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Abstract

When evaluating the performance of time series extrapolation methods, both researchers and

practitioners typically focus on the average or median performance according to specific error

metrics, such as the Absolute Error or the Absolute Percentage Error. However, from a risk

assessment point of view, it is far more important to evaluate the distributions of such errors

and especially their tails. For instance, lack of normality and symmetry in error distributions

can have significant implications in decision making, such as in stock control. Moreover, these

distributions can frequently only be empirically constructed as they may be the result of a

computationally intensive non-parametric approach, such as an artificial neural network. In

this study, we propose an approach for evaluating the empirical distributions of forecasting

methods and use it to assess eleven popular time series extrapolation approaches across two

different datasets (M3 and ForeDeCk). The results highlight some very interesting tales

from the tails.

Keywords: Forecasting, Performance, Error Distribution, Tails, Risk

1. Introduction

Forecasters have traditionally been evaluating forecasting performance with various error

metrics, such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE),

∗Corresponding author
Email address: spiliotis@fsu.gr (Evangelos Spiliotis)

Preprint submitted to International Journal of Forecasting November 19, 2018



Mean Error (ME) and Mean Absolute Scaled Error (MASE) (Makridakis et al., 1998; Hyn-

dman & Koehler, 2006), all of them having in common that the average performance of the

metric is being assessed. On the other hand, practitioners would only use metrics that make

sense to them, and this is why MAPE historically prevailed over the rest. Yet, all of these

metrics measure the average forecasting performance and, therefore, are seriously influenced

by outliers. Recently, many academic articles have been reporting median version of such

metrics as well (MdAPE, MdASE, etc.) so as to account for the latter and give a sense

of the influence of extreme errors (Nikolopoulos et al., 2016; Davydenko & Fildes, 2013).

Quantile regression approaches, as well as trying to reconstruct the full functional form of

the forecast rather than a point forecast at any given point of time in the future, constitute

other possible approaches, but are much less used in practice (Taylor & Jeon, 2015; Taylor

& Yu, 2016).

From a risk assessment point of view, it is far more important to assess the full distri-

butions of forecasting errors and especially their tails. This is because lack of normality

and symmetry in the distributions of forecasting errors can have significant implications

in decision making, including among others operation management and inventory control.

Furthermore, it is frequently impossible to theoretically construct the distributions of the

errors as they may be the result of a computationally intensive non-parametric approach,

such as an artificial neural network or a complex machine learning method, making their

empirical estimation the only way forward.

Swanson et al. (2000) and Coleman & Swanson (2007) discussed some of these issues and

proposed two interesting alternative measures, called MAPE-R and MAPE-T, to deal with

the exaggeration of the MAPE and make it more robust to outliers. Instead of eliminating

large errors or being strongly influenced by them, these metrics exploit a normalization

based on the Box-Cox transformation to mitigate their effect while preserving the original

information. In this regard, MAPE-R and MAPE-T provide a representative estimator of

the median of the APE distribution, but still fail to assess the distribution as a whole. To

deal with this problem, in this study we introduce the Risk Measure (RM), a metric which

expands the basic properties of MAPE-R/MAPE-T by considering both the median and
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the deviation of the errors observed. We claim that RM offers significant advantages over

other alternatives as it captures both the risk of large errors and the average accuracy of

the examined forecasting method, describing the whole error distribution though a single

interpretable value.

In order to throw some light into this dimension of forecasting performance, we evalu-

ate the empirical error distributions of eleven popular time series extrapolation methods.

First, we consider the Naive (forecasts are equal to the last known observation) and the

Naive 2 (seasonally adjusted Naive) methods which are commonly used in the literature

as benchmarks. Then, we examine Simple (Gardner, 1985), Holt and Damped Exponential

Smoothing (Gardner, 2006), as well as an equal weighted combination of them, which, despite

being relatively simple, are robust and frequently difficult benchmarks to beat (Makridakis

et al., 2018). The Theta method (Assimakopoulos & Nikolopoulos, 2000), which was the

best performing method of the M3 Competition (Makridakis & Hibon, 2000), is also in-

volved together with auto.arima (Hyndman & Khandakar, 2008) and ETS (Hyndman et al.,

2002) (from ExponenTial Smoothing), two general forecasting algorithms for automatically

selecting the best ARIMA and exponential smoothing model, respectively, that have become

popular during the last years for displaying accurate results in many applications. Finally,

we examine the Bagged ETS (Bergmeir et al., 2016) and the Multi Aggregation Prediction

Algorithm (MAPA) (Kourentzes et al., 2014) which exploit bagging and temporal aggrega-

tion approaches, respectively, to deal with uncertainty and improve the forecasting accuracy

of typical exponential smoothing.

The evaluation is performed in two different datasets, as follows:

• the M3 Competition data

• the ForeDeCk (http://fsudataset.com/) from which the 100,000 time series of the M4

Competition (Makridakis et al., 2018) has been sourced

The remainder of this paper is structured as follows. In Section 2 the review of the

respective literature is presented while in Section 3 we describe the methodological approach
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followed. Section 4 shows the setup of the empirical experiments and then displays and

discusses the results. Finally, Section 5 concludes the paper.

2. Literature review

In the operations management and management science literature, the importance of

large forecasting errors is often revisited. Syntetos et al. (2010) find out that small gains

in forecasting accuracy may lead to considerable inventory reductions, Jakubovskis (2017)

stresses the importance of robustness for strategic facility location, capacity acquisition and

technology choice decisions, while Ma & Fildes (2017) suggest that accuracy highly affects

retail promotional optimization. Yet, the research done in the field of risk and forecasting is

still quite limited and few studies propose robust methods capable of mitigating uncertainty.

