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Abstract—Recent research on reinforcement learning (RL) has
suggested that trained agents are vulnerable to maliciously-
crafted adversarial samples. In this work, we show how such
samples can be generalised from White-box and Grey-box attacks
to a strong Black-box case, where the attacker has no knowledge
of the agents, their training parameters or their training methods.
We use sequence-to-sequence models to predict a single action or
a sequence of future actions that a trained agent will make. First,
we show that our approximation model, based on time-series
information from the agent, consistently predicts RL agents’
future actions with high accuracy in a Black-box setup on a
wide range of games and RL algorithms. Second, we find that
although adversarial samples are transferable from the sequence-
to-sequence model to our RL agents, they often outperform
Random Gaussian Noise only marginally. Third, we propose a
novel use for adversarial samples in Black-box attacks of RL
agents: they can be used to trigger a trained agent to misbehave
after a specific time delay. This potentially enables an attacker
to use devices controlled by RL agents as time bombs.

Index Terms—Reinforcement Learning, Adversarial Machine
Learning

I. INTRODUCTION

Deep neural networks (DNNs) have good performance on
a wide spectrum of tasks, including image classification [1],
object detection [2], emotion recognition [3] and language pro-
cessing [4]. Recent advances in reinforcement learning (RL)
demonstrate that DNNs can learn policies that solve complex
problems by mapping raw environmental inputs directly to
an action space. Trained deep RL agents show human-level
or even superhuman performance in playing Go [5] and Atari
games [6]. RL agents are now starting to be exploited in safety-
critical fields, such as robotics [7], as well as in recommender
systems [8] and trading [9].

Researchers have also found that DNNs are vulnerable to
crafted adversarial perturbations. DNN-based image classifiers
can produce incorrect results when inputs are subjected to
small perturbations that are not perceptible by humans [10].
Attackers can thus create adversarial examples that cause
DNN-based systems to misbehave, including systems for face
recognition [11] and autonomous driving [12]. One feature of
adversarial samples is their transferability: adversarial inputs
that affect one model often affect others too [13, 14]. Therefore
adversarial samples can potentially attack machine-learning
(ML) systems at scale.

Equal Contribution

However, attacking RL agents is different from fooling
image classifiers. First, there is no notion of supervised labels
in an RL agent, as its performance is assessed purely on
the rewards it earns in an episode of game playing. Second,
an action that a well-trained RL agent performs depends on
a sequence of observations containing historical data that
an attacker cannot modify. Finally, a single misprediction
does not usually cause serious disruption to the agent. These
properties make it a challenging problem to create realistic
Black-box adversarial attacks on RL. We will return to the
discussion of these properties in Section II.

Researchers have recently looked for effective attacks on RL
agents [15, 16] in White-box or Grey-box setups by assuming
the attackers have access to some of the agent’s internal states
or training methods. These attacks aim to force an agent to take
unwanted actions so that its reward is decreased. In a typical
Grey-box setup, the attackers can access partial information
of the target agent or its training environment, or even retrain
another agent to approximate the target agent [15, 16].

In this paper, we go much further. We make a strong Black-
box assumption that attackers have no knowledge of either the
agent’s parameters or its training methods. We cannot therefore
just retrain another RL agent to do the the same task. Rather,
we study ways of approximating RL agents as in imitation
learning. We formulate this approximation as a sequence-to-
sequence (seq2seq) learning problem as this is widely studied
in language-translation tasks [17, 18]. RL agents learn over
time using a sequence of observations, and produce actions
that can also be treated as a temporal sequence. Given a
sequence of observations of the target agent, we build a
seq2seq model to predict its future actions from watching
how the target performs, with no knowledge of its internals
and training methods. We show empirically that such a model
can predict future sequences of actions consistently with over
80% accuracy on three different games with three different
RL training algorithms. The action sequence prediction we
generate is called the approximated temporal information.

