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Controlling the regional re-emergence of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) after its initial spread in ever-changing personal
contact networks and disease landscapes is a challenging task. In a land-
scape context, contact opportunities within and between populations are
changing rapidly as lockdown measures are relaxed and a number of
social activities re-activated. Using an individual-based metapopulation
model, we explored the efficacy of different control strategies across an
urban–rural gradient in Wales, UK. Our model shows that isolation of symp-
tomatic cases or regional lockdowns in response to local outbreaks have
limited efficacy unless the overall transmission rate is kept persistently
low. Additional isolation of non-symptomatic infected individuals, who
may be detected by effective test-and-trace strategies, is pivotal to reducing
the overall epidemic size over a wider range of transmission scenarios. We
define an ‘urban–rural gradient in epidemic size’ as a correlation between
regional epidemic size and connectivity within the region, with more
highly connected urban populations experiencing relatively larger out-
breaks. For interventions focused on regional lockdowns, the strength of
such gradients in epidemic size increased with higher travel frequencies,
indicating a reduced efficacy of the control measure in the urban regions
under these conditions. When both non-symptomatic and symptomatic indi-
viduals are isolated or regional lockdown strategies are enforced, we further
found the strongest urban–rural epidemic gradients at high transmission
rates. This effect was reversed for strategies targeted at symptomatic individ-
uals only. Our results emphasize the importance of test-and-trace strategies
and maintaining low transmission rates for efficiently controlling
SARS-CoV-2 spread, both at landscape scale and in urban areas.

1. Introduction
In the absence of a vaccine against coronavirus disease 2019 (COVID-19) during
the initial pandemic phase, stakeholders are confronted with challenging
decision-making to balance the constraints of social interaction and the efficient
isolation of infectious individuals with economic and social pressures. There
is now growing scientific evidence of how different containment strategies
compare with each other amid the challenges of asymptomatic disease trans-
mission and the ongoing need for improved estimates of epidemiological
key parameters [1,2]. Non-pharmaceutical interventions for curbing the

provided by Cronfa at Swansea 

https://core.ac.uk/display/345574966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2020.0775&domain=pdf&date_stamp=2020-12-09
mailto:k.l.wells@swansea.ac.uk
https://doi.org/10.6084/m9.figshare.c.5227967
https://doi.org/10.6084/m9.figshare.c.5227967
http://orcid.org/
http://orcid.org/0000-0003-0377-2463
http://orcid.org/0000-0001-9891-895X
http://orcid.org/0000-0001-8974-8266
http://orcid.org/0000-0003-0919-6401
http://orcid.org/0000-0002-6389-6321
http://orcid.org/0000-0002-5207-9879
http://orcid.org/0000-0003-0710-0947
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200775

2
spread of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) rely on the isolation of infectious individuals
or general social distancing policies to reduce interactions
between undetected infectious individuals and those suscep-
tible to the disease. During uncontrolled pandemic spread, a
central aim is to reduce case incidence in order to release the
pressure on health systems. A more fundamental, long-term
goal should be to reduce the overall epidemic size and
allow particularly those most prone to suffer from the disease
to escape infection until a pharmaceutical measure such as a
vaccine is in place.

Control strategies are likely to be regional, and temporal,
aiming to reduce the time-dependent reproduction number R
while accepting that ongoing transmission is long term.

But how should these regional and temporary strategies
account for disease spread in ever-changing transmission
landscapes? One particular question faced by many countries
is how do different control strategies differ in their efficacy in
preventing disease spread across urban–rural gradients of
different population densities and connectivity in urban
and rural landscapes?

The spread of infectious disease is rarely random. It is
instead likely to be driven by the complex and heterogeneous
social interaction patterns of humans and the stark gradient
between urban and rural populations. In a landscape context,
contact opportunities within and among populations across
urban–rural gradients and source–sink dynamics arising from
infectious individuals encountering pools of susceptible indi-
viduals are the ultimate drivers of disease spread. Disease
spread is thus hampered if contact opportunities are lower in
poorly mixed populations [3–5]. Heterogeneity in contact pat-
terns of individuals and among social groups is also assumed
to impact the depletion of the pool of susceptible individuals
and the build-up of possible herd immunity that prevent
further spread [6,7]. Hence, future short- and long-termmitiga-
tion strategies that focus on managing regional and erratic
outbreaks would benefit from a better understanding of
which control strategies provide the best possible outcome
under variable regional conditions.