Phillips (1979) was the first to discuss how the statistical dependence between the pa-

rameter estimates and the final period observations used to generate forecasts affect the

distributions of the forecasting errors, stressing the importance of utilizing robust forecast-

ing methods. Chen (1997) provides some useful insights regarding the robustness properties

of the Holt-Winters, ARIMA, structural component and regression models for the case of

seasonal time series. Boudt et al. (2013) discuss robust approaches for applying GARCH

models, Cheng & Yang (2015) propose a technique for combining forecasts with outlier

protection, while Castle et al. (2015) claim improvements in accuracy using a class of ro-

bust devices exploiting equilibrium-correction models. More recently, Athanasopoulos et al.

(2017) provided an understanding as to why multiple temporal aggregation leads to im-

proved forecasts and Petropoulos et al. (2018) explained why does bagging for time series

forecasting works.

The above mentioned studies examine interesting ways to deal with data, parameter

and model uncertainty, boosting the average forecasting accuracy achieved. However, none

of them indicates how the risk of large errors is affected nor proposes criteria to assess

forecasting performance and facilitate model selection accordingly. Are the gains reported

in accuracy due to the reduction of the large forecasting errors or the small ones? Since in

many business activities omitting large errors is much more important than being extremely
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accurate, assessing forecasting performance beyond average accuracy is essential (Ahmadi-

Javid et al., 2017; Luo et al., 2018).

The most common way to evaluate the performance of forecasting methods, is to define

an error metric or a loss function and use it to compute their average accuracy. Numer-

ous metrics have been proposed in the literature while searching for the “holy grail”, i.e.

an interpretable metric of fine statistic properties (Makridakis et al., 1998; Fildes, 1992;

Armstrong & Collopy, 1992; Davydenko & Fildes, 2013). Scale-dependent measures, per-

centage errors, relative errors, relative measures and scaled errors are just some examples

of the metrics suggested by the forecasting community (Hyndman & Koehler, 2006). Some

of them display desirable statistical properties, e.g. are scale independent, less sensitive to

outliers, cannot become infinite/undefined or lead to highly skewed results, while others are

easily interpreted and widely used in the business world. These issues have long been being

discussed, with the researchers coming into a general agreement that the use of percentage

errors is highly inadvisable, relative errors and relative measures are more robust but still

inappropriate for many problems, and that scaled errors, as well as median operators of the

latter, are probably the best existing alternatives (Hyndman & Koehler, 2006; Davydenko

& Fildes, 2013; Fildes, 1992). Nevertheless, such metrics provide no evidence regarding de-

viations around the mean of the forecasting errors, leading to mixed conclusions in terms

of risk. This is a key issue, closely related with the way the forecasting errors are usually

distributed.

In practice, forecasting errors are non-normally distributed and asymmetric (Coleman &

Swanson, 2007). Depending on the characteristics of the data, some series might be easier to

predict than others, with forecasting accuracy being among others subjected to their domain

(Kang et al., 2017) or even the error metric used (Swanson et al., 2000). Moreover, each

method is good at capturing different time series features (Petropoulos et al., 2014), meaning

that the errors generated, as well as their distribution, may vary even when the same dataset

is used depending on the forecasting method utilized. For instance, Barrow & Kourentzes

(2016) examined the forecast error distributions of base and combination forecasts and their

implications for inventory control and found out that the latter led to more normal ones,
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enhancing safety stock calculations. Yet, in both cases the error distributions were far from

normal, indicating that the assumption of normality on which inventory control systems

are based is frequently violated and that the risk associated with such forecasts might be

greater than expected. The necessity of considering the asymmetry of forecasting error

distributions was also stressed by Lee & Scholtes (2014) who concluded that prediction

intervals that are based on empirical out-of-sample evaluations are more robust and manage

to capture uncertainty more effectively.

In this respect, average or even median accuracy metrics may be misleading and appro-

priate criteria investigating the distribution of the forecasting errors are necessary to enable

meaningful comparisons and effectively capture risk. Some types of metrics, such as the

squared ones, are often used to deal with this issue by penalizing larger errors. Alterna-

tively, percentiles (e.g. 95% or 99% of the errors observed) are used to approximate the

maximum expected error. In the first case, the errors might once again be non-normally

distributed among the series leading to questionable results, while also lacking in inter-

pretability. The latter one has first the disadvantage of arbitrary selecting a percentile to

describe uncertainty and second the deficiency of considering only the “worst-case” scenario

without taking into consideration the level of accuracy typically achieved by the method.

Undoubtedly, the risk of large errors cannot be reliably assessed (Makridakis & Taleb,

2009). Yet, in this study we attempt to provide an approach for doing so. First, we

empirically examine the distribution of the errors generated by eleven popular time series

forecasting methods across two different datasets: M3 and ForeDeCk. Then, we apply a

power transformation to normalize them and exploit our findings to theoretically evaluate

their performance considering both the average accuracy and the standard deviation. In

this respect, the method that displays the best accuracy, both for typical and rare cases, is

effectively identified.

3. Methodological approach

Assessing the risk of large errors when utilizing forecasting methods is a complex task.

This of course does depend on the time series extrapolation methods being employed and
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to that end detailed descriptions of the eleven aforementioned approaches to be used in this

study are presented in detail in Section 3.1.

