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Abstract: 

The extent of somatic mutation and clonal selection in the human bladder remains unknown. We 

sequenced 2,097 bladder microbiopsies from 20 individuals, using targeted (n=1,914), whole-

exome (n=655) and whole-genome (n=88) sequencing. We found rampant positive selection in 17 10 

genes. Chromatin remodeling genes were frequently mutated, whereas mutations were absent in 

several major bladder cancer genes. There was extensive inter-individual variation in selection, 

with different driver genes dominating the clonal landscape across individuals. Mutational 

signatures were heterogeneous across clones and individuals, suggestive of differential exposure 

to mutagens in the urine. Evidence of APOBEC mutagenesis was found in 22% of microbiopsies. 15 

Sequencing multiple microbiopsies from five patients with bladder cancer enabled comparisons to 

cancer-free individuals and across histological features. This study reveals a rich landscape of 

mutational processes and selection in normal urothelium, with large heterogeneity across clones 

and individuals. 

 20 

One Sentence Summary: 

Normal bladder urothelium is populated by mutant clones carrying cancer-driving mutations, with 

large heterogeneity in mutational signatures and selection across individuals.  
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Main Text:  

Recent technological developments have started to enable the detection of somatic mutations in 

normal tissues (1-15). One observation derived from these studies is that, as we age, some tissues 

are colonized by mutant clones carrying driver mutations in cancer genes (2, 3, 6-8, 11, 15). These 

mutations confer a growth advantage driving clonal expansions, some of which are thought to 5 

represent the earliest steps towards cancer. However, the extent of this phenomenon remains 

unclear as driver mutations appear rare in other tissues (4, 9, 10, 12). 

Bladder urothelium is an interesting tissue in this context. It is one of the slowest dividing epithelia 

in the human body, being largely quiescent in homeostasis, although able to regenerate quickly 

upon injury (16). Yet, bladder cancers arising from the urothelium have some of the highest 10 

mutation burdens of all major cancer types (17) and a rich landscape of driver mutations (18, 19). 

Bladder urothelium is also constantly bathed in urine, which can contain mutagenic and 

carcinogenic molecules known to increase risk of bladder cancer, such as aromatic amines from 

tobacco smoking, aristolochic acid from certain herbal medicines, and compounds present in dyes, 

solvents and fumes from occupational and environmental exposures (20, 21). 15 

Somatic mutations in normal bladder 

To characterize the mutational landscape of normal bladder urothelium both within and across 

individuals, we performed laser microdissection of small strips of urothelium. Microbiopsies had 

a median length of 855µm, typically containing a few hundred cells (Fig. 1A). In total, we studied 

1,647 microbiopsies from 15 deceased transplant organ donors (ranging 25-78 years of age) and 20 

450 microbiopsies from five patients with bladder cancer (49-75 years, table S1) (22). Formalin-

free fixation and paraffin embedding were used to ensure high-quality morphology and genome 

sequencing (22).  
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To search for mutant clones, we performed targeted sequencing of 321 cancer-associated genes 

for 1,914 microbiopsies (median coverage of 89´) (22). To study mutation burden and signatures, 

copy number changes and selection outside of cancer genes, we performed whole-exome 

sequencing of 655 microbiopsies (median coverage of 72´) (22) and whole-genome resequencing 

of 88 microbiopsies dominated by large clones (median coverage of 33´, Fig. 1A) (22). By 5 

sequencing many biopsies per individual, we were able to study the heterogeneity in drivers, 

burden and signatures across clones and individuals. 

In histologically-normal urothelium, we detected a median number of 40 mutations per exome and 

1,879 mutations per genome, although the numbers varied considerably across microbiopsies (Fig. 

1B and fig. S1) (22). Variant allele fractions (VAFs) were moderately low (median exome VAF = 10 

0.13) and most mutations were detected in a single microbiopsy with few shared by adjacent 

microbiopsies (fig. S2), indicating that mutant clones are typically smaller than the microbiopsy 

sizes used in this study. Considering the allele fractions and the length of each microbiopsy, we 

estimate that most mutant clones are smaller than a few hundred micrometers in 1-dimensional 

sections of urothelium (Fig. 1C) (22), consistent with estimates derived from mitochondrial 15 

markers (23). This shows that histologically-normal bladder urothelium is a patchwork of small, 

typically microscopic, mutant clones. 

Below, we first describe the mutational landscape of healthy bladder by focusing on data from the 

15 transplant organ donors (Figs. 2 and 3), followed by an analysis of microbiopsies from the five 

patients with bladder cancer (Fig. 4). 20 
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Widespread positive selection in normal urothelium 

To determine whether positive selection on certain genes drives these clonal expansions, we used 

the ratio of non-synonymous to synonymous mutation rates (dN/dS). Mutations driving clonal 

expansions become overrepresented among mutant clones reaching detectable sizes, which 

manifests as an excess of non-synonymous mutations in driver genes (22). We used dNdScv, an 5 

implementation of dN/dS that corrects for trinucleotide mutation rates, sequence composition and 

variable rates across genes (19). Applying it to the 321 cancer genes sequenced in 1,500 

microbiopsies of normal urothelium from the transplant organ donors revealed significant positive 

selection on 12 genes (22): KMT2D (also known as MLL2), KDM6A (also known as UTX), 

ARID1A, RBM10, EP300, STAG2, NOTCH2, CDKN1A, CREBBP, FOXQ1, RHOA and ERCC2 10 

(Fig. 2A). Using restricted hypothesis testing on known bladder cancer genes and a dN/dS model 

at the level of single hotspots, we identified an additional five genes under selection: KLF5, 

ZFP36L1, ELF3, GNA13 and PTEN (22). Overall, 17 genes were found to be under clear positive 

selection, conferring on the mutant cells a competitive advantage over neighboring cells. 

The enrichment of non-synonymous mutations in positively-selected genes was large, with dN/dS 15 

ratios higher than 10 or even 100 (Fig. 2B). In most genes, selection on protein-truncating 

mutations (indels, nonsense and essential splice site substitutions) was stronger than on missense 

mutations, a pattern characteristic of tumor suppressor genes (19). In fact, while indels contributed 

just under 8% of all detected mutations across exomes and genomes, they accounted for 39% of 

all driver mutations. Clear exceptions were RHOA, ERCC2 and GNA13, which displayed higher 20 

frequencies of missense mutations, typically at known oncogenic hotspots (Fig. 2B and fig. S3). 

Overall, based on the excess of non-synonymous mutations measured by dN/dS, we detected a 

total of 385 (CI95%: 357, 401) driver mutations across all microbiopsies (22). 
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We can integrate allele fractions to estimate the proportion of cells in bladder urothelium that carry 

a driver mutation, while accounting for the possibility of undetected copy number losses and 

mutations occurring in one or two alleles per cell (Fig. 2C) (22). This conservatively estimates that 

between 8 and 19% of cells carry a driver mutation in normal bladder in middle-age and elderly 

individuals. 5 

Chromatin remodeling genes dominate the driver landscape 

Of the 17 positively-selected genes, all but NOTCH2 have been identified as bladder cancer genes 

from TCGA data (18, 19) (Fig. 2D). In contrast to the case of NOTCH1 in normal esophagus (7, 

8), the mutation frequency of these 17 genes is higher in bladder cancers than in normal urothelium 

from middle-age and elderly individuals in our cohort. This suggests that these mutations confer 10 

on the mutant cells an increased tumorigenic potential, even if the risk of progression of individual 

clones is extremely small. Most common bladder cancer genes can be classified into three 

functional groups: the RTK/Ras/PI3K pathway (such as PIK3CA, FGFR3, ERBB2 and ERBB3), 

the p53/Rb pathway (such as TP53, RB1 and ATM) and genes involved in chromatin remodeling 

(18, 24). Five of the top six most mutated driver genes in normal bladder are involved in chromatin 15 

remodeling, whereas mutations in RTK/Ras/PI3K or p53/Rb genes that are very common in 

bladder cancer are much rarer in normal urothelium (Fig. 2E). 

The absence of mutations in some of the main bladder cancer genes was noteworthy. Across 1,500 

microbiopsies, we only found three independent mutations in TP53, which is mutated in nearly 

50% of muscle-invasive bladder cancer, and no mutations in FGFR3, which is mutated in 60-80% 20 

of non-muscle-invasive bladder cancers (25). We also did not detect any TERT promoter mutations 

across 55 whole-genomes of normal urothelium, despite it being mutated in around 70-80% of 

bladder cancers, including early stage bladder cancers (26). This suggests that these driver 
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mutations may not confer large clonal advantages in normal urothelium, but are key drivers of 

bladder cancer development. Detection of mutations in these genes in liquid biopsies may prove 

informative for early detection of bladder cancer (26). 

The analyses above were restricted to the targeted panel of 321 known cancer genes. The extent 

of selection in normal tissues outside known cancer genes is less understood. It is conceivable that 5 

mutation of certain genes could drive benign clonal expansions in healthy tissues without 

contributing to tumorigenesis or even push cells down evolutionary paths away from cancer. 

Running dNdScv on all genes using 483 whole-exomes from normal urothelium, yielded seven 

genes under clear positive selection, all within the list of 17 genes above (22). This confirms that 

the main drivers of clonal expansions in normal urothelium are all known cancer genes. Somatic 10 

mutations could also lead to cellular death or differentiation, which would lead to a depletion of 

protein-altering mutations in surviving clones. While this dataset is not powered to detect negative 

selection at the level of individual genes, exome-wide dN/dS ratios excluding known cancer genes 

were close to, and not significantly lower than 1 (Fig. 2F). This is consistent with the vast majority 

of somatic coding point mutations being tolerated by normal cells and accumulating passively, in 15 

line with observations in cancer genomes (19). Similar non-significant results were obtained when 

focusing on putative antigenic regions of the exome, providing no clear evidence of immune 

editing against these mutant clones (fig. S4) (22). 

Extreme variation in driver preference across individuals 

Having identified many independent mutant clones per donor, we were able to study differences 20 

in selection across individuals. We used a dN/dS-based likelihood-ratio test that compares the 

relative enrichment of non-synonymous mutations in particular genes, while correcting for 

differences in mutation rates, mutation signatures, coverage and selection at other genes (22). This 
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analysis revealed striking differences in the landscape of clonal selection across donors (Fig. 2G 

and fig. S4). For example, one individual (T03_53F) had 35 different KDM6A mutations and two 

ARID1A mutations, whereas another (T06_59M) had four KDM6A mutations and 20 ARID1A 

mutations (Fig. 2, G-I). The four most frequently mutated genes in our dataset, KMT2D, KDM6A, 

ARID1A and RBM10, all showed highly-significant differences in selection across donors (Fig. 5 

2G, q-values<0.05 from dN/dS likelihood-ratio tests) (22). 

It is unclear whether these differences are driven by variability in environmental exposures or by 

the genetic background of each individual. No clear evidence of pathogenic germline mutations 

was found in these genes (22). KDM6A and RBM10 are both located on the X-chromosome and 

KDM6A is known to escape X-chromosome inactivation, with some evidence suggesting that both 10 

KDM6A and RBM10 are more frequently mutated in males across cancer types (27). However, in 

our limited cohort, KDM6A appears more frequently mutated in women than men, in line with 

previous observations in non-muscle-invasive bladder cancer (28). Larger cohorts would be 

required to establish robust associations between epidemiological factors and differences in 

somatic mutation rates and selection. 15 

Large heterogeneity in burden and signatures across clones and donors 

The whole-exome data showed an increase in the number of mutations detected with age, 

consistent with continual, irreversible accumulation of mutations during life (Fig. 3A). To estimate 

the mutation burden per cell despite the presence of multiple clones per microbiopsy, we used two 

alternative approaches to obtain lower-bounds from the whole-genome data: integration of allele 20 

frequencies and deconvolution of the major subclone (22). We estimate that, by middle age (50-

65 years), cells in normal urothelium carry over 500-2,000 mutations per genome. This burden is 
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within the range observed for other normal tissues (1, 4, 7), but an order of magnitude lower than 

the typical burden of bladder cancers (Fig. 3B). 

Analysis of the mutational spectra revealed striking differences across donors (Fig. 3C). To better 

understand this variation, we performed de novo mutational signature decomposition in 80 

genomes of normal urothelium from all 20 individuals using a Bayesian hierarchical Dirichlet 5 

process, and matched these signatures to known signatures from cancer genomes (fig. S5-S6) (22). 

This identified four main signatures that contribute over 89% of all mutations in the dataset (Fig. 

3, D-H). The same four signatures were found using non-negative matrix factorization 

(SigProfiler) (fig. S7A) (22). 

One signature, the third most abundant, was clearly attributable to APOBEC mutagenesis (cosine 10 

similarity with SBS2+SBS13 = 0.995)(29). The high mutation burden in bladder cancers is largely 

driven by activation of APOBEC3 cytidine deaminases, which preferentially generate C>G and 

C>T changes in a TCN context (Fig. 3G) (17). APOBEC mutagenesis has been only rarely reported 

in normal tissues sequenced to date (8, 9, 15), but it occurs frequently in normal urothelium, 

contributing hundreds to thousands of mutations in the clones in which it is active (Fig. 3D). 15 

The other three signatures did not match known signatures (fig. S6). Signatures A and B may 

contain a fraction of SBS5 mutations, which are common in bladder cancers (17), but they were 

stably extracted as separate from small amounts of SBS5 when using known signatures as priors 

or when adding cancer genomes to the signature extraction (fig. S7-S8) (22). Signature A is 

dominated by T>C changes, with a clear transcriptional strand bias suggestive of transcription-20 

coupled damage or repair (Fig. 3E and fig. S9). Reanalysis of whole-genome data from the 

PCAWG consortium suggests a high contribution of signature A to some bladder cancer genomes 

(fig. S6C-E) (22). Signature B is dominated by C>T changes (Fig. 3F) and shares some 
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resemblance with SBS5 in combination with a C>T-rich signature with a modest transcriptional 

strand bias (fig. S6 and S9). Signature C has distinct peaks at T>A and T>G in an ATT context 

(Fig. 3H) and does not resemble any known signature or combination of signatures (fig. S6). It has 

a strong transcriptional strand asymmetry with lower mutation rates in transcribed regions (fig. 

S9), a pattern indicative of this signature being generated by DNA damage to thymines by adducts 5 

and subject to transcription-coupled repair (9). Signature C also has an extended sequence context 

dominated by adenines and thymines (fig. S10). 

The relative contribution of different signatures within each individual was particularly interesting. 

APOBEC mutations are responsible for large differences in mutation burden and spectra between 

clones (Fig. 3D). This contrasts with signatures A-C, which show little variation across clones 10 

from the same individual but large differences between individuals (Fig. 3D). For example, 

signature A contributes ~70% of mutations in all clones from a 53 year-old woman (T03_53F), 

but is scarcely present (~5% of all mutations) in all clones from a 61 year-old woman (T08_61F). 

Similarly, signature C contributes over 25% of all mutations in six of the 15 donors, but is 

undetectable in others (Fig. 3D). The inter-individual differences in mutational signatures, together 15 

with the diverse etiology of bladder cancers, is suggestive of variable mutagenic exposures through 

the urine. This is exemplified by the presence of aristolochic acid mutagenesis in normal 

urothelium from Chinese patients (30). Smoking is a major risk factor of bladder cancer, increasing 

risk by 3-4 fold (20). No evidence of the smoking-associated signature (SBS4) was found in any 

of the individuals, including heavy smokers (table S1), a pattern consistent with the lack of SBS4 20 

in bladder cancers from smokers (31). We used a linear mixed-effect regression model to test 

whether any of the four signatures found may be statistically associated with smoking or alcohol 

consumption. Despite the small cohort size, signature A was significantly associated with smoking 
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history (linear mixed-effect regression, P-value=9.4e-05, fig. S11) (22), raising the possibility that 

signature A may result from tobacco smoke mutagens excreted in the urine. 

One additional source of heterogeneity across clones was exemplified by the microbiopsy with the 

highest mutation burden of the cohort, which contained ~6,500 mutations (Fig. 3D and fig. S12). 

This genome carried a hotspot mutation (N238T) in ERCC2, which is known to cause 5 

hypermutation in some bladder cancers through aberrant nucleotide excision repair (32). A total 

of 8 different ERCC2 mutations were identified in the targeted and exome data, with clear positive 

selection acting on ERCC2 (Fig. 2), suggesting that this mechanism is relatively common in 

normal urothelium. 

