2|.

Proof. We start by proving that

(4.4) P = m1|Π1|+m2|Π2|

regardless of whether or not Π2 is vertical, arguing by contradiction. Suppose

that there are at least three distinct planes Π1,Π2,Π3 ⊂ spt‖P‖. Let the

constant ϕ > 0 be as in Lemma 4.3.2, let τ > 0 be small and take j ≥
J(τ, σ) large enough that Hn−1(Vj,σ(ϕ)) > 0 as per Lemma 4.3.1 and so

that additionally the conclusions of Lemma 4.3.2 hold. We may thus take

any point Y ∈ Vj,σ(ϕ) and decompose Gj ∩ {Z + Y | Z ∈ V, |Z| < σ} as
above. Next let Υ1,Υ2,Υ3 ∈ {Υ1

j,Y , . . . ,Υ
P
j,Y } be three of the curves, lying

respectively near Π1,Π2,Π3, that is

Υi ⊂ (Πi)τ ∩ {Z + Y | Z ∈ V, |Z| < σ} for i = 1, 2, 3.

Possibly after extending Υ1 slightly beyond its endpoints, we have that

{tv | |t| < σ} ⊂ P0(Υ1). Now if τ > 0 is small enough in terms of σ > 0 then

Υ2 and Υ3 intersect in at least one point, say Y + Z0 = Y + t0v + z0en+1

with |Z0| < σ. This is absurd because the density of ‖Gj‖ at such a point is
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at least two, and hence writing Y = (y, Y n+1) we get∑
X∈P−1

0 ({y+t0v})

Θ(‖Gj‖, X)

≥
∑

X∈P−1
0 ({y+t0v})∩Υ1

Θ(‖Gj‖, X) + Θ(‖Gj‖, Z0 + Y ) ≥ 3.

This is impossible for a two-valued graph.

This proves (4.4); when we additionally know that Π2 is not vertical then

proving ((ii)) is even easier. Indeed, without resorting to the decomposition

of the graph Gj inside the slice {Z + Y | Z ∈ V, |Z| < σ} we may reason

as follows. Pick any point x ∈ D1 \ P0(L). Then there exist two distinct

points X1, X2 in Π1,Π2 respectively so that P0(X1) = x = P0(X2). As both

planes have multiplicity two at most, we can apply the regularity theory of

Wickramasekera if either of the two planes has multiplicity two, and Allard

regularity otherwise, to guarantee that when j is large enough, then

(4.5)
∑

X∈P−1
0 ({x})

Θ(‖Gj‖, X) ≥ m1 +m2 ≥ 2

wherem1,m2 are the respective multiplicities of Π1,Π2. Anything but equal-

ity in (4.5) would be absurd for a two-valued graph, whence m1 = 1 = m2

as required.

It remains to prove (i), namely that the multiplicity of Π1 is one even

when the second plane is vertical. This turns out to be relatively easy

also. Taking values for σ, τ > 0 as in the earlier stages of the proof above,

and accordingly large j ≥ J(τ, σ), we may �nd two Jordan arcs Υ1,Υ2 ∈
{Υ1

j,Y , . . . ,Υ
P
j,Y } from among curves into which Gj decomposes in the slice

{Z + Y | Z ∈ V, |Z| < σ} at a point Y ∈ Vj,σ(ϕ), so that

Υ1,Υ2 ⊂ (Π1)τ ∩ {Z + Y | Z ∈ V, |Z| < σ}.

Arguing as above, we may extend the two arcs slightly beyond their respec-

tive endpoints and get that {y + tv | |t| < σ} ⊂ P0(Υ1) ∩ P0(Υ2), where we

recall Y = (y, Y n+1). If there were another curve Υ3 say in that slice, then

at any point Z0 + Y = tv0 + z0en+1 + Y ∈ Υ3 \ (Υ1 ∪Υ2) we would obtain

a contradiction, as∑
X∈P−1

0 ({y+tv0})

Θ(‖Gj‖, X)

≥
∑

X∈P−1
0 ({y+tv0})∩Υ1∪Υ2

Θ(‖Gj‖, X) + Θ(‖Gj‖, Z0 + Y ) ≥ 3. �
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4.3.3. Horizontal multiplicity one. We introduce some useful addi-

tional notation. As the arguments only simplify when L ⊂ Rn×{0}, we as-
sume throughout that this is not the case. For an arbitrary point X ∈ Rn+1

we write X = Y + sf + zen+1 where Y ∈ L and s, z ∈ R. Sometimes it is

also convenient to write Y = (y, Y n+1) where y = P0(Y ).

We de�ne open domains Q,Qτ ⊂ Rn × {0} by Q = {y + sf | |y| <
1, s2 < 1} and Qτ = Q ∩ (Π2)τ = {y + sf | |y| < 1, s2 < τ2}. A point

X = Y + sf + zen+1 ∈ Q ×R is said to lie north of Π1 if z > 1 and south

of Π1 if z < −1. In the same vein we say that a set E ⊂ Q ×R lies north

(resp. south) of Π1 if all points in E lie north (resp. south) of Π1.

Lemma 4.3.4. Let Π1,Π2 ∈ Gr(n, n + 1) be so that Π1 is not vertical,

but Π2 is. Suppose |Gj | → |Π1| + 2|Π2|. For all τ > 0 there is J(τ) ∈ N

so that for all j ≥ J(τ), singGj ∩Q ×R ⊂ Qτ ×R and we can decompose

Gj ∩ (Q \Qτ )×R = Σ1
j,− ∪Σ1

j,+ ∪Σ2
j,− ∪Σ2

j,+, into four embedded connected

surfaces with

(4.6) Σ1
j,± ⊂ (Π1)τ and Σ2

j,− ∪ Σ2
j,+ ⊂ {z > 1} or {z < −1}.

Moreover if Σ2
j,− ∪ Σ2

j,+ ⊂ {z > 1} then

(4.7) singGj ∩ (Q×R) ⊂ {s2 < τ2, z ≥ −1},

and likewise if Σ2
j,± ⊂ {z < −1}.

Before we give a proof of the lemma, we use its conclusions to obtain the

following corollary, showing that in fact |Π1|+ 2|Π2| cannot arise as a limit

of two-valued minimal graphs.

Corollary 4.3.5. Let Π1,Π2 ∈ Gr(n, n+1) be so that Π1 is not vertical,

but Π2 is. Then |Gj | → |Π1|+ 2|Π2| is impossible.

Proof. Fix a small value for τ > 0, depending only on Π1,Π2 and

J(τ) ∈ N so that without loss of generality, Gj ∩Q×R∩{z < −1} is a non-
empty subset ofQτ×R∩{z < −1} and singGj∩Qτ×R∩{z < −1} = ∅. Then
Gj Q×R∩{z < −1} is equal to the graph of a single-valued, smooth function

uj,S de�ned on some subset Ωj,S ⊂ Qτ . From this we only retain that the

current JGjK Q×R∩{z < −1} is area-minimising. As j →∞ we get that

|Gj | Q×R∩{z < −1} → 2|Π2| Q×R∩{z < −1} in the varifold topology.

At the same time, by inspection JGjK Q ×R ∩ {z < −1} → 0 as j → ∞
in the current topology. This mass cancellation is absurd in light of the

compactness of area-minimising currents, quoted in Proposition 2.2.1. �

We now give the proof of Lemma 4.3.4.
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Proof. Note �rst that every singular point X = Y + sf + zen+1 in

singGj ∩ Q × R automatically belongs to Qτ × R, that is has s2 < τ2.

Indeed the Allard regularity theorem can be applied near Π1 because it has

multiplicity one in the limit, which guarantees that away from L the Gj

converge to the plane like smooth single-valued graphs. Counting the pre-

images of points x ∈ Q\Qτ we �nd that sing uj ∩Q\Qτ = ∅, or equivalently
singGj ∩Q×R ⊂ Qτ ×R.

Although Q\Qτ is not simply connected, its two connected components,

which lie on either side of Π2, both are. We may thus make a smooth selection

u1
j,τ , u

2
j,τ ∈ C∞(Q \Qτ ) for uj , arranging for the graph of u1

j,τ to lie near Π1.

Both graphs are disconnected, and we write graphu1
j,τ = Σ1

j,− ∪ Σ1
j,+ and

graphu2
j,τ = Σ2

j,− ∪ Σ2
j,+. As the graphs Gj locally converge to Π1 ∪ Π2 in

the Hausdor� distance, we may take an even larger j ≥ J(τ) to get

Gj ∩Q×R ∩ {z2 ≤ 1} ⊂ (Π1 ∪Π2)τ .

Thus Σ1
j,± ⊂ {z2 < (1− 〈e, en+1〉2)−1τ2} and

Σ2
j,± ⊂ {z2 > 1} = {z > 1} ∪ {z < −1}.

We show that in fact either Σ2
j,± ⊂ {z > 1} or Σ2

j,± ⊂ {z < −1}. Recall
from our initial analysis that using Sard's theorem one �nds an open subset

of `unbranched' points Uj ⊂ L∩{|y| < 1} with Hn−1(L∩{|y| < 1} \Uj) = 0

so that for all Y ∈ Uj ,

Gj ∩ {Y + sf + zen+1 | s2 < 1, z2 < 1} ∩ BGj = ∅,

and in fact can be decomposed into a union of three, smooth properly em-

bedded Jordan arcs Υ1
j,Y ,Υ

2
j,Y ,Υ

3
j,Y with endpoints in {Y + sf + zen+1 |

s2 = 1 or z2 = 1}.
Given κ > 0 we de�ne the subset Uj(κ) ⊂ Uj by

Uj(κ) =
{
Y ∈ Uj

∣∣∣ ∫
regGj∩{Y+sf+zen+1|s2,z2<τ2}

|AGj |dHn < κ.
}

Arguing as in Lemma 4.3.1 we can show that here we can take τ > 0 small

enough (independently of j) and j ≥ J(τ) to guarantee thatHn−1(Uj\Uj(κ))

is as small as we like, regardless of the value for κ we had originally chosen.

For our purposes we may take for example κ = 1/2, τ > 0 small and j ≥ J(τ)

large enough thatHn−1(Uj\Uj(κ)) < ωn−1, as then automatically Uj(κ) 6= ∅.
If we then take a point Y ∈ Uj(κ), then we may relabel the curves so that

Υ1
j,Y ⊂ (Π1)τ , and Υ2

j,Y ∪Υ3
j,Y ⊂ (Π2)τ .

Consider Y = (y, Y n+1) ∈ Uj and let ly = {y+ sf | s2 < 1} ⊂ Rn×{0}.
On this line segment we can make a smooth selection u1

j,y, u
2
j,y ∈ C∞(−1, 1),

where we identify ly with (−1, 1) ⊂ R. Then Gj ∩ {Y + sf + zen+1 | s2 <
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1, z2 < 1} ⊂ graphu1
j,y ∪graphu2

j,y. We may furthermore make our selection

in such a way that Υ1
j,Y ⊂ graphu1

j,y ⊂ (Π1)τ and Υ2
j,Y ∪Υ3

j,Y ⊂ graphu2
j,y.

In what follows we also write ly(a, b) = {y + sf | a < s < b}, where −1 <

a < b < 1. The graph of u2
j,y restricted to the short segment ly(−2τ, 2τ)

is a single smooth curve, which by inspection has both its endpoints lying

on the same side of Π1, that is either both lie north or both lie south. But

graphu2
j,y ∩ ly(−2τ,−τ)×R ⊂ Σ2

j,− and likewise graphu2
j,y ∩ ly(τ, 2τ)×R ⊂

Σ2
j,+ whence we �nd that Σ2

j,− and Σ2
j,+ too must lie on the same side of

Π1�that is either both lie north or both lie south of Π1. This concludes the

proof of (4.6).

To prove (4.7) we start by making a few general observations. First,

by (4.6) we may assume without loss of generality that Σj,± ⊂ {z > 1}.
Let Y = (y, Y n+1) ∈ L be an arbitrary point with |y| < 1, not necessarily

in Uj . By the two-valued sheeting theorem of [Wic20] applied in the region

Q × R ∩ {τ2 < s2 ∨ z2 < 1}, we �nd that in this slice the graph can be

decomposed into six di�erentiable curves,

(4.8) Gj ∩ {Y + sf + zen+1 | τ2 < s2 ∨ z2 < 1} = ∪2
k=1γ

1
j,Y,k ∪ ∪4

l=1γ
2
j,Y,l,

where γ1
j,Y,k ⊂ (Π1)τ and γ2

j,Y,l ⊂ (Π2)τ . (Were the slice {Y + sf + zen+1 |
τ2 < s2 ∨ z2 < 1} to contain a branch point of B(Gj), then some arbitrary

choices would have to be made in this decomposition, with no impact on the

argument.) These curves taken together have two endpoints {z = −1, s2 <

τ2}, counted with multiplicity. Hence #Gj ∩ {Y + sf − en+1 | s2 < τ2} ≤ 2

and

(4.9)
∑
s2<τ2

Θ(‖Gj‖, Y + sf − en+1) = 2.

There exist two functions u1
j,y, u

2
j,y ∈ C1(−1, 1) so that

Gj ∩ {Y + sf + zen+1 | s2 < 1, z ∈ R} = graphu1
j,y ∪ graphu2

j,y.

Moreover their graphs graphuij,y are two di�erentiable curves which do not

meet the region south of Π1, except in the thin strip near Π2 where s2 < τ2.

In other words, (graphu1
j,y ∪ graphu2

j,y) ∩ {s2 ≥ τ2, z < −1} = ∅.
Notice that singGj ∩ {Y + sf + zen+1 | s2 < 1, z ∈ R} = graphu1

j,y ∩
graphu2

j,y. Hence, if {Y + sf + zen+1 | s2 < 1, z < −1} contained a singular

point of Gj , then graphu1
j,y, graphu2

j,y would both contain portions lying in

that region. This is impossible, because if both curves intersected that region

they would both need to pass through the set {Y +s2−en+1 | s2 < τ2} twice
each, because neither meets the set {s2 ≥ τ2, z < −1}. This in turn would

be a contradiction to the decomposition of the graph as we obtained in (4.8)
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above, and (4.9) in particular. As the point Y was chosen arbitrarily, we

have singGj ∩ {s2 < 1, z < −1} = ∅, which concludes the proof. �

4.4. Classical limit cones: vertical cones

Let α ∈ (0, 1) and (uj | j ∈ N) be a sequence of two-valued minimal

graphs uj ∈ C1,α(D2;A2). Let D ∈ Z>0 and for i = 1, . . . , D, let Πi =

Π0
i ×Ren+1 ∈ Gr(n, n + 1) be vertical planes which meet along a common

(n − 1)-dimensional axis L = L0 × Ren+1, and suppose that as j → ∞,

|Gj | →
∑

imi|Πi| and JGjK→
∑

i liJΠiK. Here 0 ≤ li ≤ mi ≤ 2 are integers

and we pick arbitrary orientations for those planes with li = 0. When this

notation is convenient we write P =
∑

imi|Πi| and T =
∑

i liJΠiK. To

make statements less awkward, we allow the possibility that P and T are

supported in a single plane, although technically these would not be called

classical cones.

Label the planes Π1, . . . ,ΠD so that they lie in counterclockwise order

around L. From now on we consider their indices modulo D, and write

Πi = πi ∪ πi+D, where πi, πi+D are two half-planes which meet along L.

The indices of the half-planes are considered modulo 2D. For every πi let

Ni be its unit normal pointing in the counterclockwise direction; note that

Ni = −Ni+D. Write ni for the unit normal induced on Πi as limits of the

JGjK, and let si = 〈ni, Ni〉, equal to±1 depending on whether or not ni agrees

with the counterclockwise orientation. With this notation, si = −si+D. We

say that two half-planes πi, πj are oriented in the same direction if they are

both oriented in the clockwise or counterclockwise direction, or equivalently

if si = sj .

Let Q = {x ∈ Rn | dist(x, L) < 1,dist(x, L⊥) < 1}. Extend the func-

tions F j from (4.2) to Q using the same formula, counting the number of

points in Gj lying below x with multiplicity. These functions are eventu-

ally constant away from ∪iΠi, that is given τ > 0 we can take j ≥ J(τ)

large enough that the F j are constant on every connected component of

Q \ (∪iΠi)τ . Write Q \ ∪iΠi as a disjoint union of wedge-shaped connected

components V1, . . . , V2D. Each Vi lies between πi, πi+1,

Vi = {x ∈ Q | 〈x,Ni〉 > 0, 〈x,Ni+1〉 < 0}.

By the above there is Fi = F (Vi) ∈ {0, 1, 2} so that F j(x) = Fi at all

x ∈ Vi \ (πi ∪ πi+1)τ provided j ≥ J(τ). Although the notation is slightly

ambiguous, no confusion should arise between the value Fi = F (Vi) and the

functions F j .

Remark 4.4.1. Notice that Jgraph−ujK→ −T . If we counted the num-

ber of sheets of graph−uj eventually lying below Vi, we would obtain 2−Fi.



106 4. LIMIT CONES

4.4.1. Results in arbitrary dimensions. Applying Lemma 4.1.5 in

the present context, we can relate consecutive values of Fi.

Lemma 4.4.2. For all i, Fi − Fi−1 = sili.

Similarly using Lemma 2.2.9, we obtain the following result.

Lemma 4.4.3. If Fi = 1 and πi 6= πi+1 then both half-planes have multi-

plicity one and are oriented in the same direction.

Proof. Start with the observation that 1 = Fi = Fi+1 − si+1li+1 =

Fi−1 + sili, so li, li+1 ∈ {0, 1}. The possibilities are as follows:

(1) mi = 1 = mi+1 and li = 1 = li+1,

(2) mi = 2,mi+1 = 1 and li = 0, li+1 = 1,

(3) mi = 1,mi+1 = 2 and li = 1, li+1 = 0,

(4) mi = 2 = mi+1 and li = 0 = li+1.

