
Origin of low thermal conductivity in 
In4Se3 
Article 

Accepted Version 

Luu, S. D. N., Supka, A. R., Nguyen, V. H., Vo, D.-V., Hung, N.,
Wojciechowski, K. T., Fornari, M. and Vaqueiro, P. ORCID: 
https://orcid.org/0000-0001-7545-6262 (2020) Origin of low 
thermal conductivity in In4Se3. ACS Applied Energy Materials,
3 (12). pp. 12549-12556. ISSN 2574-0962 doi: 
https://doi.org/10.1021/acsaem.0c02489 Available at 
https://centaur.reading.ac.uk/94436/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1021/acsaem.0c02489 

Publisher: ACS Publications 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



This document is confidential and is proprietary to the American Chemical Society and its authors. Do not 
copy or disclose without written permission. If you have received this item in error, notify the sender and 
delete all copies.

Origin of Low Thermal Conductivity in In4Se3

Journal: ACS Applied Energy Materials

Manuscript ID ae-2020-02489q.R1

Manuscript Type: Article

Date Submitted by the 
Author: 13-Nov-2020

Complete List of Authors: Luu, Son D N; Institute of Research and Development, Duy Tan 
Univeristy
Supka, Andrew ; Department of Physics and Science of Advanced 
Materials Program
Nguyen, Van Huy ; Key Laboratory of Advanced Materials for Energy and 
Environmental Applications
Vo, Dai-Viet N. ; Center of Excellence for Green Energy and 
Environmental Nanomaterials (CE@GrEEN)
Tuan Hung, Nguyen; Tohoku University , Frontier Research Institute for 
Interdisciplinary Sciences
Wojciechowski, Krzysztof; AGH University of Science and Technology, 
faculty of Materials Science and Ceramics
Fornari, Marco; Central Michigan University, Physics
Vaqueiro, Paz; University of Reading, Chemistry

 

ACS Paragon Plus Environment

ACS Applied Energy Materials



1

Origin of Low Thermal Conductivity in In4Se3 

Son D. N. Luu1*, Andrew R. Supka2, Van Huy Nguyen3, Dai-Viet N. Vo4, Nguyen T. Hung5, 

Krzysztof T. Wojciechowski6,7, Marco Fornari2, Paz Vaqueiro8*

1Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
2Department of Physics and Science of Advanced Materials Program, Central Michigan 

University, Mt. Pleasant, Michigan, 48859 USA
3Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong 

University, Dong Nai 810000, Viet Nam
4Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), 

Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, 

Viet Nam
5Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-

8578, Japan
6 AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 

Thermoelectric Research Laboratory, 30 Mickiewicza, 30-059 Cracow, Poland
7 The Lukasiewicz Research Network –, The Institute of Advanced Manufacturing Technology, 

Centre of Thermoelectric Materials Research, 37A Wroclawska, 30-011 Cracow, Poland
8Department of Chemistry, University of Reading, Whiteknights Park, Reading RG6 6AD, 

England, United Kingdom

Page 1 of 44

ACS Paragon Plus Environment

ACS Applied Energy Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

Abstract

In4Se3 is an attractive n-type thermoelectric material for mid-range waste heat recovery, owing 

to its low thermal conductivity (~ 0.9 W∙m- 1K- 1 at 300 K). Here, we explore the relationship 

between the elastic properties, thermal conductivity and structure of In4Se3. The experimentally-

determined average sound velocity (2010 m s-1), Young’s modulus (47 GPa), and Debye 

temperature (198 K) of In4Se3 are rather low, indicating considerable lattice softening. This 

behavior, which is consistent with low thermal conductivity, can be related to the complex 

bonding found in this material, in which strong covalent In-In and In-Se bonds coexist with 

weaker electrostatic interactions. Phonon dispersion calculations show that Einstein-like modes 

occur at   30 cm-1. These Einstein-like modes can be ascribed to weakly bonded In+ cations 

located between strongly-bonded [(In3)5+(Se2-)3]- layers. The Grüneisen parameter for the soft-

bonded In+ at the frequencies of the Einstein-like modes is large, indicating a high degree of 

bond anharmonicity and hence increased phonon scattering. The calculated thermal conductivity 

and elastic properties are in good agreement with experimental results.
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INTRODUCTION