Frequency and spatial distribution of APOBEC clones 10 

APOBEC-induced mutations in normal urothelium displayed the characteristic replicational strand 

bias observed in human cancers and an extended sequence context suggestive of APOBEC3A 

being the main contributing enzyme (fig. S10) (22, 33). Analysis of APOBEC-positive genomes 

revealed extensive evidence of mutational clusters, known as kataegis (Fig. 3I) (17). These clusters 

were modest in size and displayed the typical strandedness observed in cancer genomes. While 15 

kataegis in cancers is often reported to occur near rearrangement breakpoints (17), this was not the 

case in normal urothelium. Overall, the patterns observed here are consistent with replication-

associated APOBEC mutagenesis (34). 

Analysis of the distribution of APOBEC-positive genomes in their tissue context revealed a 

suggestive example of spatial clustering of three APOBEC-positive clones (Fig. 3J). To study the 20 

frequency and spatial distribution of APOBEC-positive clones, we used signature fitting and a 

likelihood ratio test to annotate all exomes according to their evidence of APOBEC mutagenesis 

(22). Across donors, 22% of all microbiopsies of normal urothelium showed evidence of APOBEC 
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mutagenesis (likelihood-ratio test q-value<0.05, Fig. 3K). To determine whether APOBEC-

positive clones tend to cluster in space, for each positive clone we calculated the fraction of 

positive clones surrounding it (Euclidean distance <1mm), both in the real data and in random 

permutations of the data (fig. S13) (22). This analysis suggests that APOBEC clones appear to be 

scattered uniformly in the tissue (permutation test P-value=0.92), without evidence of spatial 5 

clustering of unrelated clones, suggesting that APOBEC mutagenesis is typically triggered 

independently in individual cells across the urothelium. 

Copy number and rearrangement analyses of normal urothelium revealed that the majority of 

clones carry no structural variants (22). Copy number alterations were detected in only 28% of 

urothelial exomes, with the most common changes involving whole or arm-level gains of 10 

chromosomes 13, 14, 15 and 16, and losses of chromosomes 9 and 21 (Fig. 3L). Across 55 

genomes of normal urothelium, only 30 rearrangements and 3 retrotransposition events were 

detected (tables S7 and S11) (22). This is in stark contrast with bladder cancers, which display 

extensive aneuploidy, with an average of ~200 segmental alterations per exome and 1.7 

retrotransposition events per genome (35, 36). This pattern is similar to that observed in other 15 

normal tissues (3, 4, 7, 9, 37), and it suggests that extensive structural changes are characteristic 

of later stages of carcinogenesis across a wide range of cancer types. 

The mutational landscape in bladder cancer patients 

Bladder cancer often presents with multiple synchronous tumors in different parts of the bladder. 

It remains unclear to what extent this is due to large premalignant clones colonizing distant parts 20 

of the bladder or to widespread changes in multiple independent clones across the bladder (38). 

To explore the mutational landscape of histologically-normal urothelium in bladder cancer patients 



Submitted Manuscript: Confidential 

13 
 

and to study the genomic changes underlying histologically abnormal areas, we performed laser 

microdissection of 450 microbiopsies from 19 distant biopsies from five bladder cancer patients. 

Analysis of histologically-normal urothelium from bladder cancer patients revealed patterns 

similar to those observed in healthy bladders. As in transplant organ donors, mutant clones were 

small, typically constrained to single microbiopsies (fig. S2). There seems to be a modest increase 5 

in the number of mutations detected per exome (linear mixed-effect regression P-value=0.0068) 

and in their allele frequencies (P-value=0.00048) in some cystectomy samples (fig. S14) (22). 

However, differences should be interpreted with caution given the limited cohort size and the 

considerable inter-individual variation. The fraction of APOBEC-positive microbiopsies was 

similar in cystectomies and in age-matched transplant organ donors (25% vs 24%, Fisher’s Exact 10 

Test P-value=0.91). Driver discovery in 223 microbiopsies of normal-urothelium from bladder 

cancer patients yielded a very similar driver landscape to that observed in the 15 transplant organ 

donors and the density of driver mutations detected per microbiopsy appeared comparable (22). 

Although a much larger number of patients would be required to accurately quantify differences 

between cohorts, these results suggest that the mutational landscape of histologically-normal 15 

urothelium from bladder cancer patients broadly resembles the patchwork of microscopic clones 

observed in healthy donors. They also suggest that widespread mutational changes in independent 

clones are unlikely to explain the emergence of multiple tumors in bladder cancer, consistent with 

the observation that synchronous tumors tend to be clonally related (38-40). 

Areas of carcinoma in situ (CIS) were observed in three of the five cystectomies studied. CIS of 20 

the bladder is a flat, high-grade urothelial carcinoma restricted to the epithelial layer, which often 

appears concomitantly with more advanced tumors. 44 CIS microbiopsies were sequenced, 

including 11 whole-exomes and 5 whole-genomes. Phylogenetic analysis revealed that all CIS 
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areas sequenced within a patient were clonally related (Fig. 4, A to D, and fig. S15 and S16). In a 

72-year-old patient (C04_72M), the same CIS clone was detected in two biopsies several 

centimeters away from the tumor and from one another, with most mutations being shared across 

distant biopsies (Fig. 4C). The phylogenetic tree provides a snapshot of the genome of the most 

recent common ancestor cell that gave rise to this clone. This cell had only a modestly increased 5 

burden, largely due to APOBEC, compared to other clones in normal urothelium, but had already 

acquired driver mutations in ARID1A, RB1 and TP53, as well as a hotspot promoter mutation in 

TERT (Fig. 4C). In contrast to histologically-normal clones, the CIS showed extensive aneuploidy, 

including evidence of whole-genome duplication (Fig. 3M). Intriguingly, one of the terminal 

branches of the CIS clone showed an unusually-high number of CC>AA dinucleotide changes of 10 

uncertain origin (Fig. 4C and fig. S17). In a 67-year-old patient (C03_67M) we sequenced an area 

of CIS and an area of tumor from two separate biopsies. This revealed that the tumor and the CIS 

had originated from a common ancestor cell that had already acquired putative driver mutations in 

NUP93, EPHA2 and TERT. The CIS and the tumor diverged early and each subsequently acquired 

an entirely different complement of driver mutations (Fig. 4D), providing a window into the early 15 

evolution of this tumor. This analysis corroborates that CIS clones are genetically highly aberrant 

and can colonize distant areas of the bladder, forming a hotbed from which invasive tumors can 

evolve (40, 41). A systematic analysis of tumor and non-invasive areas combining laser 

microdissection and genome sequencing could help shed light on the order of events in early 

bladder cancer evolution. 20 

Laser microdissection also enabled us to study other histological changes observed in bladder 

cancer patients. Von Brunn’s nests are groups of urothelial cells in the lamina propria, believed to 

arise from invagination of the surface urothelium (42). Although they are common in histological 
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sections from bladder cancer patients (Fig. 4B), they can also be seen in small numbers in healthy 

individuals. Sequencing of 98 microbiopsies revealed that most von Brunn’s nests are single 

clones, with all cells within a nest derived from a single cell (Fig. 4, E and F). Phylogenetic 

reconstruction reveals that adjacent nests are clonally unrelated (Fig. 4D). The vast majority of 

von Brunn’s nests sequenced did not carry a driver mutation; their driver landscape, mutation 5 

burden and largely diploid genomes resembled that of the adjacent histologically-normal 

urothelium. Overall, this is consistent with von Brunn’s nests being benign ectopic growths not 

actively driven by specific mutations (22). Lymphoid aggregates are also common in cystectomy 

biopsies (Fig. 4A), reflecting adaptive immunity in the tumor microenvironment, and can also 

occur in healthy samples with evidence of inflammation (43). We microdissected 82 lymphoid 10 

aggregates for deep targeted sequencing, as the targeted gene panel contained probes for the B-

cell and T-cell receptor loci (22). Unlike von Brunn’s nests, lymphoid aggregates were highly 

polyclonal, with nearly all of the mutations detected at low allele fractions (Fig. 4G). The only 

exception was one clonal lymphoid aggregate, which also carried a lymphoid driver IgH/BCL2 

translocation (fig. S18). This biopsy was from a donor who had been previously investigated for a 15 

possible lymphoma, although the relationship between the clonal lymphoid aggregate and the 

donor’s clinical history is unclear. Across all lymphoid aggregates, 95% of mutations detected 

with the panel clustered in the IGH locus and had the characteristic signature of somatic 

hypermutation (SBS9) (Fig. 4H), confirming the presence of multiple clones of mature B 

lymphocytes in each aggregate sequenced. These examples showcase the power of laser 20 

microdissection and low-input sequencing to inform on the clonal composition and genetic 

changes underlying different histological structures. 
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Discussion 

These data have revealed a rich mutational landscape in healthy and diseased bladder urothelium, 

with widespread positive selection, extensive APOBEC mutagenesis and large differences in 

mutation burden, signatures and selection across clones and across individuals. 

The heterogeneity in mutational signatures and driver mutations across donors is particularly 5 

intriguing and appears larger than that reported in other tissues. Epidemiological studies have 

linked bladder cancer risk to a diversity of carcinogens, such as smoking, occupational or 

environmental exposures and recurrent infections (20, 44). Whether carcinogens are genotoxic 

(inducing mutations) or non-genotoxic (impacting cellular growth or the microenvironment), they 

are expected to leave distinct marks in the mutational landscape of normal tissues, altering 10 

mutation rates, mutation signatures, driver frequencies or clone sizes. Thus, the differences in the 

mutational landscape across individuals observed here may be expected to reflect the interplay 

between genetics and a lifetime of different exposures. The differences across donors might raise 

the possibility of developing personalized risk models (45). However, our results also suggest that 

differences in normal urothelium between healthy individuals and cancer patients may be subtle, 15 

consistent with theories predicting that modest differences in mutation and selection could have 

considerable impact on risk (46, 47). Systematic analyses of large cohorts of individuals will be 

needed to quantify the relationship between epidemiological factors, germline variants, changes in 

the mutational and selective landscape, and risk; enabling the development of mechanistic risk 

models of cancer development. 20 

While somatic mutations have traditionally been studied in the context of cancer, the growing 

realization that some human tissues become colonized by mutant clones throughout life raises 

questions about their potential impact in ageing and other diseases. Laser microdissection and low-
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input sequencing enable the study of somatic mutations associated with histological changes, and 

could shed new light on somatic evolution in cancer, ageing and non-malignant disease. 
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Fig. 1. Detection of somatic mutations in bladder by laser microdissection and low-input 
sequencing.  5 
(A) Sequencing strategy and histology image of bladder mucosa (hematoxylin and eosin staining). 
(B) Combined number of substitutions and indels detected per exome (top) and whole-genome 
(bottom) across 15 transplant organ donors and 5 patients with bladder cancer. Donor identifiers 
contain age and gender information in suffix. (C) Distribution of estimated clone lengths for 
histologically normal urothelium (median indicated by a dashed line) (22).  10 
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Fig. 2. Positive selection of bladder cancer genes in normal urothelium from organ donors.  
In panels (A) to (D), analyses are shown for 17 genes under positive selection in normal urothelium 
and for four other genes frequently mutated in bladder cancer. (A) Number and consequence of 
mutations detected in histologically-normal urothelium. (B) Observed-to-expected ratios for 
missense substitutions, truncating (nonsense and essential splice site) substitutions, and indels. (C) 5 
Estimated percentage of urothelial cells bearing a mutation for donors aged ≥50 from samples with 
median on-target coverage ≥50´. (D) Percentage of urothelial carcinomas in The Cancer Genome 
Atlas (TCGA) with a non-synonymous substitution or indel. Error bars depict 95% Binomial 
confidence intervals. (E) Scatter plot comparing mutation frequency in bladder cancer (panel D) 
and the number of non-synonymous mutations in normal urothelium (panel A) for driver genes 10 
(colored by biological function) identified in this study and in (18, 19). (F) Comparison of dN/dS 
values for the 321 cancer genes in the targeted panel to 19,107 cancer passenger genes (defined in 
(19)). Dashed line indicates a dN/dS value of 1, indicating neutral expectation. (G) Heatmap 
showing the number of unique non-synonymous mutations in abundant (≥10 mutations) driver 
genes across transplant organ donors. Sample numbers refer to samples with at least one mutation. 15 
Blue boxes indicate statistically-significant combinations of gene and donor (22). (H and I) 
Histology images annotated with driver mutations and their cellular fractions in sequenced 
microbiopsies from two transplant organ donors exhibiting enrichment of drivers in KDM6A and 
ARID1A respectively.  
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Fig. 3. Mutation burden and signatures in normal urothelium.  
(A) Scatter plot of donor age vs the median number of substitutions in high-coverage exomes 
(≥40´ for ≥80% of the exome). The fitted line, R2 value, and P value were obtained by linear 
regression. (B) Comparison of mutation burden between normal bladder urothelium and bladder 
cancers. In order to account for subclonality, both a mean lower-bound estimate per cell (22) and 5 
the mean number of mutations per microbiopsy are shown for whole-genomes from the 15 
transplant organ donors. Bladder cancer data reflects total mutations per genome from Pan-Cancer 
Analysis of Whole Genomes (PCAWG)(48). (C) Raw mutational spectra for all urothelial 
genomes combined for three donors. (D) Number (top) and proportion (bottom) of mutations 
assigned to the four most abundant signatures extracted using a Bayesian hierarchical Dirichlet 10 
process (22) for urothelial genomes from transplant organ donors. The weak attribution of 
signature C to genomes from T08 may reflect overfitting to residual ATT>AAT alignment errors. 
(E to H) Bar plots depicting mutational spectra, split by type and trinucleotide context, of extracted 
signatures, as in (17). (I) Intermutational distance plots for urothelial clones free from and affected 
by APOBEC activity respectively, as in (17). (J) Histology image depicting variability in 15 
mutational processes between nearby urothelial microbiopsies. Mutational spectra are from 
independent clones. (K) Fraction of exomes with evidence of APOBEC mutagenesis (22). Error 
bars depict 95% Binomial confidence intervals. (L) Proportion of exomes from normal urothelium 
with large-scale copy number alterations in autosomes (22). Gains (red) and losses (blue) are 
shown above and below the x-axis respectively. (M) Copy number plots for representative whole-20 
genomes of normal urothelium (top) and carcinoma in situ (bottom).
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Fig. 4. The mutational landscape across histological features in patients with bladder cancer. 
(A and B) Histology images depicting features microdissected from cystectomy material for two 
patients with bladder cancer (C04_72M and C03_67M). (C and D) Phylogenetic reconstruction of 5 
the evolution of cancer and CIS clones (22). Only microbiopsies with a high degree of clonality 
(mean VAF ≥0.25) were included. Biopsy maps show the relative positions of macroscopic 
biopsies (b01-b10) within the bladder. Branches without a feature indicated are histologically-
normal urothelium. Branch lengths depict single nucleotide variant (SNV) counts and the number 
next to each branch denotes assigned dinucleotide variants (DNVs). Driver genes identified in this 10 
study and in (18, 19) are annotated. Truncating mutations in EPHB1 and KDM3A are annotated in 
the branch shared by the CIS and tumor for C03_67M. VBN, von Brunn’s nest. (E to G) 
Histograms showing the estimated VAF of the major clone in targeted and exome sequencing data 
for three different histological features: urothelium, von Brunn’s nests and lymphoid aggregates. 
(H) Proportion of mutations located within the B-cell receptor across histological features. 15 
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Materials and Methods 

1. Sample collection and preparation 

1.1 Sample collection 

Bladder specimens were obtained from two sources: (1) biopsies were taken from the dome of the 
bladder of deceased individuals from whom organs were being retrieved for transplantation; and 5 
(2) multi-region sampling was carried out on material removed by cystectomy as part of the 
treatment of bladder cancer patients. In the former instance, informed consent for the use of tissue 
in research was obtained from the donor’s family as part of the Cambridge Biorepository for 
Translational Medicine program (REC reference: 15/EE/0152 NRES Committee East of England 
– Cambridge South). In the latter case, cystectomies were performed at the Cambridge University 10 
NHS Trust and informed consent was obtained from the patient prior to surgery (REC reference: 
03/018 East of England - Cambridge Central Research Ethics Committee).  