We then demonstrate how to use the seq2seq model to
produce adversarial samples. In prior work under White-
box or Grey-box assumptions, researchers exhibited adversar-
ial samples that could be used to reduce the target agent’s
game score by feeding them in as perturbations to its game
input. In our experiments, we show that our Black-box attack
can decrease the target agent’s game score. One interesting



observation is that, in a fully Black-box setup, adversarial
samples only marginally outperform Random Gaussian Noise.
In other words, previously proposed adversarial RL attacks are
less efficient in such a context. The second interesting finding
is a novel attack. By appropriately perturbing the current input,
we can influence future action after a specific time delay with
a high probability of success. This gives us a novel time-bomb
attack on RL agents.
The contributions of this paper are the following.

« We provide an open-source framework to perform Black-
box attacks on RL agents.

o We show that, for the first time, attacking RL agents is
possible under a strong Black-box assumption.

« We present how to use sequence-to-sequence models to
approximate RL agents with above 80% accuracy on a
range of games trained with different RL algorithms.

« We demonstrate that Random Gaussian Noise can be as
effective as adversarial attacks for reducing the reward.
When evaluating RL attacks, random noise jamming
should be the baseline.

« We show a novel time-bomb attack that uses adversarial
samples to flip actions after a specific delay. This attack
opens up a new frontier in adversarial RL.

II. MOTIVATION

Recent advancements in deep learning have led to the
adoption of DNN-based control mechanisms for a range of
tasks. A wide range of attacks has been developed since. In-
teresting attacks are often considered to be those that produce
perturbations imperceptible to humans. However, almost all of
them focus on disrupting a single standalone task.

In the real world, however, DNNs are usually a component
of a large stateful system with both space and time aspects.
While the space aspect has attracted some research [19], the
timing side has been much less explored. This work aims at
filling this gap by finding practical attacks on systems that
control some critical resource over a period of time, observing
their behaviour closely so as to find just the right time to
attack.

As an example, consider air combat where the opponent’s
aircraft have been observed performing manoeuvres to follow
and intercept targets. Our goal is to learn from observational
data alone and make a good approximation of the embedded
RL agent in the enemy aircraft, so that we can develop better
tactics to break its lock on a target. Our baseline is random
evasion; we want to know whether we can do anything better
based on an approximate model of the opposing DNN.

Our threat model covers a large number of different use
cases, and we evaluate our attack using different RL algo-
rithms. Although the evaluation cannot represent all of them,
it at least shows the possibility of fully Black-box attacks.
Finally, we show that our work generalises to modelling and
predicting agents with unknown objective functions. If we can
observe the agent long enough, we can predict its behaviour
and disrupt it, and in some cases even to cause a disruption
after a known delay.

III. RELATED WORK

Deep neural networks (DNNs) help RL to scale to complex
decision-making problems. A large state or action space makes
learning intractable for traditional Markov Chain Monte Carlo
methods. Mnih et al. were the first to propose combining deep
convolutional neural networks with reinforcement learning
(DQN), and demonstrated that DQN achieves super-human
performance on a series of Atari games [6, 20]. Later on,
Mnih et al. proposed the asynchronous advantage actor-critic
method, where the actor performs actions based on its un-
derlying DNN, a critic scores the performance of the actor,
and the actor then updates its DNN parameters based on
the scores received [21]. Hessel et al. built on top of the
DQN framework and combined it with a range of possible
extensions [22]. They then demonstrated empirically that their
algorithm Rainbow outperforms DQN and Actor-critic on a
range of open benchmarks.

Goodfellow et al. proposed the Fast Gradient Sign Method
(FGSM) to produce adversarial samples using DNN gradi-
ents [10]. The samples contain small perturbations that are
imperceptible by humans, yet DNNs produce high-confidence
incorrect answers on these inputs. Later, researchers showed
how to apply scaled gradients iteratively to the original input
image [11, 23]. Iterative methods such as the projected gra-
dient descent (PGD) attack, proposed by Madry et al., show
better performance than single-step attacks (e.g. FGSM) [23].
The Carlini & Wagner attack (CW) teaches how to generate
adversarial samples by solving an optimisation problem effi-
ciently [24]. A major threat from adversarial samples is their
transferability. This refers to the fact that a single adversarial
sample may cause misclassifications on different classifiers.
Szegedy et al. observed that models of different configura-
tions can easily misclassify on the same set of adversarial
inputs [25]. Zhao et al. later pointed out that transferability is
also found on a range of compressed networks [14].

