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• What is the central question of this study?  

Does facial cooling mediated stimulation of cutaneous trigeminal afferents associated 

with the diving response, increase cerebral blood flow or are factors associated with breath-

holding (e.g., arterial carbon dioxide accumulation, pressor response) more important in 

humans?  

 

• What is the main finding and its importance?  

Physiological factors associated with breath-holding such as arterial carbon dioxide 

accumulation and the pressor response, but not facial cooling (trigeminal nerve stimulation), 

make the predominant contribution to diving response mediated increases in cerebral blood 

flow in humans. 
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ABSTRACT 

Diving evokes a pattern of physiological responses purported to preserve oxygenated 

blood delivery to vital organs such as the brain. We sought to uncouple the effects of 

trigeminal nerve stimulation on cerebral blood flow (CBF), from other modifiers associated 

with the diving response, such as apnoea and changes in arterial carbon dioxide tension. 

Thirty-seven young healthy individuals participated in separate trials of; Facial cooling (FC, 

3 min) and cold pressor test (CPT, 3 min) under poikilocapnic (Protocol 1) and isocapnic 

conditions (Protocol 2), facial cooling while either performing a breath-hold (FC +BH) or 

breathing spontaneously for a matched duration (FC -BH) (Protocol 3), and BH during facial 

cooling (BH +FC) or without facial cooling (BH -FC) (Protocol 4). Under poikilocapnic 

conditions neither facial cooling nor CPT evoked a change in middle cerebral artery blood 

flow velocity (MCA Vmean; transcranial Doppler) (P>0.05 vs. baseline). Under isocapnic 

conditions, facial cooling did not change MCA Vmean (P>0.05), whereas CPT increased MCA 

Vmean by 13% (P<0.05). Facial cooling with a concurrent BH markedly increased MCA Vmean 

(23%) and internal carotid artery blood flow (ICAQ; duplex Doppler ultrasound) (26%) 

(P<0.001), but no change in MCA Vmean and ICAQ were observed when facial cooling was 

accompanied by spontaneous breathing (P>0.05). Finally, MCA Vmean and ICAQ were 

similarly increased by BH either with or without facial cooling. These findings suggest that 

physiological factors associated with BH, and not facial cooling (i.e., trigeminal nerve 

stimulation) per se, make the predominant contribution to increases in CBF during diving in 

humans. 
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INTRODUCTION 

Diving evokes a characteristic pattern of physiological responses when the face is 

immersed in cold water (Gooden, 1994; Foster & Sheel, 2005). It is in part activated by a 

stimulation of the trigeminal nerve that innervates the areas around the forehead and cheeks, 

but also modulated by mechanisms such as apnoea (Gooden, 1994; Lemaitre et al., 2015). 

Activation of the diving response results in a parasympathetically mediated reduction in heart 

rate (HR) and an increase in sympathetic nerve activity which causes peripheral 

vasoconstriction and increases mean arterial blood pressure (MAP) (Fagius & Sundlöf, 1986; 

Shamsuzzaman et al., 2014; Fisher et al., 2015; Lemaitre et al., 2015; Lapi et al., 2016; 

Schlader et al., 2016). It is thought that the diving response serves to preserve blood flow and 

oxygen delivery to the heart and brain in animals (Butler & Jones, 1997). However, whether 

this is primarily a result of the trigeminal afferent stimulation or mechanisms associated with 

apnoea remains incompletely understood in humans. 

Regulation of cerebral blood flow (CBF) is complex and highly integrated involving 

multiple mechanisms with the aim of ensuring continuous perfusion of oxygenated blood to 

the brain (Ainslie & Brassard, 2014). Several mechanisms likely contribute to the regulation 

of CBF during the diving response, including neurogenic and hemodynamic factors, 

neurovascular coupling and changes in blood gases (e.g., partial pressure of arterial carbon 

dioxide (PaCO2)) (May & Goadsby, 1999; Phillips et al., 2015). Notably, underwater 

submersion in rats causes a redistribution of blood away from peripheral regions such the 

thoraco-abdominal region towards the head and thorax, a response not exhibited in rats 

swimming without head submersion (Ollenberger et al., 1998). This is indicative of a key 

role for the trigeminal nerves in the control of cerebral perfusion during diving and may be 

explained by the release of vasorelaxant mediators from activated trigeminal nerve cell 

bodies that project bipolar cells that synapse on extra-cerebral vessels (e.g., the middle 
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cerebral artery; MCA) (May & Goadsby, 1999). In addition, with activation of trigeminal 

afferents and cutaneous thermoreceptors during facial cooling, regional cortical sites within 

the central nervous system are activated and increases local metabolism. These are potentially 

coupled to increases local blood flow via complex series of cellular events, collectively 

referred to as neurovascular coupling (Phillips et al., 2015). Activation of the sympathetic 

nervous system along with changes in hemodynamic factors (e.g., blood pressure, cardiac 

output) can potentially impact CBF during facial cooling (Fisher et al., 2015). Moreover, 

arterial blood gases concentrations can play a critical part in cerebral blood regulation. When 

the diving response is associated with apnoea, hypercapnia and hypoxia evoke cerebral 

vasodilation, and hypercapnia has been reported as being more important than blood pressure 

and sympathetic nerve activity in evoking apnoea-induced increases in cerebral perfusion 

(Pan et al., 1997; Przybylowski et al., 2003; Bain et al., 2016). However, the effect of facial 

cooling on CBF in humans, remains incompletely understood. 