All samples were anonymized and were handled and processed in accordance with HTA 
guidelines. No sample size determination, randomization or blinding was carried out as this was a 
descriptive study. All samples were included for analysis, except those failing library preparation 15 
or sequencing. 

1.2 Sample preparation for laser-capture microdissection 

Immediately after collection, specimens underwent formalin-free fixation for 24 hours in 
PAXgene Tissue FIX containers (PreAnalytiX, Hombrechtikon, Switzerland) before being 
transferred to PAXgene STABILIZER solution (PreAnalytiX) for storage at -20 °C. 20 

Prior to laser-capture microdissection, specimens were processed using a Tissue Tek VIP 6 AI 
tissue processor (Sakura Finetek, Leiden, Netherlands), embedded in paraffin and sectioned using 
an Accu-Cut SRM 200 microtome (Sakura Finetek). For each specimen, reference slides were 
prepared using 5 µm sections obtained at the beginning and end of each cutting session. These 
were mounted on Superfrost Plus glass microscope slides (VWR International, Lutterworth, UK), 25 
stained with hematoxylin and eosin (H&E; Leica Microsystems, Wetzlar, Germany), permanently 
coverslipped using CV Mount (Leica Microsystems) and imaged using a NanoZoomer 2.0-HT 
slide scanner (Hamamatsu Photonics, Hamamatsu, Japan). Sections for laser-capture 
microdissection were mostly cut at a thickness of 16 µm (see table S2 for exceptions) and mounted 
on polyethylene naphthalate (PEN) membrane glass slides (Leica Microsystems). These were 30 
stained with H&E, dipped in a xylene substitute, Neo-Clear (Merck, Darmstadt, Germany), and 
temporarily coverslipped before imaging on the slide scanner. Images obtained from the slide 
scanner were viewed using the NDP.view2 software. 

Microbiopsies were dissected using an LMD7 microscope (Leica Microsystems). Detailed 
information on each microbiopsy is available in table S2. Images of the selected regions were 35 
captured immediately before and after microdissection. Proteolysis of isolated regions was 
performed using an Arcturus PicoPure DNA Extraction Kit (Thermo Fisher Scientific, Waltham, 
MA, USA). Cell lysate was stored at -20 °C prior to library preparation. 
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1.3 Library preparation of microbiopsy cell lysate 

Library preparation was automated using an Agilent Bravo NGS workstation (Agilent, Santa 
Clara, CA, USA). Solid-phase reversible immobilization (SPRI) DNA purification was carried out 
using Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA). In order to 
minimize gDNA losses caused by incomplete elution, subsequent library preparation steps used 5 
the entire post-elution sample (including beads) as input. Fragmentation, end repair, dA-tailing 
and adapter ligation steps were performed using an NEBNext Ultra II DNA Library Prep Kit (New 
England Biolabs, Ipswich, MA, USA). All libraries were prepared with a mean insert size of ~350 
bp to ensure they were suitable for both sequence capture and whole-genome sequencing. Twelve 
cycles of PCR amplification were carried out using a KAPA HiFi PCR Kit (Roche, Wilmington, 10 
MA, USA). Libraries were eluted in 25 µl nuclease-free water (Thermo Fisher Scientific) and 
quantified using an AccuClear Ultra High Sensitivity dsDNA Quantification Kit (Biotium, 
Fremont, CA, USA). 

1.4 Selection of libraries for different sequencing approaches 

Having evaluated the relationship between library concentration and complexity, a minimum 15 
library concentration of 20 ng/µl was required for targeted, exome and whole-genome sequencing 
(see table S2 for exceptions). For most donors, all libraries with sufficient yield were initially sent 
for targeted sequencing of 321 cancer-associated genes. A small number of libraries from each 
donor were subsequently selected for whole-genome sequencing based on the presence of high 
variant allele fraction (VAF ≥0.2) mutations in the targeted sequencing data. By contrast, the 20 
library selection for exome sequencing was performed without referring to the VAFs in the 
targeted sequencing data in order to avoid biasing our mutation burden estimates. Instead, samples 
were selected for exome sequencing based on their library concentrations and the avoidance of 
duplicate regions. For four transplant donors (T04_55M, T05_58M, T10_68F and T14_75F) and 
two cystectomy patients (C01_49M and C05_75M), some or all of the exomes from these 25 
individuals do not have matched targeted sequencing data from the same library (tables S1 and 
S2). 
 
1.5 p53 immunohistochemistry 

Sections (5 µm thick) were mounted on Superfrost Plus glass microscope slides (VWR 30 
International) and endogenous peroxidase activity was blocked by incubation with hydrogen 
peroxide and methanol. Non-specific binding sites were blocked by incubating slides in 3% horse 
serum in Tris-buffered saline. Slides were incubated overnight at 4 °C with a mouse monoclonal 
p53 antibody (Santa Cruz Biotechnology, Dallas, TX, USA; Cat# sc-126, RRID:AB_628082) 
diluted 1 in 750 in 1.5% horse serum in Tris-buffered saline. Secondary antibody incubation and 35 
visualization were performed using a Vectastain Elite ABC HRP Kit (Vector Laboratories, 
Burlingame, CA, USA; Cat# PK-6100, RRID:AB_2336819). Slides were counterstained with 
hematoxylin (Vector Laboratories), coverslipped using CV Mount (Leica Microsystems) and 
imaged using a NanoZoomer 2.0-HT slide scanner (Hamamatsu Photonics). 

 40 
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2. DNA sequencing 

2.1 Targeted sequencing of 321 cancer-associated genes 

We designed a custom Agilent SureSelect bait set to capture the exonic regions of the following 
321 cancer-associated genes: 

ABL1, ACVR1, ACVR1B, ACVR2A, AJUBA, AKT1, ALB, ALK, AMER1, APC, AR, ARHGAP35, 5 
ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ATM, ATP1A1, ATP1B1, ATP2A2, ATP2B3, ATP7B, 
ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BCOR, BIRC3, BRAF, BRCA1, BRCA2, CACNA1D, 
CALR, CARD11, CASP8, CBFB, CBL, CBLB, CCND1, CCNE1, CD58, CD79A, CD79B, CDC73, 
CDH1, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CEBPA, 
CFH, CIB3, CIC, CMTR2, CNOT3, COL2A1, CPA2, CREBBP, CRLF2, CSF1R, CSF3R, CTCF, 10 
CTNNA1, CTNNB1, CUL3, CUX1, CXCR4, CYLD, DAXX, DDR2, DDX3X, DICER1, DNM2, 
DNMT3A, EEF1A1, EGFR, EIF1AX, ELF3, EML4, EP300, EPHA2, EPS15, ERBB2, ERBB3, 
ERCC2, ERG, ERRFI1, ESR1, ETNK1, EZH2, FAM104A, FAM46C, FAM58A, FAT1, FAT2, 
FBXO11, FBXW7, FGFR1, FGFR2, FGFR3, FLT1, FLT3, FLT4, FOSL2, FOXA1, FOXA2, 
FOXL2, FOXP1, FOXQ1, FTH1, FTL, FUBP1, GAGE12J, GATA1, GATA2, GATA3, GATA4, 15 
GJA1, GNA11, GNA13, GNAQ, GNAS, GPS2, GRIN2A, H3F3A, H3F3B, HAMP, HFE, HFE2, 
HGF, HIST1H2BD, HIST1H3B, HLA-A, HLA-B, HLA-C, HNF1A, HOXB3, HRAS, IDH1, IDH2, 
IGF1R, IGSF3, IKBKB, IKZF1, IL6R, IL6ST, IL7R, IRF2, IRF4, JAK1, JAK2, JAK3, KCNJ5, 
KDM5C, KDM6A, KDR, KEAP1, KIT, KLF4, KLF5, KLF6, KMT2A, KMT2B, KMT2C, KMT2D, 
KRAS, LIPF, LRP1B, MAP2K1, MAP2K2, MAP2K4, MAP2K7, MAP3K1, MAX, MED12, MEN1, 20 
MET, MGA, MLH1, MPL, MSH2, MSH6, MTOR, MYC, MYCN, MYD88, MYOD1, NCOR1, NF1, 
NF2, NFE2L2, NFKBIE, NKX2-1, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NPM1, NQO1, 
NRAS, NSD1, NT5C2, NTRK3, PALB2, PAX5, PBRM1, PCLO, PCMTD1, PDGFRA, PDYN, 
PHF6, PHOX2B, PIK3CA, PIK3R1, PIK3R3, PLCG1, POLE, POT1, POU2AF1, PPM1D, 
PPP2R1A, PPP6C, PRDM1, PREX2, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPN3, 25 
PTPRB, QKI, RAC1, RAC2, RAD21, RASA1, RB1, RBM10, RET, RHBDF2, RHOA, RHOB, RIT1, 
RNF43, ROBO2, RPL10, RPL22, RPL5, RPS6KA3, RREB1, RUNX1, SERPINA1, SETBP1, 
SETD2, SF3B1, SFTPA1, SFTPB, SFTPC, SH2B3, SLC10A1, SLC40A1, SMAD2, SMAD4, 
SMARCA4, SMARCB1, SMC3, SMO, SMTNL2, SOCS1, SOX2, SOX9, SPEN, SPOP, SRC, SRSF2, 
STAG2, STAT3, STAT5B, STK11, SUFU, TBL1XR1, TBX3, TCF7L2, TEK, TENM1, TERT, TET2, 30 
TFR2, TG, TGFBR2, TGIF1, TMEM170A, TMEM51, TNFAIP3, TNFRSF14, TP53, TP63, TRAF7, 
TSC1, TSC2, TSHR, TYRO3, U2AF1, UBR5, VEGFA, VHL, WT1, XBP1, XIRP2, XPO1, ZFHX3, 
ZFP36L1, ZNF750 and ZRSR2. 

Highlighted in blue are 40 genes that were previously identified as being under significant positive 
selection in bladder cancer (18, 19). There are 22 additional genes that were found to be 35 
significantly mutated in urothelial carcinoma in these studies but were omitted from the targeted 
capture panel: ACTB, ASXL2, C3orf70, CUL1, EPS8, HES1, KANSL1, MB21D2, MBD1, METTL3, 
NUP93, PARD3, PSIP1, RXRA, SF1, SPN, SPTAN1, SSH3, TAF11, TMCO4, USP28 and ZBTB7B. 
Another notable gene absent from the targeted panel is UTY, a member of the Histone H3 Lysine 
27 (H3K27) demethylase gene family, which is present on the Y chromosome and is homologous 40 
to KDM6A on the X chromosome. 
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In addition to the cancer-associated genes listed above, we included the following regions in the 
targeted panel: two non-coding RNA genes (MALAT1 and NEAT1); promoter regions for eight 
genes (ARID1A, CDKN2A, EGFR, ERBB2, MYC, PLEKHS1, TERT and TP53); three regions 
responsible for generating diversity in immune cells (IGH, TRB and TRD) and eighteen L1 
retrotransposition hotspots. Common SNPs within or around the targeted genes were also included 5 
in the bait set to facilitate copy number analyses. The total size of the targeted panel was 1.99 Mb. 

Samples were multiplexed to an average pool size of 32 and sequenced using 75 bp or 150 bp 
paired-end reads on Illumina HiSeq 4000 machines (table S2). Paired-end reads were aligned to 
human genome assembly GRCh37 using BWA-MEM (49). Duplicate reads were marked using 
biobambam (50). Library complexity and coverage statistics were calculated using Picard 10 
(http://broadinstitute.github.io/picard/). The median on-target coverage across all samples and 
genes was 89´. Across donors, median coverage ranged from 30´ (C02_61F) to 152´ (C03_67M). 
As the detection of low VAF mutations can be greatly impacted by index hopping or by sample 
contamination with DNA from other individuals, VerifyBamID (51) was run to ensure that the 
sequencing data included in this study were unaffected by these issues. 15 

Due to the use of laser-captured microbiopsies instead of macroscopic biopsies, the coverage 
achieved in this study was lower than that of two previous studies from our team (3, 7). Coverage 
was limited by the library complexity achievable from small microbiopsies of 16µm-thick 
histology sections. However, the coverage per unit area of epithelium, and so the estimated 
sensitivity to detect microscopic mutant clones, is considerably higher in the current study 20 
compared to those previous studies. 

2.2 Exome sequencing 

Exome capture was performed using an Agilent SureSelect All Exon v5 bait set (S04380110). 
Samples were multiplexed and sequenced using 150 bp paired-end reads on either Illumina HiSeq 
4000 (average pool size of 13) or Illumina NovaSeq (average pool size of 48) machines (table S2). 25 
Paired-end reads were aligned to human genome assembly GRCh37 using BWA-MEM (49). 
Duplicate reads were marked using biobambam (50) and sample contamination estimates were 
calculated using VerifyBamID (51). Library complexity and coverage statistics were calculated 
using Picard (http://broadinstitute.github.io/picard/). The median on-target coverage across all 
samples and genes was 72´. Across donors, median coverage ranged from 29´ (T08_61F) to 99´ 30 
(T10_68F). 

2.3 Whole-genome sequencing 

Whole-genome sequencing was performed on selected microbiopsies that were identified as likely 
having a high degree of clonality from the variant allele fractions observed in targeted or exome 
sequencing data of the same library (methods S1.4). Samples were sequenced using 150 bp paired-35 
end reads on either Illumina HiSeq 4000 or Illumina NovaSeq machines (table S2). Paired-end 
reads were aligned to human genome assembly GRCh37 using BWA-MEM (49) and duplicate 
reads were marked using biobambam (50). The median coverage across all samples was 33´. 
Across samples, median coverage ranged from 17´ (T06_59M_b01_lo0091) to 60´ 
(T07_59M_b01_lo0038). 40 
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In order to test the reproducibility of variant calling from independent libraries for whole-genomes, 
two sets of duplicates (T08_61F_b01_lo0008 and T08_61F_b01_lo0048; T08_61F_b01_lo0035 
and T08_61F_b01_lo0181) and one triplicate set (T08_61F_b01_lo0071, T08_61F_b01_lo0079 
and T08_61F_b01_lo0091) were sequenced from microbiopsies of corresponding stretches of 
urothelium isolated from neighboring histology sections. 5 
 

3. Mutation calling 

3.1 Substitution and indel calling from targeted data using ShearwaterML 

As in our previous work on sun-exposed skin and esophagus, ShearwaterML was used to detect 
substitutions and indels present at low VAFs in the targeted sequencing data (3, 7, 52). This 10 
algorithm is publicly available as part of the deepSNV R package (https://github.com/gerstung-
lab/deepSNV). In order to generate the base-specific error model, we used a collection of 75 
smooth muscle, lamina propria and blood vessel microbiopsies (table S2) that were processed 
using the same library preparation protocol as the urothelium samples (methods S1.3), resulting in 
an average background coverage of 6,210´.  15 

Unmapped reads, duplicate reads, failed reads, secondary and supplementary alignments, reads 
with mapping quality scores <55 and bases with Phred quality scores <30 were excluded from 
coverage calculations. Overdispersion values were estimated within the interval [10-6, 0.32]. P-
values were subject to multiple testing correction using Benjamini & Hochberg’s False Discovery 
Rate (53) and a q-value cut-off of 0.01 was used to call somatic mutations. Consecutive 20 
substitutions were merged into a single event, as were consecutive indels providing their VAFs 
were found to be compatible using a Fisher’s exact test. Additional filtering against artefacts 
introduced at cruciform DNA sites was applied as described in the following section (methods 
S3.2). 

Many common germline SNPs were already absent from the ShearwaterML calls due to their 25 
presence in the matched normal panel. Mutations present at VAF ≥0.25 in any of the non-
urothelium microbiopsies were excluded from all other samples from the same donor as putative 
rare germline SNPs.  

Substitution and indel calls for targeted data are available in table S3. 