Huang et al. first applied adversarial attacks to RL
agents [15]. They evaluated FGSM attacks in both White-
box and Black-box settings. However, they assumed attackers
had access to the agent’s training environments and DNN
structures. Pattanaik et al. further extended this approach and
constructed a loss function that can be used to attack RL
systems more effectively [26]. Behzadan and Munir took a
similar approach to Huang et al. but only allowed attackers
to sample the parameters and network architecture of the
target agent periodically [27]. Lin et al. argued that the attack
presented by Huang et al. involves perturbation of an agent
at every step, which is infeasible in real life, and presented a
new timed-strategic attack, in which an adversary can attack a
quarter as often but achieve the same reward degradation [16].

Finally, our work also links to imitation learning in the field
of RL. Imitation learning tries to learn the policy of an expert,
given inputs as a sequence of observation-action pairs. Syed
and Schapire showed it is possible to reduce the apprenticeship
learning problem to a classification [28]. However, to the
best of our knowledge, we are the first to perform multi-



step prediction in a passive imitation learning setup. Typical
passive imitation learning only predicts a single action given
the current state [29], but we show we can sometimes predict
n steps ahead using seq2seq learning.

IV. METHOD
A. Preliminaries

At each time period ¢, the environment provides a state s;
to an agent, be it an image, or scalar inputs from sensors. The
agent responds with an action a, and the environment feeds
back a reward r;. The interaction between the agent and the
environment forms a Markov Decision Process (MDP), and an
agent learns a policy 7 that describes a probability distribution
on the action space given the current state s; [6, 21, 22].
The policy 7 is trained to maximise the expected discounted
return R, where R, = Zi:o e)‘irtﬂ-, [ is the total number
of steps in an episode of game play and A is the discount
factor. A trained agent typically takes states or state-action
pairs as inputs to decide what action to take (a;). Here, we
provide a relaxed notion of the inputs of the agent’s policy,
since popular techniques such as frame stacking can provide
an agent with a history of its inputs. Let us consider the
sequence of states Sy = (s, St—1, - , St—r) and the sequence
of actions A; = (a,ai—1,- -+ ,as—p), where n is the length
of the sequences and 0 < n < ¢; we have the policy function:

a :W(Stht—l)- (D

To mount an adversarial attack on a trained policy m, we
construct an adversarial sample for the current state s;. The
objective is to compute a small perturbation §; for the input

to the policy function, which now becomes S; = (s; +
Ot,St—1," " , St—n), such that the resulting action
ag = W(SuAtfl) (2)

differs from the intended action a;, in such a way as to give
a successful attack. An MDP setup is assumed for simplicity
of explanation, although in practice the problem description
often changes from a complete MDP to a Partially Observed
MDP (POMDP). This implies that the agent does not have the
knowledge of the entire environment, only a subset. RL agents
usually assume a POMDP environment.

B. Threat Model

We assume that the attacker can modify the environment so
that the target agent receives a perturbed state $; and aims at
changing a future action a4, t0 G¢4,,. We assume that past
states and target agent memory cannot be modified. If frame
stacking is done on the agent side, the attack should not change
previously stacked states. Since the attack is Black-box, we
assume that:

1) The attacker has no knowledge of the target agent, its
training method or the training hyperparameters;
2) The attacker has no access to the training environment.
These assumptions give a very strong Black-box box setup
in comparison to prior works as illustrated in Table II in

Appendix . The only explicit assumption we make is that the
episodes were collected from the agent, which is in evaluation
mode — i.e. random exploration is turned off and no more
training is done. In all previous work the approximation of
an agent involved retraining another RL agent to perform the
same task as the target. Adversarial samples are then generated
from the clone agent. In this paper, however, we cannot just
retrain because of the strong Black-box setup.