Worldwide concerns with energy supply and sustainability have stimulated considerable 

research efforts into thermoelectric materials, which enable direct conversion of waste heat into 

electrical power. The efficiency of thermoelectric energy recovery is related to the dimensionless 

thermoelectric figure of merit, ZT, which is given by ZT=S2T/(L e) where S,  T, L  and e 

are the Seebeck coefficient, electrical conductivity, absolute temperature, lattice, and electronic 

thermal conductivities, respectively1. To maximize ZT, materials with low thermal conductivity 

are required. As a consequence of Wiedemann-Franz law, reducing the electronic thermal 

conductivity, e, would simultaneously lower the electrical conductivity, . Therefore, strategies 

to reduce the thermal conductivity focus on the lattice component (L), which is related to 

vibrational energy transport. These strategies include the introduction of species with low-energy 

localized vibrational modes (the phonon-glass electron-crystal (PGEC) approach)2,3,4 designing 

materials with part-crystalline part-liquid states (the phonon-liquid electron-crystal (PLEC) 

approach)4,5,6,7,8, grain-boundary engineering9, 10, and the introduction of nano-inclusions10,11. 

Page 4 of 44

ACS Paragon Plus Environment

ACS Applied Energy Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

Understanding the origin of the intrinsically low lattice thermal conductivity found in some 

thermoelectric materials is critically important to facilitate the discovery of the next generation of 

high-performance candidates12,16. Pseudo-layered In4Se3 (Figure 1), a mixed-valence 

compound that can be formulated as (In+)[(In3)5+(Se2-)3]-, is one of the best performing n-type 

thermoelectric materials for mid-range waste heat recovery 17,32. The thermoelectric properties 

of In4Se3 are highly anisotropic due to its pseudo-layered structure. Single crystals of In4Se3-  ( 

= 0.65) exhibit an impressive ZT  1.48 at 705 K in the direction parallel to the layers, but a much 

lower ZT, < 0.5, perpendicular to the layers17. It has been reported that multiple doping is an 

effective strategy to produce polycrystalline samples with similarly high values of ZT, as 

exemplified by Pb/Sn-co-doped In4Se319 (ZT = 1.4 at 733 K). The outstanding thermoelectric 

performance of In4Se3 has been attributed to its low thermal conductivity, which is ~ 0.9 W∙m-

 1K- 1 for the undoped polycrystalline material at room temperature17,18,19,32, while in doped and 

selenium-deficient samples, values as low as ~ 0.4 W∙m- 1K- 1 at 723 K can be reached30,31.

Page 5 of 44

ACS Paragon Plus Environment

ACS Applied Energy Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

  (a) (b)

               

Figure 1. (a) View of the crystal structure of In4Se3 along [001]. The In1, In2, In3 atoms (dark 

blue spheres) form (In3)5+ clusters and are covalently bonded to the selenium atoms (green 

spheres). The In4 atoms (dark pink spheres) are located between the [(In3)5+(Se2-)3]- layers. (b) 

View of a [(In3)5+(Se2-)3]- layer along [100]. The unit cell is shown as a grey rectangle.

The low thermal conductivity of selenium-deficient In4Se3- has been proposed that is the result 

of charge density wave (CDW) induced by a quasi-one-dimensional lattice Peierls distortion17. 

This, however, has been questioned by Osters and co-workers33, who found that In4Se3 behaves 

as a line phase and does not accommodate selenium deficiency. Instead, selenium-deficient 
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samples were found to contain indium metal32, while single-crystal X-ray diffraction data provide 

no evidence of a CDW33. Moreover, given that stoichiometric In4Se3 already exhibits an 

unusually low thermal conductivity, the investigation of the origin of the low thermal conductivity 

of this material is essential. 