3.2 Substitution calling from exome and WGS data using CaVEMan 30 

For exome and whole-genome sequencing data, substitutions were called using CaVEMan (Cancer 
Variants through Expectation Maximization) (https://cancerit.github.io/CaVEMan/) (54). In order 
to increase the sensitivity of CaVEMan for calling subclonal variants, the following parameters 
were used: mutant copy number = 5; wild type copy number = 2; and normal contamination = 0.1. 
 35 
The following smooth muscle, lamina propria or blood vessel microbiopsies were used as matched 
normals for variant calling in the exomes: 
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T01_25F_b01_lo0056, T02_35F_b06_lo0049, T03_53F_b08_lo0030, T04_55M_b01_lo0011, 
T05_58M_b01_lo0028, T06_59M_b01_lo0220, T07_59M_b01_lo0047, T08_61F_b01_lo0207, 
T09_61M_b02_lo0016, T10_68F_b01_lo0047, T11_69F_b03_lo0024, T12_70M_b04_lo0023, 
T13_71F_b06_lo0070, T14_75F_b02_lo0019, T15_78F_b09_lo0008, C01_49M_b01_lo0023, 
C02_61F_b01_lo0036, C03_67M_b09_lo0035, C04_72M_b05_lo001 and 5 
C05_75M_b10_lo0006. 
 
Similarly, the following microbiopsies were used as matched normals for variant calling in the 
whole-genomes: 
 10 
T01_25F_b04_lo0040, T02_35F_b05_lo0008, T03_53F_b08_lo0029, T04_55M_b01_lo0011, 
T05_58M_b01_lo0028, T06_59M_b01_lo0220, T07_59M_b01_lo0048, T08_61F_b01_lo0084, 
T09_61M_b01_lo0012, T10_68F_b01_lo0047, T11_69F_b05_lo0089, T12_70M_b02_lo0018, 
T13_71F_b06_lo0051, T14_75F_b02_lo0019, T15_78F_b09_lo0028, C01_49M_b01_lo0023, 
C02_61F_b01_lo0012, C03_67M_b08_lo0055, C04_72M_b06_lo0055 and 15 
C05_75M_b10_lo0021. 
 
As reported previously (10, 37), the enzymatic fragmentation step used in our low-input library 
preparation protocol can introduce artefactual calls from the incorrect processing of cruciform 
DNA that are not excluded by the standard filters in the CaVEMan algorithm. Therefore, the 20 
following post-processing steps were carried out:  
 

(1) Variants where the median alignment score of reads supporting the variant is <120 were 
excluded. 

(2) Variants where the median number of bases clipped from the supporting reads was >0 were 25 
excluded. 

(3) Variants that were supported by <3 supporting read pairs (fragments) were excluded. 
(4) For variants that were supported by a low number of reads (0-1) on a particular strand, it 

was required of the other strand that either ≤90% of supporting reads had the variant located 
within the first 15% of the read or that the median absolute deviation of the variant position 30 
was >0 and the standard deviation of the variant position was ≥4. 

(5) For variants with sufficient support from both strands (≥2 reads), it was required for both 
strands separately that ≤90% supporting reads had the variant located within the first 15% 
of the read or that the median absolution deviation and standard deviation were both greater 
than 2 or that the standard deviation for one strand was >10. 35 

(6) For exomes, if the same variant was called in ≥⅓ of samples from a donor, it was deemed 
likely to be a germline variant and was excluded. The 96 variants removed by this filter 
were manually reviewed and all deemed unlikely to be somatic variants. This filter 
removed a median of 2 variants from the cystectomy patients and a median of 3 variants 
from the transplant donors. 40 

 
For samples with matched targeted sequencing data, there was good agreement between the 
variants called by ShearwaterML and CaVEMan (fig. S1, A to C and G to I). Most discordant calls 
were due to drop-out of low VAF mutations in the exome or whole-genome call sets, which had 
lower coverage than the targeted data. 45 
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Substitution calls for the exomes and whole-genomes are available in tables S4 and S5 
respectively. 
 
3.3 Indel calling from exome and WGS data using cgpPindel 

For exome and whole-genome sequencing data, small insertions and deletions (indels) were called 5 
using cgpPindel (https://github.com/cancerit/cgpPindel) (55). The same matched normal samples 
were used for each donor as for substitution calling with CaVEMan (methods S3.2). In addition, 
the following post-processing steps were carried out: 
 

(1) Variants were required to pass the simple repeat filter (F017). 10 
(2) Variants with a REP score >3 were excluded. 
(3) Variants with a reported VAF of 0 were excluded. 
(4) For exomes, variants that were called in multiple samples were manually reviewed. Of the 

169 variants called in more than one sample, 55 were excluded as putative germline or 
artefactual calls. 15 

 
As with substitutions, there was a high degree of concordance between Shearwater and cgpPindel 
calls for microbiopsies with both targeted and exome sequencing data (fig. S1, D to F). However, 
the recovery of high VAF calls by cgpPindel from within the targeted bait region was considerably 
worse for whole-genome samples than for exome samples (fig. S1, J to L). This difference in 20 
behavior was largely due to the performance of F016, one of the cgpPindel filters that is applied 
solely to whole-genome sequencing data. Removing this filter resulted in a large number of calls 
that were deemed likely to be artefacts and so the final call set for the whole-genome data has had 
the F016 filter applied. 
 25 
Indel calls for the exomes and whole-genomes are available in tables S4 and S5 respectively. 
 
3.4 Structural variant calling from exome data using ASCAT 

For the exome data, structural variants were called using ASCAT (allele-specific copy number 
analysis of tumors) (56, 57). The same matched normal samples were used for each donor as for 30 
substitution calling with CaVEMan (methods S3.2). Alleles were counted at SNP sites identified 
outside of the HLA locus in phase 3 of the 1000 Genomes Project (58). B-allele fractions and logR 
values were calculated for SNPs with at least 20× coverage in the matched normal sample. A 
penalty score of 150 was used for ASPCF segmentation. 
 35 
Of the 655 non-reference exomes sequenced, structural variant calls are provided for 370 of them. 
The list of samples that were used for structural variant calling are given in the second sheet of 
table S6. Only calls from 295 urothelial samples are plotted in Fig. 3L. The following exclusion 
criteria were applied for selecting exomes for structural variant calling: 
 40 

(1) As ASCAT is not well-suited to the detection of subclonal copy number variants, we 
excluded 246 samples that did not exhibit strong evidence of containing a major subclone 
from their substitution and indel calls. In order for a sample to be included, we required it 
to have at least two substitution or indel calls with VAF ≥0.2 and total depth ≥30. 

(2) Two samples were excluded as ASCAT was unable to find an optimal ploidy solution. 45 
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(3) 37 samples were excluded as the goodness of fit of the ASCAT solution was <95. 
 
We required structural variants to span at least 2 Mb in order to be called. Regions smaller than 
this were iteratively collapsed providing they were surrounded by segments with identical copy 
number states. 5 
 
Despite these attempts to remove all artefactual copy number calls, it is worth noting that some 
are likely still present within table S6. Of the 37 samples excluded for having poor goodness of fit, 
17 were from T12_70M. The two urothelial samples with the highest number of copy number calls 
(T12_70M_b08_lo0015 has 12 calls and T12_70M_b01_lo0009 has 8 calls) both come from this 10 
transplant organ donor and they both have goodness of fit values that are close to the threshold 
(95.03 and 96.64). Additionally, there are small regions close to the 2 Mb cut-off within Fig. 3L 
that show evidence of both gains and losses in different samples. Manual inspection of these 
regions indicate that most, if not all, of these are likely to be artefactual calls caused by variable 
coverage at these sites between samples as they show aberrant logR values with no deviation in B-15 
allele fraction. 
 
Exome copy number variants and the list of samples for which variants were called are available 
in table S6. 
 20 
3.5 Structural variant calling from WGS data 

Copy number changes in whole-genomes were called using an implementation of the Battenberg 
algorithm (https://github.com/cancerit/cgpBattenberg) (59). The same matched normal samples 
were used for each donor as for substitution calling with CaVEMan (methods S3.2). 
 25 
In order to identify rearrangement breakpoints associated with structural variants, we ran the 
BRASS (breakpoints via assembly) algorithm (https://github.com/cancerit/BRASS) (60), which 
identifies discordant read pairs, groups them based on their mapping locations and attempts to 
assemble these groups of reads to reveal the sequences spanning breakpoints. The same matched 
normal samples were used for BRASS as for substitution calling (methods S3.2). 30 
 
As has been observed previously (10), post-process filtering of BRASS output is necessary for 
low-input sequencing to account for an increased proportion of artefactual calls compared to bulk 
sequencing, which is due to elevated duplicate rates for low complexity libraries leading to 
incomplete duplicate removal as a result of frameshifts at repetitive sites. Additional statistics were 35 
calculated by running AnnotateBRASS (https://github.com/MathijsSanders/AnnotateBRASS). 
Recurrent artefacts were removed using an unmatched panel of 136 whole-genomes derived from 
microdissected pancreas samples that had undergone the same library preparation process 
(methods S1.3). 
 40 
BRASS calls were retained if they met the following criteria (previously described in greater detail 
in (37)):  

(1) ≥4 unique reads supporting each breakpoint. 
(2) Non-zero variance in the start positions of the reads supporting each breakpoint. 
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(3) Reads not supporting the structural variant should not have their mates mapped to a large 
number of different chromosomes (i.e. different chromosome score <25 for each side of 
the breakpoint with a sum of the two different chromosome scores ≤40). 

(4) ≤50% of supporting reads on at least one side of the breakpoint should have an alternative 
alignment (XA-tag) or an alternative alignment score similar to the current alignment score 5 
(XS-tag). 

(5) Of reads not supporting the structural variant, <5% should have a discordant insert size 
(i.e. ≥1000 bp) for both breakpoints. 

(6) No read pairs supporting the variant were present in the matched control sample. 
(7) The structural variant was not detected in the unmatched panel of microdissected pancreas 10 

samples. 
(8) Read pairs supporting the structural variant should not have widely divergent clipping 

positions for both breakpoints. 
 
The rearrangement breakpoints that pass these filters are available in table S7. 15 
 
Somatic mobile element insertions were called in whole-genomes using an implementation of the 
TraFiC algorithm (https://gitlab.com/mobilegenomes/TraFiC). A detailed description of the 
method can be found in (36). To increase sensitivity to candidate mobile element insertions, 
independent clusters were considered in addition to reciprocal clusters. Calls from independent 20 
clusters were retained if they met the following criteria: 

(1) ≥6 discordant reads supporting the cluster. 
(2) ≥1 discordant reads supporting the reciprocal cluster. 
(3) ≥1 clipped reads supporting a polyA tail longer than 10 bp. 

 25 
Mobile element insertions identified in a given donor were clustered using a breakpoint window 
of ±30 bp to generate a list of non-redundant insertions. This unified list was re-genotyped in all 
the microbiopsies. Only re-genotyped insertions supported by more than 4 discordant reads were 
retained. All calls were confirmed by visual inspection using IGV. 
 30 
Microbiopsies were selected for retrotransposition calling based on the product of sequencing 
depth and clonality. Only those whose product of mean coverage and median VAF was greater 
than 6 were included (table S11, tab 2). The same matched control samples were used for each 
donor as for substitution calling with CaVEMan (methods S3.2). 
 35 
The list of the retrotransposition events detected is given in table S11 (tab 1). Across 55 genomes 
of normal urothelium and 10 genomes of von Brunn’s nests, we detected 3 and 2 retrotranspostion 
events, respectively. All carcinoma in situ (n = 5) and tumor (n = 1) microbiopsies analyzed 
harbored at least one retrotransposition event. Several retrotransposition events were found to be 
shared across different carcinoma in situ microbiopsies. 40 
 
 
 
 
 45 
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4. Analyses of mutant clones and allele frequencies 
 

4.1 Estimation of mutation burden per cell 
 
Mutation burden in cancer genomes is a term used to refer to the number of mutations in a cancer. 5 
This is typically calculated by dividing the number of mutations detected in a cancer by the size 
of the genome sequenced. Although this is a common practice, cancer genomes can contain 
multiple subclones and the approach above is only an approximation to the number of mutations 
per cell in a cancer. 
 10 
This problem is exacerbated when sequencing samples of normal tissues with multiple clones. 
Each microbiopsy can contain multiple independent clones and estimation of the mutation burden 
per cell requires accounting for the fraction of cells that carry each mutation. In this study, we used 
two alternative approaches to estimate the mutation burden per cell (Fig. 3B), both of which have 
been used before in normal tissues: aggregating allele fractions (3, 7) and subclonal decomposition 15 
(3). 
 
4.1.1 Aggregating allele fractions 
 
As described in previous studies (3, 7), the average number of detectable mutations per cell per 20 
megabase (Mb) in a given microbiopsy can be estimated as follows: 
 

 (Eq. 1) 
 
Where LMb is the size of the region sequenced (in megabases), pj is the fraction of cells of a sample 25 
carrying a mutation (j) and vj is the variant allele fraction (VAF) of the mutation. In the absence of 
copy number changes, mutations are heterozygous and pj can be approximated by 2vj. For a more 
general expression valid for other copy number configurations, please refer to (3, 7). Summing 
across all of the microbiopsies from a donor, we can estimate the average burden of detectable 
mutations per cell in each donor. 30 
 

 (Eq. 2) 
 
Where S is the number of microbiopsies from a donor.  
 35 
This is a lower-bound estimate of the true mutation burden per cell as it is restricted to detectable 
mutations. It is particularly suitable when dealing with large numbers of mutations with low allele 
fractions, such as those found in ultra-deep sequencing of macroscopic biopsies of normal tissues 
(3, 7). 
 40 
4.1.2 Subclonal decomposition 
 
If a single cell expands into a large clone, clustering of VAFs can be used to identify the mutations 
present in the clone and, in doing so, to measure the number of mutations in that cell, providing an 
alternative estimate of the mutation burden per cell. This is particularly suitable when dealing with 45 
samples dominated by a major clone, such as when sequencing colonic crypts (9). 
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We can model allele fractions in a sample using a binomial or beta-binomial mixture model, where 
each component represents a subclone (3). Here, we used a mixture of beta-binomial distributions 
with modest overdispersion (ρ=1e-4), fitted with an Expectation-Maximization (EM) algorithm. 
We first fitted a model with one component (one subclone) and then with increasing numbers of 5 
subclones, using a Likelihood-Ratio Test to determine whether each additional subclone 
significantly improved the fit of previous model, stopping when the test became non-significant. 
 
This mixture model was used for subclonal deconvolution in two sections in this manuscript: as 
an alternative approach for estimating the mutation burden per cell (Fig. 3B), and to identify the 10 
major subclone in the analysis of different histological features from cystectomy biopsies (Fig. 4, 
E to G). For each microbiopsy, 50 random initializations of the EM algorithm were run to minimize 
the risk of falling into local minima. 
 
For microbiopsies dominated by one major clone, aggregating allele fractions can underestimate 15 
the mutation burden per cell more than subclonal deconvolution. Since both approaches provide 
lower-bound estimates, Fig. 3B shows the maximum value of these two approaches for each 
microbiopsy. 
 
4.2 Approximate estimates of clone lengths  20 
 
Clone sizes cannot be directly measured using sequencing data, but approximate estimates can be 
obtained considering the fraction of mutant cells within a biopsy. In previous studies of skin and 
esophagus, which used deep sequencing of small areas of epithelium, clone sizes were estimated 
by multiplying the fraction of mutant cells within a biopsy by the area of the biopsy (3, 7).  25 
 
The proportion of cells in a microbiopsy that carry a mutation can be estimated using the variant 
allele fraction. Equations to do so in the presence of copy number changes are available in (3, 7). 
However, as we have shown here, copy number changes are rare in normal urothelium. In the 
absence of copy number changes, as described in methods S4.1, this fraction can be estimated as 30 
2vj (two times the allele fraction of a mutation). 
 
Microbiopsies pose the additional challenge that histological sections are only 16 µm thick (1 or 2 
cells thick on average), cutting across clones. While we cannot estimate clone areas from such 
sections, if we assume that clones are compact in space, we can obtain lower-bound estimates of 35 
the length of a microbiopsy or strip of urothelium occupied by a clone by multiplying the length 
of the microbiopsy by the fraction of mutant cells in it (clone length, Fig. 1C). If a clone extends 
to more than one microbiopsy within a section, we summed the clone lengths estimated in each 
microbiopsy. 
 40 
The relationship between the length of a clone (as defined above) and the area occupied by the 
clone is not straightforward, as it depends on the shape of the clone in 2-dimensions. For example, 
if clones were perfectly circular in 2-dimensions, random 1-dimensional cuts across them would 
give clone lengths that follow the distribution of chord lengths for a circle. The relationship 
between the mean chord length (d) and the radius of a circle (R) is: R =  pd/4 ~ 0.79d. However, 45 
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given the unavoidable uncertainties in the estimation of clone sizes, we only provide clone lengths 
as approximate estimates. 
 