C. Temporal Information Approximation

As mentioned previously in Section III, the problem of
approximating a target agent is similar to an imitation learning
problem. In this paper we reformulate RL as a multi-timestep
learning problem. The agent relies on a learned policy 7 to
act; its decision depends on its observation sy, its previous
actions A;_; and previous states S;_i. An approximation
model predicts a sequence of future actions instead of a single
one. For convenience, we define the approximation model as

Al = F(Aim1, Sio, s0). 3)
Its output predicts a sequence of future actions
(aty @py1, Qrg2, - 5 Qrpm)-

The function f is an approximator that takes sequence
inputs A;_; and S;_; together with the current state s;. We use
n and m to represent input time steps and output time steps
respectively; this is equivalent to an input sequence having
length n and an output sequence having length m. Following
the Black-box setup, we only need to observe the agent playing
the game to build up a collection of ((A;_1, S;_1,s¢), Al ) and
use this collection to train the approximator f.

We trained a sequence-to-sequence neural network as f. It
is multi-head with heads focusing on three different inputs
(Ai—1,S:—-1,8:) (blue, yellow and pink colour blocks in
Figure 1). Its complexity and detailed architecture vary with
different games and RL algorithms. We use grid search to
determine the network architecture. We present the seq2seq
training algorithm (Algorithm 1), network architectures (Ta-
ble IIT) and seq2seq model accuracies (Table III) in Appendix .

D. Transferring Adversarial Samples

Once we have a seq2seq model that approximates the target
agent, we develop attacks on it and apply them to the target
agent.

In this paper, we have used a number of attacks of varying
complexity. As the weakest attacker we assumed Random
Gaussian Noise — which does not actually use any information
from our model. It merely injects noise of a specific amplitude
into the target agent’s inputs, and serves as our baseline
attack. As a more sophisticated attack, we used FGSM [10],
and for the most complex attack, PGD [23]. This is not an
exhaustive list of possible attacks, and and many complex
attacks could be conducted. CW [24] is generally considered
to be the strongest attack, but to get good misclassification
rates and transferability, it needs thousands of executions in
each episode of agent game play, making it infeasible in our
application.
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Fig. 1. An illustration of the sequence-to-sequence network’s multi-head architecture, with observation head (S;_1), action head (A¢_1) and current observation
head (s¢). The output of the seq2seq model is a sequence of predicted future actions (A{ ). The details of designing each head is game-dependent and shown

in Table III in Appendix .
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Fig. 2. The attacker observes how a trained agent plays a game and can
inject perturbations into the agent’s observation s;. We collect a sequence
of observations to feed into the seq2seq model and generate adversarial
perturbations to attack the trained agent. The adversarial perturbation in this
figure is from an FGSM attack with € = 0.01.

Our Black-box attack starts after n time steps when the
rollout FIFO is full, having recorded the playing history to
collate our inputs (A;_1, St—1, s¢). We assume the attacker has
no access to the agents’ internal states and parameters, or to
the training environment. After preparing the input sequence,
the trained seq2seq model generates a prediction which we
can use to craft adversarial perturbations to the target agent.
Figure 2 shows how our attack works with an assumption
that we can change the gaming environment. In addition, this
figure shows how we prepare a FIFO rollout for the seq2seq
approximator to generate adversarial inputs.

V. EVALUATION

A. Experiment Setup

We trained agents using DQN [6], A2C [21] and Rainbow
[22]. The target games are Cartpole, Space Invader and Pong.
For evaluation the game’s randomness seed was reset for every
episode. Cartpole takes only 4 input signals from the cart,

while the other two are classic Atari games; we followed Mnih
et al.’s method of cropping them to 84 x 84 image inputs [6].
The RL algorithms and game setups are developed on Ray
and RLLib [30, 31].

As mentioned previously, we consider three attacks: Ran-
dom Gaussian Noise, FGSM [10] and PGD [23]. Their imple-
mentation was adapted from the commonly-used adversarial
ML library Cleverhans [32]. Adaptations and extensions were
made to the framework as its current form does not support
multi-input models or sequential outputs.

B. Temporal Approximation Results

We control the sequence output m to be 1 or 10 to
illustrate that approximation is possible for both short and
long sequences of future actions. The notion Seq is used for
approximators that predict 10 sequential output actions. We
found that reducing RL to a seq2seq approximation is possible
and our seq2seq model shows consistently higher than 80%
accuracy; in fact its average is about 90% over a range of
different games. The detailed figures are shown in Table III in
Appendix .