To the authors’ knowledge, there are only two studies that have investigated the 

effects of facial cooling on intra-cranial perfusion in healthy humans (Brown et al., 2003; 

Kjeld et al., 2009). Brown et al. (2003) reported a small increase in MCA mean blood flow 

velocity (MCA Vmean) during cold face stimulation (9%), while Kjeld et al. (2009) reported 

that MCA Vmean responses to a breath-hold (BH) performed during moderate intensity leg 

cycling exercise, were augmented when undertaken with concurrent facial immersion. 

However, the contribution of exercise per se to the latter MCA Vmean response is unclear. 

Additionally, these studies did not consider whether thermoreceptor stimulation may have 

contributed to the responses, and as potential changes in PaCO2 were not controlled the 

powerful effects of PaCO2 on CBF regulation secondary to respiratory changes, cannot be 

excluded. Finally, an important assumptions implicit in the use of MCA Vmean as an index of 
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CBF also limit these investigations. That is, in the absence of MCA diameter measurements, 

it is assumed that MCA Vmean is representative of MCA blood flow.  

The purpose of the present study was to determine the contribution of trigeminal 

nerve stimulation to the diving response associated changes in CBF, and to address the 

shortcomings mentioned above. To achieve this, cardiovascular and cerebral vascular 

responses (i.e., MCA Vmean) to stimulation of trigeminal afferents with facial cooling (0°C) 

were determined. Facial cooling trials were undertaken under control conditions (i.e., 

spontaneous respiration and poikilocapnia) (Protocol 1) and with isocapnia ensured (Protocol 

2). Also, the cardiovascular and cerebral vascular responses to another thermoreceptor 

stimulus, namely the cold pressor test (CPT), were examined (both Protocol 1 and 2). In 

addition, facial cooling was performed during a breath-hold, in which CO2 would naturally 

accumulate and also without a breath-hold (Protocol 3). Finally, breath-hold trials were 

performed both with and without facial cooling to further elucidate the role of trigeminal 

nerve stimulation on CBF (Protocol 4). To circumvent issues surrounding the validity of 

MCA Vmean being representative of CBF, internal carotid artery volumetric blood flow was 

also measured (Protocols 3 and 4). This series of experimental trials permitted us to test the 

hypothesis that the stimulation of trigeminal afferents with facial cooling contributes to the 

CBF increases during the diving response. 
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METHODS 

Ethical approval 

All study protocols were approved by the Health, Safety and Ethics Committee at the 

University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences 

(22/03/16MW and ERN_19-0700), and were undertaken according with the Declaration of 

Helsinki, except for registration in a database. Written informed consent was acquired from 

each participant before the commencement of the study following the provision of a detailed 

verbal and written overview of the experimental procedures. 

 

Participants 

 A total of 37 volunteers completed this study. Participants were healthy and free of 

any renal, neurological, cardiovascular, respiratory, or metabolic diseases, and were not using 

prescribed or over-the-counter medications. Participants were requested to refrain from any 

caffeinated, or alcoholic beverages and not to undertake vigorous exercise, for 24 hr before 

the experimental sessions. Participants were not trained breath-hold divers.  

 

Experimental measures 

All participants rested in a semi-supine position throughout the study. Heart rate was 

monitored using an electrocardiography (ECG) and beat-to-beat arterial blood pressure 

assessed using finger photoplethysmography (Finometer Pro; Finapres Medical Systems, 

Arnhem, the Netherlands). An automated sphygmomanometer (Tango+; SunTech Medical) 

was used to verify resting blood pressure measures. A mouthpiece and a nose-clip were worn 

by participants and partial pressure of end-tidal CO2 (PETCO2), used to estimate PaCO2, was 

sampled at the mouth and was recorded by a calibrated gas analyser (model ML206, 

ADInstruments, Dunedin, New Zealand). A 2-MHz pulsed Doppler ultrasound probe 
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(Doppler Box X; Compumedics, Singen, Germany) was used to simultaneously measure the 

blood flow velocity of the right MCA. The temporal window, approximately 1 cm above the 

zygomatic arch, was insonated for the MCA (depth 45-65 mm) (Willie et al., 2011). Once the 

signal was stable, the probe was fixed using a modifiable head kit that locked the angle of 

insonation at the optimum position allowing signal stability. All measurements recorded were 

converted from analogue to digital data at 1 kHz (Powerlab, 16/30; ADInstruments) and were 

stored in for offline analysis (LabChart Pro; ADInstruments). 

Duplex Doppler ultrasound (Terason T3300, Teratech, Burlington, MA, USA) was 

used to measure left internal carotid artery blood flow velocity (ICAv) and diameter (ICAd) 

by a single experimenter (SAS). A 4-15 MHz multi-frequency linear-array transducer was 

used with a constant insonation of 60° angle relative to the skin. ICA recordings were 

undertaken at a site 1 to 1.5 cm distal to the carotid bifurcation. For ICA localisation, the 

brightness mode was used on a longitudinal section to clarify the vessel appearance and 

assess ICAd. The pulse-wave mode was used to determine ICAv. ICA images were captured 

and stored as video files for offline analysis using automated edge detection software 

independently of investigator influence (FMD Studio, Pisa, Italy). All video files were 

analysed by a single operator (SAS). 

