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Abstract

Uranium diboride is being proposed as an accident tolerant fuel (either as a part of a composite or a 11B enriched monolithic fuel
pellet), while zirconium diboride is often selected as a burnable absorber in conjunction with uranium dioxide fuel pellets. It is
therefore important to understand the thermal properties of these materials and examine methods in which they may be improved.
The thermal conductivity of UB2 and ZrB2 is calculated through atomic scale modelling methods. It was found that the boron-
isotope ratio has a significant impact on the thermal conductivity of ZrB2, but is negligible for UB2 due to the large electron-phonon
scattering.

Keywords: Uranium diboride, Zirconium diboride, Nuclear fuel, Thermal conductivity, Density functional theory

1. Introduction

Two of the main accident tolerant fuel (ATF) candidate ma-
terials considered for commercial use are UN and U3Si2, ow-
ing to their increased uranium density and thermal conductiv-
ity over UO2 [1–4]. Compared to UO2, both of these leading5

candidates for high density ATF have significantly exothermic
reactions with water [5–7].

Alternative fuels such as UB2, and fuel designs such as
composites with UO2 have subsequently been targeted [8]. 11B
has a slightly larger thermal neutron capture cross section than10

16O unlike the thermal neutron absorber 10B [9] - and as such
can be considered a valid fuel when isotopically enriched. The
uranium density of UB2 (11.6 g/cm3) is comparable to that of
U3Si2, which has a density of 11.3 g/cm3 [1] indicating that
the choice between the two fuels would be dictated by other15

properties. Monolithic UB2 pellets, in addition to composite
UO2-UB2 [10] and U3Si2-UB2 pellets [11], are now being con-
sidered as an ATF. The composite fuels can take advantage of
incorporating the 10B isotope that will act as a burnable absorb-
ing material - improving the fuel cycle economics of the fuel20

further [11, 12].
Uranium diboride (UB2) has a hexagonal P6/mmm unit cell

structure [13], shown in Figure 1, and is composed of alternat-
ing layers of U and B. It is a common structure shared with
many other diborides including ZrB2, which is also used as a25

burnable absorber in some nuclear fuel designs [14]. Previous
work has shown that UB2 does not accommodate any signifi-
cant deviations in stoichiometry and can therefore be consid-
ered a line compound in a similar manner to U3Si2 [15] and
ZrB2 [16].30

∗Corresponding author
Email address: l.evitts@bangor.ac.uk (L.J. Evitts)

The thermal conductivity of nuclear fuel is an important pa-
rameter that determines the behaviour of the fuel under normal
operation and in the event of an anticipated operational occur-
rence (AOO) or accident. Not only is it important to understand
fresh fuel’s thermal conductivity, but also the impact that bur-35

nup has on this material property. In UO2, the impacts of fis-
sion product concentration, radiation damage and stoichiome-
try have been modelled with some success [17–21]. At present,
the thermal conductivity of UO2 predicted using atomic scale
methods only slightly underestimates the thermal conductiv-40

ity measured experimentally. For example, Torres & Kaloni
[22] calculated a lattice thermal conductivity of approximately
5.6 W/mK at 500 K, which is a little under the experimental
value of 6.6 W/mK [4]. The authors assume that the contri-
bution from electrical thermal conductivity is negligible and in-45

stead suggest that discrepancies may arise from insufficiently
small super-cells or higher-order phonon processes. There has
also been recent success in fitting the Callaway model to ex-
perimental data of UO2 when the phonon-spin contribution is
included [23].50

The major aim of this research is to highlight the influence
of the boron isotopic ratio on the thermal conductivity of UB2
and ZrB2 through the use of DFT calculations. The method,
simulation codes and parameters used in this work are detailed
in Section 2 while the results are examined in Section 3.55

2. Methodology

The density functional theory (DFT) calculations in this work
were performed with the Vienna Ab-initio Simulation Package
(VASP) [24–27]. The projector augmented wave (PAW) poten-
tials [28, 29] were used in conjunction with the GGA exchange60
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Figure 1: The hexagonal P6/mmm unit cell structure of UB2 where the small
black spheres are B atoms.

correlation functional described by Perdew, Burke and Ernzer-
hof [30, 31].