C. Reward-focused Black-box Attack

Previous attacks in RL focus on reducing the total reward
of an agent in a White-box or Grey-box setup [16, 15]. In
this section, we discuss how our proposed Black-box attack
reduces an agent’s reward score. This is a direct measurement
of its game-playing ability; an efficient attack should be able
to cut it quickly by injecting perturbations. Figure 3 shows
the performance of attacking agents trained against Cartpole.
These agents are trained with DQN, A2C and Rainbow. We
also show how such agents perform against Atari games
(Space Invader and Pong) in Figure 4 and Figure 5 in the
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Fig. 3. Black-box reward-focused attacks on DQN, A2C and Rainbow trained on Cartpole. The x-axis shows the size of l2 norm of the adversarial samples,

while the y-axis shows the reward of the attacked agents.

Appendix . In Figure 3, we generate adversarial samples that
aim at perturbing the agent’s future action a;, so we call
this the action prediction attack. The adversarial samples are
generated using untargeted attacks, where the attacker only
wants to change the agent’s action and does not seek to change
it to any particular other action. In addition, we include action
sequence attacks, where the attacker’s goal is to flip a random
future action in the predicted sequence a;, Gi41...Q¢rm. We
present error bars that are generated from 20 distinct runs,
with the mean values extracted to plot the lines and the error
bars representing a single standard deviation. In our attack,
we start to inject adversarial perturbations into the agent after
collecting n samples. The reward keeps accumulating in the
initial collection stage, so even a powerful attack cannot reduce
the score to zero. As these attacks are untargeted, the results
are comparable with those of Huang et al., who used both
in White-box and Grey-box setups [15]. The score decreases
with increasing lo norms, meaning that agents are punished
more for larger perturbations.

We first find that adversarial inputs produced by FGSM and
PGD are no more efficient at reducing the target’s rewards
than Random Gaussian Noise, given the same noise budget.
In particular, FGSM and PGD do not do significantly better
in reward-based attacks than random jamming.

We also observe an effect similar to the canonical imitation
learning problem. As we start attacking the agent, the per-
formance of the attacks starts dropping. We hypothesise that
this behaviour is caused by the inability of the approximator
to accurately capture states that have not been observed. For
sequential decision making using imitation learning, Bagnell
noted that learning errors cascade, resulting in the learner
encountering unknown states [33].This seems to be true for
attacks based on approximated models in a fully Black-
box setup as well. Pomerleau addressed this problem by
learning to recover from mistakes [34]. That hints that, for
Black-box setup with multiple decisions, attack performance
may be limited by how well you know the agent’s error
recovery policy.

This also has a detrimental effect on the attacks targeting
specific actions of the agent e.g. the approach proposed by Lin

et al.. It is unlikely that the attacker will be able to tell which of
the non-preferred actions should be taken to attack the agent,
if they have never observed the agent taking them.

For reward-focused Black-box attacks, we summarise the
following:

o The attacks have large variations in performance, and
their effectiveness is associated with where the attack
starts.

Various attack schemes have similar performance for the
same game, although the agent playing the game might be
trained with various RL algorithms. Nothing significantly
outperforms random jamming.

Attack performance is bounded by the canonical imitation
learning problem.

TABLE I
BLACK-BOX TEMPORAL-FOCUSED ATTACKS ON A2C AND RAINBOW. THE
SEQ2SEQ MODEL IS TRAINED AGAINST THE DQN ALGORITHM AND IS
USED TO GENERATE ADVERSARIAL SAMPLES ON A2C AND RAINBOW. AN
ADVERSARIAL IMAGE IS SENT ONLY AT s¢ BUT AIMS TO PERTURB AN
ACTION 7 STEPS AWAY Q¢4p,. THE X-AXIS SHOWS THE TARGETED FUTURE
STEP n, AND THE Y-AXIS THE PERTURBATION RATE AVERAGED ACROSS 20
RUNS.