 

Experimental protocols 

Protocol 1: Facial cooling and CPT under poikilocapnic conditions 

Thirteen healthy individuals (11 males, age: 23 [4], height: 174 [7] cm, weight: 74 [8] 

kg; mean [SD]) undertook trials of facial cooling and CPT in a random order decided with a 

coin toss. A >15-min rest period was allowed between the trials to allow for the restoration of 

the measured variables to baseline. 
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Facial cooling: Following a 3-min baseline period, an ice pack (0°C) was used to 

simulate the trigeminal nerve stimulation component of the diving response for 3 min. The 

ice pack was shaped so that it covered the areas innervated by the ophthalmic (forehead) and 

maxillary division (cheeks) of the trigeminal nerve. This was followed by a recovery period 

of 3 min.  

CPT: Following a 3-min baseline period, participants were instructed to immerse their 

hand up to their wrist into a bucket containing iced-water (4°C) for 3 min. This was followed 

by removal of the hand and continuation of the data collection for a further 3-min recovery 

period.  

 

Protocol 2: Facial cooling and CPT under isocapnic conditions 

In protocol 2, eight healthy individuals (8 males, age: 23 ± 6, height: 180 ± 7 cm, 

weight: 74 ± 6 kg) undertook CPT and facial cooling as described for Protocol 1, however 

PETCO2 was maintained at baseline values (i.e., PETCO2 controlled at +1 mmHg baseline) by 

the manual supplementation of CO2 to the inspired air.  

 

Protocol 3: Facial cooling with and without breath-hold 

 Eight healthy individuals completed protocol 3 (7 males, age: 24 ± 3 years, height: 

175 ± 4 cm, weight: 72 ± 8 kg). At an initial familiarisation session, participants practiced 

exhaling and holding their breath for as long as possible on three occasions. At a subsequent 

experimental session, the cardiovascular and cerebrovascular effects of facial cooling with 

breath-hold (FC +BH) and without a breath-hold (FC -BH) were determined. The FC +BH 

trial was always undertaken first because the FC -BH trial was matched in length to the FC 

+BH trial. For the FC +BH trial, after a 1-min baseline period, participants were instructed to 

hold their breath at end of a normal expiration and were asked to hold until they reached their 
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maximum comfortable breath-hold duration (i.e., prior to any straining manoeuvre). At the 

start of the breath-hold an ice pack (0°C) was placed on the face to simulate the trigeminal 

nerve stimulation component of the diving reflex for the full length of the breath-hold. 

Following the release of the breath-hold this protocol was concluded after a 1-min period of 

recovery. FC +BH and FC -BH trials were separated by a >15-min rest period to allow the 

restoration of the measured variables to baseline values. The FC -BH trial consisted of a 1-

min baseline period followed by facial cooling for the same duration used in the previous 

trial. Following the completion of facial cooling, this protocol was concluded after a 1-min 

period of recovery. 

 

Protocol 4: Breath-hold with and without facial cooling 

 In protocol 4, eight healthy individuals (8 males, age: 24 ± 3 years, height: 175 ± 4 

cm, weight: 72 ± 8 kg) undertook BH both with and without facial cooling.  

 In protocol 4, eight healthy individuals (8 males, age: 24 ± 3 years, height: 175 ± 4 

cm, weight: 72 ± 8 kg) undertook breath-hold both with and without facial cooling.  

At an initial familiarisation session, participants practiced exhaling and holding their 

breath for as long as possible on three occasions. At a subsequent experimental session, the 

cardiovascular and cerebrovascular effects of breath-hold with (BH +FC) and without facial 

cooling (BH -FC) were determined. Trials were randomised with the order decided by a coin 

toss. Trials were matched in length with the duration of the second trial being matched to the 

first trial. Each trial was preceded by a 1-min baseline period, then participants were asked to 

hold their breath at end of a normal expiration, and to hold this until they reached their 

maximum comfortable breath-hold duration (i.e., prior to any straining manoeuvre) (first 

trial) or until requested to return to normal breathing (second trial). Following the release of 

the breath-hold a 1-min recovery period was conducted. For the BH +FC trial only, at the 
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start of the breath-hold an ice pack (0°C) was placed on the face to simulate the facial cooling 

component of the diving reflex for the full length of the breath-hold. A recovery period (>15-

min) was allowed between the trials to allow for the restoration of the measured variables to 

baseline. 

 

Data analysis 

MAP was calculated as Razminia et al. (2004): 

     (
                        

 
)               

 

Volumetric blood flow was (Flück et al., 2017): 

                                

 

Cerebrovascular conductance index (CVCi) was (Flück et al., 2017): 

          
         

   
 

          
    

   
 

 

Statistical analysis 

Statistical analysis was performed using SigmaPlot (version 13.0, SYSTAT Software 

Inc., Chicago, IL, USA). Physiological data were statistically analysed using repeated-

measures analysis of variance (ANOVA) with significant main effects and interactions 

examined post hoc using Student Newman-Kuels tests. More specifically, to determine the 

physiological responses to facial cooling and CPT under poikilocapnic conditions (Protocol 

1) averages were calculated for baseline (3 min), facial cooling and CPT interventions on a 

minute-by-minute basis, and recovery (3 min). A two-way repeated-measures ANOVA was 
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used in which the factors were condition (FC, CPT) and time (baseline, intervention min 1-3, 

recovery), as well as the interaction between them. Given the known association between 

changes in PETCO2 and MCA Vmean, Pearson correlations were used to examine the change 

from baseline in MCA Vmean and PETCO2 during the 3
rd

 minute of both facial cooling and 

CPT. To better understand the PETCO2-independent influence of facial cooling and CPT on 

the cerebrovascular response, Protocol 2 was used to determine the physiological responses 

to facial cooling and CPT under isocapnic conditions. Averages were calculated over the 

same time points, and the same ANOVA approach used, as described for Protocol 1. In 