To the best of our knowledge, there is so far little evidence
of how various disease control strategies differ in their efficacy
across urban–rural gradients [8]. To address this gap, using an
individual-based metapopulation model, we explore the
outcomes of different control strategies to contain the epi-
demic size of COVID-19 in ever-changing disease landscapes
of case numbers and susceptible depletion, which involve
strong urban–rural gradients (see the illustration of the study
concept in figure 1).

Our modelling approach is strategic, in contrast to many
tactical COVID-19 simulation models that have focused on the
replication of specific characteristics of real outbreaks with
the aim of predicting the epidemic in specific locations
[1,9,10]. Rather than focusing the modelling on a particular set
of conditions, we aim to define a wide range of scenarios and
explore the model behaviour across a large array of combi-
nations of transmission and control parameters. In this way,
we account for potential uncertainty in epidemiological par-
ameters and degree of efficacy in ongoing and prospective
control strategies. The influence of each parameter on particular
outcomes can then be explored statistically. In this manner,
we aim to highlight how the basic properties of realisticmetapo-
pulations’ structures that include urban–rural gradients can
affect the impact of control measures.
2. Methods
2.1. Case study of a rural–urban metapopulation

in Wales
In order to provide an empirical basis to explore possible SARS-
CoV-2 spread across an urban–rural gradient and the efficacy of
different disease control measures, we selected four counties in
southwestern Wales (Pembrokeshire, Carmarthenshire, Swansea,
Neath Port Talbot) with a total human population size of 701 995
(hereafter termed the ‘metapopulation’) dispersed over an area
of 4811 km2 as a case study. This area was selected because of its
strong urban–rural gradient, from city centres to sparsely occupied
farming localities, and readily available demographic data. We
used demographic data from the UK 2011 census (Office for
National Statistics, 2011; www.ons.gov.uk), and constructed a
metapopulation model at the level of a lower layer super-output
area (LSOA), which provided M = 422 geographical units of
regional populations with a mean of 1663 individuals (s.d. = 387)
each. We assumed that these census data still represent reasonably
well the extant distribution of people across the study area for pro-
viding general insights into disease spread across the urban–rural
gradient. However, the urban area of Swansea experienced an
increase of 1000–2200 national and international immigrants per
year since the last census (Swansea City Council website, accessed
22 October 2020), which probably resulted in a slight increase in
the urban–rural gradient in population sizes.

We used a gravity model to define the connections between
populations, as it is capable of reflecting the connectivity
underpinning landscape-scale epidemics [11–13]. In particular, a
gravity model was chosen as the LSOA administrative units are
characterized by fairly similar population sizes, although they
can have different population densities because of different spatial
extents of the underlying areas. We calculated for each pair of
populations a gravity measure Ti,j of the relative strength of how
individuals are attracted to population i from populations j by
accounting for local population sizes N and weighted pairwise
Euclidean distance measures dζ, including the 10 nearest
populations k of the attractive population

Ti,j ¼
log Ni þ

P10
k¼1ðNk=d

z
i,kÞ

� �
� log (Nj)

dzi,k
: ð2:1Þ

We assumed that this approach reflects reasonably well situations
in which people are most attracted to higher density population
clusters of urban populations (i.e. Swansea in our case study;
the arbitrary selected number of 10 nearest populations gen-
erates larger values of Ti,j if the attractant population is closely
surrounded by others; electronic supplementary material,
figure S1). The scaling factor ζ (0≤ ζ≤ 1) is a sampled parameter
that may vary across scenarios, accounting for the uncertainty in
population connectivity. For each population i, we computed a
regional gravity index (with self-terms of T�

i,j for i = j being zero),

ci ¼
XM

j¼1

T�
i,j, ð2:2Þ

based on the scaled (mean subtracted from values divided by
1 s.d.) values of Ti,j (denoted T�

i,j), which we assumed to reflect
the overall connectivity of the population within the global meta-
population. We used values of T�

i,j multiplied by the commuter
travel frequency among populations (ρ) to compute the number
of individuals visiting each population from elsewhere.