In all calculations a convergence threshold of 10−8 eV was
set for electronic minimization, and a threshold of 10−8 eV/Å
was set for geometric optimization. The cut-off energy was65

set to 400 eV for all calculations with a first order Methfessel-
Paxton [32] smearing with a width of 0.1 eV. A Γ-centred k-
point mesh was automatically generated with a constant k-point
density of approximately 0.03 Å for each calculated cell size.
Spin-orbit interactions were included in the calculations how-70

ever, as UB2 has previously been determined as a metallic Pauli-
paramagnetic compound [33], the initial magnetization value
was set at zero.

In a number of compounds it becomes necessary to intro-
duce a term for localized d or f electrons due to the inherent75

electron delocalization present in DFT calculations. If this extra
term, otherwise known as the Hubbard parameter, is excluded
from the calculations then the band structure can be incorrectly
predicted. For example, DFT calculations predict a metallic
structure for UO2 until the additional localization term is in-80

cluded and thereby creates a gap in the electronic band struc-
ture [34]. Authors who have previously performed DFT cal-
culations on UB2 have justified using either a value of 2.0 eV
for the Hubbard parameter (based on lattice parameters) [35],
or excluded the parameter due to an incorrect prediction for the85

enthalpy of formation [15]. However, it has been shown exper-
imentally that the 5 f electrons of UB2 are itinerant due to the
small U-U distance, which creates a large f - f overlap [36]. It
is therefore not justifiable to include the localization term for
DFT calculations of UB2.90

The phonon-phonon interactions, and subsequently the lat-
tice thermal conductivity, were calculated with the Phono3py
[37] package. Phono3py solves the linearized phonon Boltz-
mann transport equations (BTE) with a single-mode relaxation-
time approximation (RTA) [37]. The approximation is made95

due to the high computational cost of solving the full BTE.
Phono3py is also able to calculate the phonon-isotope scatter-

ing rate through second-order perturbation theory discussed in
Ref [38]. Forces were calculated in VASP using a super-cell
of 3×3×2 containing 54 lattice sites. The size of the super-100

cell was chosen based on convergence from smaller cell sizes,
though larger cells were not investigated. To optimise the com-
putational effort in repeated calculations of the lattice thermal
conductivity, κl, a study was performed varying the cutoff pair-
distance i.e. the maximum distance in which the atomic forces105

are calculated. It was found that convergence is achieved at a
distance of 3.2 Å (i.e. the third nearest neighbour).

The BTE are separately solved using Density-Functional
Perturbation Theory (DFPT) and Maximally Localized Wan-
nier Functions (MLWF) with the electron-phonon Wannier (EPW)110

[39] package of Quantum ESPRESSO [40]. This allows for cal-
culations of the electronic conductivity, electron-phonon matrix
elements, and electron-phonon scattering rates. The matrix el-
ements were first calculated with a coarse 6 × 6 × 6 k-mesh
and q-mesh, then interpolated with a finer 50 × 50 × 50 k-mesh115

and q-mesh using MLWF. Spin-orbit coupling was not included
in these calculations, as no acceptable norm-conserving pseu-
dopotential was found for uranium. Separate calculations were
performed using a scalar relativistic PBE and a LDA pseudopo-
tential, which produced similar results.120

3. Results & Discussion

3.1. ZrB2

The method of calculating the lattice thermal conductivity
was validated against the previous experimental results of ZrB2,
for which there is plenty of data available [41] yet is lacking for125

UB2. ZrB2 has the same crystal structure as UB2 and simi-
lar material behaviour. The lattice thermal conductivity is ob-
tained through DFT calculations and Phono3py using the same
method and input parameters discussed in Section 2. The elec-
tronic thermal conductivity is calculated using BoltzTraP2 [42]130

(which can solve the BTE through smoothed Fourier interpola-
tion of electronic bands) and the electrical resistivity measured
from Ref [43].