Furthermore, depending on the type of the time series examined, e.g. based on their

frequency and domain, different levels of accuracy might be feasible (Kang et al., 2017).

Time series characteristics (trend, randomness, seasonality, linearity, etc.) and strategic

decisions, such as the forecasting horizon considered, further affect forecasting performance

(Petropoulos et al., 2014). Moreover, some methods might be more appropriate for extrap-

olating specific types of series depending on the information they are capable of capturing

(Fildes & Petropoulos, 2015). Last but not least, structural changes, such as variations in

the non-stationary nature or the seasonal regularities of the series, may further aggravate the

divergence between in-sample and post-sample performance and lead to large errors (Tash-

man, 2000). In this regard, significant variations might be observed in forecasting accuracy,

both between the methods and the time series examined.

The main difficulty in measuring the risk of large errors derives exactly from the variations

described above. Generated errors are usually non-normally distributed and asymmetric,

meaning that the performance of a method might significantly vary among a dataset de-

pending on the time series being extrapolated or even the metric used (Coleman & Swanson,

2007). As the diversity and the size of the dataset grows, this phenomenon expands further.

Thus, using average accuracy measures as an indicator of risk, that do not take into account

abnormalities and asymmetries, is an ineffective choice that may lead to mixed conclusions

(Swanson et al., 2000). This applies more or less to any error metric considered, even to

those of fine statistical properties: The distribution of the errors is not symmetric as it is

bounded on the left by zero (perfect forecast) and is usually unbounded on the right (“bad”

forecast); thus, the distribution becomes right-skewed, with skewness being determined by

the number and values of outliers present.

Figure 1 provides an illustrative example of this issue. Two methods, A and B, are

used to predict 100 randomly selected time series of the M3 Competition (Makridakis &

Hibon, 2000) and the histograms of their forecasting errors are accordingly constructed. As

seen, in both cases the errors of the methods are non-normally distributed and asymmetric,
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indicating that some time series are indeed more difficult to predict. For instance, we observe

that over half of the errors are lower than 10%, but in may cases they exceed 40%. Some

notable differences are also identified between the two methods. For example, in most cases

method A is more accurate than method B. Moreover, method A tends to generate larger

errors than method B (80.64% versus 46.28%), meaning that the latter could be a better

alternative for minimizing risk. However, the fat tail observed for the case of method A does

not have a significant impact on its average accuracy (12.27%) which is lower than the one

computed for method B (12.42%). In this regard, according to the average accuracy metric

used (sMAPE), method A would be preferred over B, leading to larger forecasting errors

and increasing risk.
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Figure 1: Histograms of the forecasting errors (sMAPE) generated by two different methods across 100

randomly selected time series of the M3 Competition. Lack of normality and symmetry is evident.

Taking everything into consideration, in our point of view (i) exploiting interpretable

error metrics to measure the average accuracy achieved per series, (ii) investigating the

distribution of the errors computed to properly model their variation and, finally, (iii) con-

sidering the accuracy achieved, both on typical and rare cases, are steps in the right direction

to effectively evaluate the risk of large errors and improve decision making. The following

sections describe how the proposed methodology approaches such an objective.
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3.1. Forecasting methods

This section provides details for the time series forecasting methods and respective imple-

mentations which has been used for the empirical experiments of this study. The criteria for

selecting the methods were mainly (i) their popularity, (ii) the probability of being applied

in businesses and organizations, (iii) their ease of use and replicability (e.g. being already

implemented in forecasting packages or software), as well as (iv) references in the literature

claiming gains in forecasting accuracy by dealing with various sources of uncertainty and

potentially reducing the risk of large errors.

In this respect, the forecasting methods considered are chosen broadly to represent both

standard and more advanced approaches which demonstrated significant performance in past

studies. Moreover, most of them have been considered in well-known forecasting competi-

tions, like the M3 Competition (Makridakis & Hibon, 2000) in which many extrapolation

methods were evaluated using a large set of series. All are practical alternatives in com-

mercial applications and statistic software. We note that computer intensive and complex

methods, such as neural networks and other machine learning models, were excluded for

reasons of simplicity.

The methods used are the following:

• Naive: A random walk model and the easiest one to compute. The forecasts are equal

to the last known observation of the time series. Naive is mainly used as a benchmark.

• Naive 2: Like Naive but the data is seasonally adjusted, if needed, by applying

classical multiplicative decomposition by moving averages (Makridakis et al., 1998).

A 90% autocorrelation test is performed to decide whether the data is seasonal.

• Simple Exponential Smoothing (SES): An exponential smoothing model, aimed

at predicting series without a trend (Gardner, 1985). Seasonal adjustments are con-

sidered like in Naive 2.

• Holt Exponential Smoothing (Holt): An exponential smoothing model, aimed at
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predicting series with linear trend (Gardner, 2006). Seasonal adjustments are consid-

ered like in Naive 2.

• Damped Exponential Smoothing (Damped): An exponential smoothing model,

aimed at predicting series with damped trend (Gardner, 2006). Seasonal adjustments

are considered like in Naive 2.

• Combination (COM ): A combination (average) of the three exponential smoothing

methods previously described: SES, Holt and Damped, aimed at achieving the possible

benefits of averaging the errors of multiple forecasts (Andrawis et al., 2011). Given

that many studies claim benefits in risk reduction even when simple combinations are

considered (Chan & Pauwels, 2018), this method displays great interest.