Within each local patch in the metapopulation, individuals
encounter each other depending on their social interactions. The
daily within-population contact numbers Fi,t for any individual i
at time t is assumed to be a random draw given by the sum of con-
tacts drawn from a negative binomial (with r = 3 and p = 0.26,

http://www.ons.gov.uk
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Figure 1. Key principles of epidemiological SARS-CoV-2 spread and control measures in a metapopulation context. In our framework, epidemiological dynamics are mod-
elled using a stochastic individual-based model (a), in which susceptible individuals (S; green) are at risk of infection according to the number of contact symptomatic
individuals (I; red), who may transmit the virus with transmission rate β, and asymptomatic individuals (A; dark yellow), who may transmit the virus with the scaled
transmission rate βω. If infected, exposed individuals (E; light yellow) become infectious with or without symptoms (after the incubation period τ, individuals may
either remain asymptomatic with probability w or become symptomatic with probability 1− w); once recovered (R; blue), individuals no longer contribute to the
virus transmission cycle. We conceptualized a landscape comprising a collection of rural and urban populations (upper and lower ovals in (b)) connected into a metapopula-
tion network (b). Individuals may visit any other population as commuter travellers, whereby travel frequency is quantified by an overall commuter travel frequency (ρ),
scaled by distance between populations (ζ) and motivated by the ‘gravity’ of population distribution (in a gravity model individuals tend to travel to population clusters or
those nearby (see text)). Within populations, contact frequencies might be density dependent (δ). Possible metapopulation source–sink dynamics (b) of disease spread in
ever-changing disease landscapes may explain why metapopulation dynamics drive disease spread and also the efficacy of control measures in different populations (ovals
in (b)). This occurs when, through time (from (b)(i) to (b)(iii)), populations that are strongly connected to other populations according to their proximity/gravity (as rep-
resented by the width of the connecting bars between local populations; dark-grey ovals represent urban, light-grey ovals rural populations) are at higher risk of future
outbreaks given the spread of the virus and available pools of susceptible individuals. In (b), the width of the red arrows from above represents the susceptibility of
populations to outbreaks based on their connectivity to other infected populations. During the course of the epidemic, those populations with previous outbreaks
might be less prone to outbreaks because of reduced pools of susceptible individuals (e.g. (b)(ii)), while for a population without any previous outbreak the risk may
constantly change according to the overall disease landscape and its dynamics (e.g. local population on the top right of the networks displayed in (b); compare the
width of the red arrows). Colours of individuals within populations follow those of the S–E–A–I–R model in (a). In this study, we modelled the concept of test-and-
trace control strategies, which involve the isolation of all infectious individuals (disease states, E, A, I) with efficacy κ, according to the proportion of infectious individuals
successfully traced and isolated (c(i)). An alternative concept of control strategy is the isolation of symptomatic individuals (I) only with efficacy ε (c(ii)). Regional lockdown
control strategies involve reducing the local transmission rate β in response to regional outbreaks of threshold level α according to a certain proportion of the regional
population being in disease state I (c(iii)). Lockdown stringency ϕ determines how much the transmission rate is reduced. Lockdowns are of duration η and may include travel
bans, which we modelled as a maximum distance ν from which individuals are allowed to visit a locked-down population. Red ovals around individuals/populations rep-
resent isolated individuals and locked-down populations, respectively. For all control scenarios, some infectious individuals may escape control measures, which can drive
further disease spread within and among populations.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200775

3



royalsocietypublishing.org/journal/rs

4
resulting in contact numbers with mean = 9 and s.d. = 6) and a
lognormal distribution (with mean = 3 and s.d. = 2, resulting in
additional contact numbers with mean = 12 and s.d. = 16),
whereby the lognormal distribution accounts for the ‘long tail’ of
contact frequency distributions. These parameters were based on
a previous study of social contact frequencies in the UK [14]. For
simplicity, and having in mind the main focus of this study on
metapopulation-level patterns of disease spread, we did not
account for repeated contact with the same individuals such as
household or group members over different days. For simplicity,
commuting individuals were assumed to return to their home
populations in each time step, and their contacts were drawn in
the same way as for non-commuting individuals.
if
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2.2. Modelling the outcome of different disease control
strategies in variable disease landscapes