Protocol 3, facial cooling was examined both with (+BH) and without (-BH) a breath-hold, 

because during diving a breath-hold accompanies facial cooling. ICAQ was also measured 

along with MCA Vmean, thus variables were averaged at baseline (1 min), the last 10 cardiac 

cycles of either facial cooling with (FC +BH) or without (FC -BH) a breath hold, and during 

recovery (1 min). A two-way repeated-measures ANOVA was used in which the factors were 

condition (FC +BH, FC -BH) and time (baseline, facial cooling, recovery), as well as the 

interaction between them. In Protocol 4, physiological responses to a breath-hold (BH) were 

examined when undertaken with (+FC) and without (-FC) facial cooling. A two-way 

repeated-measures ANOVA was used in which the factors were condition (BH +FC, BH -FC) 

and time (baseline, BH, recovery), as well as the interaction between them. To compare 

responses across protocols, a 1-way ANOVA was used to compare the change in MCA Vmean 

from baseline for the pokilocapnic facial cooling (Protocol 1), isocapnic facial cooling 

(Protocol 2), facial cooling without a breath-hold (FC -BH; Protocol 3), facial cooling with a 

breath-hold (FC +BH; Protocol 3 and Protocol 4), and a breath-hold alone (BH –FC) trials. 

Data are displayed as mean ± SD, unless otherwise indicated. Differences were considered 

significant when P<0.05.  
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RESULTS 

Protocol 1: Facial cooling and CPT under poikilocapnic conditions 

Cardiovascular and cerebrovascular responses to facial cooling and CPT under 

poikilocapnic conditions are shown in Table 1. During facial cooling, MCA Vmean, MAP, 

MCA CVCi and PETCO2 remained unchanged, while HR was numerically reduced (P=0.13 

baseline vs. min 3). During CPT, MCA Vmean remained unchanged, while MAP (P<0.05 vs. 

baseline at min 2-3, P<0.01) and HR were increased (P<0.05 vs. facial cooling), and MCA 

CVCi (P<0.05 baseline vs. min 2-3) and PETCO2 were reduced (P<0.05 baseline vs. min 2-3).  

Given that reductions in PETCO2 are well known to result in cerebral vasoconstriction, 

the association between changes in PETCO2 and MCA Vmean and during the facial cooling and 

CPT conditions was examined. A moderate positive correlation was observed between the 

change from baseline in PETCO2 and MCA Vmean measured during the last minute of both 

facial cooling (r=0.59: P=0.04) and CPT (r=0.64: P=0.03). 

 

Protocol 2: Facial cooling and CPT under isocapnic conditions 

Given the observation made in Protocol 1 that facial cooling and CPT mediated 

changes in PETCO2 are significantly associated with response in MCA Vmean, trials of facial 

cooling and CPT were repeated in Protocol 2 under isocapnic conditions. The aim being to 

unmask the PETCO2-independent influence of facial cooling and CPT on the cerebrovascular 

response. Accordingly, the cardiovascular and cerebrovascular responses to facial cooling 

and CPT performed under isocapnic conditions are shown in Table 2.  

During isocapnic facial cooling, MCA Vmean was unchanged (P>0.05), MAP was 

increased (P<0.05 baseline vs. min 2 and 3), while HR (P<0.05 baseline vs. min 2) and MCA 

CVCi (P<0.05 baseline vs. min 2 and 3, respectively) decreased. During isocapnic CPT, 

MCA Vmean (P<0.05 baseline vs. min 1 and 2), MAP (P<0.05 baseline vs. min 1 and 2), and 



 

This article is protected by copyright. All rights reserved. 

14 

HR (P<0.05 CPT vs. facial cooling) were increased, while MCA CVCi was reduced (P<0.05 

baseline vs. min 2 and 3).  

 

Protocol 3: Facial cooling with and without breath-hold 

To better discern the cerebrovascular consequences of facial cooling, ICAQ was 

measured along with MCA Vmean in Protocol 3. In addition, because during diving a breath-

hold accompanies facial cooling, in Protocol 3 facial cooling was examined both with (FC 

+BH) and without (FC -BH) a breath-hold. The apnoea was held for 26  4 s. MCA Vmean  

and ICAQ were only increased when facial cooling was accompanied by a breath-hold 

(P<0.05 vs. baseline), while ICAQ and ICAv were different between trials (P<0.05 FC +BH vs 

FC -BH) (Table 3). MAP was elevated numerically during FC -BH trial (P=0.23 vs baseline), 

while MAP increased during the FC +BH trial (P<0.05 vs. FC -BH). HR was unchanged 

during the FC –BH trial (P>0.05 vs. baseline) but declined in the FC +BH trial (P=0.01 vs. 

baseline). MCA CVCi and ICA CVC remained unchanged in both trials (P>0.05 vs. 

baseline).  

 

Protocol 4: Breath-hold with and without facial cooling 

To further understand the cerebrovascular effects of facial cooling, in Protocol 4 the 

responses to a breath-hold were determined both with and without facial cooling (Table 4). 

The apnoea was held for 28  4 s. A breath-hold undertaken either with facial cooling (+FC) 

or without facial cooling (-FC) increased MCA Vmean, ICAQ, MAP, MCA CVCi, and ICAv
 

from baseline (P<0.05) with no difference between conditions. 