The proof is similar in all four cases. Every case is argued by contradiction,

eventually reaching a conclusion which is forbidden by Lemma 2.2.9. We

give a detailed proof for mi = 1 = mi+1 and li = 1 = li+1 and explain the

necessary modi�cations for the remaining cases.

Assume without loss of generality that πi and πi+1 both point into Vi,

that is ni = Ni and ni+1 = −Ni+1. (Otherwise we may consider graph−uj
instead, and use Remark 4.4.1.) Let two small 0 < τ < σ < 1 and a large

A > 1 be given, and de�ne the open subset Uj,i ⊂ Q \ [L]σ by

Uj,i = Uj,i(τ, σ,A)

= (Vi)τ \ [L]σ ∩ {u−j < 2A}

= {x ∈ Q \ [L]σ | 〈Ni, x〉 > −τ, 〈Ni+1, x〉 < τ, u−j (x) < 2A},

where recall u−j = u1
j ∧ u2

j .

As Fi = 1 we know that for large enough j ≥ J(τ, σ,A),

Vi \ ([πi]τ ∪ [πi+1]τ ∪ [L]σ) ⊂ Uj,i

and singGj ∩ Uj,i ∩ (−∞,−2A) = ∅. Hence any singular points of uj would

have to lie in Uj,i ∩ [πi ∪ πi+1]τ . As mi = 1 = mi+1 we may use Allard

regularity inside Q× (−9/4A, 9/4A) ∩ (πi ∪ πi+1)2τ and �nd that in fact

sing uj ∩ Uj,i = ∅,

at least provided j ≥ J(τ, σ,A) is large enough.

Let us rename uj,i,S = u−j,i and uj,i,N = u+
j,i. These two functions give a

smooth selection for uj on Uj,i. By construction

(4.1) Gj ∩ (Vi)τ \ [L]σ × (−∞, A) ⊂ graphuj,i,S .
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From this we obtain a contradiction with Lemma 2.2.9. Indeed as we let

σ, τ → 0, A→∞ and j ≥ J(τ, σ,A)→∞, we have distH(Uj,i, Vi)→ 0 and

(4.2) Jgraphuj,i,SK→ JπiK + Jπi+1K Q×R.

This concludes the proof in the �rst case. In the next case mi = 2,

mi+1 = 1 and li = 0, li+1 = 1. As li = 0 the half-plane πi has no well-

de�ned orientation induced by T . The half-plane πi+1 may be assumed

oriented in the clockwise direction without loss of generality, that is ni+1 =

−Ni+1. (This can be justi�ed in the same way as above, working with −uj
if necessary.) By Lemmas 4.1.5 and 4.1.4 we may take j ≥ J(τ, σ) large

enough that

sing uj ∩ (Vi ∪ Vi−1) \ ([πi−1∪πi ∪ πi+1]τ ∪ [L]σ) = ∅,

Buj ∩ (Vi−1 ∪ Vi ∪ πi) \ ([πi−1 ∪ πi]τ ∪ [L]σ) = ∅.

Additionally the set (Vi−1∪Vi∪πi)\ ([πi−1∪πi]τ ∪ [L]σ) is simply connected,

so we can make a smooth selection {uj,i,S , uj,i,N} for uj on it, arranging the

indices in a way that graphuj,i,S lies south of Vi. (Here uj,i,S is not equal u−j,i
anymore.) De�ne the region Uj,i = (Vi)τ \ [L]σ ∩{uj,i,S < 2A} ⊂ (Vi)τ \ [L]σ.

As above (4.1) holds, and near πi we have that given any δ > 0,

(4.3) 〈νj(X), Ni〉 > 1− δ

for allX ∈ graphuj,i,S∩regGj∩(πi)τ∩{|Xn+1| < A}, at least after updating
j ≥ J(τ, σ,A, δ). As we let τ, σ, δ → 0 and A→∞ both distH(Uj,i, Vi)→ 0

and (4.2) hold as j ≥ J(τ, σ,A, δ)→∞. The last inequality (4.3) guarantees

that the limit current has the right orientation to apply Lemma 2.2.9, which

immediately yields a contradiction. The third case, when mi = 1,mi+1 = 2

and li = 1, li+1 = 0 can be argued in precisely the same way, with reversed

roles of πi and πi+1.

The last remaining case is mi = 2 = mi+1 and li = 0 = li+1. Arguing as

above we �nd

sing uj ∩ (Vi−1 ∪ Vi ∪ Vi+1) \ ([πi−1∪πi ∪ πi+1 ∪ πi+2]τ ∪ [L]σ) = ∅,

Buj ∩ (Vi−1 ∪ Vi ∪ Vi+1 ∪ πi ∪ πi+1) \ ([πi−1 ∪ πi+2]τ ∪ [L]σ) = ∅.

We may make a smooth selection {uj,i,S , uj,i,N} for uj on the latter set

(Vi−1 ∪ Vi ∪ Vi+1 ∪ πi ∪ πi+1) \ ([πi−1 ∪ πi+2]τ ∪ [L]σ). We arrange for uj,i,S

to lie south of Vi, and moreover

〈νj(X), Ni〉 > 1− δ and 〈νj(X),−Ni+1〉 > 1− δ

at all pointsX ∈ graphuj,i,S∩regGj∩(πi)τ∩{|Xn+1| < A} and graphuj,i,S∩
regGj ∩ (πi+1)τ ∩ {|Xn+1| < A} respectively. From that point on we can
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argue in the same way as above, ultimately leading to a contradiction with

with Lemma 2.2.9. This exhausts the list of possible cases, and concludes

the proof. �

Using this, we can immediately conclude mass cancellation in all but

one case. Indeed |T | 6= P if and only if li = 0 for at least one plane. But

then Fi−1 = 1 = Fi by Lemma 4.1.5, which contradicts Lemma 4.4.3 unless

πi = πi+1 and D = 1. For the remainder of this section, we may assume

that li = mi for all i. As a consequence also Fi − Fi−1 = simi for all i.

Lemma 4.4.4. Let |Gj | →
∑D

i=1mi|Πi|. Then
(i) any consecutive πi+1, . . . , πi+J have |

∑J
j=1 si+jmi+j | ≤ 2,

(ii) if πi has multiplicity two then
∑D−1

j=1 si+jmi+j = 0.

Proof. (i) Iterating Lemma 4.4.2 we �nd that Fi+J−Fi =
∑J

j=1 si+jmi+j .

As Fi+J , Fi ∈ {0, 1, 2} we get |
∑

j si+jmi+j | ≤ 2 as desired.

(ii) Here we consider the D − 1 consecutive planes πi+1, . . . , πi+D−1,

which stop just shy of πi and πi+D. Because πi ∪ πi+D = Π is a plane, they

must have si = −si+D; without loss of generality si = 1. By Lemma 4.4.2,

Fi = Fi−1 + 2 and Fi+D = Fi+D−1 − 2, so Fi = 2 = Fi+D−1. Iterating

the same lemma over the half-planes πi+1, . . . , πi+D−1 we �nd Fi+D−1 =

Fi +
∑D−1

j=1 si+jmi+j , whence
∑D−1

j=1 si+jmi+j = 0, as desired. �

Corollary 4.4.5. Let |Gj | →
∑D

i=1mi|Πi|. Then
(i) if m1 = · · · = mD = 1 then D ≡ 2 (mod 4),

(ii) if m1 = · · · = mD = 2 then D is odd,

(iii) if m1 = 2, m2 = · · · = mD = 1 then D ≡ 1 (mod 4).

Proof. The result is obtained by listing the orientations of the half-

planes π1, . . . , π2D weighted by their respective multiplicities, and excluding

certain subsequences from this. We start by considering three consecutive

half-planes πi−1, πi, πi+1 with multiplicities mi−1,mi,mi+1 = 1, and show

that then (si−1, si, si+1) ∈ {±(1,−1,−1),±(1, 1,−1)}. First note that the

two sequences (si−1, si, si+1) = ±(1, 1, 1) are excluded by Lemma 4.4.2. The

remaining cases are argued by contradiction, assuming that (si−1, si, si+1) =

(1,−1, 1). Then on the one hand by Lemma 4.4.3, applied between πi−1, πi

and πi, πi+1 respectively we �nd that Fi−1, Fi 6= 1. This is absurd, as on

the other hand Fi = Fi−1 + 1. One reasons similarly when (si−1, si, si+1) =

(−1, 1, 1).

(i) When the multiplicities are all equal m1, . . . ,mD = 1 then the only

possibility is that (m1s1, . . . ,m2Ds2D) = (s1, . . . , s2D) = (1, 1,−1,−1, . . . )

or a cyclic permutation thereof. Hence D must be even. As s1, s2 = 1 we

get sD+1, sD+2 = −1, whence sD−1, sD = 1 and D 6≡ 0 (mod 4).
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Table 1. The possibilities for the multiplicities a�orded by
the improved area bounds of Corollary 3.3.4, up to cyclic
permutations.

D (m1, . . . ,mD)

2 (2, 2), (2, 1)
3 (2, 1, 1), (1, 1, 1), (2, 2, 1)
4 (2, 1, 1, 1), (1, 1, 1, 1)
5 (1, 1, 1, 1, 1)

(ii) From Lemma 4.4.4 (i) either (s1, . . . , s2D) = (1, 1,−1,−1, . . . ) or a

cyclic permutation thereof, so D must be odd.

(iii) Without loss of generality s1 = 1, and by Lemma 4.4.2 the sequence

(misi) starts (2s1, s2, s3) = (2,−1,−1). The orientations of half-planes with

multiplicity one alternate in pairs, so this continues (s4, s5, s6, s7, . . . ) =

(1, 1,−1,−1, . . . ). As 2sD+1 = −2 we get (sD−1, sD, 2sD+1) = (1, 1,−2).

Combining the two observations, D − 1 ≡ 0 (mod 4). �

4.4.2. Classi�cation in dimensions up to seven. Here too, as in the

previous section, we consider a sequence of two-valued minimal graphs uj ∈
C1,α(D2;A2) which converge in the varifold topology, |Gj | = |graphuj | →∑

imi|Πi| as j → ∞. These planes are assumed to meet along a single

n− 1-dimensional vertical axis L = L0 ×Ren+1 ∈ Gr(n− 1, n+ 1).

Corollary 4.4.6. Let |Gj | →
∑D

i=1mi|Πi|. If 2 ≤ n ≤ 6 then this is

either 2|Π1| or |Π1|+ |Π2|.

Proof. As the graphs have dimension up to six, the area estimates of

Proposition 3.3.5 give
∑

jmj ≤ bnωn/ωn−1c ≤ 5. Hence D ≤ 5, and the

possibilities for (m1, . . . ,mD) are listed in Table 1 up to cyclic permutation.

Of these, the only not forbidden by Corollary 4.4.5 is (m1,m2,m3) = (2, 2, 1).

However note 2s2 + s3 6= 0, which contradicts Lemma 4.4.2. �

4.4.3. Multiplicity and mass cancellation.

Corollary 4.4.7. Suppose 2 ≤ n ≤ 6. Let

|Gj | → V 6= 0 ∈ IVn(D1 ×R) as j →∞.

Then either Θ(‖V ‖, X) = 2 for Hn-a.e. X ∈ reg V and there is a smooth,

stable minimal surface Σ so that

V = 2|Σ|,

or Θ(‖V ‖, X) = 1 for Hn-a.e. X ∈ reg V and

(i) spt‖V ‖ is immersed near points of Sn−1(V ) \ Sn−2(V ),
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(ii) the set Sn−2(V ) ∪ B(V ) is countably (n− 2)-recti�able.

Proof. We only need to show that the multiplicity of regular points of V

is either one or two; the conclusion follows by combining our limit cone clas-

si�cation with the results of [SS81,KW20,Wic20]. We may assume without

loss of generality that Gj ∩D1×R is connected for all j. As the graphs con-

verge locally in D1×R with respect to Hausdor� distance, spt‖V ‖∩D1×R

is also connected. Let R be the set of connected components of reg V , which

we group into the two sets R1 and R2 according to their respective multiplic-

ities. (The multiplicities are constant on every component by [Sim84, Thm.

41.1].)

We use a contradiction argument to show that one of the two is empty.

Let V1 =
∑

Σ∈R1
|Σ| and V2 =

∑
Γ∈R2

2|Γ|. These are both stationary in

D1 × R away from spt‖V1‖ ∩ spt‖V2‖ ∩ D1 × R. By our classi�cation of

limit cones, C(V ) ∩ spt‖V2‖ = ∅. As B(V ) ∪ Sn−2(V ) is countably (n − 2)-

recti�able, this means Hn−1(spt‖V1‖ ∩ spt‖V2‖D1 ×R) = 0, whence V1, V2

are in fact stationary in D1×R without restrictions. One argues in the same

way to justify their stability in D1×R. As the support of V2 contains neither

genuine branch points nor classical singularities, [SS81] implies that there is

a smooth embedded minimal surface Σ2 ⊂ D1×R so that V2 = 2|Σ2|. Take
X ∈ spt‖V1‖∩Σ2∩D1×R, and ρ > 0 small enough enough that Bρ(X)\Σ2

has two connected components, say U±. Let V
±

1 be the two varifolds made up

of the portions of V1 lying in U± respectively. Arguing as above we �nd that

V ±1 are both stationary in Bρ(X). Without loss of generality X ∈ spt‖V +
1 ‖.

As V +
1 lies above Σ2, we have reached a contradiction with the maximum

principle of Wickramasekera [Wic14c] quoted in Theorem 2.1.9. �

Corollary 4.4.8 (No mass cancellation). Let 2 ≤ n ≤ 6. Suppose that

as j →∞,

|Gj | → V ∈ IVn(D1 ×R)

JGjK→ T ∈ In(D1 ×R)

If T 6= 0 then |T | = V .

Proof. The limit current T necessarily has |T | � V , with equality if

and only if it there is no mass cancellation. This cannot occur at points of

multiplicity one, so by Corollary 4.4.7 we may assume that Θ(‖V ‖, X) = 2

for Hn-a.e. X ∈ reg V and there is a smooth embedded minimal surface

Σ with V = 2|Σ|. Thus also spt‖T‖ ⊂ Σ, and by the Constancy Theorem

[Sim84, Thm. 41.1] there is m ∈ Z>0 so that |T | = m|Σ|. As m ≤ 2, and

m 6= 1 as otherwise we could use Allard's regularity theory, we have that

either m = 2 and |T | = V or m = 0 and T = 0. �



Chapter 5

Blowdown cone analysis and the Bernstein

theorem

5.1. Blowdown cones and asymptotic analysis

In this section we derive two di�erent results, which respectively hold for

graphs of arbitrarily large dimension and when n ≤ 6. For now let n ∈ Z>0

be arbitrary, and consider a two-valued minimal graph u ∈ C1,α(Rn;A2).

Without loss of generality we may assume that u(0) = 0 and that G is

singular there. Let C ∈ IVn(Rn+1) be a stationary varifold obtained as

a blowdown cone of |G| at in�nity, along some sequence of positive scalars

λj →∞. By this we mean that for every j ∈ N we set

uj(x) = λ−1
j u(λj(x)) for all x ∈ Rn,

write Gj = graphuj and take their weak limit in the varifold sense,

|Gj | → C as j →∞.

Passing to the limit, the cone inherits both the stationarity, and stability

with respect to compactly supported ambient deformations from the two-

valued graphs.

5.1.1. Entire graphs with bounded growth.

Lemma 5.1.1. Let α ∈ (0, 1) and n ≥ 2 be arbitrary. Let u ∈ C1,α(Rn;A2)

be an entire two-valued minimal graph. If

lim sup
r→∞

(
‖u‖0;Dr/r

)
< +∞

then u is linear. Otherwise the support of every blowdown cone at in�nity

contains the half-line L+ = {ten+1 | t ≥ 0} or its re�ection −L+.

Proof. Suppose �rst that u has bounded growth, say supr r
−1‖u‖0;Dr ≤

C for some C > 0. Let (λj | j ∈ N) be a sequence of positive scalars

with λj → ∞, along which we blow-down u. For all j ∈ N, de�ne uj ∈
C1,α(Rn;A2) by setting uj(x) = λ−1

j u(λjx) for all x ∈ Rn. Using the interior

gradient estimates, we �nd that for all r > 0 there is a constant C(r) so that

supj‖uj‖1;Dr ≤ C(r). Next, by the two-valued Lipschitz theorem we can

extract a subsequence which guarantees that there is a two-valued Lipschitz

111
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function U ∈ Lip(Rn;A2) so that simultaneously uj′ → U locally uniformly

and |Gj′ | → |graphU |. By the monotonicity formula graphU is a cone, and

hence U is homogeneous. Next by Lemma 3.5.3, U must be linear, and its

graph is a union of two possibly equal planes. In particular Hn(graphU ∩
B1) = 2ωn. Thus Θ(‖G‖,∞) = 2. But by assumption Θ(‖G‖, 0) = 2, so

by the monotonicity formula the graph G is the union of two possibly equal

planes and u is linear. This concludes the proof of the �rst half of the lemma.

Now assume instead that this diverges. Up to considering −u we may

assume that supr>0 r
−1 maxDr{u1, u2} = +∞ which will ultimately allow us

to conclude that, if C is a blowdown cone of u at in�nity, then necessarily

{ten+1 | t ≥ 0} ⊂ spt‖C‖.
We argue as follows. As above, let (λj | j ∈ N) be an arbitrary sequence

of positive scalars with λj → +∞ along which we blow down |graphu| to
obtain a sequence with limiting behaviour |graphuj | → C as j → ∞. It

is well-known that the supports of these graphs converge to spt‖C‖ in the

Hausdor� distance, distH(spt‖Gj‖ ∩K, spt‖C‖ ∩K) → 0 as j → ∞ for all

compact K ⊂ Rn+1. Here we take K = Dδ × [−1, 1] depending on a small

parameter δ → 0 which we eventually let go to zero.