• Theta: Like Naive 2, time series are first seasonally adjusted if needed. Then, clas-

sic Theta is applied for extrapolation, as originally proposed by Assimakopoulos &

Nikolopoulos (2000). After predicting, forecasts are seasonally re-adjusted. This

method became popular for wining the M3 Competition, outperforming many ad-

vanced methods and expert systems, such as ForecastPro and ForecastX. According

to the literature, the decomposition approach of Theta can become helpful for identi-

fying long term trends and dealing with data uncertainty.

• ETS: Exponential smoothing state space modeling (Hyndman et al., 2002). It is widely

used as a general forecasting algorithm as it provides the best exponential smoothing

model, indicated through information criteria.

• Bagged ETS (bETS): Bootstrapping with aggregation (bagging) using ETS for ex-

trapolating the individual series, as originally proposed by Bergmeir et al. (2016).

Bagging has been proven to handle three sources of uncertainty: data, model and

parameter uncertainty (Petropoulos et al., 2018). In this respect, evaluating the per-

formance of bETS is of great interest.

• ARIMA: Autoregressive integrated moving average models, as implemented in the
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automated algorithm of Hyndman & Khandakar (2008). A stepwise selection over

possible models is performed and the best ARIMA model is returned using appropriate

criteria. ARIMA models remain a standard statistical benchmark and, therefore, are

considered in this study.

• Multi Aggregation Prediction Algorithm (MAPA): A special algorithm for

applying multiple temporal aggregation, as originally proposed by Kourentzes et al.

(2014). Multiple time series are constructed from the original one using temporal

aggregation. In each series, an ETS model is fitted and its respective time series com-

ponents are forecasted. Finally, the derived components are combined to generate the

final forecast. Temporal aggregation helps in strengthening or attenuating the signals

of different components, mitigating the importance of model selection. Athanasopou-

los et al. (2017) discuss these concepts and evaluate the effect of multiple temporal

aggregation when model and/or parameter uncertainty are present.

MAPA is computed using the mapasimple() function of the MAPA package (Kourentzes

& Petropoulos, 2018) for R statistical software (R Development Core Team, 2017). The rest

of the forecasting methods are estimated using the forecast package (Hyndman, 2017) and

the functions naive(), ses(), holt(), ets(), baggedETS() and auto.arima(), respectively. For

all of the methods considered the defaults settings are used for reasons of simplicity and

reproducibility (Boylan, 2016).

3.2. Selecting an interpretable error metric

As previously discussed, interpretability is mandatory for realizing the level of accuracy

achieved in businesses and organizations. Using a benchmark to scale the errors generated by

a forecasting method, like done for the case of relative errors, relative measures and scaled

errors, may lead to mixed conclusions. For instance, if a method is 20% more accurate

than the Naive method, does this mean that the method is accurate enough? Would the

conclusion differ if another benchmarks was used as an alternative? How can we confirm in

practice that the errors occurred are acceptable (or not) and conclude regarding the risk of

generating large errors?
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On the other hand, percentage errors are fully interpretable and have the additional

advantage of being scale-independent, making them appropriate for comparing forecasting

performance across different series and datasets. Undoubtedly, they also come with some

drawbacks. To start, they become infinite or undefined if the observed value is zero, or lead

to an extremely skewed distribution when the observed value is close to zero. Moreover,

they put a heavier penalty on positive errors than on negative ones.

To mitigate these issues, Makridakis (1993) introduced the symmetric Mean Absolute

Percentage Error (sMAPE) which is less affected by values close to zero and becomes unde-

fined only if real and forecasted values are both equal to zero. Moreover, sMAPE is bounded

to 200%, limiting the skewness of the distribution emerged. sMAPE is defined as follows:

sMAPE =
2

k

k∑
t=1

∣∣∣Yt − Ŷt∣∣∣
|Yt|+ |Ŷt|

∗ 100%, (1)

where k is the forecasting horizon, Yt are the actual observations and Ŷt the forecasts pro-

duced by the model at point t.

Although sMAPE is subject to some cautions, it displays many useful properties com-

pared to other accuracy measures, which are also characterized by similar disadvantages.

Moreover, it is widely used for many years and is popular within the forecasting community

(Makridakis & Hibon, 2000). In this regard, sMAPE is adopted in this study and used for

evaluating the average accuracy achieved per series.

3.3. Investigating the distribution of forecasting errors to evaluate risk

After estimating the accuracy achieved per series according to sMAPE, one must exam-

ine how the errors are distributed among the whole dataset and conclude which methods

should be utilized to minimize risk. As previously discussed, due to its nature sMAPE is

bounded absolutely on the left by zero and partially on the right by 200, leading to right-

skewed distributions. Thus, the error distribution emerged is not symmetric, with the degree

of skewness being determined by the number and values of outliers, i.e., large errors. The
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latter are objected to the type of the time series examined (e.g., time series characteris-

tics, frequency and domain), their diversity and the patterns that the forecasting method

considered is good at capturing.

In the ideal case that the forecasting errors (u) follow a normal distribution of mean

value û and deviation σu, the risk of generating large errors, noted as Risk Measure (RM),

could be defined as follows:

RM = û+ σu (2)

This formula, although quite simplistic, contains some valuable information: First, it

determines how accurate the method is on typical cases (û), indicating that way the average

level of accuracy that the method is likely to achieve; Second, it demonstrates how much

the error may vary (σu) under various sources of uncertainty, illustrating the expected level

of accuracy in rare cases; Third, it combines this information in a unique measure, sug-

gesting which method is more appropriate, both for minimizing the risk of large errors and

maximizing accuracy.