 

Comparison of MCA Vmean responses in Protocols 1-4 
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As illustrated in Figure 1, MCA Vmean responses to poikilocapnic facial cooling 

(Protocol 1), isocapnic facial cooling (Protocol 2), and facial cooling without a breath-hold 

(FC -BH; Protocol 3) were minimal, and lower than that evoked by facial cooling when 

accompanied by a breath-hold (FC +BH, Protocol 3; BH +FC, Protocol 4), and a breath-hold 

undertaken in the absence of facial cooling (BH -FC, Protocol 4) (P<0.05). 

DISCUSSION 

 We sought to determine the contribution of facial cooling (i.e., trigeminal nerve 

stimulation) to changes in CBF during the diving response. In order to examine the influence 

of potentially modulatory factors associated with diving (e.g. apnoea, changes in PETCO2, 

thermoreceptor stimulation), we implemented different protocols to isolate these variables 

The major novel findings are that in young healthy individuals, 1) MCA Vmean did not 

increase during facial cooling or CPT under poikilocapnic conditions (Protocol 1), 2) under 

isocapnic conditions MCA Vmean did increase during thermoreceptor stimulation with CPT, 

but not during CPT (Protocol 2), 3) both MCA Vmean and ICAQ were increased when facial 

cooling was combined with a breath-hold, but not when facial cooling was performed with 

spontaneous breathing (Protocol 3), and 4) similar increases in MCA Vmean and ICAQ were 

observed during a breath-hold when performed either alone or in combination with facial 

cooling (Protocol 4). Collectively, our findings suggest that physiological factors associated 

with breath holding (e.g., pressor response, CO2 accumulation) make the predominant 

contribution to diving response mediated-increases in CBF in humans. 
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Cerebral perfusion during facial cooling 

During diving, a multitude of mechanisms can contribute to the regulation of CBF, 

including neurogenic and hemodynamic factors, neurovascular coupling, and changes in 

blood gases (Bain et al., 2018). The findings of Ollenberger et al. (1998) in rats indicate that 

trigeminal nerve stimulation can play a role in regulation of CBF. They observed a 

redistribution of blood flow away from the periphery to the brain during swimming, but only 

if the head was submerged (i.e., with trigeminal nerve stimulation / facial cooling) and not 

when the head remained above water. As reviewed by Lapi et al. (2016), stimulation of the 

trigeminal cardiac reflex, involving sensory ending of the trigeminal nerve, evokes a (partly) 

nitric oxide-mediated cerebrovascular vasodilatation in rabbits. Interestingly, the direct 

stimulation of the trigeminal root has been reported not to cause dilatation of the pial arteries 

in cats and monkeys, whereas stimulation of either the facial nerve root or the vagus nerve 

does evoke cerebral vasodilatation (Cobb & Finesinger, 1932). How trigeminal nerve 

stimulation can regulate cerebral flow in humans remains less well studied. Brown et al. 

(2003) reported that trigeminal afferent activation increases MCA Vmean (by 9%) when 

evoked with the cold face test under poikilocapnic conditions in healthy individuals. In 

contrast, in our study we found no increases in MCA Vmean during facial cooling under 

poikilocapnic conditions. A potential explanation for these contradictory findings may be 

differences in PETCO2, well recognised as a powerful dilator of the cerebral vasculature. In 

the present study we observed a moderate positive relationship between PETCO2 and MCA 

Vmean (r=0.59; p=0.04) during facial cooling (Protocol 1), and although overall under 

poikilocapnic conditions no differences from baseline in PETCO2 were noted, a significant 

degree of between-subject variability was observed (i.e., responses ranged from +3.5 to -5.5 

mmHg) likely a result of a heterogeneous ventilatory response. To further examine the 

influence of PETCO2 on cerebral perfusion during facial cooling, we repeated the facial 
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cooling under isocapnic conditions (Protocol 2). However, even under consistent isocapnic 

conditions no changes in MCA Vmean were observed during trigeminal nerve stimulation by 

facial cooling.  

Another possible explanation for previous reports of an increase in CBF during the 

cold face test is activation of thermoreceptors. Signals from cutaneous thermoreceptor 

afferents are integrated within the central nervous system (e.g., within hypothalamic and 

medullary regions) and lead to activation of cortical sites (Di Piero et al., 1994), which may 

increase local perfusion by neurovascular coupling. Under poikilocapnic conditions MCA 

Vmean remained unchanged (Protocol 1), likely as a result of a hyperventilation induced fall in 

PETCO2 decreased secondary to hyperventilation. Whereas, under isocapnic conditions (i.e., 

PETCO2 controlled at +1 mmHg baseline) MCA Vmean increased during CPT (Protocol 2). 

Such findings agree with those of Tymko et al. (2017) and highlight the importance of 

nociceptor mediated alterations in ventilation and thus PETCO2, on blunting the cerebral 

perfusion response to the CPT. A striking example of the balance between the effects of 

ventilation (and thus PETCO2) on cerebral perfusion in the cold has been provided by Datta 

and Tipton (2006). They reported that reductions in MCA Vmean observed in hyperventilating 

participants immersed up to the neck in cold water (12C) were less marked than when 

reductions in PETCO2 were matched in control experiments undertaken in either 

thermoneutral water (35°C) or room air (24°C). Such findings suggest that under conditions 

of more extreme cold stress, the vasoconstrictor effects of hyperventilation on the cerebral 

vessels may at least be partially offset by other factors, such as neurovascular coupling and 

MAP. 
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CBF and apnoea 

Several studies show that an apnoea robustly increases cerebral perfusion (Pan et al., 

1997; Przybylowski et al., 2003; Kjeld et al., 2009; Bain et al., 2016). For example, 