There have been many approaches to manufacturing and
measuring the thermal conductivity of ZrB2, which are sum-135

marised in Ref [41]. The total thermal conductivity calculated
in this work is compared with experiment in Figure 2. The
upper and lower boundaries of the experimental data are rep-
resented by measurements from Zimmermann et al. [43] and
Zhang et al. [45]. The thermal conductivity measured by Ki-140

noshita et al. [44] was performed on a single crystal of ZrB2
and thus best represents the results obtained through DFT cal-
culations. It can be seen that the calculated results lie within
the range of experimental data, suggesting that the method is
reasonable.145

The accumulated lattice thermal conductivities at 300 K, in
both x and z directions, are displayed in Figure 3(a), and the as-
sociated phonon density of states in Figure 3(b). It can be seen
that the acoustic low-frequency phonons from the vibrations of
the Zr atoms are the dominant contributor to κl in the z direc-150

tion. The high-frequency optical phonons, which are dominated

2



200 400 600 800 1000 1200

Temperature (K)

0

20

40

60

80

100

120

140

160

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

/m
K

)

Kinoshita et al. (2001)
Zimmermann et al. (2008)
Zhang et al. (2011)

 (lattice)lκDFT 
 (electronic)eκDFT 

 (total)κDFT 

Figure 2: The calculated lattice (dashed red line), electronic (dashed blue line)
and total (solid purple line) thermal conductivity of ZrB2 compared with select
experimental data [43–45].

by the vibrations of the B atoms, contribute roughly 10 % of κl

in the x/y plane. The ratio of contributions that is displayed in
Figure 3(a) is also observed at higher temperatures, not shown.
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Figure 3: The calculated (a) accumulated lattice thermal conductivity at 300 K
in the x and z directions, (b) the phonon density of states for ZrB2.

The effect of the isotopic boron ratio on κl is easily investi-155

gated by altering the masses and mass variances with Phono3py.
The difference in κl, relative to the natural abundance ratio of B,
is shown in Figure 4. It can be seen that the greatest increase in
κl is obtained when pure 11B is used, and remains consistently
high across the the studied temperature range. A similar effect160

is observed for pure 10B but it is not as significant, and the effect
decreases as temperature increases.
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Figure 4: The percentage change, P, in the lattice thermal conductivity of ZrB2
as a function of temperature and boron isotope ratio. P is relative to the natural
abundance isotope ratio of 0.2, shown by the red dashed line. The lines of the
surface are in increments of 100 K and 0.05 for the temperature and isotope
ratio, respectively.

3.2. UB2

The lattice parameters of UB2, following the geometric re-
laxation of the unit cell, are calculated to be 3.084 Å and 4.020 Å165

for the a and c directions, respectively. This is comparable to
the weighted average of previous experimental measurements,
where a is 3.1302(3) Å and c is 3.9879(3) Å [13, 46–49].

The mechanical properties of UB2 were calculated and shown
in Table 1. The five elastic constants, Ci j, of a hexagonal crystal170

structure are derived from the strain-stress relationship follow-
ing distortion calculations. The Hill average of the bulk modu-
lus, B, and shear modulus, G, were calculated from the average
of the Voigt and Reuss bounds, as described in Ref [50]. The
Young’s modulus, E, and Poisson’s ratio, µ, were calculated175

from the bulk and shear moduli via [50]

1
E

=
1

3G
+

1
9B

(1)

µ =
1
2

(
1 −

3G
3B + G

)
(2)

The average sound velocity, ν, was calculated from the trans-
verse (T) and longitudinal (L) velocities of polycrystalline UB2
via [51]

νT =

√
G
D

(3)

νL =

√
B + 4/3G

D
(4)

ν−3 =
1
3

(
ν−3

L + 2ν−3
T

)
(5)
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where D = 12.7 g/cm3 is the density of UB2 [52]. The Debye180

temperature, θD was calculated from [53]

θD =
~ν
kB

(
6π2na

Ω

)1/3

(6)

where kB is Boltzmann’s constant, na and Ω are the number of
atoms and volume of the unit cell respectively.