4.2.1 Relationship between dN/dS and clone sizes 
 5 
Using deep sequencing of microbiopsies, only mutations that reach a minimum clone size will be 
detectable by ShearwaterML or CaVEMan. This gives dN/dS ratios a simple interpretation in terms 
of clonal expansions. For example, we see a dN/dS of ~200 for truncating (nonsense or essential 
splice site) mutations in KDM6A in normal urothelium. This means that, a cell carrying a KDM6A 
truncating mutation is ~200 times more likely to reach a detectable clone size in our dataset than 10 
a cell carrying a KDM6A synonymous mutation. There can be multiple mechanisms behind signals 
of positive selection, such as increased proliferation, reduced differentiation, increased survival, 
etc. However, independently of the underlying mechanisms, dN/dS ratios >>1 typically imply 
statistically increased clonal growth. 
 15 
For the reasons above, we may expect driver mutations under positive selection in normal tissues 
to have larger clone sizes on average. This trend has been shown before (3, 7). However, these 
studies also suggested that direct comparisons of estimated clone sizes between driver and 
passenger mutations tend to be less sensitive to selection than dN/dS ratios. There are several 
reasons for this. First, many synonymous mutations reach larger clone sizes by co-occurring with 20 
driver mutations (hitchhiking). Second, because of the life-long generation of new mutations, the 
frequency distributions of clone sizes tend to be wide, dominated by recently generated and small 
clones, which can reduce or confound the differences. Further, spatial constraints in a solid tissue 
can impose limits to clone sizes (colonic crypts being an extreme example). In that situation, 
drivers can still favour clonal growth leading to dN/dS signals of selection, and yet detectable 25 
clone sizes of drivers and passengers could be limited by these constraints reducing differences 
between detectable driver and passenger mutations. 
 
Despite the limitations above, we can compare the estimated clone sizes (lengths) of driver and 
putative passenger mutations in normal urothelium. We annotated all non-synonymous mutations 30 
in any of the 17 positively-selected genes as putative driver mutations, and all mutations (non-
synonymous or synonymous) in non-significant genes as putative drivers. To minimize the risk of 
hitchhiking, we avoided annotating putative passenger mutations in microbiopsies with one or 
more driver mutations. In line with previous observations in skin and esophagus (3, 7), the 
estimated clone sizes of driver mutations tend to be statistically larger than those of passenger 35 
mutations, although this difference only reaches statistical significance at individual gene level for 
some of the positively-selected genes (fig. S2B). 
 
4.3 Lower and upper bound estimates of the fraction of mutant epithelium 
 40 
Estimates of the fraction of cells in the urothelium that carry mutations in a given gene were 
obtained as described in (7).  
 
Briefly, when a single mutation is observed in a given gene in a microbiopsy in the absence of a 
copy number change at the locus, the fraction of mutant cells is r = 2vj. If we conservatively 45 
assume that there could be undetected copy number changes affecting the locus in cells carrying 
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this mutation, this estimate of the fraction of mutant cells could be inflated. For example, in the 
presence of copy-neutral loss of heterozygosity (LOH) with a mutation present in both alleles, the 
correct estimate would be r = vj, and in the presence of a copy number loss of the wild-type copy, 
the estimate would be r = 2vj/(1+vj) < 2vj. 
 5 
When more than one driver mutation is found in the same gene in the same biopsy, these mutations 
can occur in different cells, different alleles of the same cells or even affect the same allele. As it 
was shown in (7), assuming a maximum of two non-synonymous mutations per cell per gene, and 
considering different possibilities of compound heterozygosity, copy-neutral LOH and 
hemizygous losses, the total fraction of mutant cells for a given gene in a sample ranges from the 10 
lower bound rlow = Sjvj (which corresponds to bi-allelic mutation of the gene in all mutant cells of 
the sample by either copy-neutral LOH or compound heterozygosity) to the higher bound rhigh = 
2Sjvj (which corresponds to one mutant allele per gene at a diploid locus). Mutations in sex 
chromosomes in males have estimated mutant cell fractions of Sjvj. 
 15 
The approach above yields conservative estimates for the fraction of cells in the urothelium that 
carry a non-synonymous mutation in a given driver gene (Fig. 2C). To aggregate these estimates 
across genes and estimate the fraction of the urothelium that carries a non-synonymous mutation 
in any of the 17 drivers, we need to know how driver mutations are clonally related when more 
than one driver gene is seen mutated in the same biopsy. When allele frequencies are high enough, 20 
we can apply the pigeonhole principle (7, 59) to determine whether mutations are co-occurring in 
the same clone, however, allele frequencies are typically too low. However, we can obtain lower 
bound estimates by assuming that all driver mutations in a sample are clonally nested (max(rlow)) 
and upper bounds by assuming that they occur in different cells (min(1,sum(rhigh)). 
 25 
Across all microbiopsies from donors of age ³50 years with median coverage ³50x, the fraction 
of the urothelium that carries a driver mutation was estimated to range between 8% and 19%. 
 
4.4 Statistical pigeonhole principle 
 30 
As described above, allele frequencies together with copy number data can be used to estimate the 
fraction of cells that carry a mutation in a sample. The pigeonhole principle can be used to infer 
whether two or more mutations co-occur in the same cells within a microbiopsy (59). Let rA and 
rB be the fraction of cells carrying mutations A and B in a given sample. The pigeonhole principle 
states that if rA+rB>1, then both mutations cannot be in unrelated clones but must be nested or co-35 
clonal. 
 
To screen for examples of co-occurring pairs or groups of mutations in this dataset, we applied a 
statistical version of the pigeonhole principle that determines whether the sum of the mutant cell 
fraction of two or more mutations within a microbiopsy are significantly higher than 1. To do so 40 
we used the approach described in (7). Only 10 microbiopsies had allele frequencies high enough 
to violate the pigeonhole principle (fig. S4A), identifying at least three clones carrying two driver 
mutations in canonical driver genes: two clones in two different donors with KDM6A and RHOA 
and one clone with KDM6A and ATM. 
 45 
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5. Selection and driver analyses 
 

To quantify the extent of selection and to identify positively-selected genes, we used the dNdScv 
algorithm, a maximum-likelihood implementation of dN/dS specifically developed for somatic 
mutation data (https://github.com/im3sanger/dndscv). 5 
 
The method is described in detail in the original publication (19). Briefly, in the dNdScv algorithm, 
dN/dS ratios are calculated using a context-dependent substitution model with 192 rate parameters 
to model each substitution type in each trinucleotide context, including transcriptional strand 
biases. Since somatic mutation datasets are sparse, the substitution model is fitted on all genes of 10 
interest. The density of mutations has been shown to vary considerably across genes, often 
depending on the chromatin state, expression level and replication time (61). This is modeled by 
dNdScv using a negative binomial regression with epigenomic covariates, in effect modeling the 
variation in mutation density across genes (beyond that expected from the substitution model and 
sequence composition) as being Gamma-distributed. Likelihood ratio tests are used to detect 15 
selection on missense and truncating (nonsense and splice site) substitutions, and a separate 
negative binomial regression model is used to detect positive selection on indels. 
 
5.1 Driver discovery in transplant donors 
 20 
In order to identify genes under positive selection in normal bladder we first combined the 
mutation calls from targeted and exome data from the 15 transplant donors. To do so, redundant 
calls from microbiopsies sequenced by both targeted and exome sequencing were collapsed, 
substitutions within 10 bp of an indel were filtered out and indels within 10 bp of one another were 
collapsed into a single event. 25 
 
To avoid counting single mutational events multiple times, mutations shared across microbiopsies 
within an individual were conservatively collapsed into single entries. dNdScv was then run on the 
list of 321 genes in the targeted gene panel (methods S2.1) on the combined targeted and exome 
data. As in (7), we used default settings for dNdScv (version 0.0.0.9), with the exception of 30 
excluding from the fitting of the indel background model those genes found as significant using 
dNdSloc, and using the arguments max_muts_per_gene_per_sample=Inf, 
max_coding_muts_per_sample=Inf. 
 
As shown in table S8, this analysis identified 12 genes under significant positive selection based 35 
on q-values <0.01 for all mutations combined (qglobal_cv<0.01) or for missense mutations 
separately (qmis_cv<0.01). Of these, 11 are known bladder cancer genes based on analysis of 
TCGA data by (18) or by (19). To increase our sensitivity to detect bladder cancer genes under 
positive selection, we also used restricted hypothesis testing (a separate FDR adjustment for 62 
known bladder cancer genes from the two sources above) (62) with q-value<0.10. This identified 40 
an additional 4 bladder cancer genes as being under positive selection in normal urothelium from 
the 15 transplant donors. 
 
Oncogenes are typically mutated at specific hotspot sites. The dNdScv algorithm does not exploit 
this information but two functions in the dNdScv R package have been developed to detect 45 
significant positive selection at hotspot sites: sitednds (at the level of single sites) and codondnds 
(at the level of single codons). Applying both functions (using the LNP background model (63)) 
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identified significance recurrence at codon R200 of GNA13 and codon F106 of RHOA, each with 
3 mutations and q-value=0.001. RHOA had already been detected as significant in the gene-level 
analysis (table S8), but the hotspot analysis added GNA13 as a positively selected gene in normal 
urothelium. 
 5 
Outside of the significant thresholds above, we also found 4 missense mutations in SPOP, all at or 
near known hotspots. Despite their obvious clustering, they did not affect exactly the same site or 
codon and escaped detection with sitednds or codondnds. Interestingly, there is evidence of these 
hotspots in the TCGA bladder cancer dataset, with 3 mutations affecting codon R130 in SPOP. It 
is likely that SPOP is positively selected in normal urothelium and in bladder cancer. 10 
 
5.2 Driver discovery outside of cancer genes 
 
The availability of 483 whole-exomes from normal urothelium from the 15 transplant donors, 
allowed us to search for evidence of selection outside of known cancer genes. To do so, we ran 15 
dNdScv on all protein-coding genes in the genome using default arguments. Using q-values<0.01 
for all mutations (qglobal_cv<0.01) or for missense mutations separately (qmis_cv<0.01) 
identified eight significant genes. Only one gene, KRTAP5-3, had not been found in the analysis 
of the targeted genes and was not a known bladder cancer gene. The only mutations in the gene 
were 4 indels and close evaluation of the calls and the locus revealed that the KRTAP5-3 gene 20 
contains many small repeats and is prone to indel artefacts caused by misalignment, as suggested 
by a high density of indel calls at the locus in polymorphism datasets. This strongly suggested that 
KRTAP5-3 was not a genuine hit and this gene was filtered out. 
 
5.3 Driver discovery in bladder cancer patients 25 
 
To study the driver landscape in histologically-normal urothelium from the patients with bladder 
cancer, we first ran dNdScv as described above (methods S5.1) on targeted and exome data from 
these patients alone. This identified four genes under significant positive selection based on 
qglobal_cv<0.01 or qmis_cv<0.01: RBM10, ARID1A, RHOA and EEF1A1. Only EEF1A1 was not 30 
in the list of 17 genes under clear positive selection in normal urothelium from the transplant 
donors. However, its q-value in the transplant donors was just outside the conservative significance 
cut-off chosen in this study (qglobal_cv=0.0147, table S8).  
 
We also combined all microbiopsies of histologically-normal urothelium across the 15 transplant 35 
donors and the 5 patients with bladder cancer to increase the power for driver discovery. Using the 
cut-offs described in methods S5.1 yielded a very similar list of significant genes with stronger 
support for EEF1A1 and the addition of KMT2C, which was borderline significant but only under 
restricted hypothesis testing (q-value RHT = 0.0237). 
 40 
Altogether, the driver landscape in normal urothelium from the five patients with bladder cancer 
appeared similar to that of the 15 transplant donors. EEF1A1 and KMT2C emerged as likely drivers 
of clonal expansions in normal urothelium. 
 
Finally, to study the driver landscape in von Brunn’s nests and to determine whether they were 45 
driven by mutations in cancer genes, we ran dNdScv separately on 95 microbiopsies of von Brunn’s 
nests. There were only 91 unique mutations in the list of 321 targeted genes in these microbiopsies 
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and running dNdScv only identified ARID1A as near-significant (qglobal_cv=0.0303), with only 4 
mutations in the gene across the 95 microbiopsies. Global dN/dS ratios for the targeted genes were 
also modest in von Brunn’s nests, in line with those of normal urothelium.  
 
5.4 Estimation of the number of driver mutations 5 
 
dN/dS ratios can be used to estimate the excess of non-synonymous mutations compared to the 
neutral expectation, providing an estimate of the number of positively-selected mutations in a set 
of mutations (19). In this study, a conservative estimate of 385 (CI95%: 357, 401) driver mutations 
in the 17 genes detected under positive selection was obtained by calculating the excess of non-10 
synonymous substitutions and indels in them, using the approach described in (7). Confidence 
intervals for the excess of non-synonymous substitutions were calculated using the global dN/dS 
ratios obtained by Poisson regression in dNdScv. For consistency with the background model used 
in dNdScv, the predicted excess for indels was calculated by estimating the number of indels per 
coding base-pair in the 315 genes not detected as significant by dNdSloc. The six genes that were 15 
identified as significant by dNdSloc were: KMT2D, KDM6A, ARID1A, STAG2, RBM10 and 
EP300. Confidence intervals for the global observed/expected ratio for indels were calculated 
using the confidence interval for the ratio of two Poisson observations. 
 
5.5 Variation in selection between donors across genes 20 
 
This analysis was done as described in (7). To evaluate whether certain genes were under stronger 
positive selection in one individual than in others, we compared dN/dS ratios between donors using 
a Likelihood-Ratio Test for each gene in each donor. By using dN/dS ratios, this approach 
corrected for differences in the mutation density across genes caused by differences in sequencing 25 
coverage or mutational signatures, rather than selection. 
 
Let wg,1 and wg,2 be the maximum-likelihood estimates (MLEs) for the dN/dS ratios for gene g in 
datasets 1 (one particular individual) and 2 (all other individuals), respectively. Here we used 
MLEs from the dNdScv model as they combine local and global information to estimate the 30 
background mutation rate in a gene. We can test for higher dN/dS ratios in a gene in a given 
individual using a one-sided test with the following null and alternative hypotheses: 
 
H0: wg,1 ≤ wg,2 
H1: unconstrained wg,1 and wg,2 35 
 
However, higher dN/dS ratios in a given gene in an individual could also be due to stronger 
selection across all driver genes in the donor, rather than reflecting differences in relative selection 
between genes. Instead, we used a more conservative test by removing the effect of global 
differences in dN/dS ratios across the 17 driver genes identified in this study. Let w1 be the MLE 40 
of the global dN/dS ratio from all genes other than the gene being tested. We can then estimate a 
gene-specific relative enrichment of non-synonymous mutations over w1 as a multiplicative factor 
(w’g,1): wg,1=w1w’g,1. Based on this, a more conservative Likelihood-Ratio Test can be used to test 
for an enrichment of non-synonymous mutations in a gene in a donor compared to all other donors, 
while removing the effect of differences in mutational signatures and global differences in the 45 
signal of selection: 
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H0: w’g,1 ≤ w’g,2 
H1: unconstrained w’g,1 and w’g,2 
 
This test was used in Fig. 2G, running it on microbiopsies of normal urothelium (targeted and 5 
exome data) from the 15 transplant donors. The analysis was restricted to the 10 of the 17 driver 
genes that had ≥10 non-synonymous mutations in the dataset (list shown in Fig. 2G). After multiple 
testing correction using the Benjamini-Hochberg procedure, the following five gene-donor pairs 
were found to be significant (q-value<0.05): 
 10 
ARID1A in T06_59M (q-value=0.0042). 
KMT2D in T01_25F ( q-value=0.0042). 
KMT2D in T15_78F (q-value=0.024). 
RBM10 in T07_59M (q-value=0.024). 
KDM6A in T03_53F (q-value=0.043). 15 
 
Fig. 2G also suggests that the density of driver mutations varies across individuals, with 
individuals such as T12_70M having a seemingly lower fraction of coding mutations annotated as 
possible drivers. To test this formally, while accounting for the discrete number of mutations 
detected, we can use an overdispersion test. Specifically, we can use a likelihood ratio test with a 20 
null hypothesis stating that the fraction of all coding mutations that are annotated as drivers is the 
same across individuals (with binomial variation), and an alternative hypothesis where the relative 
density of driver mutations varies across individuals (beta-binomial model, with a beta distribution 
reflecting variation in driver density across individuals) (1 degree of freedom). The 
implementation of this test is available in the supplementary code. This analysis confirmed that 25 
the density of driver mutations varied significantly, independently of mutation burden, across the 
15 transplant donors (P-value=2.9e-5, likelihood ratio test).  
 