Note that, in contrast to approaches which exploit percentiles to assess risk, in this case

there is no need to determine which percentile will be used in particular as a criteria (e.g.

95% ). Thus, comparisons are straightforward and objective.

In practice, however, the assumption of normality is rarely met. In such cases, in order

to effectively estimate RM , the shape of the original distribution must be appropriately

changed so that the transformed errors come from a symmetric normal distribution. Oth-

erwise, the mean and standard deviation computed will not be representative and proper

comparisons will be impossible. This can be achieved by applying a power transformation

like the Box-Cox one, as follows:

uBC =

(uλ − 1)/λ, if λ 6= 0

ln(u), if λ = 0

(3)
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where u is the original value of sMAPE, uBC its transformed value and λ the power of

transformation. λ is determined to maximize the profile log likelihood (Box & Cox, 1964).

It is noted that λ > 1 values eliminate negative skewness and 0 < λ < 1 values positive

one. Given that this study deals with right-skewed distributions, determined λ values are

expected to be lower than 1 and close to zero. The lower the value of λ, the more skewed

the original distribution is, and vice-versa. If λ = 1, then the original distribution is already

symmetric and no transformation is required.

Assuming that uBC is normally distributed with a mean value of ˆuBC and a deviation of

σuBC
, it is now meaningful to apply equation 2. Moreover, in order RM to be interpretable,

the transformed data can be reversed using the same value of λ as follows:

RM =

[λ( ˆuBC + σuBC
) + 1]1/λ, if λ 6= 0

e( ˆuBC+σuBC
), if λ = 0

(4)

In order to better demonstrate the potential benefits of utilizing the suggested approach,

the same errors produced by Methods A and B of Figure 1 are normalized using the appro-

priate Box-Cox transformation (λ = 0.15). Then, RM is computed and exploited to evaluate

their performance in terms of risk. As seen in Figure 2, normality and symmetry have been

adequately achieved and meaningful comparisons are now possible as the mean and standard

deviation values estimated are quite representative. Moreover, RM of method A (21.76) is

higher than that of method B (21.63), indicating that the latter is more appropriate for

minimizing the risk of large errors. This is exactly the desirable result.

It should be noted that determining the optimal λ does not guarantee symmetry nor

normality. It just helps us generate the distribution which is most likely to be symmetric

and normal. In this respect, after determining λ, a nonparametric test must be performed

to evaluate the validity of the results. In this study, a two-sample Kolmogorov-Smirnov test

(Marsaglia et al., 2003) is used to compare the distance between the Empirical Cumulative

Distribution Function (ECDF) of the transformed data and a normal one N( ˆuBC , σ
2
uBC

).

If the p-value computed is high, e.g., p > 0.05, one cannot claim statistical support for a
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Figure 2: Histograms of the transformed forecasting errors (sMAPE) generated by methods A and B of Fig-

ure 1. As seen, normality and symmetry has been adequately achieved. The theoretical normal distribution

of each dataset is also presented for reasons of comparison.

difference and the results are assumed valid. In the opposite case, no clear conclusions can

be drawn and results should be carefully interpreted.

The methodological approach proposed for evaluating the robustness of forecasting meth-

ods is summarized in Figure 3.

Observe that, in contrast to the MAPE-R and MAPE-T metrics proposed by Swanson

et al. (2000) and Coleman & Swanson (2007), RM is based - for reasons already explained

- on the sMAPE and not the MAPE measure and that, apart from capturing the median

of the errors, it also considers their standard deviation in order to assess the whole error

distribution through a single interpretable value. Note also that the proposed methodology

is not necessarily related to the approach of normalizing the original observations using the

Box-Cox transformation before extrapolation. As discussed, data and parameter uncertainly,

as well as other influencing factors, affect forecasting performance and lead to non-normally

and asymmetrically distributed errors. This means that, regardless the forecasting approach

used, the generated errors will never be perfectly normal, even if a special pre-processing like

the one noted is exploited or a proper forecasting method is used (Barrow & Kourentzes,
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Figure 3: The methodological approach proposed for evaluating forecasting methods beyond average accu-

racy and identifying those that minimize the risk of large errors.

2016). Yet, since improved parameter estimates lead to better forecasting performance and

more normally distributed errors (Phillips, 1979), such approaches may provide less skewed

error distributions and, therefore, limit the necessity of utilizing RM to evaluate risk.

4. Experimental design

The first part of this section presents the two datasets which were chosen to demonstrate

the use ofRM and empirically evaluate the performance of the forecasting methods described

in Section 3.1. The second part provides some insights regarding the way the forecasting

errors are distributed per case and displays the results.

4.1. The dataset

Two different datasets were chosen to assess the eleven time series forecasting meth-

ods considered in this study: M3 Competition and ForeDeCk. The M3 Competition data

(Makridakis & Hibon, 2000) is the mostly-used dataset when it comes to business forecast-

ing. This dataset, which includes 3003 time series of five different domains (micro, macro,
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industry, finance and demographic) and three frequencies (yearly, quarterly and monthly), as

well as a small number of series with unspecified domain and frequency (flagged as “other”),

was used for the largest forecasting competition that has ever taken place. Its results had a

huge impact on forecasting and still inspire a lot of researchers. After almost eighteen years,

more than 1000 studies have referenced the results of the competition, and numerous have

used its data as a benchmark to evaluate forecasting methods.

However, as recently discussed by Kang et al. (2017), M3 data might not be as indicative

of the “real word” as we may think since they display many limitations. For instance,

it is known that its time series are unequally distributed according to their domain and

characteristics. In this regard, large data collections of diverse time series can help us

validate our results and draw safer conclusions.