Future step n: Game 0 1 2 3 4 5 6 7 8 9

Pong

PGD Rainbow 62 8 12 14 6 8 16 16 28 18
A2C 68 64 50 76 72 57T 69 62 70 64

FGSM Rainbow 57 14 18 16 12 22 10 14 10 26
A2C 61 52 62 57 63 70 66 66 65 56

Space Invaders

PGD Rainbow 93 89 79 48 58 78 81 72 76 82
A2C 70 83 8 8 8 8 8 8 81 79
Rainbow 57 4 8 12 10 8 4 4 16 12

FGSM A2C 8 79 8 81 77 77 71 80 78 77

D. Time-bomb Attack

So far, we have seen that adversarial attacks do no better
than random noise jamming at reducing the target’s game
score, but are efficient in action-targeted attacks. This section
demonstrates a new temporal attack, which we call the time-
bomb attack. It uses the seq2seq model to flip the actions of
the target agent after a specific time delay.



Suppose the attacker’s goal is not to decrease the game score
of a deployed agent but to trigger adversarial actions later.
For example, the attacker might want to cause an autonomous
truck containing explosive fuel to crash five seconds in the
future, to have time to get out of the way. Consider an agent
with an original trajectory si,...,S¢ym. We would like to
change action a4, to asy,, with only a perturbation at s;.
The perturbation at time ¢ will now cause the agent to follow a
completely different trajectory so that adversarial action Gy,
follows at state S;..,,. Surprisingly, the fact of asking the agent
to follow a different trajectory often makes little difference to
the score against that the agent was trained to optimise, since
game reward is an accumulative measurement.

We demonstrate the performance of the time-bomb attack
in Table 1. The top row of the table refers to the time-bomb
delay. For instance, 1 means we aim to perturb action a1,
and x means a;y,. We only send adversarial inputs at s,
and all future observations made by the agents are clean. The
numbers in the table show the success rates of flipping an
action after at a specific future time. For results in Table I, we
used DQN to train a seq2seq model and directly transfer the
adversarial samples from the trained seq2seq model to both
A2C and Rainbow agents. The results in Table I show that
this time-bomb attack works better on A2C trained agents than
the Rainbow-trained agents, since Rainbow is a more complex
algorithm. In addition, the performance in Space Invaders is
better than in Pong, which suggests that Pong is harder to
sabotage in this way. We limited the attacks in Table I to have
€ = 0.3 which implies the /o, norm is bounded by 0.3. This
attack budget is picked to demonstrate the differences across
games and RL algorithms. The results in Table I suggests that
it is entirely possible to design a time-bomb attack on RL
agents and sometimes we even achieve a success rate as high
as 93%. Moreover, with a larger attack budget (with ¢ bigger
than 0.7), we observe all agents on all games getting attacked
with success rates consistently higher than 70%. We believe
the time dimension is not yet fully explored in the field of
adversarial RL. Our time-bomb attack shows that an attacker
can in principle craft Black-box attacks that perturb only the
current time frame, but cause the target agent to misbehave
after a specific delay.

The implications of time-bomb attacks in RL are realistic
and broad. First, we only inject adversarial samples at a given
time step, so there may be effective attacks on RL agents
given only a short attack window. In real life, constantly
injecting adversarial noise into a system might trigger detec-
tion [35, 36, 37, 38]. Striking quickly at just the right time
may be more efficient and unobtrusive. Second, we show it
is possible to intervene at one point in time but trigger a
particular adversarial action at a future time. This can have
broad implications, from spoiling a warrior’s aim to fooling
trading systems. Finally, the time-bomb attack we describe is
a general case of the path-planning attack shown by Lin et al..

VI. CONCLUSION

This paper offers three things: an improvement in the state
of the art, a critique of the research methodology used thus
far, and a new research challenge.

We explored how attackers can craft Black-box attacks
against reinforcement learning (RL) agents. The Black-box at-
tack assumes that attackers have no access to any internal
states or the training details of an RL agent. To the best of
our knowledge, this is the first fully Black-box attack against
RL agents.

We discovered three things.