5.6 Germline mutations in genes differentially selected across donors 
 30 
Germline variants, including single-nucleotide polymorphisms (SNPs) and indels, were called 
with gatk-4.0.1.2 HaplotypeCaller. The functional impact of SNPs was annotated with Variant 
Effect Predictor (VEP, v97.3) using options --everything and --canonical. We kept variants with 
functional impacts classified as MODERATE or HIGH by VEP on canonical transcripts. 
 35 
To explore whether the high frequency of KDM6A mutations in T03_53F (Fig. 2, G and H) could 
be explained by the presence of some germline deleterious variation, we curated a collection of 
genes related to histone modifications, including histone demethylases (KDM2A, KDM4D, 
KDM4E, KDM5A, KDM2B, KDM8, KDM6B, KDM4B, KDM1A, KDM4A, KDM5B, KDM3A, 
KDM3B, KDM1B, KDM7A, KDM4C, KDM5C, KDM6A, KDM5D, RSBN1, HR, PHF2), histone 40 
binding (RBBP4, RBBP7), histone-lysine N-methyltransferases (KMT2A, KMT2D, KMT2B, 
KMT2E, KMT2C, DOT1L, SETD1B, SETD8, SETDB2, SETD3, SETD1A, SETD6, SETDB1, 
SETD4, SETD5, SETD2, SETD7, SETD9, EZH2, ASH2L), histone deacetylases (HDAC7, HDAC5, 
HDAC1, HDAC10, HDAC4, HDAC11, HDAC3, HDAC2, HDAC9, HDAC6, HDAC8), histone 
acetyl transferases (NCOA1, NCOA3, NCOA2, NCOA6, NCOA7, NCOA4, CLOCK, KAT5, 45 
KAT6A, CREBBP, KAT6B, KAT7, KAT2B, KAT8, KAT2A, ATF2), and other functionally related 
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genes (HCFC1, RBBP5, WDR82, WDR5, CXXC1, DPY30, PAXIP1, PAGR1). We searched for 
potentially deleterious variants in these genes, using VEP, SiFT and PolyPhen functional impact 
predictions.  
 
Similarly, we explored whether there were deleterious germline variants in the donor T06_59M 5 
that may explain the high frequency of ARID1A mutations in this individual (Fig. 2, G and I). We 
scanned the following functionally related genes: ARID1A, ARID1B, ARID2, ARID3A, ARID3B, 
ARID3C, ARID4A, ARID4B, ARID5A, ARID5B, SMARCA1, SMARCA2, SMARCA4, SMARCA5, 
SMARCAD1, SMARCAL1, SMARCB1, SMARCC1, SMARCC2, SMARCD1, SMARCD2, 
SMARCD3, SMARCE1, PHF10, PBRM1, and TERT. 10 

 
None of these analyses revealed a clear link between KDM6A and ARID1A mutation recurrence in 
T03_53F and T06_59M and germline deleterious variation. 
 
5.7 Mutation frequency and selection in bladder carcinomas from The Cancer Genome Atlas 15 
 
To determine the frequency of non-synonymous substitutions and indels in bladder cancer for the 
genes shown in Fig. 2D and Fig. 2E, we used the public MC3 mutation calls from TCGA for 411 
muscle-invasive bladder cancers. dNdScv was used to annotate coding variants (annotmuts output 
object) for these figures. 20 
 
Driver discovery on the list of 321 target genes was performed using dNdScv with default 
parameters, excluding genes found as significant by dNdSloc (q-value<0.05) from the indel 
background model of dNdScv (kc argument). Instead of running dNdScv on the 321 genes using 
the gene_list argument, dNdScv was run on the entire exome to use all available information and 25 
restricted hypothesis testing on the list of 321 target genes was used to obtain q-values restricted 
to the list of target genes. Genes with qglobal_cv<0.01 or qmis_cv<0.01 were considered as 
significant in bladder cancer for Fig. 2D, which yielded a list of 47 significant genes from the list 
of 321 targeted genes. Of these, 36 were already found as significant in (18) or (19). The full list 
of 47 significant genes (sorted by qglobal_cv and with genes not previously found to be significant 30 
in red) was the following: TP53, PIK3CA, FGFR3, CDKN2A, ARID1A, KDM6A, KMT2D, RB1, 
STAG2, ELF3, CDKN1A, ZFP36L1, TSC1, EP300, RHOB, CREBBP, FBXW7, KMT2C, RHOA, 
ERCC2, HRAS, ERBB2, FOXQ1, KRAS, ERBB3, PTEN, ARID2, KLF5, KMT2A, FAT1, FOXA1, 
EPHA2, RBM10, ATM, NFE2L2, ASXL1, HIST1H3B, GPS2, RUNX1, ARHGAP35, GATA3, NF1, 
ARID1B, FOXP1, ZNF750, BAP1 and NCOR1. 35 
 
5.8 Selection at putative antigenic regions 
 
To look for evidence of possible immune editing against mutant clones in normal urothelium, we 
searched for negative selection in putative antigenic regions. We used the dNdScv package to 40 
calculate dN/dS ratios in exonic regions overlapping putative antigenic sites, using a full 192-rate 
trinucleotide substitution model. We used three different sources of antigenic regions, following 
Eynden et al. and Zapata et al. (64, 65): 

(1) A large set of predicted HLA-binding regions from Eynden et al. (64), based on the 
harmonic mean of Kd values for 6 common HLAs (using a cut-off of 500nM on the 45 
harmonic mean). These regions extend ~22% of the exome. 
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(2) All epitopes in the Immune Epitope Database and Analysis Resource (IEDB) mapped to 
the hg19 assembly of the human genome by Eynden et al. (64). 

(3) The intersection of the two sets of regions above, similar to the approach used by Zapata 
et al. (65). 

 5 
All dN/dS ratios for missense and truncating mutations in the three sets of regions above were 
close to and not significantly different from 1, in line with the observation in cancer genomes from 
(64). This analysis revealed no clear evidence of immune editing acting on mutant clones in normal 
urothelium. However, we note that lack of evidence does not demonstrate lack of immune editing. 
Larger datasets and improved prediction of antigenic sites will be required for a more detailed 10 
analysis. 
 
 
6. Mutational signatures 
 15 
6.1 De novo signature extraction 
 
De novo extraction of mutational signatures was performed using a Bayesian hierarchical Dirichlet 
process (66) implemented in the HDP R package (https://github.com/nicolaroberts/hdp). The units 
of signature extraction were substitutions called in whole-genomes derived from microbiopsies of 20 
urothelium and von Brunn’s nests for both transplant donors and cystectomy patients. Substitutions 
were classified by mutation type (annotated from the pyrimidine base) and trinucleotide context. 
For the duplicate and triplicate whole-genomes (methods S2.3), unique mutations from each set of 
samples were treated as a single sample to avoid double counting of mutations. No prior signatures 
were assigned to frozen nodes. The hyperparameters for the α clustering parameter (α and β) were 25 
both set to 1. Extraction was started with 10 data clusters (parameter ‘initcc’). The first 20,000 
iterations of the Gibbs sampler were not collected (parameter ‘burnin’) after which 100 posterior 
samples were collected (parameter ‘n’) at intervals of 1000 iterations (parameter ‘space’). After 
each Gibbs sampling iteration, three iterations of concentration parameter sampling were 
performed (parameter ‘cpiter’). The results from 10 chains with different seeds were combined for 30 
signature extraction. Clusters with cosine similarity >0.9 were merged. Clusters with no significant 
data categories were combined into a null signature. 
 
In addition to the null signature, nine signatures were extracted (fig. S5). The four most abundant 
signatures accounted for >89% of mutations. As the remaining five signatures only accounted for 35 
a small proportion of mutations (each <3%), these were excluded from further analyses and any 
mutations assigned to these low abundance signatures were binned alongside the null signature 
mutations into the “Unassigned mutations” category in Fig. 3D and fig. S14C. 
 
6.2 Alternative approaches for signature extraction 40 
 
In addition to de novo signature extraction with HDP we performed signature extraction in three 
complementary ways: 

(1) Non-negative matrix factorization (NMF) using SigProfiler. 
(2) HDP conditioning the algorithm on known bladder cancer signatures as priors. 45 
(3) HDP de novo combining all genomes of normal urothelium with 23 published bladder 

cancer genomes from the PCAWG consortium. 
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Non-negative matrix factorization (NMF) using SigProfiler. In order to determine whether the 
signatures identified by HDP were robust, we also performed de novo signature extraction using 
SigProfiler (29) (https://github.com/cancerit/docker-sigprofiler). Unlike HDP, signature extraction 
with SigProfiler is based on non-negative matrix factorization. The same samples were used for 5 
de novo extraction with SigProfiler as for HDP, with duplicate and triplicate samples collapsed as 
described in methods 6.1. The upper bound for the number of signatures extracted by SigProfiler 
was set to 10. Assessment of the stability and accuracy of the possible solutions identified the most 
likely solution to be four extracted signatures. 
 10 
The four signatures extracted with SigProfiler are nearly identical to those extracted by HDP. 
Cosine similarities between SigProfiler’s and HDP’s signatures were 0.99 for signature A, 0.997 
for signature B, 0.98 for signature C and 0.997 for APOBEC (fig. S7A). This confirms that the 
results presented in the main text are not contingent on the use of HDP. 
 15 
HDP conditioning the algorithm on known bladder cancer signatures as priors. In addition to de 
novo signature extraction, we also ran HDP after conditioning the algorithm with signatures 
previously identified in bladder cancer. An analogous approach was used for signature extraction 
in normal colorectal epithelial cells by Lee-Six et al. (9). We conditioned HDP with the four single-
base substitution signatures identified in ≥10% bladder cancers (COSMIC signatures version 3; 20 
https://cancer.sanger.ac.uk/cosmic/signatures)(29): SBS1, SBS2, SBS5 and SBS13. A weighting 
of 10,000 pseudocounts was used for each of these signatures to provide a strong prior. The 
pseudocount nodes are frozen, such that the pseudocounts are unable to leave their initial clusters 
during the Dirichlet process, but counts from the dataset may join these clusters. Sampling 
parameters for HDP are as described in methods 6.1. 25 
 
The use of a strong prior was designed to facilitate the detection of signatures previously identified 
in bladder cancer genomes, as well as to help separate putative novel signatures from already 
known signatures. This analysis yielded the same four dominant signatures in normal urothelium 
identified de novo by HDP and SigProfiler, with the exception of splitting the APOBEC signature 30 
into its two components (SBS2 and SBS13). Cosine similarities between HDP using priors and 
HDP de novo were 0.999 for signature A, 0.998 for signature B, and 0.999 for signature C (fig. 
S7D). Importantly, signatures A, B and C, were stably extracted as separate from SBS5 and SBS1. 
This analysis also suggests that SBS5 is likely present in modest quantities in normal urothelium. 
If we use the stringent criterion used in the main text, where a signature is only reported in a sample 35 
if its 95% credibility interval does not extend to zero, SBS5 is only detected in four genomes of 
normal urothelium (only two genomes excluding samples from patients with bladder cancer) (fig. 
S7B). If we use a more liberal approach, accepting mutational signature attributions independently 
of their credibility intervals, a small minority of mutations in most samples of normal urothelium 
may be attributable to SBS5 (fig. S7C). Overall, this analysis confirms that the four main signatures 40 
described in the main text are stably extracted despite the use of strong priors and appear largely 
separate from SBS5. 
 
HDP de novo combining all genomes of normal urothelium with 23 published bladder cancer 
genomes from the PCAWG consortium. An alternative approach of utilizing pre-existing 45 
information to identify signatures in normal tissues is to include previously sequenced cancer 
genomes as samples in de novo signature extraction, as in Brunner et al. (10). Therefore, we also 
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ran HDP including the 23 PCAWG bladder cancer samples. In order to maximize their weighting, 
cancer samples were assigned to the same parent node as the normal urothelium samples. Sampling 
parameters for HDP are as described in methods 6.1. 
 
This analysis yielded very similar results to those presented in the main text. The four commonest 5 
mutational signatures in samples of normal urothelium were analogous to the four signatures in 
the main text. APOBEC was partially split into two components. Cosine similarities between HDP 
using PCAWG bladder cancer genomes and HDP on normal urothelium alone (main text) were 
0.98 for signature A, 0.99 for signature B, and 0.997 for signature C (fig. S8). Two signatures with 
partial resemblance to SBS5 (cosine similarity 0.86) and SBS1 (cosine similarity 0.91) together 10 
with a C>A-rich signature, contributed a modest number of mutations across normal urothelium 
genomes. 
 
Overall, the four alternative approaches used to extract mutational signatures in this manuscript 
yielded similar results, identifying the four signatures in the main text as the most dominant 15 
signatures in normal urothelium. In additional, smaller contributions from other signatures, 
particularly SBS5, appear likely. Signature C has an interesting profile with distinct peaks of T>A 
and T>G at ATT sites. As noted in methods S6.5, the transcription strand asymmetry of these 
peaks appears opposite to that of T>C mutations in this signature, raising the possibility of 
incomplete separation from signature A, although an unambiguous assessment was not possible 20 
due to the overlap with signature A. Ultimately, larger datasets of bladder cancer genomes and of 
normal urothelium would be expected to expand and refine the signatures extracted above. 
 
6.3 Comparison to reference signatures 
 25 
In addition to de novo signature extraction, the closest fit from linear combinations of signatures 
previously described in cancer genomes (67) was identified using the DeconstructSigs R package 
(68) for the urothelium and von Brunn’s nests whole-genomes from transplant donors and 
cystectomy patients. When all previously described signatures were used (fig. S5A), a substantial 
proportion of mutations were attributed to signatures rarely observed in bladder cancer (such as 30 
SBS12, SBS16 and SBS19). Alternatively, when signature fitting was carried out solely using 
signatures frequently observed in bladder cancer (SBS1, SBS2, SBS3, SBS5 and SBS13), the best 
fit often had a low cosine similarity with the observed mutational spectra. In conjunction, these 
two results suggest that signatures not previously described in bladder cancer were present in 
normal urothelium. 35 
 
The four main extracted signatures (methods S6.1) were fitted to previously described cancer 
signatures using the DeconstructSigs R package (68). For each of the four extracted signatures, 
mutation spectra were simulated using 1,000,000 mutations and the closest fits were identified for 
linear combinations of individual, pairs, triplets or an unlimited number of signatures previously 40 
extracted from the PCAWG data using SigProfiler (67) (fig. S6A). This process was repeated for 
the signatures extracted from the PCAWG data using SigAnalyzer (67) (fig. S6B). 
 
Cosine similarities were calculated across the 96 trinucleotide mutation contexts (i) between the 
extracted signatures (A) and the fitted linear combinations (B) as follows: 45 
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(Eq. 3) 

 
 
 5 
6.4 Mutational signature analysis in bladder cancer genomes 
 
In order to determine whether there was any evidence for the presence of the novel extracted 
signatures in bladder cancers, we used the DeconstructSigs R package (68) to fit linear 
combinations of signatures previously identified in bladder cancer (SBS1, SBS2, SBS3, SBS5 and 10 
SBS13) and the three novel extracted signatures (Signatures A, B and C) to 23 bladder cancers 
from the PCAWG dataset (fig. S6C). 
 
Comparable results were also obtained by re-running HDP with the PCAWG bladder cancer 
genomes as additional samples (methods S6.1). This alternative approach identified Signature A 15 
as contributing >20% mutations in PCAWG samples 1, 4, 7 and 20, as well as >50% mutations in 
PCAWG sample 9. By contrast, none of the PCAWG samples had >20% of their mutations 
attributable to either Signature B or Signature C. 
 