For now however let us �x a value for δ. Inside the disc Dδ the functions

uj have

max
Dδ

{uj1, u
j
2} → +∞ as j → +∞,

so that for large enough j ≥ J(δ) we get

max
Dδ

{uj1, u
j
2} ≥ 1.

Hence there exists a sequence of points Xj = (xj , X
n+1
j ) ∈ spt‖Gj‖∩Dδ×R

with Xn+1
j > 1 for all j. As spt‖Gj‖ ∩ Dδ × R is connected there is a

continuous path γj : [0, 1]→ Rn+1 with image γj([0, 1]) ⊂ spt‖Gj‖∩Dδ×R

and endpoints γj(0) = 0 and γj(1) = Xj . This path must cross the solid disc

Dδ×{1} at height one, so that by picking a point in this intersection we can

construct a sequence of points (Yj,δ | j ≥ J(δ)) each of which belongs to

Yj,δ ∈ γj([0, 1]) ∩Dδ × {1}.

Now of course we may proceed similarly regardless of the size of δ, so that

taking a positive sequence (δm | m ∈ N) with δm → 0 as m→∞ we obtain

via a diagonal extraction argument a subsequence of indices (jm | m ∈ N)

and (Ym | m ∈ N) with

Ym = Yjm,δm ∈ Gjm ∩Dδm × {1}.
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In particular we obtain convergence Ym → (0, 1) ∈ Rn+1, which thus nec-

essarily belongs to spt‖C‖. As C is a cone, its support in fact contains the

entire line directed by (0, 1), that is {ten+1 | t ≥ 0} ⊂ spt‖C‖. �

5.1.2. General results in low dimensions. Combining the results

from 3.5.1 with the work of [Wic20] we obtain the following.

Corollary 5.1.2. Let V ∈ IVn(D2 ×R) be the limit of a sequence of

two-valued graphs Gj = graphuj, where there is α ∈ (0, 1) so that uj ∈
C1,α(D2;A2) for all j. Suppose that at the point Z ∈ spt‖V ‖, there is a

tangent cone of the form

|Π0
1| ×Ren+1, 2|Π0

1| ×Ren+1, or (|Π0
1|+ |Π0

2|)×Ren+1 ∈ VarTan(V,Z),

where Π0
1,Π

0
2 are two distinct n − 1-dimensional planes in Rn. Then there

is ρ > 0 so that

〈ν(X), en+1〉 = 0 for all X ∈ reg V ∩Bρ(Z).

This result holds in arbitrary dimensions, but in the remainder we con-

sider 2 ≤ n ≤ 6. Nonetheless this is a useful prerequisite for the following

theorem, which is the main result of this section.

Theorem 5.1.3. Let α ∈ (0, 1) and 2 ≤ n ≤ 6. Let u ∈ C1,α(Rn;A2)

be an entire two-valued minimal graph and C be a blowdown cone of |G| at
in�nity. Then

(i) either C is cylindrical, that is of the form C = C0 ×Ren+1,

(ii) or C = |Π|+ C0 ×Ren+1 where Π ∈ Gr(n, n+ 1),

(iii) or C is the sum of two possibly equal planes Π1,Π2 ∈ Gr(n, n+ 1),

C = |Π1|+ |Π2|.

The remainder is dedicated to proving this theorem, starting by decom-

posing the blowdown cone C into a vertical and a horizontal part. We

construct this decomposition as follows. We consider the set R of connected

components of reg C. (This set has at most countably many elements by a

classical separability argument.) By [Sim84, Thm. 41.1] every Σ ∈ R has has

constant multiplicity ΘΣ ∈ Z>0. We say that Σ is vertical if 〈ν, en+1〉 ≡ 0

on Σ, and horizontal if instead 〈ν, en+1〉 > 0. Thus R = Rv ∪ Rh, either of
which is allowed to empty.

Lemma 5.1.4. Let α ∈ (0, 1) and 2 ≤ n ≤ 6. Let u ∈ C1,α(Rn;A2)

be an entire two-valued minimal graph and C ∈ IVn(Rn+1) be a blowdown

cone of |G| at in�nity. Then Cv = C0
v ×Ren+1 =

∑
Σ∈Rv ΘΣ|Σ| and Ch =∑

Γ∈Rh ΘΓ|Γ| are stationary integral varifolds, and

(5.1) C = Cv + Ch ∈ IVn(Rn+1).
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Proof. First, the convergence of the two sums can be justi�ed be-

cause their weight measures are bounded by ‖C‖. Let us write the ar-

gument out explicitly for Cv. Assume that Rv is countably in�nite, enu-

merated by Rv = {Σi | i ∈ N} say. For every compact subset K ⊂ Rn+1,∑
Σ∈Rv ΘΣ‖Σ‖(K) ≤ ‖C‖(K) ≤ CK , so that the partial sums

∑∞
i=k ΘΣi |Σi| →

0 when k →∞ as varifolds. Thus the sum
∑∞

i=1 ΘΣi |Σi| is convergent, with
limit Cv ∈ IVn(Rn+1). As every |Σi| ∈ IVn(Rn+1) is invariant under homo-

theties, the same holds for their limit, which we are thus justi�ed in denoting

by Cv. Similarly one may check that indeed Cv is vertical, meaning it is of

the form Cv = C0
v ×Ren+1 for some C0

v ∈ IVn−1(Rn).

Proceeding similarly one can justify the construction of Ch, and con�rm

that C = Cv + Ch as in (5.1). Moreover, the stationarity of C means that

Cv is stationary in the open set Rn+1 \ spt‖Ch‖ and vice-versa for Ch. The

only way either of the two cones could fail to be stationary in Rn+1 is if

Hn−1(spt‖Cv‖ ∩ spt‖Ch‖ ∩B1) > 0.

By construction spt‖Cv‖ ∩ spt‖Ch‖ ⊂ sing C, which is strati�ed like

S0 ⊂ · · · ⊂ Sn−2 ⊂ Sn−1 ⊂ Sn,

where we abbreviate Si = Si(C). By Corollary 4.4.7, we further have

Hn−1(B(C) ∪ Sn−2) = 0, whence

Hn−1(spt‖Cv‖ ∩ spt‖Ch‖ \ (Sn−1 \ Sn−2)) = 0.

Now assume Hn−1(spt‖Cv‖ ∩ spt‖Ch‖ ∩B1) > 0, and take a point

X0 ∈ (Sn−1 \ Sn−2) ∩ spt‖Cv‖ ∩ spt‖Ch‖ ∩B1.

The classi�cation of classical tangent cones established in the previous sec-

tion (e.g. see Corollary 4.4.7 again), and valid for the range of dimensions

2 ≤ n ≤ 6 prescribed in the hypotheses, implies that spt‖C‖ must be im-

mersed near X0. Therefore both Cv and Ch must be embedded near X0, say

B(X0, ρ0)∩spt‖C‖ ⊂ reg Ch∪reg Cv for some ρ0 > 0, which are transversely

intersecting. Both reg Ch and reg Cv have separately pointwise vanishing

mean curvature, and in particular they are both stationary near X0. As X0

was chosen arbitrarily, this proves that both Cv and Ch are stationary as

varifolds in IVn(Rn+1). �

The three cases (i), (ii) and (iii) listed in Theorem 5.1.3 correspond to

the following situations. In the �rst case Ch = 0, and the conclusion is

immediate, while in the last Cv = 0 and we conclude using the uniform

gradient bounds for u, as demonstrated in Lemma 5.1.1. Probably the most

complicated case of the three remains, in which both Cv 6= 0 and Ch 6= 0.
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Lemma 5.1.5. Let α ∈ (0, 1) and 2 ≤ n ≤ 6. Let u ∈ C1,α(Rn;A2) be

a two-valued minimal graph and C = Cv + Ch ∈ IVn(Rn+1) be a blowdown

cone of |G| at in�nity. If Cv 6= 0 and Ch 6= 0 then Ch = |Π| for some plane

Π ∈ Gr(n, n+ 1).

In proving this lemma we will use a function Q : D1 → [0,+∞] de�ned

by

(5.2) Q(y) =
∑

Y ∈P−1
0 ({y})

Θ(‖Ch‖, Y ) for all y ∈ D1,

where we convene that Q(y) = +∞ at points y ∈ D1 for which the set

{Y ∈ P−1
0 ({y}) | Θ(‖Ch‖, Y ) > 0} is in�nite, should they exist.

Lemma 5.1.6. Let α ∈ (0, 1) and 2 ≤ n ≤ 6. Let u ∈ C1,α(Rn;A2) be

a two-valued minimal graph and C = Cv + Ch ∈ IVn(Rn+1) be a blowdown

cone of |G| at in�nity. Then the set K = P0(Sn−2(C) ∪ B(C) ∪ sing Cv) ∩
D1 ⊂ D1 is closed and has Hn−1(K) = 0. Moreover Q is �nite and constant

on D1 \K, with value either 1 or 2.

Proof. Recall that by Corollary 4.4.7 the support of C = Ch + Ch is

immersed away from Sn−2(C)∪B(C). This is true in particular at singular-

ities in (Sn−1 \Sn−2)(C), which are all classical, immersed singularities. For

the remainder we thus write C(C) = (Sn−1 \Sn−2)(C). These form an open

subset of sing C, meaning that the projection of the set of non-immersed

singularities onto Rn × {0} ⊂ Rn+1 yields a closed subset of D1 with

(5.3) Hn−1(P0(Sn−2(C) ∪ B(C)) ∩D1) = 0.

This last identity (5.3) is preserved if we additionally project the singu-

larities of Cv. Indeed the only singularities of Cv not contained in the set

Sn−2(C)∪B(C) are those in (Sn−1 \Sn−2)(Cv). Now, because the cone has

the form Cv = C0
v×Ren+1, the same holds for its singular set, meaning that

(Sn−1 \ Sn−2)(Cv) = [(Sn−2 \ Sn−3)(C0
v)]×Ren+1. Therefore

Hn−1(P0((Sn−1 \ Sn−2)(Cv))) = Hn−1((Sn−2 \ Sn−3)(C0
v)) = 0.

The same is true for the closedness of P0(Sn−2(C) ∪ B(C) ∪ sing Cv) ∩
D1 inside D1, because the set P0(sing Cv) = sing C0

v is closed. Then an

argument similar to the one used in [SW16] to prove their Lemma A.1 can

be applied here to conclude that the complement of K = P0(Sn−2(C) ∪
B(C) ∪ sing Cv) ∩D1 in the unit disc D1 is path-connected.

Let us assume for now the validity of the conclusions of Claim 5 below,

namely that Q is locally constant on the set D1 \K, with value either 1 or

2. As this set is path-connected, the function Q must in fact be constant,

precisely what was to be shown. �
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Claim 5. The function Q is �nite and locally constant on D1 \K, with

value either 1 or 2.

Proof. Consider a point y in this set D1 \K. Let Y1, . . . , YM be any

�nite collection of points contained in P−1
0 ({y}) ∩ spt‖Ch‖. Every point

Yi ∈ {Y1, . . . , YM} is either a regular point of C = Cv + Ch or else is

singular, in which case by construction Yi ∈ C(C) and its unique tangent

cone is of the form

|Π1
Yi |+ |Π

2
Yi | ∈ VarTan(C, Yi),

where Π1
Yi
,Π2

Yi
∈ Grn. There are then two possibilities, namely either Yi ∈

C(C) ∩ reg Ch, or Yi ∈ C(C) ∩ C(Ch). In these two cases the density with

respect to Ch,

Θi = Θ(‖Ch‖, Yi)

is equal to one or two respectively. By Corollary 5.1.2 this corresponds

precisely to whether one or both of the planes Π1
Yi
,Π2

Yi
one or two of the

planes Π1
Yi
,Π2

Yi
are horizontal respectively. When only one is horizontal, it

will simplify our notation somewhat to denote this plane ΠYi ∈ {Π1
Yi
,Π2

Yi
}.

Moreover, when Yi ∈ reg C then automatically Yi ∈ reg Ch as well, so

ΘYi = Θ(‖Ch‖, Yi) ∈ {1, 2}

and there is a unique plane ΠYi ∈ Gr(n, n+ 1) so that

VarTan(Ch, Yi) = ΘYi |ΠYi |.

(When ΘYi = 2 the point Yi is a false branch point, a possibility we allow in

our analysis.) When this is the case, then the tangent plane ΠYi is horizontal,

meaning its normal is not orthogonal to en+1, regardless of whether Θi = 1

or 2. We write NYi for the upward-pointing unit normal to this plane.

Next, consider one of the preimages Yi ∈ {Y1, . . . , YM} say, and take some

small radius ρ > 0 so that the balls B(Y1, ρ), . . . , B(YN , ρ) are two-by-two

disjoint and ∪iB(Yi, ρ)∩spt‖C‖ ⊂ reg C∪C(C). For every Yi ∈ {Y1, . . . , YM}
either Yi ∈ reg Ch and we write ΣYi for the smooth minimal surface so that

ΘYi |ΣYi | = |Ch| B(Yi, ρ),

or else Yi ∈ C(Ch) and we write Σ1
Yi
,Σ2

Yi
for the two smooth minimal surfaces

so that

|Σ1
Yi |+ |Σ

2
Yi | = |Ch| B(Yi, ρ).

Before continuing our argument, let us relabel these surfaces to avoid

having to distinguish between di�erent cases depending on whether or not
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Yi ∈ reg Ch. We simply write Σ1, . . . ,ΣD for the entire collection

∪Mi=1{Σ
j
Yi
| Yi ∈ C(Ch), j = 1, 2} ∪ {ΣYi | Yi ∈ reg Ch}

and Θ1, . . . ,ΘD for their respective multiplicities in Ch. With this nota-

tion we have that, for example, ∪iΣYi = ∪kΣk and |Ch| ∪iB(Yi, ρ) =∑
k Θk|Σk|. Further write Π1, . . . ,ΠD for the corresponding tangent planes,

andN1, . . . , ND for their respective unit normals, which we all choose upward-

pointing.

Next let m = mink〈Nk, en+1〉 > 0, and adjust ρ > 0 so that

(5.4) 〈ν(X), en+1〉 ≥ m/2

for all X ∈ ∪kΣk = spt‖Ch‖ ∩ ∪iB(Yi, ρ), where we write ν for the upward-

pointing unit normal to reg Ch.

Write Gj = graphuj for the two-valued minimal graphs obtained by

blowing down G, where we have already extracted a subsequence to en-

sure that |Gj | → C. Then using our relabelled notation, we have |Gj |
∪iB(Yi, ρ) →

∑
k Θk|Πk| as j → ∞. For every surface Σk ∈ {Σ1, . . . ,ΣD}

write Yik for the unique corresponding point in Σk ∩ {Y1, . . . , YM}. Then,

potentially after adjusting the radius ρ > 0 we may take j large enough so

that, depending on the density of the point Yik we may distinguish between

the following cases.

(1) If Θ(‖C‖, Yik) = 1 then by Allard regularity, we can take j large

enough that there is a smooth function Ujk ∈ C∞(B2ρ(Yik)∩Πk; Π⊥k )

so that |Gj | Bρ(Yik) = |graphUjk| Bρ(Yik)→ |Σk| as j →∞.

(2) If Θ(‖C‖, Yik) = 2 and Yik ∈ C(C) then write Σl ∈ {Σ1, . . . ,ΣD}
for the other surface with Yik ∈ Σl. Then there exist two smooth

functions Ujk, Ujl ∈ C∞(B2ρ(Yik)∩Πk; Π⊥k ) so that |Gj | Bρ(Yik) =(
|graphUjk|+|graphUjl|

)
Bρ(Yik). Moreover |graphUjk| Bρ(Yik)→

|Σk| as j →∞.

(3) If Θ(‖C‖, Yik) = 2 and Yik ∈ reg C then there is a two-valued

function Ujk ∈ C1,β(B2ρ(Yik)∩Πk;A2(Π⊥k )) for some β ∈ (0, 1) not

depending on j, so that |Gj | Bρ(Yik) = |graphUjk| Bρ(Yik) →
2|Σk| as j →∞.

In all three of these cases, we may additionally impose that

(5.5) 〈νj(X), en+1〉 ≥ m/3 for all X ∈ regGj ∩ ∪iBρ(Yi),

potentially after taking j even larger if necessary, as this is a strictly weaker

version of the lower bound (5.4) that holds in the limit. Once this is done, we

know there is θ = θ(m) > 0 so that for all x ∈ Dθρ(y) and all k ∈ {1, . . . , D},
graphUjk contains Θk points lying above x (counted with multiplicity), and
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thus

(5.6)
∑

X∈P−1
0 ({x})

Θ(‖Gj‖, X) ≥
M∑
k=1

Θk.

On the other hand the graphs Gj are all two-valued, and therefore we get∑
k Θk ≤ 2 from (5.6). As Θk ≥ 1 for all k this means that M ≤ 2.

This way we have established that for all points y ∈ D1 \ P0(Sn−2(C) ∪
B(C) ∪ sing Cv) there lie at most two points of spt‖Gj‖ above y, meaning

precisely that Q(y) ≤ 2 for all such points. Our analysis shows that then

the only two possible values are Q(y) ∈ {1, 2}.
To show that Q is locally constant in this set D1 \P0(Sn−2(C)∪B(C)∪

sing Cv), pick an arbitrary point y lying in it. Although the arguments

are essentially identical, we distinguish between cases depending on whether

P0(sing C) or not.