First, we can use seq2seq models to predict a sequence of
future actions that an agent will perform, and use them to gen-
erate highly transferable adversarial samples. This improves
the state of the art, as previous attacks were White-box or
Grey-box. We show that even in a Black-box setup the attack
will still work and disrupt the performance of an agent with
an unknown objective function.

Second, although these adversarial samples are transferable,
they do not outperform Random Gaussian Noise as a means of
reducing the game scores of trained RL agents. This highlights
a serious methodological deficiency in previous work on game-
playing agents; random noise jamming should have been used
as a baseline.

Our adversarial attacks do, however, have one advantage
over random jamming: they can be used to trigger a trained
agent to misbehave at a specific time in the future. This is
our third discovery, and it appears to be a genuinely new
type of attack; it potentially enables an attacker to use devices
controlled by RL agents as time bombs.
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APPENDIX
A. Threat Model Comparison

Table II compares the threat models between our attack
and prior work. We show that we have the strongest Black-
box assumption.

TABLE 11
A COMPARISON TO SHOW OUR ATTACK HOLDS A STRONGER BLACK-BOX
ASSUMPTION. THE FIRST ROW SHOWS WHETHER THE ATTACKER HAS
ACCESS TO THE AGENT’S WEIGHTS, THE AGENT’S DNN STRUCTURES,
THE TRAINING ALGORITHM AND THE TRAINING ENVIRONMENT. HUANG
et al. PROPOSED TWO BLACK-BOX SETUPS AND WE ENUMERATED THEM

AS 1 AND 2.
Attacker Access DNN weights ~ DNN structure ~ Algorithm  Environment
Huang et al. 1 X v v v
Huang et al. 2 X v X v
Behzadan and Munir X X v v
Lin et al. v v X X
Ours X X X X

B. Temporal Information Approximation

Determining the number of input steps necessary for the
input sequence is not trivial. It is challenging to derive an
optimal n formally before training an approximator f, so we
just have to search for it. Luckily, the accuracy of a seq2seq
model with various values of n differs at an early stage of
training. In practice, we set a search budget of N; = 0.01N,
where N is the number of training epochs. Algorithm 1
describes the procedure of training a seq2seq model, where
[] denotes an empty list and the addition of two lists joins
them sequentially. First, we run a trained policy 7 to produce
action ay; internally, m might have stacked previous states or
actions. The sequence E consists of the historical states and
actions in an episode of game playing. The set D consists
of multiple sequences F, and are used as data for training
(Dtrain) and evaluation (Dgya)). Given an epoch count IV,
the selection of an input sequence length requires training
of nmax seq2seq models, each trained for Ny = 0.01 x N
epochs. The train function requires an input sequence length,
a training dataset and the number of epochs to execute training
for the seq2seq model. The Split function randomly shuffles
the collected data, marking 90% of the data as training data
and 10% as evaluation. We found that the evaluation accuracy
of the seq2seq model after training for a small number of
epochs was enough to pick the optimal input sequence length
(n). After picking n, we then train with N epochs to get our
fully-trained seq2seq prediction model. In our experiments, we
used NV = 500 and npyax = 50.

The seq2seq models vary in complexity when targeting
various games and RL agents. As mentioned previously, we
alter the multi-head component in the seq2seq model to adapt
to various games. The building blocks of each approximator
are shown in Table III. The input sequence length of each
approximator is determined using Algorithm 1. The approx-
imators are then trained with Stochastic Gradient Descent
(SGD) with a learning rate of 0.0001. We collect N = 500
episodes of game play from trained agents and use this

Algorithm 1 Training and Architecture Details For Seq2Seq

Model
1: D+ o
2: while [D| < N do
3: E«+ ]
4: s¢ = Init Env
5: while (Game not done) do
6.
7
8

ar = 7(s¢)
st+1 = Env(ay)
: E<—E+[st7at,st+1}
9: end while
10: D+ DUF
11: end while
122 n<+0
13: accm, < 0
14: Nt < 0.01N
15: Dtrain, Deval < Split(D)
16: for n; € {0,1,...,max} do

17: w < train(n;, Derain, Nt)
18: acc + eval(w, ni, Deval)
19: if acc > acc,, then