Properties that have been previously calculated with DFT
[35] or experimentally measured [13, 54] for UB2 are also shown185

in Table 1. Compared to the DFT calculations performed by
Jossou et al. [35], differences can be observed between the val-
ues of Ci j which produces differences in all of the subsequently
derived properties. Many of the input parameters used within
this work are similar to those of Jossou et al. [35] but a differ-190

ent code was used to obtain the results. The moduli obtained
in this work agrees fairly well with the experimental measure-
ment of Dancausse et al. [13] but differs to Kardoulaki et al.
[55] where the authors suggest potential internal cracking in
their sample. There is variation in the values of θD due to the195

different methods and samples e.g. Flotow et al. [54] performed
their measurement at close to 0 K.

The accumulated lattice thermal conductivity at 300 K is
displayed in Figure 5(a) in both x and z directions. The κl

produced by Phono3py, which calculates phonon-phonon and200

phonon-isotope scattering only, was found to be 2 to 3 times
larger than the experimental result [55]. The associated phonon
density of states are shown in Figure 5(b), exhibiting a similar
behaviour to that of ZrB2.
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Figure 5: The calculated (a) accumulated lattice thermal conductivity at 300 K
in the x and z directions, (b) the phonon density of states for UB2 produced
with Phono3py, which only takes phonon-phonon scattering into account.

Other phonon properties are related to κl via [53]:205

κl =
1
3
·Cv · ν

2 · τp (7)

where Cv is the volumetric heat capacity at constant volume and
τp is the relaxation time of the phonons. The calculated heat

capacity is compared with previous experimental data in Fig-
ure 6. Phono3py [37] was used to calculate Cv from phonon-
phonon interactions, whilst Phonopy [56] was used to calcu-210

late phonon properties and volumetric heat capacity at constant
pressure, Cp, under the quasi harmonic approximation [57].
This was achieved through density functional perturbation the-
ory (DFPT) calculations at a number of different volumes cen-
tered around the relaxed volume. In both calculated heat ca-215

pacities the electronic contribution, γT (where γ = 9.40 mJ
/ K2· mol [58]) is included. It can be seen that the calcula-
tion reproduces the experimental result well, particularly at low
temperatures, and therefore the large discrepancy between the
calculated and experimental κl [55] is likely due to either ν or τ.220
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Figure 6: The experimental heat capacity of UB2 at constant pressure [59] com-
pared with the calculated results.

The discrepancy between the results obtained through DFT
and Phono3py calculations and the available experimental data
[55] could be due to an overestimated calculated phonon re-
laxation time. The scattering rate, which is the inverse of the
phonon relaxation time, is a sum of individual scattering rates225

due to interactions between phonons and other phonons, de-
fects/impurities, surfaces, magnetic entropy and electrons [23,
53] i.e.

1
τp

=
1

τph−ph
+

1
τph−de f

+
1

τph−sur
+

1
τph−spin

+
1

τph−e
(8)

Phono3py only calculates the phonon-phonon scattering effects
and, optionally, the phonon-isotope scattering effect included230

in the phonon-defect contribution. Other defects and impuri-
ties can be included in the cell structure of DFT calculations
but this removes symmetry and are therefore better suited for
molecular dynamics calculations due to computational limits.
The phonon-surface scattering depends on both the sample size235

and grain size of a physical sample, which is not included in the
DFT calculations.
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Table 1: Comparison of mechanical properties of UB2 calculated in this work, with previous DFT calculations (∗) and experimental measurements (†). The
mechanical properties listed are the elastic constants, Ci j, bulk modulus, B, shear modulus, G, Young’s modulus, E, Poisson’s ratio, µ, sound velocity, ν, and Debye
temperature, θD.