There is a strong link between the elastic properties and the lattice thermal conductivity of a 

given material34, but little is known about the elastic properties of In4Se335,36. Here we describe 

the correlation between structure and elastic and thermal properties of polycrystalline In4Se3. 

With the aid of first-principles calculations, we explore the interplay between bonding, phonon 

dispersions, and mechanical properties in this material. Our results demonstrate that soft 

bonding of In+ ions in the pseudo-layered structure of In4Se3 is key to interpret the root of low 

thermal conductivity in this material. 

EXPERIMENTAL 

Synthesis and structural characterization

The synthetic procedure for the preparation of In4Se3 and the Rietveld refinement using 

powder X-ray diffraction data were presented in previous work32. Powder X-ray diffraction data 
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for the powder and the pellet have been included as Supporting Information (SI, Figure S1). 

Significant bond lengths and angles are included in the SI (Table S1&2). SEM and EDS 

measurements are consistent with the nominal composition of In4Se3 (SI, Table S3).

Property measurements

A pellet (density >95%) with a diameter of 10 mm and a thickness of ~ 2.47 mm was used to 

measure the longitudinal and transverse acoustic velocities using an ultrasonic instrument 

Panametrics Epoch III. Details of this measurement technique are given elsewhere37. These 

measured velocities were used to calculate the elastic parameters, and the Poisson ratio38. The 

average sound velocity of the sample was calculated from the longitudinal and the (𝜈𝑙)  

transverse  sound velocities using the following expression39,40: (𝜈𝑡)

(1)𝜈𝑎 =  (1
3[ 1

𝜈3
𝑙

+
2
𝜈3

𝑡
]) ―1/3

These values were also used to calculate the Poisson ratio (  using the following 𝑝)

relationship41: 

(2)𝑝 =  
1 ― 2(𝜈𝑡 𝜈𝑙)

2

2 ― 2(𝜈𝑡 𝜈𝑙)
2            

The elastic ( )  parameter, and Young`s modulus (E) were calculated using the equations42:𝑒  
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9

 (3)𝑒 =
3
2( 1 + 𝑝

2 ― 3𝑝)
 (4)𝐸 =  

𝜌𝜈2
𝑠(3𝜈2

𝑙 ― 4𝜈2
𝑡 )

(𝜈2
𝑙 ― 𝜈2

𝑡 )

where  is the density of the material. To estimate the Debye temperature, , the average sound velocity 𝜃𝐷

was used in the expression39:

 (5)𝜃𝐷 =  
ℎ

𝑘𝐵
( 3𝑁

4𝜋𝑉) ―1/3
𝜈𝑎

where V is the unit-cell volume; N is the number of atoms in a unit cell; kB is the Boltzmann 

constant, and h is the Plank constant.

The electrical and thermal conductivities were measured and presented in ref32. The electronic 

(e) and lattice (lat) thermal conductivities were estimated using the electrical conductivity data32 

in conjunction with the Wiedemann-Franz law: 

e = LT        (6)

where σ is the electrical conductivity and L is the Lorenz number.  The value of the Lorenz number43 

was estimated using the expression L = 1.5 + exp[−|S|/116], where L is in 10−8 W Ω K−2 and S in μV K−1 

 The minimum lattice thermal conductivity  of In4Se3 was estimated taking into account κlat,  min

that44:

        (7)κlat =  
1
3Cvνa Λ
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10

(where  and  are the volumetric isochoric heat capacity and the phonon mean free path), Cv Λ

by using the interatomic distance as the minimum phonon mean free path.  was also κlat, min

estimated at a high temperature limit using Cahill’s model14,45:

( +2     (8)κmin =  
1
2(

𝜋
6)

1
3𝑘𝐵𝑉

―2
3 𝑣𝑙 𝑣𝑡)