We decide to exploit ForeDeCk (Forecasting Data Collection), a large dataset of more

than 500,000 time series focused on business forecasting applications. Industries, Ser-

vices, Tourism, Imports & Exports, Demographics, Education, Labor & Wage, Government,

Households, Bonds, Stocks, Insurances, Loans, Real Estate, Transportation, as well as Nat-

ural Resources and Environment, are some of the domains considered by the dataset. The

time series come from trustworthy publicly accessible databases and cover various frequen-

cies, namely yearly, bi-yearly, quarterly, monthly, weekly, daily and hourly. The dataset can

be found on-line in http://fsudataset.com/.

Yet, forecasting and analyzing half million of time series is extremely time intensive.

Thus, a random sample of 10,000 time series is created and used to validate the results

of M3. Moreover, to further facilitate comparisons between the two datasets, only yearly,

quarterly and monthly series are considered. A summary of the datasets used in this study

is presented in Table 1.

As seen, M3 and ForeDeCk display comparable properties as the proportions of their

series are quite similar, both per frequency and domain. About half of the data are monthly,

while a quarter of them yearly and quarterly. Moreover, most of the time series are of micro,

macro and industry domain. A difference can only be identified for the finance data which for

the case of ForeDeCk are almost double. Given that the ForeDeCk dataset was constructed
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Table 1: Data used for the empirical evaluation. The number of series is displayed per domain and frequency.

Frequency Micro Industry Macro Finance Demographic Other Total Total (%)

M3 Competition data

Yearly 146 102 83 58 245 11 645 21.5

Quarterly 204 83 336 76 57 0 756 25.2

Monthly 474 334 312 145 111 52 1428 47.6

Other 4 0 0 29 0 141 174 5.8

Total 828 519 731 308 413 204 3003 -

Total (%) 27.6 17.3 24.3 10.3 13.8 6.8 - 100

ForeDeCk data

Yearly 647 393 419 712 121 129 2421 24.7

Quarterly 654 493 543 579 193 85 2547 25.5

Monthly 1173 1048 1014 1154 617 26 5032 50.3

Other 0 0 0 0 0 0 0 0

Total 2474 1934 1976 2445 931 240 10000 -

Total (%) 24.7 19.3 19.8 24.5 9.3 2.4 - 100

using a random sample of half million time series, its similarity with M3 is very interesting,

indicating that some types of data may indeed be more frequently observed in the real word.

In this regard, examining the performance of different forecasting across these series, as well

as evaluating the risk of large errors, becomes critical.

Note that for the yearly, quarterly, monthly and “other” data, the same rules of M3

Competition are applied, i.e., a forecasting horizon of 6, 8, 18 and 8 points is considered.

Thus, direct comparisons between the two datasets examined are possible. The forecasting

methods are applied as discussed in Section 3.1 and their performance is evaluated according

to RM , as presented in Section 3.3.
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4.2. Empirical results

As previously discussed, eleven time series forecasting methods, both standard and more

advanced ones, are used to extrapolate the time series of the two datasets presented in

this study. Then, sMAPE is applied to measure the accuracy achieved per series. Figure 4

displays the empirical Probability Density Function (PDF) and the Cumulative Distribution

Function (CDF) for the case of ETS, both for the M3 and ForeDeCk time series. The rest

of the forecasting methods examined display similar distribution functions and therefore are

not presented for reasons of simplicity.
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Figure 4: The empirical Probability Density Function (PDF) and Cumulative Distribution Function (CDF)

of the ETS method for the case of the M3 (top) and ForeDeCk (bottom) datasets.

As seen, in both datasets the errors are non-normally and asymmetrically distributed,

with the majority of the time series being relatively “predictable” and a limited sample of

them displaying significantly worse results, probably due to the effect of various sources of

uncertainty, such as the data and parameter one. Note for instance that, for the case of
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M3, although half of the errors (50% percentile) generated by ETS are lower than 7.8%, in

may cases (90% percentile) they exceed 31%, indicating that the nuances of past history

may not always persist into the future or effectively captured by the forecasting model

considered. This is exactly expected, mainly due to the nature of the error metric used and

the particularities of the time series considered that lead to the creation of right-skewed

distributions with fat tails. Moreover, we observe that proportionally ForeDeCk consists

of more predictable time series compared to M3, although the maximum errors occurred

are larger for the former (the 50% and 90% percentiles of sMAPE are 7.2% and 33%,

respectively). Thus, despite the forecasting methods perform better on average for the case

of ForeDeCk, greater deviations are also observable on their performance affecting the risk

of large errors accordingly.

To further investigate the properties of the error distributions emerged, four theoretical

CDFs are fitted to the empirical one estimated for the case of ETS and compared with it.

This comparison provides some useful insights regarding the way the errors are typically

distributed and the law they may follow. As seen in Figure 5, the distribution of sMAPE is

far from normal, both for the case of M3 and ForeDeCk time series. Moreover, it displays

significant differences when compared to an Exponential or Gamma distribution, mainly

due to the effect of the smaller errors observed within the samples. However, the theoretical

Lognormal distribution is adequately fitted to the empirical one. This comes into a general

agreement with the concepts discussed in Section 3, according to which the utilization of the

Box-Cox transformation can effectively change the shape of the original distribution, making

it more normal and symmetric. Additionally, according to this finding the λ parameter of the

transformation is expected to be close to zero, which is similar to examining the performance

of the forecasting methods on a log scale.