If y ∈ D1 \ P0(sing C) then there lie q = Q(y) ∈ {1, 2} points, say

Y1, . . . , Yq in spt‖C‖ ∩ P−1
0 ({y}). Then there is ρ > 0 so that Dρ(y) ⊂

D1 \ P0(sing C), and consequently we can �nd q smooth minimal surfaces

Σ1, . . . ,Σq so that Ch Dρ(y)×R =
∑

i|Σi|. Then clearly for all other z ∈
Dρ(y) we also have Q(z) = q = Q(y). (Note that in this analysis we allow for

the possibility that there lies a unique, regular point Y ∈ P−1
0 ({y})∩spt‖C‖

which however has Θ(‖C‖, Y ) = 2. Such a point is called a false branch point,

and we would count such a point twice, meaning q = 2 and Y1 = Y = Y2.)

If instead y ∈ D1 \ P0(Sn−2(C) ∪ B(C) ∪ sing Cv) is the projection of

a singular point, then automatically P−1
0 ∩ spt‖C‖ = {Y } and Y ∈ (C).

Moreover its density with respect to Ch is exactly Θ(‖Ch‖, Y ) = q = Q(y).

Similar to the above, we may pick ρ > 0 so that Dρ(y) ⊂ D1 ∩ P0(reg C ∪
C(C)). There are then q smooth embedded minimal surfaces Σ1, . . . ,Σq so

that Ch Dρ(y) × R =
∑

i|Σi|, and thus for all points z ∈ Dρ(y) we get

Q(z) = q = Q(y). �

Proof (of Lemma 5.1.5). As we are working with cones, we work over

the unit disc without restricting our conclusions. Using the same notation

as in Lemma 5.1.5, we let K = P0(Sn−2(C) ∪ B(C) ∪ sing Cv) ∩D1, which

is a closed subset of D1 with Hn−1(K) = 0. In the same lemma we showed

that the function Q, de�ned on the unit disc D1 by the expression (5.2) is

constant either equal to one or two.

We start by showing that necessarily Q = 1 on D1 \K, using a contra-

diction argument assuming that instead Q = 2 on the same set. Speaking in

very rough terms, the conclusion will follow by examining the intersection of

spt‖Cv‖ and spt‖Ch‖. By a blow-up argument we will derive a contradiction

with our classi�cation of tangent cones from the previous section. To obtain
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this we distinguish between the following two cases:

(5.7) either reg C0
v \ P0(sing Ch) 6= ∅ or reg C0

v ⊂ P0(sing Ch).

We treat the former case �rst, and pick a point

y ∈ reg C0
v ∩D1 \ P0(sing Ch).

Because Q(y) = 2, this has two pre-images

Yi ∈ reg Ch ∩ P−1
0 ({y}) i = 1, 2

which by assumption also belong to reg Cv. Using Corollary 5.1.2 we see

that they must both lie on an axis along which of reg Ch and reg Cv intersect

transversely, and we may write

|Πv
i |+ |Πh

i | ∈ VarTan(C, Yi)

where as our notation suggests

|Πv
i | = |Π

0,v
i | ×Ren+1 ∈ VarTan(Cv, Yi)

and

|Πh
i | ∈ VarTan(Ch, Yi).

Recall that we write |Gj | = |graphuj | for the blowdown sequence which

converges to C. As the graphs are stable, we may use the results of [Wic20] to

conclude that there is a small radius ρ > 0 so that B(Y1, 2ρ)∩B(Y2, 2ρ) = ∅
and there exist Uji ∈ C∞(Πh

Yi
∩B(Yi, 2ρ)) so that

|Gj | B(Yi, ρ) = |graphUji| B(Yi, ρ) i = 1, 2.

WriteNh
i for the upward unit normal to Πh

i and letm = mini=1,2〈Nh
i , en+1〉 >

0. Then for large enough j we get

〈νj(X), en+1〉 ≥ m/3 for all X ∈ regGj ∩ {Bρ(Y1) ∪Bρ(Y2)},

arguing as above when we derived (5.5). As neither of the planes is vertical,

we can �nd θ = θ(m) > 0 so that graphUji ∩ D(yi, θρ) × R ⊂ B(Yi, ρ)

at least provided j is large enough, where we write Yi = (yi, Y
n+1
i ) for

both i = 1, 2. We moreover know that with respect to Hausdor� distance

singGj ∩Bρ(Yi)→ (Πh
i ∩Πv

i )∩B(Yi, ρ) as j →∞. Focus on the �rst graph,

pick a singularity Z1 ∈ singGj ∩ Dθρ(Y1) × R which also belongs to Z1 ∈
graphUj1 ∩Bρ(Y1). Then there is also a point Z2 ∈ graphUj2 ∩Dθρ(y) with

P0(Z1) = P0(Z2). Adding their densities we obtain the absurd inequality∑
Z∈P−1

0 ({z})

Θ(‖Gj‖, Z) ≥ Θ(‖Gj‖, Z1) + Θ(‖Gj‖, Z2) ≥ 3.
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We may now turn to the second case described in (5.7), where reg C0
v ⊂

P0(sing Ch). As Hn−1(reg C0
v ∩D1) > 0 but Hn−1(P0(sing Ch \ C(Ch))) = 0

we may pick a point

y ∈ reg C0
v \ P0(sing Ch \ C(Ch)),

whence

P−1
0 ({y}) ∩ spt‖Ch‖ ⊂ C(Ch).

Indeed by assumption there lies at least one singular point Y1 ∈ P−1
0 ({y})∩

C(Ch). If we assumed the existence of a point Y2 ∈ P−1
0 ({y}) ∩ reg Ch, we

could derive a contradiction along much the same lines as above, in the �rst

case of (5.7). Therefore P−1
0 ({y})∩ spt‖Ch‖ ⊂ sing Ch. In fact one can even

use the same argument to prove the disjointness

(5.8) P0(C(Ch)) ∩ P0(sing Ch \ C(Ch)) = ∅,

and deduce that in particular P−1
0 ({y}) ∩ spt‖Ch‖ ⊂ C(Ch).

Indeed, if z ∈ D1∩P0(C(Ch)) then automatically P−1
0 ({z})∩ spt‖Ch‖ ⊂

sing Ch, and by assumption there must be at least one classical, immersed

singularity Z in this preimage. Again arguing as above we obtain that

P−1
0 ({z}) ∩ C(Ch) = {Z}. Write |ΠZ,1| + |ΠZ,2| ∈ VarTan(Ch, Z) for the

unique tangent cone to Ch at Z, and let

mZ = min{〈NZ,1, en+1〉, 〈NZ,2, en+1〉} > 0.

Then pick ρ > 0 for large enough j, there are two smooth functions Uji ∈
C∞(ΠZ,i ∩B(Z, 2ρ); Π⊥Zi) so that |Gj | Bρ(Z) = |graphUj1|+ |graphUj2|
Bρ(Z). Next take θ = θ(m) > 0 so that above all x ∈ Dθρ(z) there lie a

point in each of the two graphs, say Xji ∈ graphUji ∩ P−1
0 ({x}). (Should

x ∈ P0(C(Ch)) then we allow them to coincide, Xj1 = Xj2.)

Counting the densities of these points, we see that

(5.9) Dθρ(z)×R ∩ spt‖Gj‖ ⊂ graphUj1 ∪ graphUj2.

To con�rm that (5.8) holds, write Z1 = Z and assume that there exists a

point Z2 ∈ P−1
0 (z) ∩ sing Ch \ C(Ch). Then necessarily Θ(‖Ch‖, Z2) > 1,

and thus no matter how small σ > 0 is chosen we must have, at least for

j large enough, that Gj ∩ Bσ(Z2) 6= ∅. If we choose σ < θρ so small that

Bσ(Z2) ∩ Bρ(Z1) = ∅, then this contradicts (5.9). Thus there could be no

point in P−1
0 (z) ∩ sing Ch \ C(Ch), and instead we must have (5.8).

Thus we may take a radius ρ > 0 small enough that

(5.10) reg C0
v ∩Dρ(y) ⊂ P0(C(Ch)).
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Next let Y ∈ P−1
0 ({y}) ∩ C(Ch) be the unique singular point lying above y,

and denote its tangent cone

|ΠY,1|+ |ΠY,2| ∈ VarTan(Ch, Y ),

with planes ΠY,1,ΠY,2 horizontal. By assumption the point Y also belongs

to reg Cv, with respect to which it has the tangent cone

|Πv
Y | = |Πv,0

y | ×Ren+1 ∈ VarTan(Cv, Y ).

Blowing up the cone C at Y , we see that the splitting C = Cv + Ch is

re�ected at the tangent level in the sense that the tangent cone is

|ΠY,1|+ |ΠY,2|+ |Πv
Y | ∈ VarTan(C, Y ).

We may deduce a contradiction with our classi�cation of classical limit

cones from this provided we can show that this indeed is a classical tangent

cone. For this we need to prove that the three planes ΠY,1,ΠY,2,Π
v
Y pairwise

intersect along the same (n − 1)-dimensional axis LY say. This is the case

precisely if setting LY = ΠY,1 ∩ΠY,2 we have

(5.11) Πv,0
y = P0(LY ).

As both spaces have the same dimension, this is equivalent to the in-

clusion Πv,0
y ⊂ P0(LY ), which can be obtained by blowing up the inclusion

reg C0
v ∩D(y, r) ⊂ P0(imm C). To con�rm this rigorously, take a sequence

(µk | k ∈ N) of positive rescaling factors µk → 0 so that simultaneously

(ηµk,y)#(C0
v Dθµk(y))→ |Πv,0

y | Dθ

(ηµk,Y )#(Ch Bµk(Y ))→ (|Πh
Y,1|+ |Πh

Y,2|) B1,

where the constant θ is chosen in terms of the planes ΠY,1,ΠY,2 in the fol-

lowing manner, analogous to have been proceeding above. Adjust the value

picked for ρ > 0 in (5.10) to have it small enough that we can �nd two

smooth functions Uji ∈ C∞(ΠY,i ∩ B2ρ(Y ); Π⊥Yi) so that Ch Bρ(Y ) =

(|graphUj1 + graphUj2|) Bρ(Y ). Decrease the value of ρ > 0 again to

get that 〈ν(X), en+1〉 ≥ mY /2, for all X ∈ reg Ch ∩ Bρ(Y ) where mY =

min{〈NY,1, en+1〉, 〈NY,2, en+1〉}. By smoothness of the two graphs, there is

a constant θ = θ(mY ) > 0 so that for all points x ∈ Dr(y) each graph

contains precisely one preimage Yi ∈ P−1
0 (y)∩ graphUji ∩B(Yi, ρ). Arguing

as above using the convergence of the two-valued graphs |Gj | Dθρ(y) →
(|graphUj1|+ |graphUj2|) Dθρ(y) as j →∞, we deduce that

spt‖Ch‖ ∩Dθr(y)×R ⊂ (graphUj1 ∪ graphUj2) ∩Br(Y )

for all r ∈ (0, ρ). In particular this holds for r = µk, provided this is small

enough. Moreover, an analogous inclusion holds for their respective singular
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sets, namely

(5.12) sing Ch ∩Dθµk(y)×R ⊂ (graphUj1 ∩ graphUj2) ∩Bµk(Y ),

where perhaps it is useful to recall that these are all immersed, classical

singularities.

Let a small δ > 0 be given. Abbreviate

Ĉh,k = (ηµk,Y )#Ch for all k ∈ N,

whence by assumption Ĉh,k → |ΠY,1|+ |ΠY,2| as k →∞. Because this limit

is regular with multiplicity away from the axis LY where the two planes

intersect, by Allard regularity we can choose k large enough to ensure that

(5.13) sing Ĉh,k ∩B1 = C(Ĉh,k) ∩B1 ⊂ (LY )δ ∩B1.

Abbreviate as well, for all k ∈ N,

Ĉ0
v,k = (ηµk,y)#C0

v ∈ IVn−1(Rn).

Again by assumption Ĉ0
v,k → |Π

v,0
y | as k → ∞ because y ∈ reg C0

v. In

particular, their supporting sets converge locally with respect to Hausdor�

distance, and we may take large enough k that

distH(spt‖Ĉ0
v,k‖ ∩Dθ,Π

v,0
y ∩Dθ) ≤ δ.

Equivalently at the original scale

distH(spt‖C0
v‖ ∩Dθµk(y), (y + Πv,0

y ) ∩Dθµk(y)) ≤ δµk,

where y+ Πv,0
y is the a�ne plane parallel to Πv,0

y attached to the point y. If

we combine this with (5.10) and (5.13) we get that

(5.14)

(y + Πv,0
y ) ∩Dθ ⊂ (reg C0

v ∩Dθµk(y))δµk ⊂ (P0(C(Ch)) ∩Dθµk(y)×R)δµk .

(Note here that, as y ∈ reg C0
v the support of C0

v coincides with its regular

set near the point, reg C0
v ∩Dθµk(y) = spt‖C0

v‖ ∩Dθµk(y) at least provided

µkθ < ρ. We may thus equivalently use either expression in our identities.)

By (5.12) the right-most set of (5.14) satis�es P0(Ch) ∩ Dθµk(y) =

P0(Ch ∩Dθµk(y)×R) ⊂ P0(C(Ch) ∩Bµk(Y )), whence this becomes

(5.15) (y + Πv,0
y ) ∩D1 ⊂ (P0(C(Ch) ∩Bµk(Y )))δµk .

The convergence of the singular set we obtain from (5.13) says that, for

k as large as imposed there,

(5.16) C(Ch) ∩Bµk(Y ) ⊂ (Y + LY )δµk ∩Bµk(Y ),

where recall we explained above that the singularities of Ch in sing Ch ∩
Bµk(Y ) are automatically classical singularities. Note moreover that this is
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the main step where (5.12) was useful, because it meant we can use the local

convergence in the Hausdor� distance valid in compact domains to draw the

conclusion above, namely (5.16).

As the projection P0 is a continuous linear map of norm one we get

combining (5.15) and (5.16) that

(y + Πv,0
y ) ∩D1(y) ⊂ (P0(Y + LY ))2δ ∩D1(y),

whence after translating to the origin

Πv,0
y ∩D1 ⊂ (P0(LY ))2δ ∩D1.

As δ > 0 was an arbitrarily small constant, we may let it tend to zero to

obtain the desired inclusion

Πv,0
y ∩D1/2 ⊂ P0(LY ) ∩D1,

which con�rms the validity of (5.11).

As we have already explained in the paragraph preceding this identity,

this means that we have shown that the tangent cone to C at the point

Y ∈ sing C is a classical cone. This is a contradiction, regardless of whether

Πv,0
Y is distinct from the other two cones or not, because in any case one

would have

‖|Πh
Y,1|+ |Πh

Y,2|+ |Πv
Y |‖(B1)/ωn = 3,

which our classi�cation of classical limit cones of two-valued graphs demon-

strates is impossible, see Corollary 4.4.6.

This concludes the argument in the second of the two cases described

in (5.7). Therefore, if both Cv,Ch 6= 0 then

(5.17) Q = 1 on D1 \K,

with K ⊂ D1 as in Lemma 5.1.6. From this we can draw the conclusion that

the support of Ch is smooth embedded inside the open set (D1 \K)×R. In

fact we can go further.

Claim 6. There is a smooth function Uh ∈ C∞(D1 \K), satisfying the

minimal surface equation, so that |Ch| (D1 \K)×R = |graphUh|.

Proof. Let y ∈ D1 \ K be any point. Because of (5.17) there lies

precisely one point Y ∈ P−1
0 ({y}) spt‖Ch‖. Moreover, as Θ(‖Ch‖, Y ) =

1 this point must be regular, and we may write |ΠY | ∈ VarTan(Ch, Y )

for its unique tangent plane at the point. Either by inspection or using

Corollary 5.1.2 we see that this cannot be vertical, meaning we may write NY

for the upward-pointing normal. Thus, using the Allard regularity theorem

there is a radius ρ = ρY > 0 and a smooth function UY ∈ C∞(ΠY ∩B2ρ; Π⊥Y )
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so that at least in a small ball |Ch| Bρ(Y ) = |graphUY | Bρ(Y ). Write

moreoverm = mY = 〈NY , en+1〉 > 0, and take θ = θY > 0 small enough that

above every x ∈ Dθρ(y) there lies precisely one point of graphUY . Write Y =

(y, Y n+1) and de�ne a function Uh : D1 \K → R by setting Uh(y) = Y n+1.

Then at least locally we are guaranteed to have |graphUh| Dθρ(y) ×R =

|graphUY | Dθρ(y) × R. This shows that Uh is smooth. Patching these

local observations together we see that |graphUh| = Ch (D1 \K)×R. In

particular the varifold |graphUh| is stationary inside this region, and Uh is

a classical solution of the minimal surface equation on D1 \K. �

Recall moreover from Lemma 5.1.6 that Hn−1(K) = 0. Moreover K is

a closed subset of D1, and thus is locally compact. This places us precisely

in the situation described by L. Simon in [Sim77]. The results proved there

demonstrate that u can be extended smoothly across K, and thus there is

a smooth, classical solution of the minimal surface equation de�ned on D1

which restricts to Uh on D1 \ K. Denote his extension of Uh to D1 by Uh

also. Since Uh is homothety-invariant on D1\K, this must in fact hold in the

entire unit disc. It is then a standard fact that Uh must in fact be linear, and

its image is a plane, say |graphUh| = |Πh| where Πh ∈ Gr(n, n + 1). Then

also Ch = |Πh|, which is precisely what was to prove in Lemma 5.1.5. �

Remark 5.1.7. The work of Simon in [Sim77] is a generalisation of an

earlier result of de Giorgi and Stampacchia, who in [DGS65] manage to

draw the same conclusion, but only under the stronger condition that K is

compact. Allowing locally compact K, as Simon does, means that the subset

K ⊂ D1 can extend all the way up to the boundary of the domain. This

is crucial in the application above. Both of these results could have been

replaced by the regularity theory of Wickramasekera [Wic14a], or indeed

that of Schoen�Simon [SS81]. We brie�y sketch this alternative argument.