We ran numerical simulations of an individual-based stochastic
difference equation S–E–A–I–R model at daily time steps (see elec-
tronic supplementary material), with individuals transitioning
from a (S)usceptible compartment to being (E)xposed if infected.
Exposed individuals become either infectious and symptomatic
(I) or infectious but asymptomatic (A) after an incubation period
of τ days. They then transition to a (R)emoved compartment with
the recovery rate γ, which removes them from taking any further
part in the transmission cycle. Both symptomatic andasymptomatic
individuals can expose those susceptible to the virus.

The force of infection λi,t, i.e. the probability that a susceptible
individual i acquires SARS-CoV-2 at time t, is calculated by con-
sidering the probabilities of the virus being transmitted from any
interacting infected individual k (with k ∈ 1,…,Ki,t, and Ki,t being
the number of all infectious individuals in the randomly sampled
daily contact number Fi,t of individual i); λi,t can be computed
based on the probability that none of the contact events with
an infectious individual leads to an infection

li,t ¼ 1�
Y

k [ {1, ...,Ki,t}
(1� bvk), ð2:3Þ

where β is the disease transmission parameter and ωk is a scaling
factor of infectiousness of asymptomatic relative to infectious
individuals with 0 < λi,t < 1.

To explore different scenarios of local and global epidemic
sizes, we accounted for different pandemic stages and uncer-
tainty in epidemiological parameters by systematically varying
the following six parameters (see electronic supplementary
material, table S1):

(1) transmission parameter (β),
(2) the proportion of individuals that remain asymptomatic after

infection (w),
(3) the relative infectiousness of asymptomatic disease carriers (ω),
(4) commuter travel frequency of individuals between popu-

lations (ρ),
(5) density dependence of individual contact numbers (δ),
(6) proportion of the overall population resistant/recovered

from infection at the onset of simulations.

Density dependence of contact numbers (a population-level attri-
bute) was modelled by calculating the scaled regional population
density (i.e. all values divided by maximum density) to the
power of the parameter δ and multiplying the corresponding
values by the lognormal (long-tail) component of the daily con-
tact numbers Fi,t. The resulting value corresponds to the same
contact frequencies if δ approaches zero and truncated contact
frequencies at low population densities if δ approaches 1.
Owing to the lack of better empirical evidence, we assumed
this approach to represent the situation in which an increase in
population density (in urban areas) can result in a larger overall
number of random encounters between citizens and higher con-
tact frequencies between individuals of the same community in
urban areas [15].

To assess and compare the efficacy of different, idealized, dis-
ease control strategies, we defined three general control strategies:

(i) Trace and isolation of any infected individuals with a cer-
tain proportion (κ) of all infected individuals successfully
isolated (removal of individuals in disease states E, A, I,
reflecting scenarios where intensive and continuous testing
and/or intensive contact tracing would allow removal of
any infected individuals; termed ‘trace all’ in figures).

(ii) Trace and isolation of symptomatic individuals only with a
certain proportion (ε) of symptomatic individuals success-
fully isolated (removal of individuals in disease state I,
reflecting scenarios where symptomatic cases isolate with-
out any additional contract tracing or testing; termed ‘trace
symptomatic only’ in figures).

(iii) Regional temporary reduction in transmission rates
(regional lockdown) in response to a regional outbreak
within the modelled LSOA administrative units, with
four parameters to vary for decision-making and control:
(1) a threshold α defining the proportion of the regional
population to be in disease state I, (2) lockdown strin-
gency ϕ (the factor by which the transmission parameter
is reduced), (3) travel ban distance ν (the maximum dis-
tance from which individuals are allowed to visit a
locked-down population), and (4) duration of regional
lockdown (η).