6.5 Transcriptional and replicational strand asymmetries 20 
 
Mutations within gene bodies were annotated as to whether the pyrimidine base was located on 
the template or coding strand. Gene co-ordinates were obtained from the RefSeq database (69). 
Mutations occurring at loci where transcription occurs from both strands were excluded. 
Additionally, as the trinucleotide composition of exonic regions differs from the genome-wide 25 
trinucleotide composition, only mutations within introns were used for identifying transcriptional 
strand asymmetries. 
 
The probability, p, that a particular mutation, i, could be assigned to a given signature, j, in genome 
k was calculated as follows: 30 
 

 
(Eq. 4) 

 
where wj,k is the proportion of mutations assigned to signature j in genome k by HDP (methods 35 
S6.1) and fi,j is the fraction of mutations in signature j that are the same substitution type and occur 
at the same trinucleotide context as mutation i. 
 
Mutation assignment probabilities were used in two different ways for analyzing transcriptional 
strand asymmetries: 40 
 

(1) For some analyses, only mutations with an assignment probability >0.7 were included (fig. 
S9, A-D and I-L). Advantages of this approach are that Poisson tests can readily be applied 
to mutation counts and it reduces issues caused by bleed-through of overlapping signatures. 
However, a disadvantage of this approach is that the exclusion of ambiguous mutational 45 
contexts means that the catalogue of analysed mutations can differ substantially from the 
complete extracted signature, as exemplified by the lack of non-C>T mutations in fig. S9B. 
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(2) Alternatively, mutation assignment probabilities can be summed together (fig. S9, E to H). 

The resultant profile closely matches the extracted signature but bleed-through of 
overlapping signatures can give seemingly contradictory results, as exemplified by the T>C 
mutations appearing to have the opposite asymmetry to T>A and T>G mutations for 5 
Signature C in fig. S9H. 
 

For the analysis of transcriptional asymmetry in highly vs. lowly expressed genes (fig. S9, I to L), 
genes in the top and bottom expression quartiles of the PCAWG bladder cancer expression data 
were compared. Transcribed regions were identified according to Ensembl gene annotations, with 10 
regions 10 kb upstream and downstream of genes used as controls. Mutation rates were calculated 
by dividing mutation counts from the template strand by the number of bases of that type in the 
region. Significant differences between template and coding strands were assessed using Poisson 
tests. Confidence intervals were calculated using binomial tests. 
 15 
Analyses of replicational strand asymmetries and extended nucleotide contexts both used the per 
mutation assignment probabilities described above. The threshold approach was used in fig. S10, 
A-D and I-L, and the sum of assignment probabilities approach was used in fig. S10, E to H. The 
assignment of mutations to left- and right-replicating regions was performed using previously 
defined classifications of genomic regions (70). 20 
 
6.6 Detection of APOBEC mutagenesis in exomes 
 
To determine whether there was statistical evidence of APOBEC mutagenesis in individual 
exomes, we modeled the mutations observed in each exome as being multinomial draws from a 25 
mixture of the four mutational signatures found in this study. Since these mutational signatures 
were identified from whole-genome data, we used the genome-to-exome normalization from the 
DeconstructSigs R package (68). An Expectation-Maximization algorithm was then used to 
estimate the maximum-likelihood contribution of each signature, as described in (19). A 
Likelihood-Ratio Test was constructed by calculating the likelihood of explaining the mutations 30 
in each exome using either three signatures (Signatures A-C) or four signatures (Signatures A-C 
and APOBEC), using the multinomial density function (dmultinom in R). Multiple testing 
correction was performed using the Benjamini-Hochberg procedure and exomes with q-
values<0.05 for the presence of APOBEC were considered APOBEC-positive for the analyses 
shown in the main text. 35 
 
6.7 Spatial clustering of APOBEC-positive clones 
 
Analysis of the spatial clustering of APOBEC-positive clones was initially restricted to the 437 
exomes of histologically-normal urothelium from transplant donors that were derived from 40 
microbiopsies containing a single cut and had had their position annotated on a SlideScanner image 
(table S2). In order to avoid double-counting clones that spanned multiple microbiopsies, samples 
which shared ≥5 mutations were identified. Exomes were iteratively excluded from networks of 
shared samples until none of the remaining samples shared ≥5 mutations by applying the following 
hierarchical filters: 45 
 

(1) Exclude the most connected sample in the network 
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(2) Exclude the sample that has the fewest other microbiopsies from the same section 
remaining 

(3) Exclude the first sample alphabetically 
 
After excluding duplicate samples, 362 exomes remained. Exomes were classified as APOBEC-5 
positive or APOBEC-negative as described above (methods S6.6). Microbiopsies from the same 
section and with a Euclidean distance ≤1 mm between the centroids of their SlideScanner 
annotations were classified as neighbors. Of the 362 non-duplicate samples, 274 had at least one 
neighbor. For the 51 APOBEC-positive clones with neighbors, the proportion of neighbors that 
were also APOBEC-positive was calculated. The observed average proportion of neighbors of 10 
APOBEC-positive clones that were also APOBEC-positive was 0.13. 
 
Labels indicating whether a microbiopsy was APOBEC-positive or APOBEC-negative were 
randomly permuted between samples from the same transplant donor (including samples with no 
neighbors). The average proportion of APOBEC-positive neighbors for APOBEC-positive clones 15 
with neighbors was calculated for 10,000 iterations of this permutation test. No evidence was 
found for a higher degree of spatial clustering of APOBEC-positive samples than expected by 
chance (fig. S13). 
 
6.8 Statistical association between mutational signatures, smoking and alcohol consumption 20 
 
To test for possible associations between the four mutational signatures and smoking or alcohol 
consumption history, we used linear mixed-effect regression models (lme4 package in R). The 
relative contribution of each signature was used as the response variable, smoking or alcohol 
consumption history were used as fixed effects, and a random effect was used for the intercept 25 
across individuals. Unlike simpler regression models, the use of a random intercept model controls 
for the non-independence of multiple genomes per individual. 
 
Smoking history was available for all 20 individuals in the study (Table S1). We used two 
alternative regression models on smoking history: (1) using a binary classification (heavy smoker, 30 
defined as >10 pack-years, and never/low-smokers, defined as ≤5 pack-years), and (2) using pack 
years. Alcohol consumption history was only available for the 15 transplant donors and was 
encoded into three levels for the regression analysis (1: none or rare, 2: light or moderate, 3: heavy) 
(Table S1). 
 35 
The R code used for this analysis is available within the supplementary code provided, but for 
illustrative purposes the pseudocode for the regression models on: (1) binary smoking history, (2) 
pack years, and (3) alcohol consumption, is shown below: 
 
lmer(signaturefraction ~ donortype + gender + smokingbinary + (1|donorID), REML=F) 40 
lmer(signaturefraction ~ donortype + gender + packyears + (1|donorID), REML=F) 
lmer(signaturefraction ~ smokingbinary + gender + alcohol + (1|donorID), REML=F) 
 
P-values for the association with smoking and alcohol history were obtained using likelihood-ratio 
tests (anova function). These analyses revealed a significant positive association between signature 45 
A and smoking history, both using the binary classification (P-value=9.4e-5) and pack years (P-
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value=0.0033) (fig. S11). No other signature showed a significant association with either smoking 
or alcohol history (all P-values>0.05). 
 
 
7. Comparison of normal urothelium between transplant donors and bladder cancer 5 

patients 
 
It should be noted that this dataset was not adequately powered to identify modest epidemiological 
associations, as our cohort included only 20 patients and there was extensive inter-individual 
variation in mutation burden and selection. We include these analyses here for completeness, but 10 
they should be considered preliminary analyses with limited statistical power. Much larger cohorts 
will be needed to study differences in the mutational landscape as a function of epidemiological 
factors.  
 
To explore whether there were differences in mutation burden and allele fractions in histologically-15 
normal urothelium between transplant donors and patients with bladder cancer, or as a function of 
smoking history or gender, we used linear mixed-effect models. We used the lme4 package in R 
to fit different mixed-effects regression models with different fixed effects and a random effect for 
the intercept across donors. Unlike simpler regression models, the use of this random intercept 
model controls for the non-independence of multiple microbiopsies per donor. 20 
 
Before applying the regression models, we removed the confounding effect of variable sequencing 
coverage across microbiopsies and across donors using in silico subsampling of the mutation calls. 
Microbiopsies with a median on-target coverage after PCR duplicate removal ³30x in ³80% of 
the target regions were included in this analysis. For each mutation call, 30 reads were selected at 25 
random and mutation calls supported by <4 reads were removed. This largely removes differences 
in coverage across samples, ensuring a uniform coverage of ~30x across microbiopsies and donors. 
After in silico subsampling, the number of mutations per exome and their mean VAF were used 
as outcome variables for the regression models below. Although age could be included as a 
confounding factor in the regression model, this would rely on certain assumptions about the shape 30 
of the relationship between age and the outcome variables. Instead, we excluded from the analysis 
the two youngest transplant organ donors, which resulted in similar ages for transplant donors 
(mean 64.4 years) and patients with bladder cancer (mean 64.8 years). In total, we used data from 
421 exomes across 16 individuals (two of the 18 middle-age or elderly individuals did not have 
any exomes with sufficient coverage after in silico subsampling). 35 
 
To test for differences in mutation burden or mean VAFs between transplant donors and patients 
with bladder cancer, we used the following regression models (R code): 
 
model = lmer(mutperexome ~ patient_type + gender + smokingclass + (1|patient), REML=F) 40 
model = lmer(meanvafperexome ~ patient_type + gender + smokingclass + (1|patient), 
REML=F) 
 
patient_type indicated whether the patient was a transplant donor or a patient with bladder cancer. 
smokingclass was a binary variable indicating whether the patient was a heavy smoker (³10 pack 45 
years) or a moderate/never smoker (<10 pack years). A simple binary classification for the 
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smoking history was chosen given the modest size of the cohort, but this analysis should be 
considered preliminary, as mentioned above. 
 
The likelihood of the regression model above was then compared to the likelihood of a null model 
without patient_type as predictor using an ANOVA test. This yielded a P-value=0.00682 for the 5 
difference in the number of mutations per exome in patients with bladder cancer vs transplant 
donors (fig. S14), and P-value=0.000481 for differences in mean VAFs (suggesting significantly 
larger clone sizes in patients with bladder cancer). 
 
Using analogous tests, no significant effects were found for smokingclass (P-value=0.166 and P-10 
value=0.135, respectively) or gender (P-value=0.235 and P-value=0.339, respectively). However, 
as discussed above, larger datasets may be expected to detect significant effects for these variables, 
given their association with bladder cancer risk. 
 
To test for differences in driver density, we used a regression model using the number of driver 15 
mutations per exome after subsampling as the outcome variable. In particular, we used the number 
of non-synonymous mutations in any of the 17 driver genes as the outcome variable in a negative 
binomial regression (MASS R package) using the number of samples as the offset and age and 
patient_type as predictors. This analysis yielded a P-value=0.069 (nominally lower density of 
driver mutations in normal urothelium from patients with bladder cancer, although this difference 20 
was not significant). Again, much larger cohorts of patients will be required to test this accurately, 
as the subsampled dataset only contained four patients with bladder cancer. 
 
 
8. Phylogenetic reconstruction 25 
 
In order to identify early embryonic mutations, we ran CaVEMan in “unmatched” mode. Instead 
of using a matched normal, we used a synthetic sample (PDv37is), thus avoiding filtering out early 
embryonic mutations that may also be present in a matched normal sample and so would be 
incorrectly identified as germline variants. Calls were retained if they passed the default CaVEMan 30 
filters, as well as if the median number of clipped bases for reads supporting the variant was <5 
and the median alignment score for supporting reads was >125. Identification of early embryonic 
mutations was restricted to samples that did not carry large copy number alterations, as these would 
impact the performance of subsequent filters (such as the overdispersion filter). 
 35 
In order to distinguish bona fide early embryonic variants from germline variants and artefacts, we 
ran cgpVAF (https://github.com/cancerit/vafCorrect) to obtain read counts for each of the 
mutations called using unmatched CaVEMan across all samples from the same donor. Mapping 
and base qualities >30 were required for reads to be counted by cgpVAF. Sites with a global 
coverage lying outside of the 5th to 95th percentile were excluded as likely problematic regions. 40 
Variants with a global VAF >0.4 (or >0.8 for variants on the sex chromosomes in males) were 
filtered as germline SNPs. We required each putative early embryonic variant to be supported by 
≥3 reads in ≥2 samples. We fitted a beta-binomial distribution to each call to estimate the 
overdispersion across samples, as germline variants and artefacts are likely to show low 
overdispersion, whereas true embryonic mutations will show higher overdispersion. We 45 
empirically found that the overdispersion threshold log(ρ) > -2 properly separated noise from true 
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variation. This processing resulted in 20 and 35 early embryonic calls in C03_67M and C04_72M, 
respectively (fig. S16). 
 
To call non-embryonic somatic mutations, we followed the approach described above (methods 
S3.2). We used cgpVAF to obtain the counts of reads supporting the mutant and reference bases 5 
across all samples and mutations. For each sample, we calculated the mean VAF across all sites 
with ≥2 mutant reads. To build the tree we selected clonal or nearly clonal samples, requiring that 
the mean VAF was ≥0.25. For carcinoma in situ and tumor samples, we instead required that the 
aberrant cell fraction calculated by ASCAT was ≥50%, as the high level of copy-number 
alterations meant that mean VAF was not a reliable estimator of clonality. 10 
 
Early embryonic and non-embryonic somatic calls were combined together for the clonal samples. 
To binarize the VAF matrix into an absent/present mutation matrix, we required the VAF to be 
>0.15 for variants to be considered present. VAFs between 0.05 and 0.15 were assigned an 
unknown status. Otherwise, the mutation was flagged as absent. This was done to reduce noise 15 
due to residual artefacts or low frequency embryonic mutations. We used the resulting binarized 
matrix to estimate a maximum parsimony tree using the phangorn R package (71). We applied the 
pratchet method to find the best topology (72) and the acctran method to estimate branch lengths. 
 
We assigned SNVs and DNVs to branches using a maximum likelihood approach. To estimate the 20 
contribution of SNV signatures A, B, C, and APOBEC to each branch of the resulting tree, we 
used R package DeconstructSigs (68). The resultant trees were annotated for non-synonymous 
mutations occurring in a set of 75 genes of interest. This set of genes consisted of bladder cancer 
drivers found in (19), TCGA-bladder (18), and this study. For the branch shared by the tumor and 
the CIS in C03_67M, we also annotated high impact mutations in KDM3A and EPHB1 (Fig. 4D). 25 
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Fig. S1. Comparison of mutations called across sequencing strategies.  
(A to C) Comparison of substitutions called in exome and targeted sequencing data. Substitutions 
were called using ShearwaterML for targeted sequencing and CaVEMan for exome sequencing. 
(A) Venn diagram for all substitutions called within the overlap of the exome and targeted capture 
regions from libraries that underwent both exome and targeted sequencing. (B) Venn diagram for 5 
substitutions with VAF ≥ 0.15 in either exome or targeted sequencing data. (C) Scatter plot 
comparing VAFs for exome and targeted substitutions. (D to F) Comparison of indels called in 
exome and targeted sequencing data. Indels were called using ShearwaterML for targeted 
sequencing and cgpPindel for exome sequencing. Panel descriptions are the same as A to C for 
indels rather than substitutions. To account for inconsistencies in the assignment of indel positions 10 
in repetitive sequences, a 20 bp window around the reported position was used when determining 
whether an indel was present in both exome and targeted calls. (G to I) Comparison of substitutions 
called in whole-genome and targeted sequencing data. Substitutions were called using CaVEMan 
for whole-genome sequencing. Panel descriptions are the same as A to C for whole-genome 
sequencing rather than exome sequencing. (J to L) Comparison of indels called in whole-genome 15 
and targeted sequencing data. Indels were called using cgpPindel for whole-genome sequencing. 
Panel descriptions are the same as A to C for indels rather than substitutions and for whole-genome 
rather than exome sequencing. 
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Fig. S2. Clonal expansions. 
(A) Sharing of mutations across microbiopsies. Histogram showing the proportion of mutations 
that were detected in 1, 2, 3 or ≥4 microbiopsies within a given section for histologically-normal 
urothelium from transplant donors and bladder cancer patients, as well as for carcinoma in situ 5 
microbiopsies. Only sections containing ≥4 microbiopsies were included in this analysis. (B) 
Estimated clone lengths (µm) for putative drivers and putative passenger mutations. Putative driver 
mutations liberally include all non-synonymous mutations in the 17 positively-selected driver 
genes. Putative passenger mutations include any mutation in non-significant genes from samples 
without a putative driver mutation (to minimize the risk of hitchhiking with drivers). Horizontal 10 
green bars depict the means and error bars the confidence intervals for the means (obtained by 
bootstrapping). Dashed line represents the mean for passenger mutations. q-values were calculated 
with a permutation test using the mean as the statistic (to be sensitive to large clones) with 100,000 
permutations. Only significant genes (q-value<0.1) are shown as separate genes in the figure. 
  15 
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Fig. S3. Distribution of mutations within selected genes. 
In panels A-F, the distribution of independent mutations within genes are shown for histologically-
normal urothelium (top) and bladder cancer data from The Cancer Genome Atlas (middle) above 
a gene domain diagram (bottom). The number of bins (50) is constant for each gene and so the bin 5 
width is variable between genes. (A and B) Mutations are distributed throughout the gene bodies 
of KMT2D and KDM6A and there is a large number of nonsense mutations, consistent with these 
genes acting as tumor suppressor genes in bladder cancer. (C and D) Similar mutation distributions 
are seen for the homologues EP300 and CREBBP, with enrichment of mutations in the histone 
acetyltransferase domain apparent in both for histologically-normal urothelium. (E and F) 10 
Enrichment of mutations at oncogenic hotspots and a lack of truncating mutations in RHOA and 
ERCC2. 
 