First principle calculations 

Band structure, density of states, and phonon dispersions were computed using the Quantum 

EXPRESSO package46 as integrated in AFLOW47. The Perdew-Burke-Ernzerhof (PBE) 

functional was used to describe the exchange-correlation potential. Optimized norm-conserving 

PBE pseudopotentials48, with a well-converged basis, set corresponding to an energy cut-off of 

80 Ry, were used for the wavefunctions. To integrate over the Brillouin zone, a 2  4  8 (shifted) 

grid was used. Electronic transport coefficients were evaluated with PAOFLOW49. The finite 

difference method using a 1 × 2 × 4 supercell was employed to compute phonons. AFLOWπ 

uses ElaStic50 to determine the nine independent elastic constants, Cij, of orthorhombic crystals 

with Pnnm space group. The Young modulus and the Poisson ratio were calculated based on 
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11

the Cij, by using the Voigt, Reuss, and Hill equations of state. The mode resolved Grüneisen 

parameters were computed within the quasi-harmonic approximation and the lattice thermal 

conductivity was estimated using the Debye-Callaway model51.

RESULTS AND DISCUSSION

Structure and bonding

In4Se3 can be formulated as (In+)[(In3)5+(Se2-)3]-, indicating the coexistence of covalent and 

ionic bonding52. The crystal structure of In4Se3 (Figure 1) contains anionic layers, perpendicular 

to the a-axis, with stoichiometry [(In3)5+(Se2-)3]-. These layers consist of interlocked pentameric 

In3Se2 rings, oriented along the c-axis, and linked into bulked layers by linear (In3)5+ cations. 

Within the (In3)5+ cluster, the distance between In1 and In2 atoms (refer to Figure 1 for atom 

labels) is 2.7239(7) Å while the distance between In2 and In3 is 2.7703(6) Å. These values are 

well below those found in indium metal (3.252 and 3.377 Å)53, and are comparable to the sum 

of the covalent radius for two indium atoms, which is 2.88 Å. Within this layer, the In-Se bond 

distances (SI, Table S1) are also close to the sum of covalent radii for indium (1.44 Å) and 

selenium (1.20 Å)54. This indicates that strong covalent bonding occurs within the [(In3)5+(Se2-)3]- 
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12

layers. Assuming tetrahedral coordination for the selenium atoms, Se3 exhibits two In-Se bonds 

and two dangling bonds (unoccupied coordination sites) whilst Se1 and Se2 possess three In-

Se bonds one dangling bond (Figure 1).  

(a) (b)

Figure 2. (a) Coordination environment of In4. (b) View of the In4-In4 interaction. Key: In4, dark 

pink spheres; selenium, green spheres.

Bond valence sums are consistent with a lower oxidation state for In4 (SI, Table S2). This 

atom, which has a formal oxidation state of In+ (electronic configuration [Kr]5s2), is located 

between the layers. The distance between In4 and the nearest indium atoms within the layers, 

In1 and In2, are 3.8379(7) Å and 3.7530(7), respectively, which are considerably larger than 

those in indium metal. The In4-Se distances are also considerably longer than those within the 
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[(In3)5+(Se2-)3]- layers. In4 adopts distorted square-pyramidal coordination (Figure 2(a)), with In-

Se distances ranging between 3.0688(1) and 3.3802(1) Å (SI, Table S1). These are close to the 

sum of ionic radii for In+ (1.32 Å)55, and Se2- (1.98 Å)56. This suggests that In+ cations are held 

between the layers by electrostatic interactions, while the [(In3)5+(Se2-)3]- layers are connected 

by strong and directional covalent bonds. 