For simplicity, we did not account for possible individual hetero-
geneity in transition probabilities between different disease states
but rather assumed constant ‘average’ transition probabilities in
each scenario, albeit waiting times at different disease states are
heterogeneous for many infectious diseases [16]. Similarly, we
assume that the delay in the detection of individuals in different
disease states is covered in the ‘average’ parameter of tracing/
removing these individuals from transmission cycles as part of
control strategies.

It should also be noted that parameters concerning the efficacy
of control strategies, such as the proportion of individuals
traced and isolated or lockdown stringency, represent the realized
rather than the system-inherent efficacy. It is expected that system-
inherent efficacy of control measures, such as the technical
capacity to trace infectious individuals, is highly dependent on
compliance by the public. However, because of the lack of accurate
information on compliance under different circumstances avail-
able, we did not account for compliance as an independent
parameter in our simulations. A particular aim of our study was
to investigate the interaction between this realized efficacy and
the patterns of response across the urban–rural gradient. We are
aware that real-world heterogeneity in the transition between
disease states, or heterogeneity in contact patterns arising from
unpredictable super-spreading events (e.g. large social gather-
ings), constitute unknown factors that might impose some of the
intricate challenges of disease control. Without further evidence
as to how to account for this in our model, however, we decided
to keep it as simple as possible rather than introducing a large
number of unpredictable events that can potentially modulate
transmission dynamics. We do so as, here, we are solely interested
in population-level outcomes of SARS-CoV-2 spread in response
to different control strategies.

2.3. Numerical simulations
To be able to assess the efficacy of these control strategies when
compared with a reference, we defined 10 000 ‘baseline’ trans-
mission scenarios by varying the epidemiological parameters
defining the spread scenarios (1–6 above). We performed
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Figure 2. Distribution of the total COVID-19 epidemic sizes across an urban–
rural gradient. The plot shows log10-scale epidemic size at the metapopula-
tion level resulting from simulating a large range of scenarios. Scenarios
include: ‘baseline’: no control strategy; ‘trace sympt.’: isolation of a certain
percentage of infectious/symptomatic virus carriers only; ‘lockdown’: regional
reduction in transmission parameters in response to a certain number of
infectious/symptomatic virus carriers being present; ‘trace all’: isolation of a
certain percentage of infected individuals (i.e. those in the disease states
exposed, asymptomatic virus carriers or infectious/symptomatic virus carriers).
To aid visualization, the plot is based on a random selection of 10 000 out of
40 000 simulation results.
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independent numerical simulations for each parameter combi-
nation. We then combined each baseline transmission scenario
with varying parameters for each of the three control strategies,
running a total of 40 000 simulations, each for a time period of
100 days, which we assumed to be sufficiently long to capture
the epidemic dynamics in response to different parameter
values. Parameter values were sampled using Latin hypercube
sampling [17]; see electronic supplementary material, table S1
for the ranges of parameter values used. Our simulations are sto-
chastic in that any individual’s transition in epidemiological state
or whether an individual is traced and removed are random
Bernoulli draws based on the given parameter values.

We started each simulation by randomly allocating n = 422
individuals as infectious (corresponding to the number of
populations, but not necessarily one infectious individual in
each population and infectious individuals are not necessarily
seeded in high-density populations) in the metapopulation.
While this seeding of the epidemic does not represent any par-
ticular ‘true’ epidemic state in the studied population, we have
chosen this seeding together with the varying number of initially
resistant proportion of populations to enable us to explore differ-
ent scenarios of dynamic disease landscapes rather than any
particular past or current state.
00775
2.4. Output summary
For each simulation, we computed the epidemic sizes as the num-
bers of individuals that had been symptomatic (we considered
symptomatic cases only as asymptomatic cases are less likely to
result in hospitalization or any other severe health burden) for
each population and at the metapopulation scale (i.e. entire popu-
lation). In order to explore the sensitivity of different control
strategies to different epidemiological parameters, we calculated
the relative differences in epidemic sizes (relative epidemic size)
for each disease control scenario and the corresponding baseline
scenario at the regional and metapopulation scale such that
values close to zero mean effective control and larger values
mean less effective control. Moreover, we computed for each base-
line scenario the strength of correlation (expressed as the r value
from the Spearman rank correlation) between the regional relative
epidemic size and the respective regional gravity index (urban–
rural gradient in relative epidemic size) in order to explore
whether control strategies varied in their efficacy across urban–
rural gradients. A strong positive correlation can be interpreted
as a strong urban–rural gradient of disease spread, with smaller
relative epidemic sizes in rural areas, where connectivity is gener-
ally lower. We also computed the strength of correlation between
the epidemic sizes of baseline scenarios (uncontrolled outbreaks)
and the respective regional gravity index.