20: n < n;

21: accmy, < acc

22: end if

23: end for

24: w <« train(n, Dirain, N)

collected data as a training dataset. The approximator, at every
training time, takes bootstrapped training data from the 500
episodes of playing experience with a batch size of 32. The
seq2seq models are then tested on the unseen evaluation data
of the agent playing the game. As shown in Table III, we
achieve on average about 90% accuracy on all seq2seq models.
Whether predicting a single action or a sequence of 10 actions
at future time steps, our trained seq2seq model predicts them
correctly with high accuracy. The results in Table III shows
that imitating an RL agent can be formulated as a classification
problem: predicting a future action sequence that the agent will
perform given a history of its action-observation pairs.

C. Reward Focused Attacks on Space Invader and Pong

Figure 4 and Figure 5 show how reward-based attacks work
on DQN agents trained for Space Invader and Pong. The
results further supports our summary in Section V.

Action prediction
with dqn space invader agent

Action Sequence prediction
with dqn space invader agent
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--x- random noise

--x- fgsm
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--x- random noise

8 12 16 20 24 28 32
L2 norm

0O 4 8 12 16 20 24 28 32

L2 norm

Fig. 4. Black-box reward-focused attacks on DQN trained on Space Invader.
The x-axis shows the size of lo norm of the adversarial samples, while the
y-axis shows the reward of the attacked agents. ‘Action prediction’ produces
a single action but ‘Action Sequence’ predicts 10 future actions.



TABLE III
BLACK-BOX APPROXIMATION NETWORK CONFIGURATIONS AND ACCURACIES FOR DIFFERENT GAMES. WE MEASURE HOW ACCURATE OUR NETWORK
PREDICTS THE NEXT ACTION OR A SEQUENCE OF ACTIONS WITH RESPECT TO A RL AGENT TRAINED WITH DQN. SEQ MEANS THE APPROXIMATION
NETWORK PREDICTS THE NEXT 10 CONSECUTIVE ACTIONS FROM TIME ¢ (a¢ TO a¢49), IF IT IS NOT SEQ, ONLY A SINGLE ACTION (a¢) IS PREDICTED.

Game Acc Obs Head Action Head Current Obs Head Input Seq
Cartpole 93% 2 LSTM, 1 Dense 1 LSTM, 1 Dense 1 Dense 50
Cartpole Seq 83% 2 LSTM, 1 Dense 2 LSTM, 1 Dense 1 Dense 50

Space Invader 86% 6 Conv, 3 LSTM, 2 Dense 2 LSTM, 1 Dense 5 Conv, 2 Dense 10

Space Invader Seq 82% 6 Conv, 3 LSTM, 2 Dense 2 LSTM, 1 Dense 5 Conv, 2 Dense 5

Pong 97% 6 Conv, 3 LSTM, 2 Dense 2 LSTM, 1 Dense 5 Conv, 2 Dense 2

Pong Seq 97% 6 Conv, 3 LSTM, 2 Dense 2 LSTM, 1 Dense 5 Conv, 2 Dense 10
Average 90% - - - -

Action prediction
with dgn pong agent

Action sequence prediction
with dgn pong agent
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Fig. 5. Black-box reward-focused attacks on DQN trained on Pong. The x
axis shows the size of l2 norm of the adversarial samples, while the y axis
shows the reward of the attacked agents. ‘Action prediction’ produces a single
action but ‘Action Sequence’ predicts 10 future actions.

D. Adversarial Image Visualisation

Figure 6 shows a real adversarial image used in the time-
bomb attack. The generated adversarial input successfully
triggers an adversarial action in the future, but its perturbation
is imperceptible to humans unless we increase its resolution.

Fig. 6. Real adversarial inputs generated for the Pong game. The first image
(top left) is the original input to an agent; the second image is the perturbed
input; the third image shows the perturbation; and the fourth image is the
same perturbation rescaled to 0-255 for visibility, with 0 being black and 255
being white. If the images had been rescaled back to 0 and 1, the I3 norm of
this perturbation would be 0.62, and its [ norm 0.01.
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