Figure 3. Charge density (top) and ELF (bottom) contour plots in the [001] planes crossing the 

c-axis at fractional coordinates of 0.0 (left) and 0.5 (right). The charge density color scale is 

centered on the mean value. Meaningful values of the ELF range from 0.5 to close to 1.0. Ions 

are colored as in Figure 1.
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The different nature of the bonding of In4 is reflected in its considerably larger atomic 

displacement parameter than those for the (In3)5+ cation found in the covalent layers, evident in 

single-crystal diffraction studies33. For instance, the atomic displacement parameter for In4 found 

by Osters and coworkers33 is 60% larger than those in the (In3)5+ cation.

The above considerations are entirely consistent with the results arising from first-principles 

electronic structure calculations. The band structure (SI, Figure S3) is in agreement with 

previously reported results57, with the density of states at the top of the valence band dominated 

by Se p and In4 s states. The presence of anti-bonding states with a substantial degree of cation 

s character at the top of the valence band is a distinctive feature of semiconductors containing 

elements with lone pairs58, such as the In+ cation present in In4Se3. The electrical conductivity 

and the Seebeck coefficients computed as a function of the chemical potential from 300 to 700 

K can be found in the SI (Figure S4). 

Figure 3 shows contour plots of the valence charge density and the electron localization factors 

(ELF) in two [001] planes. The covalent nature of the bonding within the [(In3)5+(Se2-)3]- layers is 

reflected in the valence charge concentrated in the middle of the In-In and In-Se bonds within 
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these layers, which is evident in these plots. The dangling bonds associated with the selenium 

atoms are also clearly observable, as asymmetrically localized electron clouds. By contrast, the 

nearly spherical ELF around In4 is consistent with ionic bonding. The square-pyramidal 

coordination of In4 would be consistent with the presence of a lone pair of 5s2 electrons at the 

missing octahedral vertex. Along the direction of this missing vertex, each In4 atom has a 

neighboring In4 at a distance of 3.4082(3) Å (Figure 2(b)). While this distance is larger than 

those in the (In3)5+ cluster, it is of the same order as those found in In metal. In the valence 

charge plot (Figure 3), there is evidence of charge concentrated between pairs of In4 atoms, 

suggesting that these may be forming dimers.

Thermal conductivity

The heat capacity, thermal diffusivity, and total thermal conductivity of polycrystalline In4Se3 

as a function of temperature (Figure 4), previously presented in32, are in good agreement with 

previous reports28,29. The lattice thermal conductivity is the main contributor (latt ~ 99.0%) to the 

total thermal conductivity of In4Se3 (Table 1). The temperature dependence of the thermal 

conductivity computed with the Debye-Callaway model (Figure 4) is in superb coincidence with 
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the experimental values. By using the interatomic distance as the phonon mean free path (  ~ Λ

3.2 Å), we estimated that  for In4Se3 is ~ 0.3 W∙m- 1K- 1 at room temperature, while with 𝜅𝑙𝑎𝑡,𝑚𝑖𝑛

Cahill’s model, a value of  of ~ 0.4 W∙m- 1K- 1 is found. Our experimental value of  is ~ 𝜅𝑙𝑎𝑡,𝑚𝑖𝑛 𝜅𝑙𝑎𝑡

0.84 W∙m- 1K- 1 at 323 K (Table 1), indicating that  of In4Se3 is larger than the interatomic 

distance. Therefore, there is still potential for further reductions in thermal conductivity. Indeed, 

the incorporation of nano-inclusions in In4Se327 leads to values of thermal conductivity close to 

its minimum value.

0.20
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0.6
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Figure 4. The specific heat, thermal diffusivity, and thermal conductivity of In4Se3 as a function 

of temperature (blue triangles). The temperature dependence of the thermal conductivity 
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17

computed with the Debye-Callaway model using parameters from the first-principles is shown 

as a red line.

Table 1. The electrical conductivity (), electronic thermal (e), lattice thermal (lat), and total 

thermal (tot) conductivities at 323 K.