 

15 
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Fig. S4. Additional selection analyses. 
(A) Results from the statistical pigeonhole principle analysis (methods S4.4). Each plot 
corresponds to a different microbiopsy and so only nine unique clones are shown as the same clone 5 
is identified for T12_70M_b01_lo0011 and T12M_70M_b01_lo0030. Bladder cancer driver genes 
are highlighted in green. (B). dN/dS ratios on all non-driver genes (whole-exome) and in putative 
antigenic regions using three different definitions: antigenic sites using the harmonic mean across 
6 common HLAs (from (64)), immune epitopes from the Immune Epitope Database and Analysis 
Resource (IEDB) (from (64)), and the intersection of both of the above. All confidence intervals 10 
include 1, revealing not clear evidence of immune editing of mutant clones. (C) The presence of 
non-synonymous mutations from the combined targeted and exome calls are shown across 
microbiopsies for genes identified as drivers in this study and for other genes known to be drivers 
in bladder cancer. Redundant mutations caused by sequencing the same library by both exome and 
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targeted sequencing are excluded. However, redundancies caused by sequencing the same stretch 
of urothelium from adjacent sections are not excluded in this representation. Driver genes are 
sorted by the number of mutations detected in histologically-normal urothelium (above line) or by 
the frequency with which they are mutated in The Cancer Genome Atlas data (below line). 
Microbiopsies are sorted by donor type, donor age and then by the presence of mutations in 5 
successive genes in the driver gene list.  
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Fig. S5. Discovery of mutational signatures with HDP de novo. 
(A) Heatmap depicting the linear combination of previously described cancer mutational 
signatures (67) identified as the best fit by DeconstructSigs (68) for 80 urothelium and von Brunn’s 
nests whole-genomes (methods S6.3). (B) The number of mutations assigned to the null signature 
and the nine signatures extracted by HDP (methods S6.1). Each circle corresponds to a different 5 
collected iteration, colored by which of the ten chains initialized with a different seed they are 
derived from. (C to L) Trinucleotide mutational profiles for the null signature and the nine 
signatures extracted by HDP. Error bars depict 95% credibility intervals. 
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Fig. S6. Matching extracted de novo mutational signatures to reference signatures. 
(A and B) Results of fitting the four most abundant extracted signatures from this study to the two 
catalogues of mutational signatures (extracted using SigProfiler and SigAnalyzer respectively) 
previously identified from the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset (67). 
Signature fitting was performed using DeconstructSigs (68) (methods S6.3). Cosine similarity 5 
(top) and linear combination of signatures (bottom) is shown for fitting to an unlimited number, 1, 
2 or 3 previously described signatures. The dashed red line corresponds to a cosine similarity of 
0.95. (C) Heatmap depicting the linear combinations of mutational signatures observed in bladder 
cancer (67) or described here that are the best fits for 23 bladder cancer genomes from the PCAWG 
dataset (67) (methods S6.4). (D and E) Mutational spectra for the two PCAWG bladder cancer 10 
genomes identified as having the highest proportion of Signature A mutations.  
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Fig. S7. Alternative mutational signature extraction with SigProfiler and HDP with priors. 

(A) Mutational spectra of the four signatures extracted de novo using non-negative matrix 
factorization (SigProfiler) (methods S6.2). (B) Number (top) and proportion (bottom) of mutations 
assigned to the four most abundant signatures extracted using a HDP with priors (methods S6.2) 
for urothelium and von Brunn’s nest genomes from transplant donors and bladder cancer patients. 5 
Only signatures whose 95% credibility interval does not extend to zero are represented here, as in 
Fig. 3D. (C) Proportion of mutations assigned to each signature including signatures with 
credibility intervals extending to zero. This reveals a possible low level contribution of SBS5 
across most samples. (D) Mutational spectra of the six signatures extracted using HDP with priors 
(methods S6.2).  10 
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Fig. S8. Alternative mutational signature extraction with HDP and bladder cancer genomes. 

(A) Number (top) and proportion (bottom) of mutations assigned to the eight most abundant 
signatures extracted using a HDP de novo on normal urothelium and 23 bladder cancer genomes 
from the PCAWG consortium (methods S6.2). Only signatures whose 95% credibility interval 
does not extend to zero are represented here, as in Fig. 3D. (B) Mutational spectra of the eight 5 
signatures extracted using HDP de novo combining normal urothelium and PCAWG bladder 
cancer genomes (methods S6.2). 
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Fig. S9. Transcriptional strand asymmetries of mutational signatures. 
(A to D) Transcriptional strand asymmetries across mutation types for the four main mutational 
signatures. Only mutations with an assignment probability >0.7 are included (methods S6.5). 
Mutation types are annotated by the template strand base. Significant results from Poisson tests 
adjusted for multiple testing correction using Benjamini & Hochberg’s False Discovery Rate are 5 
indicated. (E to H) Sum of assignment probabilities across trinucleotide contexts, split by whether 
the pyrimidine is on the template or coding strand, for the four main mutational signatures. (I to 
L) Characterization of transcriptional strand asymmetries from the three novel signatures in 
highly- (above) and lowly-expressed (below) genes and their flanking sequence (methods S6.5).  
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Fig. S10. Replicational strand asymmetries and extended contexts of mutational signatures. 
(A to D) Replicational strand asymmetries across mutation types for the four main mutational 
signatures. Only mutations with an assignment probability >0.7 are included (methods S6.5). 
Mutation types are annotated by the lagging strand base.  Significant results from Poisson tests 5 
adjusted for multiple testing correction using Benjamini & Hochberg’s False Discovery Rate are 
indicated. (E to H) Sum of assignment probabilities across trinucleotide contexts, split by whether 
the pyrimidine is on the lagging or leading strand, for the four main mutational signatures. (I to L) 
Extended nucleotide context for four main mutational signatures. The proportion of bases for the 
10 nt either side of the mutated pyrimidine are shown. Only mutations with an assignment 10 
probability >0.7 are included. 
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Fig. S11. Statistical association between signature A and smoking history. 
(A) Boxplot representation of the fraction of mutations assigned to signature A per genome (with 
multiple genomes per individual represented as separate data points), classified according to 5 
smoking status (heavy smoker is defined as >10 pack-years, and never/low is defined as ≤5 pack-
years). (B) Analogous boxplot representation of the mean relative contributions of signature A per 
individual. (C) Scatter plot of the relative contribution of signature A per genome as a function of 
pack years. Every dot represents a genome and each individual is represented in a different color. 
Mixed-effect regression revealed a significant association between binary smoking status and 10 
signature A (linear mixed-effect regression P-value=9.4e-05) and between pack years and 
signature A (linear mixed-effect regression P-value=0.0033) (methods S6.8). 
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Fig. S12. Characterization of ERCC2-mutant clone. 
(A) Histology image depicting stretch of urothelium containing the ERCC2-mutant clone 
identified in transplant donor T04_55M. (B) Mutational spectrum for the ERCC2-mutant clone. 
(C) Transcriptional asymmetry plot for the ERCC2-mutant clone.  5 
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Fig. S13. Permutation test for the spatial clustering of APOBEC-positive clones. 
Histogram depicting the distribution obtained from the spatial clustering of APOBEC permutation 
test (methods S6.7). Red line indicates the observed proportion of neighbors of APOBEC-positive 
exomes that were also APOBEC-positive. 5 
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Fig. S14. Mutation burden, VAFs and signatures in bladder cancer patients. 
(A and B) Box and whisker plots showing the number of mutations and the mean VAFs per exome 
in histologically-normal urothelium for bladder cancer patients and transplant donors. 
Subsampling was performed to account for differences in coverage (methods S7). (C) Extended 5 
version of Fig. 3D showing the number (top) and proportion (bottom) of mutations assigned to the 
four most abundant signatures extracted using a Bayesian hierarchical Dirichlet process (methods 
S6.1) for urothelium and von Brunn’s nest genomes from transplant donors and bladder cancer 
patients.   
  10 
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Fig. S15. Immunohistochemistry of p53. 
(A, C and E) H&E-stained sections containing regions of carcinoma in situ and tumor for three 
biopsies taken from two bladder cancer patients (C04_72M and C03_67M). (B, D and F) 
Immunohistochemistry of p53 for matched sections. Staining is observed in the carcinoma in situ 5 
regions for C04_72M, due to the presence of a stabilizing TP53 R175H mutation that is shared 
across the biopsies. No staining is seen in the tumor region for C03_67M, as in this case TP53 is 
instead inactivated by a nonsense mutation (E343*).  



Submitted Manuscript: Confidential 

77 
 

 

 

Fig. S16. Heatmaps of early embryonic mutations from cystectomy phylogenies. 
(A and B) Heatmaps depicting the VAFs of early embryonic mutations identified in specimens 
used for phylogenetic reconstruction from two bladder cancer patients (methods S8). 5 
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Fig. S17. Dinucleotide variants in cystectomy phylogenies. 
(A and B) Profiles of dinucleotide variants (DNVs), as in (67), for branches of the phylogenies 
reconstructed from two bladder cancer patients. Of note, the C04_72M_b02_lo0032_private 
branch contains many more DNVs than expected compared to the number of private single 5 
nucleotide variants (SNVs). The DNV profile in this branch closely matches the previously 
identified DBS2 (67).  
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Fig. S18. Clonal lymphoid aggregate. 
(A) Histology image depicting clonal lymphoid aggregate identified in transplant donor T11_69F. 
(B) Intermutational distance plot shows clustering of mutations at the immunoglobulin heavy locus 
on chromosome 14 and the immunoglobulin lambda locus on chromosome 22. (C) Mutation 5 
spectrum for the clonal lymphoid aggregate. The spectrum is highly similar to SBS9, the signature 
associated with mutations arising from replication by polymerase h as part of somatic 
hypermutation in lymphoid cells (67). (D to G) The four breakpoints associated with the IgH/BCL2 
translocation. Panels D and E show either side of the BCL2 gene. The read pairs highlighted in 
dark red indicate that the locus has been excised from chromosome 18 and the reads in orange 10 
have their mates on chromosome 14 within the IgH locus. Panels F and G show reads from the 
IgH locus supporting the transposition of BCL2. The reads in green have their mates on 
chromosome 18. Transposition of BCL2 into the IgH locus mediated by V(D)J recombinase has 
previously been described for follicular lymphoma (73). Images are from Integrative Genomics 
Viewer (IGV) (74, 75). 15 
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Table S1. Donor information 
* The number of pack-years are shown in parentheses for current and ex-smokers. † Alcohol 
intake classifcations are: Rare (<1 U/day); Light (1-2 U/day); Moderate (3-6 U/day); Heavy (7-9 5 
U/day); NR – Not recorded. ‡ The number of libraries sequenced from regions of histologically 
normal urothelium are shown in parentheses. 

Donor 
ID Gender Age Tobacco 

intake* 
Alcohol 
intake† 

BMI 
(kg/
m2) 

Additional 
Information 

Libraries sequenced‡ 

Targeted Exome WGS 

T01_25F Female 25 Smoker (5) Rare 24 - 190 (146) 45 (44) 3 (2) 

T02_35F Female 35 Ex-smoker 
(1) Rare 24 Hemangiopericytoma 187 (177) 31 (30) 3 (2) 

T03_53F Female 53 Smoker (30) Rare 39 - 93 (89) 31 (30) 6 (5) 

T04_55M Male 55 Smoker (40) Heavy 28 Benign testicular 
lump - 39 (38) 4 (3) 

T05_58M Male 58 Smoker (12) Heavy 22 - - 21 (17) 3 (2) 

T06_59M Male 59 Ex-smoker 
(25) Moderate 26 - 103 (98) 31 (30) 4 (2) 

T07_59M Male 59 Smoker (2) Rare 25 Heroin user 94 (92) 33 (32) 3 (2) 

T08_61F Female 61 Smoker (5) None 28 
History of urinary 

tract infections 
(UTIs) 

312 (305) 30 (28) 18 (17) 

T09_61M Male 61 Non-smoker Rare 29 - 84 (77) 40 (39) 3 (2) 

T10_68F Female 68 Non-smoker Rare 34 Thyroid adenoma / 
nodal hyperplasia - 34 (31) 3 (2) 

T11_69F Female 69 Non-smoker Rare 24 UTI; investigated for 
lymphoma 155 (143) 36 (35) 5 (3) 

T12_70M Male 70 Ex-smoker 
(11) Rare 25 - 111 (87) 49 (38) 3 (2) 

T13_71F Female 71 Non-smoker Light 19 - 123 (105) 37 (36) 4 (3) 

T14_75F Female 75 Non-smoker Light 27 Type 2 diabetes; 
benign breast lump - 40 (36) 3 (2) 

T15_78F Female 78 Non-smoker Rare 22 - 61 (59) 21 (20) 7 (6) 

C01_49M Male 49 Ex-smoker 
(30) NR 34 pT1G3 & CIS 24 (0) 40 (0) 4 (0) 

C02_61F Female 61 Non-smoker NR 30 pT2G3. 4 cycles of 
chemotherapy 65 (55) 14 (13) 4 (3) 

C03_67M Male 67 Ex-smoker 
(20) NR 25 pT2G3 98 (29) 42 (12) 11 (3) 

C04_72M Male 72 Ex-smoker 
(25) NR 23 pT1G3 & CIS 169 (129) 40 (33) 13 (8) 

C05_75M Male 75 Non-smoker NR 30 pT1G3 & CIS 45 (37) 21 (14) 4 (1) 
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Captions for Supplementary Tables 

Table S2. Microbiopsy information. 
TableS2_MicrobiopsyInformation.xlsx 

Table S3. Substitution and indel calls from targeted data. 
TableS3_TargetedSubsAndIndels.xlsx 5 

Table S4. Substitution and indel calls from exome data. 
TableS4_ExomeSubsAndIndels.xlsx 

Table S5. Substitution and indel calls from genome data. 
TableS5_GenomeSubsAndIndels.xlsx 

Table S6. Copy number calls from exome data. 10 
TableS6_ExomeCNVs.xlsx 

Table S7. Rearrangement calls from genome data. 
TableS7_RearrangementCalls.xlsx 

Table S8. Driver discovery in transplant donors. 
TableS8_DriverDiscoveryInTransplantDonors.xlsx 15 
 
Table S9. Fraction of mutations attributed to each signature per sample. 
TableS9_MutationSignatureAttribution.xlsx 
 
Table S10. Mutational signatures extracted by HDP de novo. 20 
TableS10_SignatureTrinucleotideFrequencies.xlsx 
 
Table S11. Retrotransposition calls from genome data. 
TableS11_RetrotranspositionEvents.xlsx  
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