Przybylowski et al. (2003) reported dramatic increases in MCA Vmean (by 42 %) during a 

short 20 s apnoea, while Kjeld et al. (2009) have shown that MCA Vmean increased from a 

baseline of 37 ± 23 cm s
-1

 to 103 ± 15 cm s
-1

 during a maximal apnoea. In the present study 

we observed that when facial cooling was undertaken in combination with an apnoea, MCA 

Vmean increased by 23 % (Protocol 3). In addition, we observed that ICAQ also increased 

during facial cooling with a concurrent apnoea (by 26 %) (Protocol 3). In fact, MCA Vmean 

and ICAQ only increased when facial cooling was accompanied by an apnoea and did not 

increase during a cold face stimulation with uncontrolled breathing (poikilocapnic 

conditions). Moreover, when an apnoea was performed either alone or in combination with 

facial cooling similar increases in MCA Vmean and ICAQ were observed (Protocol 4). Such 

findings suggest that physiological factors associated with breath holding make the 

predominant contribution to diving response mediated-increases in CBF in humans. 

The CBF responses to an apnoea may be attributed to a number of factors, which 

include metabolic, neurogenic and hemodynamic factors, neurovascular coupling, and 

changes in blood gases (Bain, et al. 2018). Increases in MAP were noted during breath-

holding and these may be partially responsible for the increase in cerebral perfusion during 

apnoea. Indeed, Przybylowski et al. (2003) demonstrated that ganglionic blockade with 

trimethaphan eliminated the increase in MAP during a 20 s apnoea, and the MCA Vmean 

response was significantly blunted (62% of hyperaemic response without ganglionic 

blockade). Thus, in addition to increases in PaCO2 alteration in MAP likely makes a 

contribution to the increase in cerebral perfusion noted during apnoea.  
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Methodological considerations 

The findings of the present study should be considered in light of the following: 

1) Study population: Care should be taken when generalising the findings of the 

current study to a population beyond the young healthy group studied. The sympathetic and 

blood pressure responses to facial cooling are reportedly modified in some disease states 

(Prodel et al., 2017) and therefore it is quite likely that the cerebrovascular responses are 

altered too. In rat models of traumatic brain injury, trigeminal nerve stimulation was reported 

to increase CBF and reduce the development of secondary injury symptoms, such as oedema, 

blood-brain barrier disruption, and lesion volumes (Chiluwal et al., 2017). In humans, 

therapeutic use of trigeminal nerve stimulation using external electrical stimulation has been 

examined in neurologic, cardiovascular and psychiatric conditions such as, epilepsy, 

depression, attention deficit hyperactivity disorder and post-traumatic stress disorder 

(Grahame & Hann, 1978; Cook et al., 2015; Borsody & Sacristan, 2016; Cook et al., 2016). 

This approach resulted in reduced CBF in regions attributed with initiation and propagation 

of seizures, whereas CBF was enhanced in other cortex regions where metabolism is low 

because of depression (Cook et al., 2016). In addition, elegant work by Schaller (2005) has 

documented that stimulation of the trigeminal nerve during craniofacial surgery in 

anaesthetised patients can evoke a trigemino-cardiac reflex, with potential implications for 

CBF (Schaller, 2004). Comparisons of these clinical studies to the present work are difficult 

due to differences in the mode of trigeminal afferent activation and the presence of 

pathology. We acknowledge that it would have been ideal for all participants to take part in 

each experimental session, however due to logistical reasons this was not possible. Finally, 

we acknowledge that the majority of participants in the present study were men and we have 

not been able to include a comparison of sex-differences in the present analysis. Whether 

there are sex-differences in the CBF responses to facial cooling requires further study. 
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  2) PETCO2: PaCO2 was not directly measured and instead was indexed using PETCO2. 

Young et al. (1991) identified similar hypercapnic cerebrovascular reactivity when either 

PaCO2 or the surrogate PETCO2 was used. However, this relationship was only consistent 

while participants maintained a fixed supine position. Therefore, in our study subjects 

remained in a comfortable supine position throughout the data collection period.  

3) Assessment of CBF: Cerebral perfusion was principally assessed using transcranial 

Doppler ultrasound measures of MCA Vmean, which, in the absence of a direct measurement 

of MCA diameter, can only be assumed to reflect MCA blood flow. However, studies were 

also included where ICA measures of blood flow were derived from simultaneous duplex 

Doppler ultrasound measurements of ICA diameter and velocity (Protocols 3 and 4, but not 

Protocols 1 and 2). Of note, the facial cooling and facial cooling with concomitant apnoea 

evoked very similar responses in ICAQ to that exhibited in MCA Vmean. However, it remains 

to be determined whether the MCA Vmean and ICAQ responses described are representative of 

perfusion changes in other major cerebral arteries (e.g., vertebral and posterior cerebral 

arteries), which given the known regional differences in cerebral vascular regulation may not 

be the case. 

 

Summary 

The findings of the present study indicate that factors associated with breath-holding 

(e.g., arterial CO2 accumulation, pressor response), rather than stimulation of cutaneous 

trigeminal afferents, makes the predominate contribution to diving response mediated 

increases in CBF in humans.   
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Table 1. Cardiovascular and cerebrovascular responses to facial cooling (FC) and cold 

pressor test (CPT) under poikilocapnic conditions (Protocol 1). 

 
 

Baseline 

Intervention (min) 
Recove

ry 

P-Value 

 
 1 2 3 

Conditi

on 

Tim

e 
Int. 