 (S/m) e ( W∙m- 1K- 1) latt (W∙m- 1K- 1) tot (W∙m- 1K- 1)

In4Se3 1965 0.01 0.84 0.85

Elastic properties

The nine elastic constants calculated by us are consistent with the experimental results 

reported in the literature (Table 2). The elastic properties for In4Se3 determined experimentally 

and through our first-principles calculations are summarized in Table 3. The experimentally-

determined sound velocities for In4Se3, which in the Debye model would correspond to the group 

velocities of the heat-carrying acoustic phonons, are rather low. These velocities are reasonably 

consistent with the calculated values of the transverse sound velocities, 1381 and 1650 m s-1, 

and the longitudinal sound velocity, 2870 m s-1. Given that it has been shown that lat is directly 
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proportional to the cube of the average sound velocity59, a low sound velocity will result in a low 

thermal conductivity. The Young’s modulus of In4Se3 (E ~ 47 GPa), which is related to its 

stiffness (i.e. its chemical bond strength), is also low. For instance, the Young’s modulus of 

In4Se3 is significantly lower than those of established thermoelectric materials such as 

Si0.8Ge0.260 (E ~ 143 GPa) and Mg2Si61 (E ~ 117 GPa), and comparable to other state-of-the art 

thermoelectric materials, including SnSe37 (E ~28-40 GPa), PbSe37 (E~62-65 GPa), PbTe37, 62 

(E~54-57 GPa), Cu2Se 63 (E~65-68 GPa) or those of glass and porous materials, such as 

borosilicate glass (E~ 61-64 GPa), brick (E~10-50 GPa) and concrete (E~25-38 GPa)64. 

Table 2. Elastic constants for In4Se3 in GPa.The experimental data are from ref.36

C11 C22 C33 C44 C55 C66 C12 C13 C23

This study 37.6 66.7 56.7 13.7 23.7 19.9 17.9 28.0 15.4

Experimental 38.2 66.5 64.3 16.6 26.6 19.0 10.8 30.4 22.4

Materials with weak interatomic bonding usually possess low stiffness and Young’s modulus. 

They are regarded as “softly” bonded materials that result in flattened phonon dispersion curves, 

and therefore, low sound velocities and low thermal conductivities65. Theoretically, the value of 
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Young’s modulus is computed assuming a specific equation of state (EoS), and the calculated 

values using the Voigt, Reuss, and Hill EoS are consistent with the experimental results (Table 

3). For the three EoS, the calculated Poisson ratios (Table 3) are also in excellent agreement 

with the experimental values. The Debye temperature (  of In4Se3, which is related to the 𝜃𝐷)

maximum phonon frequency ( ), is low, ~ 198 K. This is also consistent with the low 𝜛𝐷 =
𝑘𝐵

ℏ 𝜃𝐷

thermal conductivity this material exhibits. The phonon dispersion curves for In4Se3 computed 

from first principles are presented in Figure 5. The absence of negative branches in the 

vibrational spectrum indicates that that the structure is thermodynamically stable. Therefore, a 

distortion leading to a superstructure is not expected for stoichiometric In4Se3. This is entirely 

consistent with the structural study of Osters and coworkers33, who found no evidence of a 

Peierls-distortion or a CDW in stoichiometric In4Se3. It is also noticeable that the frequency of 

the acoustic modes is very low, suggesting that the bonding is soft with a substantial number of 

low-frequency optical modes, close in energy to the acoustic modes. Although, per se, the 

vibrational spectrum is not sufficient to determine thermal transport quantities, the small energy 

difference between optical and acoustic modes suggests that the low-frequency optical phonon 
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modes will interact strongly with the heat-carrying acoustic phonons, and may therefore be 

interpretative for the low thermal conductivity. By projecting the phonon density of states onto 

each atom, we find that the main contributors to low-frequency modes are the indium atoms, 

and in particular In4. This is consistent with the weak bonding we found for this atom in our 

structural analysis. Visualisations of the atom displacements for selected low-energy optical 

modes, together with the vibrational DOS resolved along different directions in the crystal 