Elastic constants (GPa)
Study C11 C12 C13 C33 C44 B (GPa) G (GPa) E (GPa) µ ν (m/s) θD (K)
This work 437 56 98 503 262 208 215 479 0.116 4500 598
∗Jossou (2017) [35] 342 161 280 503 105 275 88 238 0.36 2961 392
†Dancausse (1992) [13] 225
†Flotow (1969) [54] 394(17)

The Callaway model [60], which assumes a Debye phonon
spectrum, defines lattice thermal conductivity as [23]

κl =
kB

2πν

(
kBT
~

)3 ∫ θD/T

0

τpx4ex

(ex − 1)2 dx (9)

where T is the temperature, x = ~ω/kBT and ω is the phonon240

frequency. A number of the previously discussed phonon scat-
tering rates can be fit to data with

1
τph−ph

= UT 3x2e−θD/bT (10)

1
τph−sur

= B (11)

where U, b, and B are free parameters. As there are periodic
boundary conditions and no defects or impurities present, B was
first set to 0 and the Callaway model was fit to κl produced from245

DFT calculations. Following the fit, U and b were found to be
11419 K−3s−1 and 4.39 respectively. The parameter B respon-
sible for phonon-boundary scattering was estimated from ν and
assumes a typical grain size of 7.5 µm [55], which produces
a value of 6.0 ×108 s−1. The addition of the phonon-boundary250

term has an insignificant impact on the total lattice thermal con-
ductivity values.

The electron-phonon scattering rates, which are related to
the imaginary part of the phonon self-energy, Π′′qv, within the
Migdal approximation [61], are also introduced into Equations255

(8) and (9). When using EPW, Π′′qv corresponds to the phonon
half-width at half-maximum, γqv [39] thus

1
τph−e

=
2Π′′qv

~
=

2γqv

~
(12)

where the subscripts q and v correspond to the wavevector and
mode, respectively.

Three curves of κl are displayed in Figure 7, highlighting260

how the thermal conductivity changes after the introduction of
each additional scattering rate. It can be seen, shown by the
dotted blue line, that the interaction between phonons and elec-
trons reduces the total lattice thermal conductivity by an order
of magnitude. As κl is dominated by electron-phonon scatter-265

ing, the effect from phonon-isotope scattering is comparatively
insignificant, and therefore κl is effectively independent of the
boron isotope ratio (unlike ZrB2).
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Figure 7: The lattice thermal conductivity of UB2 according to the Call-
away model, expanding the single crystal DFT calculations (τph−ph only) with
phonon-surface and phonon-electron interactions.

3.2.1. Electronic thermal conductivity
The resistivity of UB2, ρ, is calculated with EPW which270

solves the Boltzmann transport equations, utilizing Ziman’s re-
sistivity formula [39] as an approximation solution i.e.

ρ(T ) =
4πme

nee2kBT

∫ ∞

0
~ω α2

trF(ω) η(ω,T )[1 + η(ω,T )] dω

(13)
where me is the mass of the electron, ne is the number of elec-
trons per unit volume, α2

trF(ω) are Eliashberg transport func-
tions and η(ω,T ) is the Bose-Einstein distribution. At room275

temperature a resistivity value of 9.16 µΩ·cm was calculated,
which is comparable to the experimental measurement of a sin-
gle crystal, which is approximately 10 µΩ·cm [33].

The calculated band structure, shown in Figure 8, is similar
to that of Jossou et al. [35] highlighting the validity of these280

results.
The total electronic contribution to the thermal conductivity,

κe, is calculated from the impurity and phonon contributions via
Matthiessen’s rule [62]

1
κe

=
1

κ
imp
e

+
1

κ
ph
e

(14)
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Figure 8: The calculated band structure of UB2 exhibits metallic properties.
The energy in the y-axis is reduced by the Fermi energy.

where κimp
e = LT/ρ from the Weidemann-Franz law and L =285

2.44 × 10−8 WΩK−2 [62]. The electron-phonon component is
calculated via [63]

1

κ
ph
e

=
6Ω

π~kBN(ε) < ν2
e(ε) >[∫ ∞

0

dω
ω

α2
trF(ω)