MCA Vmean 

(cm s
-1

) 
FC 52 ± 7 53 ± 8 

52 ± 

9 

52 ± 

8 
52 ± 7 0.61 0.59 0.70 

 
CP

T 
53 ± 16 55 ± 15 

52 ± 

13 

52 ± 

13 
53 ± 15    

MAP (mmHg) FC 86 ± 7 86 ± 9 
88 ± 

8 

89 ± 

10 
86 ± 8 0.16 

<0.0

1 

<0.0

1 

 
CP

T 
85 ± 5 88 ± 11 

101 

± 

17
*†‡

 

98 ± 

10
*†

‡
 

87 ± 7    

HR (b min
-1

) FC 68 ± 12 66 ± 11 
66 ± 

12 

64 ± 

12 
69 ± 12 0.03 0.21 

<0.0

1 

 
CP

T 
69 ± 10 73 ± 9

*†
 

71 ± 

9
†
 

69 ± 

11
†‡

 
68 ± 11    

MCA CVCi 

(cm s
-1

/mmHg) 
FC 

0.60 ± 

0.14 

0.60 ± 

0.13 

0.59 

± 

0.12 

0.58 

± 

0.11 

0.61 ± 

0.13 
0.63 

<0.0

1 

<0.0

1 

 
CP

T 

0.63 ± 

0.18 

0.62 ± 

0.10 

0.52 

± 

0.10
*

†‡
 

0.54 

± 

0.12

*‡
 

0.61 ± 

0.17 
   

PETCO2 

(mmHg) FC 39 ± 4 40 ± 4 
40 ± 

5 

40 ± 

5 
39 ± 4 <0.01 0.08 

<0.0

1 

 CP

T 
40 ± 4 39 ± 4

†
 

37 ± 

5
*†‡

 

38 ± 

4
*†‡

 
39 ± 3    

 

MCA Vmean, middle cerebral artery mean flow velocity; MAP, mean arterial pressure; HR, 

heart rate; CVCi, cerebrovascular conductance; PETCO2, partial pressure of end-tidal CO2; 
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Int, interaction. Values are mean ± SD. P values represent two-way repeated ANOVA results. 

* P<0.05 vs. Baseline,
 
† P<0.05 vs. FC, ‡ P<0.05 vs. Min 1. 

Table 2. Cardiovascular and cerebrovascular responses to facial cooling (FC) and cold 

pressor test (CPT) under isocapnic conditions (Protocol 2). 

 
 

Baseline 

Intervention (min) 
Recove

ry 

P-Value 

 
 1 2 3 

Conditi

on 

Tim

e 
Int. 

MCA Vmean (cm 

s
-1

) 
FC 57 ± 12 55 ± 13 

54 

± 

14 

56 

± 

15 

56 ± 12 0.06 0.10 
<0.0

1 

 
CP

T 
58 ± 8 63 ± 13

*†
 

65 

± 

11
*†

 

65 

± 

13
*†

 

60 ± 10    

MAP (mmHg) FC 87 ± 6 91 ± 12 

102 

± 

8
*†‡

 

100 

± 

8
*†‡

 

89 ± 5 0.00 
<0.0

1 
0.02 

 
CP

T 
90 ± 6 97 ± 13

*†
 

112 

± 

13
*†

‡
 

111 

± 

10
*†

‡
 

96 ± 7    

HR (b min
-1

) FC 65 ± 10 65 ± 11 

58 

± 

9
*‡

 

60 

± 

11 

64 ± 12 0.04 
<0.0

1 

<0.0

1 

 
CP

T 
67 ± 11 77 ± 14

*†
 

70 

± 

12
†
 

66 

± 9 
61 ± 6

†
    

MCA CVCi 

(cm s
-1

/mmHg) 
FC 

0.80 ± 

0.23 

0.79 ± 

0.30 

0.6

4 ± 

0.1

9 

0.6

7 ± 

0.2

1 

0.77 ± 

0.21 
0.58 

<0.0

1 
0.54 

 
CP

T 

0.75 ± 

0.14 

0.76 ± 

0.21 

0.6

6 ± 

0.1

2
*
 

0.6

6 ± 

0.1

2
*
 

0.71 ± 

0.12 
   

PETCO2 

(mmHg) 
FC 41 ± 5 41 ± 5 

40 

± 5 

41 

± 5 
41 ± 5 0.89 0.37 0.37 

 
CP

T 
41 ± 4 42 ± 5 

41 

± 5 

40 

± 6 
41 ± 4    
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MCA Vmean, middle cerebral artery mean flow velocity; MAP, mean arterial pressure; HR, 

heart rate; CVCi, cerebrovascular conductance; PETCO2, partial pressure of end-tidal CO2; 

Int, interaction. Values are mean ± SD. P values represent two-way repeated ANOVA results. 

* P<0.05 versus Baseline,
 
†

 
P<0.05 vs. FC, ‡ P<0.05 vs. Min 1.  

 

 

 

  



 

This article is protected by copyright. All rights reserved. 

28 

Table 3. Cardiovascular and cerebrovascular responses to facial cooling (FC) undertaken 

without (-BH) and with (+BH) a breath-hold (Protocol 3). 

 
 

Baseline FC Recovery 
P-Value 

 
 Condition Time Int. 