structure, have been included as SI (Figure S5-S9). These indicate that the In4 atoms move 

mainly in the ab plane. The large contribution of In4 to the eigendisplacement of the modes at 

low frequency is indicative of Einstein-like vibrations reminiscent of rattling. It is widely 

recognized that localized rattler modes within the acoustic range reduce the lattice thermal 

conductivity, either by resonant scattering or by a reduction in group velocity66. Given that our 

analysis of the bonding suggests the presence of In4 dimers, these rattling vibrations might 

involve pairs of In4 atoms. 
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Table 3. Experimentally and computationally determined elastic properties of In4Se3.

Polycrystalline

In
4
Se

3

Sound velocity 
(m/s)

Derived parameters

𝜈𝑙 𝜈𝑡 𝜈𝑎 Poisson 
ratio )(𝑝

Young`s 
modulus E 
(GPa)

(K)𝜃𝐷

Experimental 3150 1810 2010 0.25 47 198

Computational 2870 1516a 1695

0.26b

0.28c

0.27d

45.58b

36.56c

42.59d

a Average transverse velocity; b Voigt equation of state; c Reuss equation of state; d Hill equation of state

Anharmonic Effects

First-principles calculations within the quasi-harmonic approximation can be exploited to 

determine the mode-resolved Grüneisen parameter, which provides a direct measure of the 
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anharmonicity of bonds (Figure 6(a)). We have demonstrated in the past67,68,69 that the presence 

of low-frequency anharmonic modes is a good descriptor for low thermal conductivity. 

Anharmonicity increases phonon-phonon scattering and therefore reduces the lattice thermal 

conductivity. As evidenced by Figure 6(a), the mode-resolved Grüneisen parameter for In4Se3 

is considerably larger for In atoms than for Se atoms. Moreover, the largest values of the 

Grüneisen parameter are found for In4 between 20 and 50 cm-1. In the atom-projected vibrational 

density of states (Figure 5), this frequency range corresponds to the region where the Einstein-

like dispersion is observed. This is consistent with the weak bonding of In4 resulting in rattling-

like vibrations. Calculations of the total energy response to the in-plane displacement of In4 

(Figure 6(b)) indicate that the total energy is minimally affected by displacements, and therefore 

confirm that the bonding of this atom is soft. It has been shown that anharmonicity can be 

amplified by lone-pair polarization70, which could be a contributive factor to the origin of the low 

thermal conductivity of In4Se3, owing to the presence of a lone 5s2 pair in In4. Our structural 

analysis suggests that the In4 atoms, which exhibit a highly asymmetric bonding environment, 

might be forming weakly-interacting dimers (Figure 2). We conjecture that, during thermal 
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vibrations, the interaction of the lone pairs along the In4In4 direction will lead to high 

anharmonicity. 

Figure 5. The computed phonons dispersion curves (left) for In4Se3 from first-principles and 

atom-projected vibrational density of states (right). LO-TO splitting is very small.
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(a) (b)

 

Figure 6. (a) Mode resolved Grüneisen parameters projected on individual atoms. (b) Total 

energy differences for the symmetrized displacement of the In4 atom along the [001] direction 

and in the plane x-y.
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CONCLUSIONS 

Our experimental and computational results demonstrate that, contrary to a previous 

suggestion which related low thermal conductivity to a Peierls distortion17, the intrinsically low 

thermal conductivity of In4Se3 is a consequence of the soft bonding of In+ ions located between 

covalently-bonded [(In3)5+(Se2-)3]- layers. This conclusion is strongly supported by the presence 

of Einstein-like modes in the vibrational density of states, which we attribute to “rattling” 

vibrations of the weakly-bonded In+ cations. The synergistic effect of soft bonding and the lone 

5s2 pair of the In+ cations leads to a high degree of anharmonicity, as evidenced by large mode-

resolved Grüneisen parameters, and hence to more effective phonon scattering.
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