( x
sinh x

)2
(
1 +

x2

π2

)
+

∫ ∞

0

dω
ω

α2F(ω)
( x
sinh x

)2
(

3x2

π2

)]
(15)

where x = ~ω/2kBT , α2F(ω) are the Eliashberg transport func-
tions and N(ε) and νe(ε are the density of states per spin and the
velocity at the Fermi level, ε. However, it was found that the290

phonons had little effect on the electronic thermal conductivity
i.e. κph

e is an insignificant contribution to κe.
The total thermal conductivity for UB2 is shown in Figure

9, and compared with previous DFT calculations [35] . It can be
seen that κe is dominant over the small κl values at all temper-295

atures. There is a discrepancy between the results obtained in
this work and of previous DFT calculations [35]) due to a num-
ber of factors. The κl values calculated by Jossou et al [35] are
similar when only the phonon-phonon scattering is taken into
account, as the authors did not include phonon-electron scat-300

tering. The κe values obtained by Jossou et al [35] were based
on an approximation of ρ, based on the experimental result of
UN. Therefore the discrepancy arises as ρ was calculated in
this work, and compared with experimental data of UB2. There
is also a discrepancy when compared to previous experimental305

work [55] where the author suggests potential cracking and im-
purities. It is unknown what effect impurities would have on the
electronic band structure of UB2, and therefore of κ.
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Figure 9: The total calculated thermal conductivity of UB2, with a natural iso-
topic abundance of B, showing the individual lattice and electronic contribu-
tions. Previous calculations of the total lattice thermal conductivity by Jossou
et al. [35]. are also shown for comparison.

4. Conclusions

Through the use of DFT calculations, the phonon and elec-310

tron interactions and subsequently the thermal conductivities of
ZrB2 and UB2 have been calculated. ZrB2 and UB2 are simi-
lar in that they both exhibit the same hexagonal structure with
layers in the basal plane. In ZrB2 the calculation lies within
the range of previous experimental data, yet the experimental315

κ of UB2 is significantly lower than the calculated result [55].
The effect of impurities and surface interactions on the thermal
conductivity cannot be determined easily through DFT calcula-
tions, as symmetry is removed and the calculation cost is greatly
increased. It may be possible to investigate this effect through320

molecular dynamic calculations. The electron-phonon scatter-
ing rates calculated for UB2 were found to be significant which
reduces κl, and leads κe to be the dominant contributor to κ. An
additional discrepancy was observed between κe calculated in
this work and in previous DFT calculations [35], though it is325

shown that the previous work was based on experimental data
from UN and not UB2 which is addressed here.

We show that κl for ZrB2 can be significantly increased
when a pure isotope of B is used, but isotopic purity is a negli-
gible contribution in UB2 due to the large electron-phonon scat-330

tering. It is possible that variability of boron isotope enrichment
could be partly responsible for the significant spread in exper-
imental data for κ of ZrB2, though isotope enrichment alone is
not enough to explain the entire spread. An experimental study
of the isotope ratio on thermal conductivity in all related di-335

borides is encouraged for comparison.
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Y. Yoshida, H. Yamagami, Y. Ōnuki, De Haas-van Alphen Effect and En-
ergy Band Structure in UB2, J. Phys. Soc. Jpn 67 (9) (1998) 3171–3175.460

doi:10.1143/JPSJ.67.3171.
[34] S. L. Dudarev, D. Nguyen Manh, A. P. Sutton, Effect of Mott-Hubbard

correlations on the electronic structure and structural stability of ura-
nium dioxide, Philos. Mag. B 75 (5) (1997) 613–628. doi:10.1080/

13642819708202343.465

[35] E. Jossou, L. Malakkal, B. Szpunar, D. Oladimeji, J. A. Szpunar, A first
principles study of the electronic structure, elastic and thermal properties
of UB2, J. Nucl. Mater. 490 (2017) 41 – 48. doi:https://doi.org/

10.1016/j.jnucmat.2017.04.006.
[36] T. Ohkochi, S.-i. Fujimori, H. Yamagami, T. Okane, Y. Saitoh, A. Fuji-470
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