MCA Vmean (cm s
-1

) -BH 66 ± 21 66 ± 21 66 ± 23 0.51 <0.01 <0.01 

 +BH 67 ± 26 82 ± 24
*
 66 ± 25    

ICAQ (ml min
-1

) -BH 182 ± 68 177 ± 70 181 ± 74 0.12 <0.01 <0.01 

 +BH 185 ± 72 
232 ± 

95
*†

 
180 ± 70    

MAP (mmHg) -BH 87 ± 5 91 ± 6 88 ± 6 0.21 <0.01 <0.01 

 +BH 88 ± 5 
101 ± 

11
*†

 
86 ± 5    

HR (b min
-1

) -BH 67 ± 10 66 ± 10 66 ± 9 0.76 0.07 0.13 

 +BH 72 ± 5 65 ± 11 66 ± 5    

MCA CVCi 

(cm s
-1

/mmHg) 
-BH 0.70 ± 0.23 

0.69 ± 

0.22 

0.69 ± 

0.26 
0.71 0.78 0.08 

 +BH 0.77 ± 0.30 
0.81 ± 

0.22 

0.77 ± 

0.31 
   

ICAv (cm s
-1

) -BH 34 ± 10 32 ± 11 33 ± 12 0.37 0.06 <0.01 

 +BH 35 ± 10 41 ± 14
*†

 34 ± 10    

ICAd (cm) -BH 0.50 ± 0.08 
0.50 ± 

0.07 

0.50 ± 

0.08 
0.46 0.16 0.20 

 +BH 0.47 ± 0.07 
0.48 ± 

0.08 

0.47 ± 

0.08 
   

ICA CVC 

(ml min
-1

/mmHg) 
-BH 2.1 ± 0.8 2.3 ± 0.8 2.1 ± 0.9 0.35 0.87 0.12 

 +BH 2.1 ± 0.8 2.0 ± 1.0 2.1 ± 0.8    

 

MCA Vmean, middle cerebral artery mean flow velocity; ICAQ, internal carotid artery flow; 

MAP, mean arterial pressure; HR, heart rate; CVCi, cerebrovascular conductance; ICAv, 

internal carotid artery velocity; -BH, facial cooling without breath-hold; +BH, facial cooling 

with breath-hold; Int, interaction. Values are mean ± SD. P values represent two-way 

repeated ANOVA results. * P<0.05 vs. Baseline,
 
†

 
P<0.05 vs. -BH.  
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Table 4. Cardiovascular and cerebrovascular responses to breath-hold undertaken without (-

FC) and with (+FC) facial cooling (Protocol 4). 

 
 

Baseline 
Breath-

hold 
Recovery 

P-Value 

 
 Condition Time Int. 

MCA Vmean (cm s
-1

) -FC 47 ± 7 59 ± 11 47 ± 8 0.62 <0.01 0.94 

 +FC 46 ± 7 57 ± 14 47 ± 8    

ICAQ (ml min
-1

) -FC 190 ± 107 236 ± 150 203 ± 139 0.48 <0.01 0.29 

 +FC 206 ± 60 227 ± 89 187 ± 70    

MAP (mmHg) -FC 90 ± 8 96 ± 9 90 ± 9 0.36 0.03 0.37 

 +FC 90 ± 9 103 ± 20 98 ± 20    

HR (b min
-1

) -FC 73 ± 14 69 ± 16 72 ± 14 0.20 <0.01 0.36 

 +FC 76 ± 13 71 ± 16 73 ± 14    

MCA CVCi 

(cm s
-1

/mmHg) 
-FC 0.53 ± 0.10 

0.62 ± 

0.14 

0.53 ± 

0.10 
0.48 <0.01 0.53 

 +FC 0.52 ± 0.10 
0.59 ± 

0.19 

0.50 ± 

0.15 
   

ICAv (cm s
-1

) -FC 24 ± 9 28 ± 11 24 ± 7 0.48 0.01 0.53 

 +FC 28 ± 6 31 ± 11 26 ± 8    

ICAd (cm) -FC 0.53 ± 0.08 
0.52 ± 

0.08 

0.52 ± 

0.09 
0.63 0.71 0.61 

 +FC 0.53 ± 0.08 
0.53 ± 

0.09 

0.52 ± 

0.08 
   

ICA CVC 

(ml min
-1

/mmHg) 
-FC 2.2 ± 1.2 2.6 ± 1.8 2.3 ± 1.6 0.83 0.11 0.42 

 +FC 2.3 ± 0.8 2.3 ± 1.1 2.1 ± 0.9    

 

MCA Vmean, middle cerebral artery mean flow velocity; ICAQ, internal carotid artery flow; 

MAP, mean arterial pressure; HR, heart rate; CVCi, cerebrovascular conductance; ICAv, 

internal carotid artery velocity; -FC, breath-hold without facial cooling; +FC, breath-hold 

with facial cooling; Int, interaction. Values are mean ± SD. P values represent two-way 

repeated ANOVA results. * P<0.05 versus Baseline.  
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Figure 1. Comparison of the MCA Vmean responses evoked during combinations of facial 

cooling (FC) and breath-hold (BH). MCA Vmean responses to poikilocapnic facial cooling 

(Protocol 1), isocapnic facial cooling (Protocol 2), and facial cooling without a breath-hold 

(FC -BH; Protocol 3) were minimal, and significantly attenuated in comparison to facial 

cooling with a breath-hold (FC +BH, Protocol 3; BH +FC, Protocol 4), and a breath-hold 

undertaken in the absence of facial cooling (BH –FC, Protocol 4). * P<0.05, FC +BH, BH 

+FC, BH –FC conditions were all significantly different from Poikilocapnic FC, Isocapnic 

FC and FC –BH conditions. Horizontal bars show mean and SD. 

 