In order to explore variation in the relative epidemic size and
the efficacy of different control strategies for different scenarios,
we used generalized linear models (GLMs) and boosted
regression trees (BRTs) as implemented in the R package dismo
[18]. We express results in terms of the direction of effects (i.e.
decrease/increase in relative epidemic size, reflecting higher/
lower control efficacy) and relative influence (i.e. percentage of
variance explained by various parameters in the corresponding
BRTmodel) for those parameters that appear to show ‘significant’
effects in both GLMs and BRTs (i.e. GLM coefficients clearly dis-
tinct from zero, relative parameter influence greater than 5%).

All analyses and plotting were conducted in R v. 4.0 [19].
3. Results
The urban–rural gradient in epidemic sizes (expressed as the
rank correlation coefficient between the regional epidemic
size and the regional gravity index) considerably decreased
among baseline scenarios (uncontrolled outbreaks) with
larger transmission parameters (β, explaining 57% of changes
in total epidemic sizes). This indicates that larger outbreaks
concentrated in urban areas occur mostly at low transmission
parameters. In addition, the urban–rural gradient in total epi-
demic sizes decreased with higher commuter travel frequency
(ρ, 19% of changes in total epidemic sizes) and stronger
distance weighting in the underlying gravity model (ζ, 15%
of changes in total epidemic sizes). This suggests that these
factors not only facilitate spatial disease spread but also
determine whether outbreaks are larger in urban than in
rural environments.

3.1. Efficacy of different control strategies in changing
disease landscapes

Trace and isolation of all infected individuals (trace all) was by
far the most efficient control strategy in our simulations
(figure 2): no simulated scenario with 47% or higher of
infected individuals removed (κ) had a relative epidemic
size greater than 5% of the respective baseline scenario. Low-
ering the epidemic size through isolation of infected
individuals was less efficient for large transmission par-
ameters (β, explaining 19% relative influence on changes in
relative epidemic sizes, figure 3).

Trace and isolation of symptomatic individuals (trace sympto-
matic only) was of limited efficacy in lowering epidemic size
in our simulations. The efficacy of these control strategies lar-
gely depends on small transmission parameters (β, 72%
relative influence), whereas variation in the proportion of
symptomatic individuals being isolated (ε) explained only
12% in relative epidemic sizes. The efficacy of this control
strategy was further hampered by increasing proportions of
asymptomatic cases (w, 9% relative influence).

Regional lockdown scenarios appeared to be of limited effi-
cacy in our simulations (figure 2) and largely depend on
small transmission parameters (β, 70% relative influence)
(figure 3). Their efficacy was sensitive to the regional
threshold levels for lockdown implementation (α, 10%
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relative influence) and lockdown stringency (ϕ, 6% relative
influence). A reduction in relative epidemic sizes to 5% of
those of the respective baseline scenarios through regional
lockdowns was only achieved for regional lockdown
threshold levels of less than or equal to 1% of the populations
being symptomatic.

3.2. Variation in control efficacy across urban–rural
gradients

The strength of the urban–rural gradient in relative epidemic
sizes resulting from isolation of all infected individuals (E, A, I)
declined with increasing proportions of infected individuals
isolated (κ, 46% relative influence; figure 4) and increased
with increasing transmission parameters (β, 24% relative
influence), suggesting that larger transmission rates makes
it relatively more challenging to control the spread in urban
than in rural areas. By contrast, the more individuals are iso-
lated (increasing κ), the more efficiently that epidemics can
also be contained in urban environments (i.e. resulting in
less strong urban–rural gradients in relative epidemic size),
despite a concentration of cases there, as depicted by
mostly positive correlation coefficients in the urban–rural
gradient in relative epidemic size (figure 5).