If we had allowed ourselves to use the (signi�cantly stronger) former results,

then we simply need to make the following observation. If C(Ch) were non-

empty, then necessarily C(Ch)∩(D1\K)×R becauseHn−1(P0(Ch)∩D1) > 0

but Hn−1(K) = 0. This however would contradict would contradict the fact

that Q = 1 on D1 \K, derived in (5.17). Therefore necessarily C(Ch) = ∅,
and the results of [Wic14a] yield immediately that Ch is smooth, and thus

must be a plane. If we had tried instead to only use the weaker version of

these results from [SS81], we only need to notice the following. The singular

set of Ch strati�es as usual, like Si−1(Ch) ⊂ Si(C) for all i = 1, . . . , n. The

conclusions of Corollary 4.4.7 do not quite apply here, because Ch itself is

not a limit of two-valued graphs, only C = Ch + Cv is. This complication

notwithstanding, we already know that (Sn−1\Sn−2)(Ch) = ∅. Moreover by
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inspection B(Ch) ⊂ B(C)∪Sn−2(C) and is thus countably n− 2-recti�able,

and for all the lower strata, that is i ∈ {0, . . . , n − 2}, we have Si(Ch) ⊂
Si(C). The statements of [SS81] still do not quite apply, because they call

for Hn−2(sing Ch) = 0, but going through their argument one sees that it

su�ces to have sing Ch countably n− 2�recti�able, as is the case here.

5.2. The Bernstein theorem in four dimensions

The aim of this section is to prove the following result.

Theorem 5.2.1. Let α ∈ (0, 1) and u ∈ C1,α(R3;A2) de�ne an entire

two-valued minimal graph. Then u is linear.

5.2.1. Stability and the logarithmic cuto� trick. Let α ∈ (0, 1)

and u ∈ C1,α(R3;A2) be an entire two-valued minimal graph. If we had

singG = ∅ then G would decompose into a disjoint union of two smooth,

single-valued entire minimal graphs. Moreover by the classical, single-valued

Bernstein theorem they would be two parallel planes. From now on singG 6=
∅. In fact we may assume 0 ∈ singG after translating the graph, in which

case Θ(‖G‖, 0) = 2. Let C ∈ IV3(R4) be a blowdown cone of |G| at in�n-
ity. By the monotonicity formula, the desired conclusion follows by showing

Θ(‖C‖, 0) = limR→∞‖G‖(BR)/(ω3R
3) = 2. Indeed then G is a union of

two, possible equal planes and u is linear.

By Theorem 5.1.3 the cone C must take one of the following three forms:

(5.1) C0 ×Re4, |Π1|+ C0 ×Re4 or |Π1|+ |Π2|,

where Π1,Π2 are two non-vertical, possibly equal planes, and C0 ∈ IV2(R3)

is a stationary integral cone. The remainder of this section is dedicated to

excluding the �rst two cases, that is necessarily C = |Π1|+ |Π2|. The proof
starts with the observation that C0 inherits the ambient stability from C,

which allows the application of the so-called logarithmic cuto� trick.

Lemma 5.2.2. Let V ∈ IV2(R3) be a stationary integral varifold. Sup-

pose that V is ambient stable in the sense of (SV ), and that it has quadratic

area growth,

‖V ‖(BR) ≤ ΛR2 for all R > 0

for some constant Λ > 0. Then |AV |(X) = 0 at all X ∈ reg V .

Proof. This follows from a classical application of the so-called log-

arithmic cut-o� trick. The details of the argument used below are taken

essentially verbatim from [CM11], and are reproduced solely for the conve-

nience of the reader. Let N ∈ N be a large integer, and de�ne the radial
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compactly supported function

η(r) =


1 if r ≤ eN ,

2− log r/N if eN < r ≤ e2N ,

0 if r > e2N .

We may use this function in the stability inequality (SV ), which yields∫
|AV |2η2 d‖V ‖ ≤

∫
|∇V η|2 d‖V ‖. Then note that for all l = N + 1, . . . , 2N ,

supB
e
l\B

e
l−1
|∇V η|2 ≤ N−2e2−2l. Therefore∫

B
e
2N \B

e
N

|∇V η|2 d‖V ‖ ≤
2N∑

l=N+1

N−2e2−2l‖V ‖(Bel) ≤ Λe2N−1.

Substituting this estimate into the stability inequality we get∫
B
e
N

|AV |2 d‖V ‖ ≤ Λe2N−1

Finally, letting N →∞ one obtains that
∫
R3 |AV |2 d‖V ‖ = 0, and therefore

that AV ≡ 0 on reg V . �

Applying this to C0 ∈ IV2(R3) we �nd that it is totally geodesic, that

is AC0 ≡ 0 on reg C0.

Lemma 5.2.3. Suppose n ≥ 2. Let C ∈ IVn(Rn+1) be a stationary

integral cone, with support immersed outside of the origin and |AC| ≡ 0 on

reg C. Then C is supported in a �nite union of n-dimensional planes.

Proof. Let Π ⊂ Rn+1 be any n-dimensional linear plane with reg C ∩
Π 6= ∅. The set Π \ {0} is connected because n ≥ 2. As spt‖C‖ ∩Π \ {0} is
a relatively closed subset of Π \ {0}, we only need to show that it is open to

obtain Π ⊂ spt‖C‖. A point X ∈ spt‖C‖ ∩ Π \ {0} is either regular or an
immersed classical singularity. In both cases the fact that |AC| ≡ 0 on reg C

means that near X the support of C is either a plane or a union of planes. By

assumption X ∈ Π, so one of these planes must be Π itself. This shows that

spt‖C‖∩Π\{0} is open inside Π\{0}, and thus Π ⊂ spt‖C‖. Repeating this,
we �nd a �nite collection of planes Π1, . . . ,ΠD so thatHn(spt‖C‖\∪iΠi) = 0,

and hence spt‖C‖ ⊂ ∪iΠi using the monotonicity formula. �

To apply Lemma 5.2.3 to C0 we �rst need to show that it is immersed

outside the origin. This is essentially a consequence of Corollary 4.4.7, which

lays out the following two possibilities.

(1) Either Θ(‖C‖, X) = 2 for H3-a.e. X ∈ reg C, and then C is smooth

embedded. This makes it impossible that C = C0×Re4 + Π1, and

in the case where C = C0 ×Re4 we �nd that C0 = 2|Π0| for some



5.2. THE BERNSTEIN THEOREM IN FOUR DIMENSIONS 127

two-dimensional plane Π0 ⊂ R3. Thus C = 2|Π0 × Re4|, and we

can conclude by the monotonicity formula.

(2) The second possibility is that the density of C is H3-a.e. equal

one, and thus automatically also Θ(‖C0‖, X) = 1 for H2-a.e. X ∈
reg C0. Recall that the singular set of C0 is strati�ed like S0(C0) ⊂
S1(C0) ⊂ S2(C0). Invoking Corollary 4.4.7 again we �nd that

that spt‖C0‖ is immersed near points of S1(C0) \ S0(C0), and the

remaining singularities necessarily have S0(C0) ∪ B(C0) ⊂ {0}.

In both cases C0 is immersed outside the origin, and by Lemma 5.2.3 we �nd

that C0 is supported in a union of planes. In the remainder we need only

consider the second possibility, where the density of C0 at all regular points

is one, and the cone is equal to a sum of planes, all of which are vertical and

have multiplicity one. (Note Lemma 5.2.3 only gives that C0 is supported

in a union of planes.) In the remainder we write C0 = P0 =
∑D

j=2|Π0
j | to

re�ect this. At this stage of the proof we have reduced the possible forms of

the blowdown cone given in (5.1) to

P0 ×Re4 or |Π1|+ P0 ×Re4.

The two require di�erent approaches, and we treat the latter �rst.

5.2.2. Non-vertical blowdown cones. Write L0 ⊂ R3 for the union

of one-dimensional lines along which the planes in the support of P0 meet.

The singularities of the blowdown cone are sing C = (Π1∩ spt‖P0×Re4‖)∪
L0 × Re4, and those lying in Π1 ∩ spt‖C‖ \ (L0 × Re4) are all immersed.

Let τ > 0 be given. Using Allard's regularity theorem near the points

of Π1 ∩ reg C and Wickramasekera's stable sheeting theorem near those in

Π1 ∩ sing C \ (L0 ×Re4) we �nd the existence of a smooth function uj,1 ∈
C∞(D1 \ [L0]τ ) with Gj,1 = graphuj,1 ⊂ Gj ∩ (Π1)τ , at least provided j ≥
J(τ) is large enough. We obtain a smooth selection uj,1, uj,2 ∈ C∞(D1\[L0]τ )

by picking the remaining value of uj for uj,2 above every point. (It is not

enough to observe that eventually Buj ∩D1 ⊂ [L0]τ , as the set D1 \ [L0]τ is

not simply connected regardless of how small τ > 0 is.) As τ → 0 and j ≥
J(τ)→∞ we �nd that by construction |G1

j | → |Π1| and |G2
j | → P0 ×Re4.

As the G2
j are all single-valued graphs their limit P0 is supported in a single

plane, say P0 = |Π0
2|. (There are various ways of con�rming this in more

detail, all boiling down to the fact that P0 cannot be the limit of a sequence

of area-minimising currents if it is supported in more than one plane. To

give but one example, revisiting the arguments used to prove the improved

area estimates we obtain that there is δ > 0 so that ‖P0‖(D1) ≤ (2− δ)ω2.)

Therefore |Gj | → |Π1|+ |Π2|, as desired.
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5.2.3. Vertical blowdown cones: the adjacency graph. Here the

blowdown sequences converges to a vertical cone, |Gj | → P = P0 ×Re4 =∑D
j=1|Π0

j |×Re4. In the current topology JGjK→
∑D

j=1JΠ
0
jK×Re4 where the

planes are respectively oriented by unit normals n1, . . . , nD. The improved

area estimates give D ≤ 3, see Corollary 3.3.4.

The only problematic value is D = 3. We exclude this by a combinatorial

argument, constructing what we call the adjacency graph by a kind of dual

cellular decomposition. The planes Π1,Π2,Π3 divide R3 into a �nite number

of connected components Ω1, . . . ,ΩN ⊂ R3. These are all polyhedral, with

respective boundaries ∂Ω1, . . . , ∂ΩN ⊂ Π1 ∪ Π2 ∪ Π3. We decompose these

into faces, edges and vertices, and say that two regions Ω 6= Ω′ are adjacent

if they meet along a face. To every component Ω we associate a vertex v,

forming a set V . Connect two distinct vertices v, v′ ∈ V by an edge e if the

corresponding regions Ω,Ω′ are adjacent. If Ω,Ω′ are adjacent then they meet

along a single plane Πi. We orient e so that it agrees with the orientation of

this plane, meaning if ni points away from Ω and into Ω′ then e is directed

from v to v′ and vice-versa. Thus we obtain a set of directed edges denoted E.

We call the �nite, directed graphH = (V,E) the adjacency graph of P. Label

the vertices of the graph by a function F : V → {0, 1, 2} which returns the

number F (v) of sheets of Gj eventually lying over the corresponding region

Ω∩D1. This is well-de�ned by Lemma 4.1.5 for example. Let v, v′ ∈ V be two

adjacent vertices, and suppose that e points from v to v′. By Lemma 4.4.2,

F (v′) = F (v) + 1. As an immediate consequence we �nd that H cannot

contain directed paths of lengths more than two. Indeed if H contained

three edges e1, e2, e3 so that ei points from vi to vi+1 then F (v4) = F (v1)+3,

which is absurd.

There are essentially only two ways in which the planes Π1,Π2,Π3 can be

arranged. Let Π1
3 = {x ∈ R3 | 〈x, n3〉 ≡ 1} ⊂ R3 be the a�ne plane parallel

to Π0
3 at height one. The two planes Π0

1 and Π0
2 intersect this transversely in a

pair of a�ne lines l1, l2. If these lines were parallel, then the planes Π1,Π2,Π3

would meet along a common axis, making P = P0 ×Re4 a classical cone.

As we have already dealt with these, we may assume this is not the case.

Hence we may assume the two lines l1, l2 intersecting, and compute the

adjacency graph. The set Π1
3 \ (l1∪ l2) has four connected components. Each

of these leads to a pair of adjacent vertices in V , which correspond to regions

meeting along a face in Π3. Thus H contains eight vertices, arranged as four

pairs of vertices lying on either side of Π3. Additionally the four vertices

corresponding to the regions contained inside {x ∈ R3 | 〈x, n3〉 > 0} are
arranged in a square in H, with parallel edges oriented in the same direction.

The same holds for the regions lying in the half-space {x ∈ R3 | 〈x, n3〉 < 0}.
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In short, H is a cube with eight vertices and twelve edges, with parallel edges

pointing in the same direction. As this graph contains a directed path of

length three, we have reached a contradiction.



Chapter 6

Morse index, minimal surfaces, and the

Allen�Cahn equation

6.1. Stability and statement of the main theorem

The setting is as follows: (Mn+1, g) is a closed (that is, compact without

boundary) Riemannian manifold of dimension n+ 1 ≥ 3, and U ⊂ M is an

arbitrary open subset, possibly equal to M itself.

6.1.1. Stability and the scalar Jacobi operator. Throughout this

section V will be a stationary integral n-varifold in U ⊂ M . We call V

two-sided if its regular part reg V is two-sided, that is if the normal bundle

NV := N(reg V ) admits a continuous non-vanishing section. When this

fails, V is called one-sided. (Recall that when the ambient manifold M is

orientable, then reg V is two-sided if and only if it is orientable.)

Suppose that V is two-sided, and �x a unit normal vector �eld N ∈
C1(NV ), so that every function φ ∈ C1

c (reg V ) corresponds to a section

φN ∈ C1
c (NV ) and vice-versa. After extending the vector �eld φN to

C1
c (U, TM)�the chosen extension will not matter for our purposes�we can

deform reg V with respect to its �ow (Φt). As V is stationary, the �rst vari-

ation vanishes: δV (φN) = 0. A routine calculation, the details of which

can be found for instance in [Sim84, Ch. 2] shows that the second variation

satis�es

δ2V (φN) =
d2

dt2

∣∣∣∣
t=0

‖(Φt)∗V ‖(U)

=

∫
U
|∇V φ|2 − (|A|2 + RicM (N,N))φ2 d‖V ‖,

where ∇V is the Levi-Civita connection on reg V , A is the second fundamen-

tal form of reg V ⊂M , and RicM is the Ricci curvature tensor on M .

The expression on the right-hand side can be de�ned for one-sided V by

replacing N by an arbitrary measurable unit section ν : reg V → NV , but it

loses its interpretation in terms of the second variation of the area.

Definition 6.1.1 (Scalar second variation). The scalar second variation

of a stationary integral varifold V is the quadratic form BV de�ned for

130
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φ ∈ C1
c (reg V ) by

BV (φ, φ) =

∫
reg V
|∇V φ|2 − (|A|2 + RicM (ν, ν))φ2 d‖V ‖.

Remark 6.1.2. When V is one-sided, the second variation of its area has

to be measured with respect to variations in C1
c (NV )�we refer to [Sim84,

Ch. 2] or [CM11, Sec. 1.8] for further information on this. We called BV

scalar in order to highlight its di�erence with the second variation of area

in this case, but emphasise that for the remainder second variation refers

exclusively to the quadratic form BV from De�nition 6.1.1. (For the same

reasons we also call the Jacobi operator LV scalar in De�nition 6.1.3 below,

but omit this adjective in the remainder of the text.)

One can consider reg V as a stationary integral varifold in its own right

by identifying it with the corresponding varifold with constant multiplicity

1. Its scalar second variation

Breg V (φ, φ) =

∫
reg V
|∇V φ|2 − (|A|2 + RicM (ν, ν))φ2 dHn

di�ers from BV only in that the integral is with respect to the n-dimensional

Hausdor� measure instead of ‖V ‖. This means exactly that while BV is

weighted by the multiplicity of V , the quadratic form Breg V measures the

variation of `unweighted' area; we will brie�y use this in Section 6.2.2.

After integrating by parts on reg V , the form BV corresponds to the

second-order elliptic operator LV = ∆V + |A|2 + RicM (ν, ν), where ∆V is

the Laplacian on reg V .

Definition 6.1.3 (Scalar Jacobi operator). The scalar Jacobi operator

of V , denoted LV , is the second-order elliptic operator

LV φ = ∆V φ+ (|A|2 + RicM (ν, ν))φ for all φ ∈ C2(reg V ),

where ν : reg V → NV is an arbitrary measurable unit normal vector �eld.

The curvature of reg V can blow up as one approaches sing V , in which

case the coe�cients of the operator LV would not be bounded. To avoid this,

we restrict ourselves to a compactly contained open subsetW ⊂⊂ U \sing V ;

moreover we require W ∩ reg V 6= ∅ to avoid vacuous statements.

We use the sign convention for the spectrum de�ned in [GT98, Ch. 8],

where λ ∈ R is an eigenvalue of LV in W if there is ϕ ∈ H1
0 (W ∩ reg V ) such

that LV ϕ+ λϕ = 0. By standard elliptic PDE theory the spectrum

λ1 ≤ λ2 ≤ · · · → +∞

of LV in W is discrete and bounded below. We will sometimes also write

λp(W ) instead of λp in order to highlight the dependence of the spectrum
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on the subset W . The eigenvectors of LV span the space H1
0 (W ∩ reg V ) =

W 1,2
0 (W ∩ reg V ), which we abbreviate throughout by H1

0 .