Table 2 presents some summary stats on the shape of the distribution considered in

Figure 5, confirming the claims made earlier regarding the similarities and differences of

the two datasets. The “optimal” shape parameters are selected through the maximum

likelihood estimation as implemented in the fitdist() function of the fitdistrplus R pack-

age (Delignette-Muller & Dutang, 2015). The Kolmogorov-Smirnov statistic (KS) and the
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Akaike’s Information Criterion (AIC) are also displayed to evaluate goodness of fit and, as

reported, both criteria indicate that the Lognormal distribution is the preferred one among

the candidates.
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Figure 5: Comparison between the empirical Cumulative Distribution Function (CDF) of ETS’s accuracy

and four different theoretical ones: Normal (red), Lognormal (green), Exponential (blue) and Gamma (cyan).

Both probability and sMAPE values are displayed in log scale.

Table 2: Summary stats on the shape of the empirical Cumulative Distribution Function (CDF) of the ETS’s

errors considering four different theoretical ones: Normal, Lognormal, Exponential and Gamma. The results

are presented both for the M3 and ForeDeCk datasets for reasons of comparison. The Kolmogorov-Smirnov

statistic (KS) and the Akaike’s Information Criterion (AIC) are also displayed to evaluate goodness of fit.

Dataset
Normal Lognormal Exponential Gamma

mean sd mean sd rate shape rate

M3 13.10 14.70 1.98 1.18 0.08 0.98 0.08

ForeDeCk 13.20 16.70 1.92 1.22 0.08 0.89 0.07

KS AIC KS AIC KS AIC KS AIC

M3 0.188 24661 0.035 21406 0.053 21445 0.050 21446

ForeDeCk 0.218 84651 0.026 70671 0.082 71534 0.060 71443

Table 3 presents the forecasting accuracy of the eleven forecasting methods across the

M3 and ForeDeCk time series. In both datasets the Theta method is the most accurate one,

followed by COM, bETS and MAPA. In contrast, the performance of SES displays the lower
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deviation, followed by Theta and MAPA. Given that bETS, MAPA and COM incorporate

mechanisms for dealing with data, model and parameter uncertainty, it is not surprising

that they display top performances both in terms of average accuracy and robustness. Yet,

it is quite surprising that SES and Theta, which are way more simplistic, manage to perform

better or equally well.

Table 3: Forecasting accuracy achieved for the M3 Competition and ForeDeCk data. The average perfor-

mance û of each method, as well as its deviation σu is presented. The 75, 90, 95 and 99 percentiles of

sMAPE are also provided.

Method
M3 Competition ForeDeCk

û σu Q(75) Q(90) Q(95) Q(99) û σu Q(75) Q(90) Q(95) Q(99)

Naive 15.70 17.20 20.47 38.18 50.32 75.45 14.62 16.23 19.19 35.25 46.87 78.96

Naive2 14.70 16.60 18.75 35.70 47.70 73.78 14.07 15.93 18.29 34.04 45.48 77.84

SES 13.44 13.84 17.82 31.34 41.28 63.68 13.64 15.16 18.08 32.47 43.45 71.01

Holt 14.82 19.11 19.14 35.93 49.18 90.05 14.38 19.60 17.73 35.58 50.85 96.8

Damped 13.06 15.27 17.66 31.23 41.04 69.62 13.23 16.85 16.85 32.63 45.46 79.10

COM 12.93 14.91 17.26 31.18 40.35 67.89 13.04 16.46 16.68 31.86 44.50 76.36

Theta 12.82 14.28 17.11 31.38 39.93 66.01 12.81 15.23 16.72 30.94 42.05 71.79

ETS 13.07 14.68 17.76 31.91 41.37 64.61 13.17 16.70 16.80 32.58 45.18 79.06

bETS 12.95 14.69 17.32 32.02 41.15 68.19 13.04 16.76 16.59 31.64 43.35 80.98

ARIMA 13.60 16.04 18.09 33.27 44.15 76.26 13.30 16.67 17.20 33.07 45.03 78.58

MAPA 13.05 14.12 17.83 31.03 40.58 67.61 13.01 15.68 17.16 31.59 42.93 72.83

Another finding of the analysis is that, depending on the percentile considered to evaluate

the risk of large errors, significantly different conclusions can be drawn. This observation

demonstrates the potential benefits of exploiting more objective risk measures, such as the

one proposed in this study. For instance, when the 75% of the sample is examined, Theta

and bETS display the best performance for the case of M3 and ForeDeCk, respectively. The

rank of the methods change for the 90% percentile, where MAPA and Theta perform best.

The same stands for the rest of the percentiles examined, which among others indicate that

one of the strongest features of Theta and SES is their ability to perform well for the series

which are the most difficult to predict, i.e. reduce forecasting errors under conditions of high
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Table 4: The risk of large errors for extrapolating the M3 Competition and ForeDeCk time series. The

optimal λ parameter of the Box-Cox transformation, the p value of the Kolmogorov-Smirnov test and the

RM are presented per forecasting method.