The completely opposite effect was found for the isolation
of symptomatic individuals only (I). The strength of the
urban–rural gradient in relative epidemic size declined with
increasing transmission parameters (β, 52% relative influence)
but increased with increasing proportions of symptomatic
individuals isolated (ε, 12% relative influence). Hence,
larger transmission rates make a reduction in epidemic size
by isolation of symptomatic individuals only more
challenging in rural rather than in urban areas. The urban–
rural gradient in relative epidemic size further decreased
with larger proportions of asymptomatic cases (w, 11% rela-
tive influence), decreased with higher commuter travel
frequency (ρ, 8% relative influence) and increased with stron-
ger density dependence in contact numbers (δ, 7% relative
influence, figure 4).

In response to regional lockdown strategies, the strength of
the urban–rural gradient in relative epidemic size increased
with increasing transmission parameters (β, 34% relative
influence), increasing travel frequencies (27% relative influ-
ence) and stronger distance weighting in the underlying
gravity model (ζ, 18% relative influence, figure 4).
4. Discussion
Decision-making to balance efficient COVID-19 control with
socio-economic pressures is a challenging task against the
backdrop of asymptomatic disease spread and ever-changing
disease landscapes. We show that isolation of symptomatic
cases or regional lockdowns in response to local outbreaks
have limited efficacy in terms of reducing overall epidemic
sizes, unless the overall transmission rate is kept persistently
low. Isolation of non-symptomatic infected individuals, who
may be detected by effective test-and-trace approaches, is
pivotal to reducing overall epidemic size over a wider range
of transmission scenarios. By considering an ‘urban–rural epi-
demic gradient’ as the strength of correlation between regional
epidemic size and connectivity within a region, we show that,
under certain conditions, control measures are of limited
efficacy in urban compared with rural areas. Intervention
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strategies focusing on the isolation of non-symptomatic indi-
viduals and regional lockdowns, for example, had the
strongest urban–rural outbreak gradients at high transmission
rates. By contrast, interventions targeting symptomatic virus
carriers only had the reverse effect.

Our results emphasize the importance of efficient detection
of infectious individuals through test-and-trace approaches for
containing the spread of SARS-CoV-2 [2,20,21], while also
uncovering that some methods will be less efficient in urban
areas under the post-lockdown situation unless transmission
rates are kept constantly low.

Efficient removal of all infectious individuals (including
non-symptomatics) has the potential to restrain total epi-
demic size by successfully suppressing landscape-scale
disease spread and the corresponding source–sink dynamics
of how the disease may spread and re-emerge among popu-
lations. We found regional lockdowns to only be effective in
terms of reducing overall epidemic size if implemented at
low threshold levels and low transmission rates. This is
likely to be due to the fact that only under these conditions
can landscape-scale spread of the disease be avoided. These
findings are in line with previous suggestions that temporary
lockdowns do not necessarily contain overall epidemic size in
a metapopulation context over medium to long time periods
[22], even if they may be useful for reducing local case
number over short time periods to avoid an overload of
health capacities [23–25].

In practice, the prominent example of the locally restricted
lockdown implemented in the city of Leicester in the UK,
which began in June 2020, is just one example of mounting
evidence that regional lockdowns do not necessarily see a
reduction in disease transmission during the following
weeks [26], which would ideally prevent spread of the
virus beyond the local context. This slow response of inci-
dence decline following regional lockdowns is in line with
our finding and more general suggestions that disease with
asymptomatic transmission pathways can only be controlled
with intensive test-and-trace approaches [27]. A number of
natural experiments are being conducted during the course
of the epidemic in the UK (at the time of writing in October
2020) on locally tiered measures, with a range of prevalence
in the background, which will provide data to evaluate this
intervention going forward.

Surprisingly, we found travel frequency and possible
density dependence in contact frequency to have rather
small relative impact on overall epidemic size compared
with the transmission parameter (figure 3). Despite the recog-
nized importance of connectivity, travel patterns and
metapopulation structure on disease spread [28–30] our
results highlight the importance of overall transmission
rates on disease spread and epidemic size. This has important
management implications, as it points to measures that might
allow for continuous long-term lowering of transmission
rates. Such measures, we suggest, are considerably more effi-
cient than any short-term measures of changing control
stringency in response to actual case numbers for reducing
the overall epidemic size.