The index of BV in W is the maximal dimension of a subspace of H1
0 on

which BV is negative de�nite; equivalently

indW BV = card{p ∈ N | λp(W ) < 0}.

Moreover indBV := supW (indW BV ), where the supremum is taken over all

W ⊂⊂ U \ sing V with W ∩ reg V 6= ∅.

Remark 6.1.4. We will see in Section 6.2.2 that the index of BV coin-

cides with the Morse index of reg V with respect to the area functional, at

least when reg V is two-sided.

6.1.2. Statement of main theorem. Let (εi) be a sequence of positive

parameters with εi → 0 and consider an associated sequence of functions (ui)

in C3(U) satisfying the following hypotheses:

(A) Every ui ∈ C3(U) is a critical point of the Allen�Cahn functional

Eεi(u) =

∫
U
εi
|∇u|2

2
+
W (u)

εi
dHn+1,

that is ui satis�es the equation −ε2i∆ui +W ′(ui) = 0 in U .

(B) There exist constants C,E0 <∞ such that

sup
i
‖ui‖L∞(U) ≤ C and sup

i
Eεi(ui) ≤ E0.

(C) There exists an integer k ≥ 0 such that the Morse index of each

ui is at most k, i.e. any subspace of C1
c (U) on which the second

variation

δ2Eεi(ui)(φ, φ) =

∫
U
εi|∇φ|2 +

W ′′(ui)

εi
φ2 dHn+1

is negative de�nite has dimension at most k. We write this indui ≤
k, and if k = 0, say that ui is stable in U .

Remark 6.1.5. More generally indU ′ ui denotes the index of δ2Eεi(ui)

with respect to variations in C1
c (U ′) (or equivalently in H1

0 (U ′)) for all open

subsets U ′ ⊂ U . When indU ′ ui = 0, we say that ui is stable in U'.

We follow Tonegawa [Ton05], using an idea originally developed by Il-

manen [Ilm93] in a parabolic setting to `average the level sets' of ui ∈ C3(U)

and de�ne a varifold V i by

(6.1) V i(φ) =
1

σ

∫
U∩{∇ui 6=0}

εi
|∇ui(x)|2

2
φ(x, Tx{ui = ui(x)}) dHn+1(x)
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for all φ ∈ Cc(Grn(U)). Here Tx{ui = ui(x)} is the tangent space to the

level set {ui = ui(x)} at x ∈ U , and σ =
∫ 1
−1

√
W (s)/2 ds is a constant.

Remark 6.1.6. In [HT00,Gua18] the varifold V i is de�ned by the expres-

sion V i(φ) = 1
σ

∫
U∩{∇ui 6=0}|∇wi(x)|φ(x, Tx{ui = ui(x)}) dHn+1(x), with wi

as in Theorem 6.1.7. The `equipartition of energy' (6.3) from Theorem 6.1.7

shows that the two de�nitions give rise to the same limit varifold V as i→∞.

The weight measures ‖V i‖ of these varifolds satisfy

(6.2) ‖V i‖(A) =
1

σ

∫
A∩{∇ui 6=0}

εi
|∇ui|2

2
dHn+1 ≤ E0

2σ

for all Borel subsets A ⊂ U , where the inequality follows from the energy

bound in Hypothesis (B). The resulting bound V i(Grn(U)) ≤ E0
2σ allows us

to extract a subsequence that converges to a varifold V , with properties laid

out in the following theorem by Hutchinson�Tonegawa [HT00].

Theorem 6.1.7 ( [HT00]). Let (ui) be a sequence in C3(U) satisfying

Hypotheses (A) and (B). Passing to a subsequence V i → V as varifolds, and

(a) V is a stationary integral varifold,

(b) ‖V ‖(U) = lim infi→∞
1

2σEεi(ui),

(c) for all φ ∈ Cc(U):

(6.3) lim
i→∞

∫
U
εi
|∇ui|2

2
φ = lim

i→∞

∫
U

W (ui)

εi
φ = lim

i→∞

∫
U
|∇wi|φ,

where wi := Ψ ◦ ui and Ψ(t) :=
∫ t

0

√
W (s)/2 ds.

Up to a factor of εi the second variation δ2Eεi corresponds to the second-

order elliptic operator Li := ∆ − ε−2
i W ′′(ui). As in the discussion for the

Jacobi operator, Li has discrete spectrum λi1 ≤ λi2 ≤ · · · → +∞, which we

denote by λip(W ) when we want to emphasise its dependence on the subset

W . The following theorem is our main result.

Theorem 6.1.8. Let Mn+1 be a closed Riemannian manifold, and U ⊂
M an open subset. Let (ui) be a sequence in C3(U) satisfying Hypotheses

(A), (B) and (C), and V i → V . Then dimH sing V ≤ n− 7 and

(i) λp(W ) ≥ lim supi→∞ λ
i
p(W ) for all open W ⊂⊂ U \ sing V with

W ∩ reg V 6= ∅ and all p ∈ N,

(ii) indBV ≤ k.

Remark 6.1.9. The spectral lower bound remains true if the assump-

tions are weakened and one assumes that for some k ∈ N there is µ ∈ R

such that

λik(U) ≥ µ for all i ∈ N
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instead of an index bound�this observation is inspired the work of Ambrozio�

Carlotto�Sharp [ACS16], where a similar generalisation is made in the con-

text of minimal surfaces. One obtains the spectral bound via an inductive

argument on k similar to the argument in Section 6.3, noting for the base

case of the induction that bounds as in Corollary 6.2.5 hold if λi1 ≥ µ.

The following corollary is an immediate consequence of Theorem 6.1.8.

Corollary 6.1.10. If reg V is two-sided, then its Morse index with re-

spect to the area functional satis�es indHn reg V ≤ k.

If V is the stationary varifold arising from Guaraco's 1-parameter min-

max construction [Gua18] (resp. from the k-parameter min-max construction

of Gaspar�Guaraco [GG18]) and its regular part is two-sided, then by Corol-

lary 6.1.10 its Morse index is at most 1 (resp. at most k).

6.2. Preliminary results

The preliminary results are divided into three parts. In the �rst, fol-

lowing [Ton05] we introduce `second fundamental forms' Ai for the vari-

folds V i and relate them to the second variation of the Allen�Cahn func-

tional. The last two sections are dedicated to the spectra of the operators

LV = ∆V + |A|2 + RicM (ν, ν) and Li = ∆− ε−2
i W ′′(ui).

6.2.1. Stability and L2�bounds of curvature. To simplify the dis-

cussion �x for the moment a critical point u ∈ C3(U)∩L∞(U) of the Allen�

Cahn functional Eε, with associated varifold V ε de�ned by (6.1).

Let x ∈ U be a regular point of u, that is ∇u(x) 6= 0. In a small enough

neighbourhood of x, the level set {u = u(x)} is embedded inM . Call Σ ⊂M
this embedded portion of the level set, and let AΣ be its second fundamental

form. We use this to de�ne a `second fundamental form' for V ε.

Definition 6.2.1. The functionAε is de�ned at all x ∈ U where∇u(x) 6=
0 by Aε(x) = AΣ(x).

Remark 6.2.2. Second fundamental forms can be generalised to the con-

text of varifolds via the integral identity (B.5)�see Appendix B, or [Hut86]

for the original account of this theory. Strictly speaking it is an abuse of

language to call Aε the `second fundamental form' of V ε, as it satis�es this

identity only up to a small error term (B.3).

By de�nition ∇XY = ∇Σ
XY +AΣ(X,Y ) for all X,Y ∈ C1(TΣ). Making

implicit use of the musical isomorphisms here and throughout the text, write

νε(x) = ∇u(x)
|∇u(x)| , so that

AΣ(X,Y ) = 〈∇XY, νε〉νε = −〈Y,∇Xνε〉νε.
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Lemma 6.2.3. Let x ∈ U be a regular point of u. Then

(6.1) |Aε|(x)2 ≤ 1

|∇u|2(x)
(|∇2u|2(x)− |∇|∇u||2(x)),

where ∇2u(x) is the Hessian of u at x.

Proof. The second fundamental form AΣ is expressed in terms of the

covariant derivative ∇νε by

AΣ = −∇νε|TΣ⊗TΣ ⊗ ν
ε.

We can express ∇νε as

∇νε =
∇2u

|∇u|
− νε ⊗ ∇|∇u|

|∇u|
,

whence after restriction to TΣ⊗ TΣ we get

AΣ = − 1

|∇u|
∇2u

∣∣
TΣ⊗TΣ

⊗ νε.

On the other hand ∇|∇u| = 〈∇2u, νε〉 where ∇u 6= 0, so after decomposing

the Hessian ∇2u in terms of its action on TΣ and NΣ, we obtain

�|∇2u|2 − |∇|∇u||2 = |∇u|2|AΣ|2 + |∇2u
∣∣
TΣ⊗NΣ

|2 ≥ |∇u|2|Aε|2.

When considering the second variation, it somewhat simpli�es notation

to rescale the energy as Eε = ε−1Eε. Its second variation is δ2Eε(u)(φ, φ) =∫
U |∇φ|

2 + W ′′(u)
ε2

φ2, de�ned for all φ ∈ C1
c (U), which by a density argument

can be extended to H1
0 (U). The following identity will be useful throughout;

a proof can be found in either of the indicated sources.

Lemma 6.2.4 ( [FSV13,Ton05]). Let u ∈ C3(U) ∩ L∞(U) be a critical

point of Eε. For all φ ∈ C1
c (U),

(6.2) δ2Eε(u)(|∇u|φ, |∇u|φ) =∫
U
|∇u|2|∇φ|2 −

(
|∇2u|2 − |∇|∇u||2 + RicM (∇u,∇u)

)
φ2 dHn+1.

Combining (6.2) with the ‖V ε‖-a.e. bound (6.1) yields for all φ ∈ C1
c (U)

(6.3)
ε

2σ
δ2Eε(u)(|∇u|φ, |∇u|φ) ≤

∫
|∇φ|2−(|Aε|2+RicM (νε, νε))φ2 d‖V ε‖.

When u is stable, that is when δ2Eε(u) is non-negative, then this identity

yields L2(V ε)�bounds for Aε.

Corollary 6.2.5. There is a constant C = C(M) > 0 such that if

u ∈ C3(U) ∩ L∞(U) is a critical point of Eε and is stable in an open ball
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B(x, r) ⊂ U of radius r ≤ 1 then

(6.4)

∫
B(x, r

2
)
|Aε|2 d‖V ε‖ ≤ C

r2
‖V ε‖(B(x, r)).

Proof. The Ricci curvature term in (6.3) can be bounded by some

constant C(M) ≥ 1 as the manifold M is closed, so
∫
B(x,r)|A

ε|2φ2 d‖V ε‖ ≤
C(M)

∫
φ2 + |∇φ|2 d‖V ε‖ for all φ ∈ C1

c (B(x, r)). Plug in a cut-o� function

η ∈ C1
c (B(x, r)) with η = 1 in B(x, r2) and |∇η| ≤ 3r−1 to obtain the desired

inequality. �

We now turn to a sequence (ui) of critical points satisfying Hypothe-

ses (A)�(C). If the ui are stable in a ball as in Corollary 6.2.5, then the

uniform weight bounds (6.2) imply uniform L2(V i)�bounds of the second

fundamental forms, which we denote Ai from now on. Under these con-

ditions the Ai converge weakly to the second fundamental form A (in the

classical, smooth sense) of reg V .

Proposition 6.2.6. Let W ⊂⊂ U \ sing V be open with W ∩ reg V 6= ∅.
If supi

∫
W |A

i|2 d‖V i‖ < +∞, then passing to a subsequence Ai dV i → AdV

weakly as Radon measures on Grn(W ), and∫
W
|A|2 d‖V ‖ ≤ lim inf

i→∞

∫
W
|Ai|2 d‖V i‖,

where A is the second fundamental form of reg V ⊂M .

The weak subsequential convergence follows immediately from compact-

ness of Radon measures; the main di�culty is to show that the weak limit is

AdV . The proof is a straight-forward adaptation of the argument used for

the stable case in [Ton05]; we present a complete argument in Appendix B

for the reader's convenience.

6.2.2. Spectrum of LV and weighted min-max. Throughout we

restrict ourselves to a compactly contained open subset W ⊂⊂ U \ sing V

to avoid blow-up of the coe�cients of LV near the singular set, and assume

W ∩ reg V 6= ∅ to avoid vacuous statements. As W ∩ reg V is compactly

contained in reg V , it can intersect only �nitely many connected components

C1, . . . , CN of reg V . By the constancy theorem [Sim84, Thm. 41.1] the

multiplicity function Θ of a stationary integral varifold V is constant on

every connected component of reg V ; we write Θ1, . . . ,ΘN for the respective

multiplicities of C1, . . . , CN .
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By classical theory for elliptic PDE [GT98, Ch. 8], the spectrum of LV

has the following min-max characterisation:

(6.5) λp = inf
dimS=p

max
φ∈S\{0}

Breg V (φ, φ)

‖φ‖2
L2

for all p ∈ N,

where the in�mum is taken over linear subspaces S of H1
0 (recall this is our

abbreviated notation for H1
0 (W ∩ reg V )). From this we easily obtain a min-

max characterisation that is `weighted' by the multiplicities Θ1, . . . ,ΘN in

the sense that

(6.6) λp = inf
dimS=p

max
φ∈S\{0}

BV (φ, φ)

‖φ‖2
L2(V )

for all p ∈ N.

To see this, observe the following: as functions φ ∈ H1
0 vanish near the

boundary of every connected component C ⊂ reg V , the function φC on

W ∩ reg V de�ned by

φC =

φ on C

0 on W ∩ reg V \ C

also belongs to H1
0 . Moreover

BV (φC , φC) = ΘCBreg V (φC , φC) and ‖φC‖2L2(V ) = ΘC‖φC‖2L2 ,

where ΘC denotes the multiplicity of C. We then de�ne a linear isomorphism

of H1
0 via normalisation by the respective multiplicities of the components.

This sends φ 7→ φ̄ :=
∑N

j=1 Θ
−1/2
j φCj ; then

BV (φ̄, φ̄)

‖φ̄‖2
L2

=
Breg V (φ, φ)

‖φ‖2
L2(V )

.

Therefore the `unweighted' and `weighted' min-max characterisations (6.5)

and (6.6) are in fact equivalent. In the remainder we mainly use (6.6),

and abbreviate this as λp = infdimS=p maxS\{0} JV , where JV denotes the

`weighted' Rayleigh quotient

JV (φ) =
BV (φ, φ)

‖φ‖2
L2(V )

for all φ ∈ H1
0 \ {0}.

The min-max characterisation implies the following lemma, which high-

lights the dependence of the spectrum λp(W ) on the subset W .

Lemma 6.2.7.

(a) If W1 ⊂ W2 ⊂⊂ U \ sing V , then λp(W1) ≥ λp(W2): the spectrum

is monotone decreasing.

(b) If W1,W2 ⊂⊂ U \ sing V have W1 ∩ W2 = ∅, then indW1 BV +

indW2 BV = indW1∪W2 BV .
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(c) IfW ⊂⊂ U\sing V and y ∈W∩reg V , then λp(W ) = limR→0 λp(W\
B(y,R)).

Remark 6.2.8. The same properties hold for the spectrum and index of

Li, and the proof is easily modi�ed to cover this case.

Proof. (a) This is immediate from the min-max characterisations, or

simply by de�nition of the spectrum. Similarly for (b).

(c) By monotonicity of the spectrum we have

λp(W \B(y,R)) ≥ λp(W \B(y,R′)) ≥ λp(W )

for all R > R′ > 0. The limit as R→ 0 therefore exists and is bounded below

by λp(W ); it remains only to show that limR→0 λp(W \B(y,R)) ≤ λp(W ).

By monotonicity of the spectrum it is equivalent to show that for a

�xed radius R > 0, limm→∞ λp(W \ B(y, 2−mR)) ≤ λp(W ). Let (ρm)m∈N

be a sequence in C1
c (B(y,R) ∩ reg V ) with the following properties (such a

sequence exists provided n ≥ 2, see Remark 6.2.9 below):

(1) ρm|B(y,2−mR)∩reg V ≡ 0 and ρm → 1 Hn-a.e. in W \ {y} ∩ reg V ,

(2) ‖∇V ρm‖L2(W∩reg V ) → 0.

Let a small δ > 0 be given and choose a family (φ1, . . . , φp) in C
1
c (W ∩reg V )

whose span(φ1, . . . , φp) =: S has maxS\0 JV ≤ λp(W ) + δ. Write ρmS for

span(ρmφ1, . . . , ρmφp) ⊂ C1
c (W \ B(y, 2−mR) ∩ reg V )�for m large enough

the functions ρmφi are indeed linearly independent. By the weighted min-

max formula (6.6),

max
ρmS\0

JV ≥ λp(W \B(y, 2−mR)).

Let tm ∈ Sp−1 ⊂ Rp denote the coe�cients of the linear combination

tm · ρmφ := ρm
∑p

j=1 tmjφj ∈ ρmS that realises maxρmS\0 JV . Passing to a

convergent subsequence tm → t ∈ Sp−1 ⊂ Rp we get JV (tm·ρmφ)→ JV (t·φ),

and hence

lim
m→∞

JV (tm · ρmφ) ≤ max
S\0

JV .

On the one hand maxS\0 JV ≤ λp(W ) + δ by our choice of S, on the other

hand limm→∞ λp(W \ B(y, 2−mR)) ≤ limm→∞ JV (tm · ρmφ) by our choice

of tm. The conclusion follows after combining these two observations and

letting δ → 0. �

Remark 6.2.9. A sequence of functions (ρm) with properties (1) and

(2) exists provided n ≥ 2, as we assume throughout. When n ≥ 3 one can

use the standard cuto� functions; for n = 2 a more precise construction is

necessary, described for instance in [EG15, Sec. 4.7].
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6.2.3. Spectrum of Li and conditional proof of Theorem 6.1.8.