We found the magnitude of the transmission rate to also
determine the success of different control strategies in urban
versus rural areas, leading to varying urban–rural epidemic
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gradients in response to varying transmission rates and
different control strategies (figure 4). For interventions
focused on isolating both non-symptomatic and symptomatic
individuals and regional lockdowns, our results reveal the
strongest urban–rural epidemic gradients at high trans-
mission rates, indicating a reduced efficacy of such control
measures in urban areas under these conditions. These results
suggest that, at high transmission rates, the urban–rural epi-
demic gradient is enforced by the overall poorly curbed
disease spread at the metapopulation level (figure 5). Conver-
sely, we found the urban–rural gradient in epidemic sizes to
be mostly masked at high transmission rates for measures tar-
geted at symptomatics only, suggesting that these measures
(which are generally of moderate to low efficacy) would not
contain disease spread at the metapopulation level unless
transmission rates are kept constantly low (figure 4). Explor-
ing such effects warrants further investigation based on
empirical data and relevant spatio-temporal models of dis-
ease spread under variable conditions of contact frequencies
and control efforts. Such more detailed research may also
account for first insights into variable compliance in response
to intervention strategies. A recent study, for example, found
slightly larger reductions in average mobility in high-density
than in low-density areas in the UK [31].

In contrast to many forensic COVID-19 models that have
focused on forecasting real outbreaks in specific locations
[1,9,10] our model is strategic, with a focus on exploring gen-
eral mechanisms emerging from across a large range of
modelled scenarios. A direct match to the ongoing epidemic
in the study area is unfeasible because we do not account for
any particular real-world starting conditions nor the tempor-
ary changes in human interactions in response to changing
policy. Also, as we are not aware of detailed estimates of rel-
evant epidemiological parameters such as how transmission
rate varies among age groups in our study area, we do not
account for age structure in our model, even though, as it
has been shown, COVID-19 effects and expression of symp-
toms are rather different between children and adults [32].
These effects might be exacerbated by a potential systematic
variation in demographic community composition in urban
and rural areas. However, with an area-wide spread of
COVID-19 in our study area and a concentration of cases in
urban communities during the first sixmonths of the epidemic,
some general patterns found in model output and empirical
data appear to be compatible (K.Wells 2020, personal observa-
tions). Given more detailed data of spatio-temporal disease
spread and better estimates of epidemiological key para-
meters, future studies may narrow down the currently
intractable large parameter space through statistical
approximation methods in order to identify when and how
management efforts may results in disease extirpation versus
long-term persistence [33]. Future studies may also account
for the various processes that synergistically determine control
efficacy and whether a certain level of control can be achieved
or not. While our strategic modelling approach accounts only
for ‘average’ parameter values, possible sources of variation
in the efficacyof controlmay include forward versus backward
test-and-trace efficacy (i.e. tracing known social contacts versus
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previous contact fromwhich the infection has originated [34]),
disproportionate disease spread by super-spreading individ-
uals and super-spreading events, and dynamic changes in
compliance by the public.

The most important implication from our model is
that priority should be given to any reliable and feasible
measures that constantly keep the transmission rate low as
opposed to relying on local lockdowns to stamp out out-
breaks. The success of any short-period interventions is
limited if overall transmission rates remain high and facilitate
disease spread within and among populations. We conclude
that, in the absence of an intervention strategy that would
ensure rapid eradication of COVID-19, different interven-
tion strategies do not work as efficiently in urban as in
rural communities. Priority should thus be given to further
research on how the most vulnerable individuals can be
best protected at minimal cost for entire metapopulations.
While post-lockdown situations of low transmission rates
and reduced case numbers are tempting to ease inter-
ventions, we believe that ongoing source–sink dynamics
of disease spread cannot be ignored. Control strategies
aiming at successful regional disease control during a pan-
demic should not ignore the fact that communities that
successfully escaped initial epidemic waves remain highly
vulnerable because they contain large pools of individuals
still susceptible to COVID-19.
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