The main result in this section is Lemma 6.2.12; essentially it says that

λp(W ) ≥ lim sup
i→∞

λip(W )

holds under the condition that supi
∫
W |A

i|2 d‖V i‖ < +∞. What precedes it

in this section are technical results required for its proof.

Again, by classical elliptic PDE theory the eigenvalues λip(W ) of Li =

∆ − ε−2
i W ′′(ui) on H1

0 (W ) have the following min-max characterisation in

terms of the rescaled Allen�Cahn functional Eεi = ε−1
i Eεi :

λip(W ) = inf
dimS=p

max
φ∈S\{0}

δ2Eεi(ui)(φ, φ)

‖φ‖2
L2

for all p ∈ N,

where the in�mum is over p-dimensional linear subspaces S ⊂ H1
0 (W ). De-

�ne the Rayleigh quotient Ji by

Ji(φ) =
δ2Eεi(ui)(φ, φ)

‖φ‖2
L2

for all φ ∈ H1
0 (W ) \ {0},

so that we can write the min-max characterisation more succinctly as λip =

infdimS=p maxS\{0} Ji.

To compare the spectrum of LV in H1
0 with those of the operators Li

in H1
0 (W ), extend functions in C1

c (W ∩ reg V ) to C1
c (W ) in the standard

way, which we now describe to �x notations. Pick a small enough 0 <

τ < inj(M) so that BτV := expNτV is a tubular neighbourhood of W ∩
reg V , where NτV := {sp ∈ NV | p ∈ W ∩ reg V, |sp| < τ}. We abuse

notation slightly to denote points in BτV by sp, and identify the �bre NpV

with (expp)∗NpV ⊂ Tsp(BτV ). The distance function dV : x ∈ BτV 7→
dist(x, reg V ) is Lipschitz and smooth on BτV \ reg V . By the Gauss lemma

grad dV (sp) = −sp/|sp| for all sp ∈ BτV \ reg V . A function φ ∈ C1(BτV ) is

constant along geodesics normal to reg V if φ(sp) = φ(0p) for all sp ∈ BτV ,
or equivalently if 〈∇φ,∇dV 〉 ≡ 0 in BτV \ reg V .

Lemma 6.2.10. Any φ ∈ C1
c (W ∩ reg V ) can be extended to C1

c (W ) with

〈∇φ,∇dV 〉 ≡ 0 in B τ
2
V \ reg V for some τ = τ(φ) > 0.

Proof. Extend φ ∈ C1
c (W ∩ reg V ) to BτV by setting φ̃(sp) = φ(p), so

that 〈∇dV ,∇φ̃〉 ≡ 0 in BτV \ reg V . Let η ∈ C1[0,∞) be a cuto� function

with 0 ≤ η ≤ 1, η ≡ 1 on [0, 1/2) and spt η ⊂ [0, 1). Then

(η ◦ dV /τ)φ̃ ∈ C1
c (BτV ) and (η ◦ dV /τ)φ̃ = φ̃ on Bτ/2V.

Moreover even though BτV 6⊂ W in general, as sptφ is compactly con-

tained in W ∩ reg V we still have (η ◦ dV /τ)φ̃ ∈ C1
c (W ) provided 0 < τ <

dist(sptφ, ∂W ). �
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The following lemma gives an asymptotic lower bound for the Rayleigh

quotient JV in terms of the Ji.

Lemma 6.2.11. Let BτV be a tubular neighbourhood of W ∩ reg V with

width τ > 0, and let (φi | i ∈ N) be a sequence of functions in C1
c (W ) with

(a) 〈∇φi,∇d〉 ≡ 0 in W ∩Bτ/2V for all i,

(b) φi → φ in C1
c (W ) as i→∞, where φ 6= 0 in W ∩ reg V .

If supi
∫
W |A

i|2 d‖V i‖ < +∞, then JV (φ) ≥ lim supi→∞ Ji(|∇ui|φi).

Proof. Before we start the proof proper, note that for all φ ∈ H1
0 (U),

dividing both sides of (6.3) by εi
2σ

∫
φ2|∇ui|2 dHn+1 =

∫
φ2 d‖V i‖ yields

(6.7) ‖φ‖−2
L2(V i)

∫
|∇φ|2 − (|Ai|2 + RicM (νi, νi))φ

2 d‖V i‖ ≥ Ji(|∇ui|φ),

provided of course that ‖φ‖2
L2(V i)

6= 0.

We treat the terms on the left-hand side separately in the calculations

(1)�(4) below. Once these are completed, we combine (1) with our assump-

tion that ‖φ‖2L2(V ) 6= 0 to obtain that ‖φi‖L2(V i) 6= 0 for large enough i. The

conclusion follows by combining (6.7) with the remaining calculations:

(1)
∫
φ2 d‖V ‖ = limi→∞

∫
φ2
i d‖V i‖

(2)
∫
|∇V φ|2 d‖V ‖ = limi→∞

∫
|∇φi|2 d‖V i‖,

(3)
∫
|A|2φ2 d‖V ‖ ≤ lim infi→∞

∫
|Ai|2φ2

i d‖V i‖,
(4)

∫
RicM (ν, ν)φ2 d‖V ‖ = limi→∞

∫
RicM (νi, νi)φ

2
i d‖V i‖.

(1) By assumption φ2
i → φ2 in Cc(W ), whence by Corollary A.3 we

get
∫
φ2 d‖V ‖ = limi→∞

∫
φ2
i d‖V i‖. The same argument proves (2), after

noticing that 〈∇φi,∇dV 〉 ≡ 0 implies |∇φ|2 = |∇V φ|2 on W ∩ reg V .

(3) The sequence (Aiφi d‖V i‖) converges weakly to Aφ d‖V ‖, as we can
show by testing against an arbitrary ϕ ∈ Cc(U):∫

Aiφiϕd‖V i‖ −
∫
Aφϕ d‖V ‖ =∫

Ai(φi − φ)ϕd‖V i‖+

∫
Aiφϕ d‖V i‖ −

∫
Aφϕ d‖V ‖.

The �rst integral is bounded by∣∣∣ ∫ Ai(φi − φ)ϕd‖V i‖
∣∣∣ ≤ ‖φi − φ‖L∞‖ϕ‖L2(V i)‖Ai‖L2(V i) → 0

because φi → φ in Cc(W ) as i→∞. The remaining terms tend to 0 by the

weak convergence of Ai d‖V i‖ → Ad‖V ‖ tested against φϕ ∈ Cc(W ). Then

inequality (A.1) gives
∫
|A|2φ2 d‖V ‖ ≤ lim infi→∞

∫
|Ai|2φ2

i d‖V i‖.
(4) For each S ∈ Grn(TpM) pick a unit vector νS in TpM orthogonal to

S, and de�ne a smooth function RM on Grn(U) by RM : S 7→ RicM (νS , νS).
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Then φ2
iRM → φ2RM in Cc(Grn(U)) as i→∞, and by Corollary A.3,∫

φ2
i RicM (νi, νi) d‖V i‖

=

∫
φ2
iRM dV i →

∫
φ2RM dV =

∫
φ2 RicM (ν, ν) d‖V ‖. �

We conclude the section with a proof of Theorem 6.1.8(i) in the case

where there is a uniform L2(V i)�bound on the second fundamental forms

(Ai).

Lemma 6.2.12. Let W ⊂⊂ U \ sing V be open with W ∩ reg V 6= ∅. If

supi
∫
W |A

i|2 d‖V i‖ < +∞, then λp(W ) ≥ lim supi→∞ λ
i
p(W ) for all p.

Proof. We may assume that every connected component of W inter-

sects spt‖V ‖ (or reg V , equivalently as W ∩ sing V = ∅) without restricting
generality: if C is a connected component of W with C ∩ reg V = ∅, then
λp(W \ C) = λp(W ), and by monotonicity λip(W \ C) ≥ λip(W ) for all i.

Given δ > 0 there is a p-dimensional linear subspace S = span(φ1, . . . , φp)

of C1
c (W ∩ reg V ) with

(6.8) λp(W ) + δ ≥ max
S\{0}

JV .

Extend the functions φi to C
1
c (W ) as in Lemma 6.2.10; for large enough i the

family (|∇ui|φ1, . . . , |∇ui|φp) is still linearly independent. Indeed, otherwise

we could extract a subsequence such that (|∇ui′ |φ1, . . . , |∇ui′ |φp) has a linear
dependence, with coe�cients ai′ 6= 0 ∈ Rp say. Then notice that

|∇ui′ |ai′ · φ = 0⇔ ‖ai′ · φ‖L2(V i′ ) = 0,

where we abbreviated ai′ · φ :=
∑p

j=1 ai′j |∇ui′ |φj . We may normalise the

coe�cients ai′ so as to guarantee |ai′ | = 1 and then, possibly after extracting

a second subsequence, assume that ai′ → a ∈ Sp−1 as i′ →∞. The resulting

strong convergence ai′ ·φ→ a ·φ in Cc(W ) combined with ‖V i‖ → ‖V ‖ yield
‖ai′ · φ‖L2(V i′ ) → ‖a · φ‖L2(V ); this contradicts ‖a · φ‖L2(V ) > 0.

From now on take i large enough so that (|∇ui|φ1, · · · , |∇ui|φp) is lin-

early independent. For such large i, we may let ti ∈ Sp−1 ⊂ Rp be the (nor-

malised) coe�cients of a linear combination ti · |∇ui|φ =
∑p

j=1 tij |∇ui|φj
that maximises the Rayleigh quotient Ji:

Ji(ti · |∇ui|φ) = max
|∇ui|S\{0}

Ji ≥ λip(W ).

Extract a convergent subsequence ti′ → t ∈ Sp−1, so that ti′ · φ → t · φ in

C1
c (W ) as i′ →∞. Lemma 6.2.11 gives JV (t·φ) ≥ lim supi→∞max|∇ui|S\{0} Ji,
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which in turn is greater than lim supi→∞ λ
i
p(W ). Using (6.8),

λp(W ) + δ ≥ JV (t · φ) ≥ lim sup
i→∞

λip(W ),

and we conclude by letting δ → 0. �

Lemma 6.2.12 has the following immediate corollary.

Corollary 6.2.13. Under the hypotheses of Lemma 6.2.12,

indW BV ≤ lim inf
i→∞

(indW ui).

6.3. Proof of the main theorem (Theorem A)

We brie�y recall the context of the proof: Mn+1 is a closed Riemannian

manifold and U ⊂M is an arbitrary open subset. The sequence of functions

(ui) in C
3(U) satis�es Hypotheses (A), (B) and (C)�the last hypothesis says

that indui ≤ k for all i. To every ui we associate the n�varifold V i from

(6.1). By Theorem 6.1.7, we may pass to a subsequence of (V i) converging

weakly to a stationary integral varifold V .

6.3.1. Spectrum and index of V : proof of (i) and (ii). The main

idea, inspired by an argument of Bellettini�Wickramasekera [BW18], is to �x

a compactly contained open subset W ⊂⊂ U \ sing V and study the stability

of ui in open balls covering W ∩ reg V 6= ∅. We then shrink the radii of the

covering balls to 0, and prove the spectral lower bound of Theorem 6.1.8(i)

by induction on k. The upper bound on indBV of Theorem 6.1.8(ii) is then

an immediate consequence.

In the base of induction the ui are stable in U . Let η ∈ C1
c (U) be a cuto�

function constant equal to 1 on W . The stability inequality (6.3) gives that∫
W
|Ai|2 d‖V i‖ ≤ C(M) dist(W,∂U)−2‖V i‖(U) for all i.

Combining this with (6.2) we get supi
∫
W |A

i|2 d‖V i‖ < +∞, and thus

λp(W ) ≥ lim supi→∞ λ
i
p(W ) by Lemma 6.2.12.

For the induction step, let k ≥ 1 and assume that Theorem 6.1.8(i)

holds with k − 1 in place of k. Consider an arbitrary W ⊂⊂ U \ sing V

that intersects reg V . Fix a radius 0 < r < dist(W, sing V ), and pick points

x1, . . . , xN ∈W ∩ reg V such that W ∩ reg V ⊂ ∪Nj=1B(xj ,
r
2). We de�ne the

following Stability Condition for the cover {B(xj ,
r
2)}1≤j≤N :

(SC) For large i, each ui is stable in every ball B(x1, r), . . . , B(xN , r).

Claim 7. If for the cover {B(xj ,
r
2)}1≤j≤N :

(a) (SC) holds, then λp(W ) ≥ lim supi→∞ λ
i
p(W );
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(b) (SC) fails, then λp(W \Br) ≥ lim supi→∞ λ
i
p(W \Br) for some ball

Br ∈ {B(xj , r)}.

Proof. (a) LetWr = W ∩∪Nj=1B(xj ,
r
2), so thatWr∩reg V = W ∩reg V

and hence λp(Wr) = λp(W ). Moreover Wr ⊂ W , so λip(Wr) ≥ λip(W ) for

all i by monotonicity of the spectrum. Therefore it is enough to show that

λp(Wr) ≥ lim supi→∞ λ
i
p(Wr).

Because (SC) holds, summing (6.4) over all balls we get∫
Wr

|Ai|2 d‖V i‖ ≤ NC

r2
‖V i‖(Wr) ≤

NCE0

2r2σ
for all i,

so λp(Wr) ≥ lim supi→∞ λ
i
p(Wr) by Lemma 6.2.12.

(b) If (SC) fails, then some subsequence (ui′) must be unstable in one

of the balls Br ∈ {B(xj , r)}, in other words indBr ui′ ≥ 1 for all i′. On the

other hand

indBr ui′ + indW\Br ui′ ≤ indW ui′

because Br and W \ Br are disjoint open sets. As indW ui′ ≤ k, we get

indW\Br ui′ ≤ k − 1 for all i′, and we conclude after applying the induction

hypothesis to (ui′) in W \Br. �

Remark 6.3.1. This argument shows that when (SC) fails there is a ball

Br ∈ {B(xj , r)} with λp(W \Br) ≥ lim supi→∞ λ
i
p+1(W ) for p ≥ k, and thus

also indW\Br BV ≤ k − 1, but the induction step only requires the weaker

conclusion from Claim 7.

Now consider a decreasing sequence rm → 0 with 0 < rm < dist(W, sing V )

and reason as above with r = rm. For each m, pick points xm1 , . . . , x
m
Nm
∈

W ∩ reg V such that

W ∩ reg V ⊂ ∪Nmj=1B
(
xmj ,

rm
2

)
.

If (SC) holds for a cover {B(xmj ,
rm
2 )}, then λp(W ) ≥ lim supi→∞ λ

i
p(W ) by

Claim 7, and the induction step is completed.

Otherwise (SC) fails for all constructed covers, and by Claim 7 there is

a sequence (ym) in W ∩ reg V with

λp(W \B(ym, rm)) ≥ lim sup
i→∞

λip(W \B(ym, rm)),

and thus by monotonicity of the spectrum

(6.1) λp(W \B(ym, rm)) ≥ lim sup
i→∞

λip(W ).

Passing to a subsequence if necessary, we may assume that (ym) converges to

a point y ∈ W ∩ reg V . If we �x a radius R > 0, then B(ym, rm) ⊂ B(y,R)
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for large enough m, so by monotonicity and (6.1),

λp(W \B(y,R)) ≥ lim sup
m→∞

λp(W \B(ym, rm)) ≥ lim sup
i→∞

λip(W ).

The conclusion follows after combining this with λp(W ) = limR→0 λp(W \
B(y,R)) from Lemma 6.2.7.

Together with the base of induction, we have proved Theorem 6.1.8(i)

for all sequences (ui) with supi indui ≤ k for some k ∈ N. The index bound

indW BV ≤ k follows immediately: the spectral lower bound implies that LV

must have fewer negative eigenvalues than the Li as i→∞. Therefore

indW BV = card{p ∈ N | λp(W ) < 0} ≤ k.

As the subset W was arbitrary we get indBV ≤ k; this proves Theo-

rem 6.1.8(ii).

6.3.2. Regularity of V : proof of dimH sing V ≤ n−7. The approach

is the same as in the proof of Theorem 6.1.8(i)�(ii) with one di�erence: we

again proceed by induction on k, but we now cover the entire support spt‖V ‖
(including the singular set), instead of constructing covers a positive distance

away from sing V .

The base of induction, where the ui are stable in U , was proved in [TW12].

For the induction step, suppose that dimH(U ′∩sing V ) ≤ n−7 holds with

k − 1 in place of k, and for arbitrary open subsets U ′ ⊂ U . Fix r > 0, and

choose points x1, . . . , xN ∈ U∩spt‖V ‖ such that U∩spt‖V ‖ ⊂ ∪Nj=1B(xj , r).

The Stability Condition for the cover {B(xj , r)}1≤j≤N is de�ned in the same

way as above, except the radii need not be doubled:

(SC) For large i, each ui is stable in every ball B(x1, r), . . . , B(xN , r).

Claim 8. If for the cover {B(xj , r)}1≤j≤N :

(a) (SC) holds, then dimH sing V ≤ n− 7;

(b) (SC) fails, then dimH sing V \ Br ≤ n − 7 for some ball Br ∈
{B(xj , r)}.

Proof. (a) The results from [TW12] give dimHB(xj , r)∩sing V ≤ n−7

for every j = 1, . . . , N . As the balls {B(xj , r)} cover U ∩ spt‖V ‖, the same

holds for sing V .

(b) When (SC) fails, there must be a subsequence (ui′) that is unstable

in one of the balls Br of the cover, so that in its complement

indU\Br ui′ ≤ k − 1 for all i′.

The conclusion follows from the induction hypothesis applied to (ui′) in

U \Br. �
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Now consider a decreasing sequence rm → 0. For every m, choose points

xm1 , . . . , x
m
Nm
∈ U ∩ spt‖V ‖ such that U ∩ spt‖V ‖ ⊂ ∪Nmj=1B(xmj , rm). Then

either (SC) holds for the cover {B(xmj , rm)} constructed for somem, in which

case we can conclude from Claim 8, or else there is sequence of points (ym)

in U ∩ spt‖V ‖ for which

dimH sing V \B(ym, rm) ≤ n− 7.

Possibly after extracting a subsequence, the sequence (ym) converges to

a point y ∈ U ∩ spt‖V ‖. As U \ {y} ⊂ ∪m≥0U \ B(ym, rm), we get

dimH (sing V \ {y}) ≤ n− 7.

If n ≥ 7, then dimH sing V ≤ n− 7 holds whether or not y ∈ sing V , as

points are zero-dimensional. If however 2 ≤ n ≤ 6 then we need sing V = ∅,
which amounts to the following claim.

Claim 9. If 2 ≤ n ≤ 6 then y /∈ sing V .

Proof. Choose B(y,R) ⊂ U , and consider balls {B(y,Rm)}m∈N with

shrinking radii Rm := 2−mR. If for some m there is a subsequence (ui′) with

indB(y,Rm) ui′ ≤ k − 1 for all i′,

then we can conclude from the induction hypothesis. Otherwise for all m

indB(y,Rm) ui = k for i large enough,

and the ui are eventually stable in the annulus B(y,R) \ B(y,Rm). By

Theorem 6.1.8(ii)

indB(y,R)\B(y,Rm)BV = 0 for all Rm → 0,

and thus indB(y,R)\{y}BV = 0.

By contradiction, suppose that y ∈ sing V . Then indB(y,r)BV = 0

holds in the whole ball B(y, r) away from sing V , and the regularity results

of [Wic14a] give dimHB(y,R) ∩ sing V ≤ n− 7, so that y /∈ sing V . �

Claim 9 concludes the induction step; together with the base of induc-

tion, we have proved that dimH sing V ≤ n − 7. This �nishes the proof of

Theorem 6.1.8.



Appendix A

Measure-function convergence

In this appendix we give two elementary measure-theoretical lemmas

that are used in the proofs of Lemma 6.2.11 and in Appendix B. Essentially

they give a weak compactness result for sequences of the form (fi dµi | i ∈
N), with µi Radon measures and fi ∈ L2(µi). The weak convergence in

question is sometimes called measure-function convergence in the literature.

It appears in the work of Hutchinson [Hut86] on so-called curvature varifolds;

there one also �nds a proof of Lemma A.1 under more general hypotheses

on the sequence (fi).

Lemma A.1 ( [Hut86, Ton05]). Let X be a locally compact Hausdor�

space, let (µi | i ∈ N) be a sequence of Radon measures on X, and (fi | i ∈
N) be a sequence of real-valued Borel-measurable functions. Suppose that

sup
i
µi(X) < +∞,

sup
i

∫
X
f2
i dµi < +∞.

Then there is a Radon measure µ and f ∈ L2(µ) such that for some subse-

quence µi′ → µ and fi′ dµi′ → f dµ weakly as Radon measures, i.e.∫
X
fi′φ dµi′ →

∫
X
fφdµ for all φ ∈ Cc(X).

Moreover, the weak limit f dµ satis�es

(A.1)

∫
X
f2 dµ ≤ lim inf

i→∞

∫
X
f2
i dµi.

Remark A.2. In our applications X is either an open subset of U ⊂M
or its Grassmannian Grn(U), and µi is either ‖V i‖ or V i.

Proof. The signed Radon measures νi := fi dµi have bounded total

variation, so that the sequences (µi) and (νi) have convergent subsequences,

with limits the Radon measures µ and ν respectively. We extract these

subsequences without relabelling their indices.

Consider an arbitrary φ ∈ Cc(X). By the weak convergence νi → ν,∫
φ dν = lim

i→∞

∫
φfi dµi ≤ ‖φ‖L2(µ) lim inf

i→∞
‖fi‖L2(µi),

146
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where we used the weak convergence µi → µ to get limi→∞‖φ‖L2(µi) =

‖φ‖L2(µ). As Cc(X) is dense in L2(µ), the measure ν de�nes a bounded

linear functional on L2(µ), and by duality there is f ∈ L2(µ) with ‖f‖L2(µ) ≤
lim infi→∞‖fi‖L2(µi) such that ν = f dµ. �

If the densities fi are in Cc(X) and converge strongly, then their limit

coincides with the density of the weak limit of (fi dµi).

Corollary A.3. Additionally to the hypotheses of Lemma A.1, assume

that fi ∈ Cc(X), and that ‖fi − f‖L∞ → 0 for some f ∈ Cc(X). Then,

additionally to the conclusions of Lemma A.1,

(A.2)

∫
X
f2 dµ = lim

i→∞

∫
X
f2
i dµi.

Proof. We �rst show that fi dµi → f dµ. Let ϕ ∈ Cc(X) be arbitrary,

then ∫
fiϕdµi −

∫
fϕdµ =

∫
(fi − f)ϕdµi +

∫
fϕdµi −

∫
fϕdµ.

The �rst term |
∫

(fi − f)ϕdµi| ≤ ‖fi − f‖L∞‖ϕ‖L1(µi) → 0 as i → ∞. The

remaining terms
∫
fϕdµi−

∫
fϕdµ→ 0 as i→∞ by the weak convergence

µi → µ. We reason similarly to show (A.2):∣∣∣∣∫
X
f2 dµ−

∫
X
f2
i dµi

∣∣∣∣ ≤ ∣∣∣∣∫
X
f2 dµ−

∫
X
f2 dµi

∣∣∣∣+ µi(X)‖f2
i − f2‖L∞ .

The �rst term goes to 0 by the weak convergence µi → µ, and so does the

second as supi µi(X) < +∞ and ‖f2
i − f2‖L∞ → 0. �



Appendix B

Generalised second fundamental forms

Our main aim in this appendix is to give a proof of Proposition 6.2.6. We

follow the approach of [Ton05], where the case of stable ui is treated using

notions from [Hut86]. Our account is self-contained but for the fact that we

refer to these two works for some technical, but routine calculations.

Throughout this section, we assume that U ⊂M is isometrically embed-

ded in some Rq, andW ⊂⊂ U \sing V is an open subset withW ∩reg V 6= ∅.
The �bre of the Grassmannian Grn(U) at x ∈ U is identi�ed with the sub-

spaces

{S ⊂ Rq | S ⊂ TxM, dimS = n} ⊂ U ×Gr(n, q),

where Gr(n, q) = {S ⊂ Rq | dimS = n} is the set of n-dimensional linear

subspaces of Rq. We furthermore identify an element S ∈ U ×G(n, q) with

the corresponding orthogonal projection Rq → S, so that Grn(U) ⊂ U×Rq2
.

Throughout, P (x) ∈ Rq2
represents the orthogonal projection Rq → TxM

and (e1, . . . , eq) is the standard basis of Rq; ∂i and ∂
∗
ij denote di�erentiation

with respect to ei and ei ⊗ ej ∈ Rq2
respectively.

Consider �rst a smooth embedded hypersurface Σ ⊂ U , which we im-

plicitely identify with the varifold VΣ := VΣ,1 with constant multiplicity. We

consider test functions φ ∈ C1(U ×Rq2
) with compact spatial support, that

is with compact support in the �rst variable. We associate to it a function

ϕ ∈ C1
c (Σ) de�ned by ϕ(x) = φ(x, SΣ(x)), where SΣ(x) ∈ Rq2

is the or-

thogonal projection Rq → TxΣ. De�ne a vector �eld X ∈ C1
c (Σ, TM) by

X = ϕP (ej), where ej is one of the standard basis vectors. Its component

tangential to Σ is ϕSΣ(ej), and by the standard divergence theorem we get∫
Σ divΣ(ϕSΣej) = 0. A routine calculation shows that in coordinates

(B.1) divΣ(ϕSΣej) = SΣ
rj∂rφ+ φSΣ

ri∂iS
Σ
jr + SΣ

ji∂iS
Σ
kr∂
∗
krφ,

with summation over repeated indices [Hut86]. Abbreviate BΣ
jkr = SΣ

ji∂iS
Σ
kr

and substitute this into the divergence formula:

0 =

∫
Σ
SΣ
rj∂rφ+BΣ

rjrφ+BΣ
jkr∂

∗
krφ dHn

=

∫
Grn(U)

Srj∂rφ+BΣ
rjrφ+BΣ

jkr∂
∗
krφ dVΣ(x, S).

148
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This identity is the basis of the following de�nition by Hutchinson [Hut86].

Definition B.1 (Generalised curvature, [Hut86]). An n-dimensional in-

tegral varifold V in U is said to have generalised curvature if there exists a

function B = (Bijk) with values in Rq3
de�ned V -a.e. on Grn(U) with

(a) B ∈ L1
loc(V ),

(b)
∫
Grn(U) Srj∂rφ+Brjrφ+Bjkr∂

∗
krφ dV (x, S) = 0 for all φ ∈ C1(U ×

Rq2
) with compact spatial support.

The following lemma shows that the function B is well-de�ned V -a.e. on

Grn(U); it is taken from [Hut86].

Lemma B.2 ( [Hut86]). Any two B and B̃ satisfying (a) and (b) coincide

V -a.e. on Grn(U).

Proof. Let φ(x, S) = α(x)β(S), where α ∈ C1
c (U) and β ∈ C1(Rq2

).

Letting β ≡ 1 we see that
∫
Brjrα dV =

∫
B̃rjrα dV , and thus Brjr = B̃rjr

V -a.e. on Grn(U). If we now let β(S) = 1 if S = Skr and 0 otherwise then∫
Bjkrα dV =

∫
B̃jkrα dV , whence the conclusion follows. �

In particular, applied to the smooth hypersurfaces, the following is an

immediate consequence.

Corollary B.3. If Σ is a smoothly embedded hypersurface, then Bijk(x, S) =

BΣ
ijk(x, S) for VΣ-a.e. (x, S) ∈ Grn(U), where BΣ

ijk(x, S) = Sil∂lS
Σ
jk.

The following elementary calculation relates BΣ to the second funda-

mental form AΣ.

Lemma B.4. Let AΣ be the second fundamental form of a smoothly em-

bedded hypersurface Σ ⊂ U . Then

〈AΣ(SΣei, S
Σej), P ek〉 = PkrS

Σ
jsS

Σ
il ∂lS

Σ
rs = PkrS

Σ
jsB

Σ
irs(x, S

Σ).

Proof. Write A instead of AΣ in this proof to simplify notation. The

covariant derivative on M is the component of D = ∇Rq
tangent to M , so

A = (DTM )⊥Σ = (D⊥Σ)TM . As eTMk = Pkrer, we get

Akij := 〈A(SΣei, S
Σej), e

TM
k 〉

= 〈(DSΣeiS
Σej)

⊥Σ , P ek〉 = Pkr〈DSΣeiS
Σej , e

⊥Σ
r 〉.

Similarly e⊥Σ
r = (δrs − SΣ

rs)es, so

Akij = Pkr(δrs − SΣ
rs)〈DSΣeiS

Σej , es〉 = Pkr(δrs − SΣ
rs)DSΣeiS

Σ
js.

As SΣ
rsS

Σ
js = SΣ

rj , we �nally get Akij = PkrS
Σ
jsDSΣeiS

Σ
rs = PkrS

Σ
jsS

Σ
il ∂lS

Σ
rs, as

required. �
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This expression can then be used to generalise second fundamental forms

from the smooth to the varifold setting.

Definition B.5 (Generalised second fundamental forms, [Hut86]). Let

V be an integral n-varifold with generalised curvature. Then its generalised

second fundamental form is the function A = (Akij) with values in Rq3
and

de�ned at V -a.e. (x, S) ∈ Grn(U) by

Akij(x, S) = PkrSjsBirs.

For a smoothly embedded Σ ⊂ U , we see after combining Corollary B.3

with Lemma B.4 that the generalised second fundamental form A of VΣ is

equal to the classical second fundamental form AΣ in the sense that

Akij(x, S) = 〈AΣ(Sei, Sej), P ek〉 for VΣ-a.e. (x, S) ∈ Grn(U).

We now want to relate these notions to the varifolds V i de�ned in the main

body. To simplify notation, we �x a critical point u = ui with associated

varifold V ε = V i. We de�ne a `second fundamental form' for V ε using the

coordinate expressions from Lemma B.4.

Definition B.6. De�ne the functions Aε = (Aε,kij ) and Bε = (Bε
ijk) with

values in Rq3
at all (x, S) ∈ Grn(U) where ∇u(x) 6= 0 by

Bε
ijk(x, S) = Sil∂lS

ε
jk,

Ak,εij (x, S) = PkrSjsSil∂lS
ε
rs = PkrSjsB

ε
irs,

where Sε = Sε(x) ∈ Rq2
represents the projection Rq → Tx{u = u(x)}, and

P = P (x) ∈ Rq2
the projection Rq → TxM .

Technically speaking the function Aε is not the second fundamental form

of V ε, as Bε satis�es the integral identity of De�nition B.1 only up to a

small error term. This can be seen as follows: take an arbitrary vector

�eld X ∈ C1
c (U, TM), multiply the Allen�Cahn equation by 〈X,∇u〉 and

integrate by parts twice to obtain∫
U
|∇u|2 divX − 〈∇∇uX,∇u〉 =

∫
U

(
|∇u|2

2
− W (u)

ε2

)
divX,

which using integration with respect to V ε is equivalent to

(B.2)

∫
Grn(U)

divS X dV ε(x, S) =
1

2σ

∫
U

(
ε
|∇u|2

2
− W (u)

ε

)
divX,

where divS X =
∑q

i=1〈DSeiX,Sei〉. As before let X = φ(x, Sε)Sε(ej), where

φ ∈ C1(U × Rq2
) has compact spatial support. Substitute this into (B.2)
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and perform routine coordinate computations as before in (B.1) to get

(B.3)

∫
Grn(U)

Srj∂rφ+Bε
rjrφ+Bε

jkr∂
∗
krφ dV ε(x, S)

=
1

2σ

∫
U

(
ε
|∇u|2

2
− W (u)

ε

)
divX.

The integral on the right-hand side goes to 0 as ε → 0�this is (6.3) in

Theorem 6.1.7. This justi�es the abuse of language that is calling Aε the

`second fundamental form' of V ε.

We now compare Aε with the second fundamental form AΣ of the level

sets of u near regular points: take a point x ∈ U with ∇u(x) 6= 0. Then

the level set {u = u(x)} is embedded in a neighbourhood B around x;

write Σ = {u = u(x)} ∩ B. The calculations from Lemma B.4 show that

Aε(x, Sε) = AΣ(x), so the second fundamental forms from De�nitions 6.2.1

and B.6 agree V ε-a.e. Combining this observation with (6.1), we get

|Aε|2(x, Sε) = |AΣ|2(x) ≤ 1

|∇u|2
(|∇2u|2 − |∇|∇u||2).

Therefore, when δ2Eε(u)(|∇u|φ, |∇u|φ) ≥ 0 for some φ ∈ C1
c (U), then∫

Grn(U)|A
ε|2φ2 dV ε ≤

∫
U |∇φ|

2 − Ric(νε, νε)φ2 d‖V ε‖ as in (6.3), and Corol-

lary 6.2.5 also remains valid.

The results in this appendix are valid for every term in the sequence (ui)

satisfying Hypotheses (A)�(C). Let (V i) be the corresponding varifolds as in

(6.1), and let (Aεi) be their second fundamental forms as in De�nition B.6.

We restate Proposition 6.2.6 in the following equivalent form, with Aεi in

place of Ai.

Proposition B.7. If supi
∫
W |A

εi |2 d‖V i‖ < +∞, then some subse-

quence Aεi′ dV εi′ → AdV weakly as Radon measures on Grn(W ), and∫
W
|A|2 d‖V ‖ ≤ lim inf

i→∞

∫
W
|Aεi |2 d‖V i‖,

where A is the classical second fundamental form of reg V ⊂M .

Proof. Routine calculations as above in the proof of Lemma B.4 show

that Bεi is related to Aεi as follows for all i:

(B.4) Bεi
jkl(x, S

εi) = Al,εijk +Ak,εijl + SεiksS
εi
jr∂rPsl + SεilsS

εi
jr∂rPks.

If we square (B.4) and sum over j, k, l = 1, . . . , q, we get

|Bεi |2 ≤ 8(|Aεi |2 + |DP |2) V i-a.e. in Grn(U)

The term |DP |2 :=
∑q

j,k,l(∂jPkl)
2 can be bounded by some constant C(M),

so that supi
∫
W |B

εi |2 d‖V i‖ < +∞ as well.
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By Lemma A.1 we can pass to convergent subsequences Aεi dV i → AdV

and Bεi dV i → B dV with limits related by Aljk = PlrSksBjrs V -a.e. in

Grn(W ). The limit AdV also satis�es∫
Grn(W )

|A|2 dV ≤ lim inf
i→∞

∫
Grn(W )

|Aεi |2 dV i,

and the analogous inequality holds for B dV . Moreover the error term on

the right-hand side of (B.3) tends to 0 as i → ∞, so the weak limit B dV

satis�es

(B.5)

∫
Grn(W )

Srj∂rφ+Brjrφ+Bjkr∂
∗
krφ dV (x, S) = 0

for all φ ∈ C1(W ×Rq2
) with compact spatial support. By Corollary B.3 we

have B = Breg V and thus also A = Areg V V -a.e. in Grn(W ). This concludes

the proof. �
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