Method
M3 Competition ForeDeCk

λ p ˆuBC σuBC
RM Rank λ p ˆuBC σuBC

RM Rank

Naive 0.10 0.33 2.57 1.36 27.40 11 0.05 0.11 2.30 1.21 25.37 11

Naive2 0.10 0.11 2.48 1.34 25.40 9 0.05 0.13 2.24 1.22 24.34 9

SES 0.10 0.38 2.43 1.27 23.33 7 0.05 0.07 2.22 1.21 23.66 8

Holt 0.10 0.37 2.35 1.50 25.84 10 0.05 0.10 2.11 1.36 24.59 10

Damped 0.10 0.37 2.27 1.41 22.99 5 0.05 0.08 2.07 1.31 22.83 5

COM 0.10 0.30 2.28 1.39 22.71 2 0.05 0.09 2.07 1.29 22.42 2

Theta 0.10 0.42 2.29 1.36 22.50 1 0.05 0.11 2.10 1.25 22.18 1

ETS 0.10 0.32 2.27 1.42 23.17 6 0.05 0.10 2.06 1.34 22.92 6

bETS 0.10 0.64 2.25 1.42 22.94 3 0.05 0.08 2.06 1.32 22.65 3

ARIMA 0.10 0.30 2.28 1.47 24.06 8 0.05 0.05 2.07 1.34 23.29 7

MAPA 0.15 0.47 2.49 1.51 22.99 4 0.05 0.06 2.09 1.29 22.69 4

uncertainty. The robustness properties of these methods significantly affect their average

performance and lead to critical gains in forecasting accuracy and risk minimization.

Table 4 presents the results of the proposed methodological approach. This includes the

λ values chosen for normalizing the data through the Box-Cox transformation, the p-value

calculated by the Kolmogorov-Smirnov test to investigate the normality of the distributions

emerged, and finally the RM as computed through the mean and deviation of the trans-

formed distributions. As expected, the λ values are relative small across all models and

datasets, indicating that the original errors follow a log-normal distribution. Moreover, λ is

smaller for the case of ForeDeCk, meaning that, as visualized in Figure 4, greater variations

are expected in forecasting accuracy. It is also notable that λ does not significantly change

among the methods when the same sample of series is considered. Thus, we conclude that

the particularities of each dataset strongly affect the performance of the forecasting methods
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used, which on the other hand are expected to display similar levels of accuracy per series.

It is also observed that the p-values computed are all higher than the critical thresh-

old set (p > 0.05), both for the M3 and ForeDeCk datasets. This demonstrates that the

power transformation has been effectively applied for all the forecasting methods considered,

making the distributions of the errors initially generated adequately normal and symmetric.

Thus, valid conclusions can be drawn if RM is to be used for evaluating the risk of large

errors. In general, the p-values are much higher for the case of M3, indicating that the errors

originally produced by the methods were more symmetrically and normally distributed com-

pared to those of ForeDeCk and, consequently, that the Box-Cox transformation could be

more effectively applied for that case. In other words, as previously noted based on the val-

ues of the λ parameter, as well as the shape statistics provided in Table 2, ForeDeCk involves

more unpredictable time series, displaying more outliers and complicating the transforma-

tion. This reasoning may also partially explain the deviations observed between the p-values

of the individual forecasting methods, illustrating that some of them, such as bETS, MAPA

and Theta, generate more normally distributed errors than the rest, i.e. are characterized

by more robustness properties.

According to RM , Theta is the method that minimizes the risk of large errors, followed

by COM, bETS and MAPA. Damped, ETS and ARIMA display close performance, while the

rest of the methods significantly worse one. Note that, although on average some methods

are more accurate than others ( ˆuBC), due to stronger deviations (σuBC
) in their accuracy,

their final score is significantly affected. It is also encouraging the fact that the ranks of the

methods do not change among the datasets, indicating that despite the differences observed

between the two samples, results come into a general agreement and objective conclusions

are drawn. This conclusion supports among others the use of the M3 Competition data as

a standard forecasting benchmark in similar applications and studies.

The RM also helps us validate the conclusions of previous works done in the field,

proposing smart ways to deal with data, model and parameter uncertainty and consequently

reduce the risk of large errors. For instance, we observe that bETS performs better than

simple ETS, demonstrating the benefits of bagging when dealing with various sources of
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uncertainty. MAPA, which applies ETS on temporally aggregated data, also displays notable

gains in robustness, demonstrating the advantages of utilizing temporal aggregation in time

series extrapolation. Finally, COM is significantly more robust than the three methods

used for averaging their forecasts, verifying the well-known benefits of forecast combination

reported in the literature.

An interesting conclusion of this study is that being robust against large errors can play

a pivotal role in achieving higher forecasting accuracy, maybe even greater than being more

accurate in most of the cases. For instance, according to ˆuBC of Table 4, ETS outperforms

Theta and COM when common types of time series are examined and limited uncertainty

is present. Yet, according to σuBC
, its performance is less stable than the latter, influencing

that way the average level of accuracy achieved. In this regard, identifying methods of

good forecasting performance, both for typical and rare cases, can have a major impact

on decision making and exploiting the most successful elements and paradigms from the

forecasting literature, such as data preprocessing, smoothing, bagging, boosting, temporal

aggregation and forecast combination to further enhance forecasting accuracy and minimize

risk (Spiliotis et al., 2018) is a step to the right direction.

5. Conclusions

This study assesses the risk associated with using time series extrapolative methods by

empirically identifying the ones that minimize the risk of large errors. This is done through a

proposed framework which involves constructing the distribution of the generated forecasting

errors and applying a Box-Cox transformation to make it more symmetric and resemble a

normal one. Then, the mean value and standard deviation of the normalized distribution is

computed and used to assess the robustness of the methods considered under various levels

of uncertainty.

A major contribution of this work is making available an approach which can be used

to effectively measure risk, considering the forecasting accuracy reported both in common

and rare cases. Typical approaches are limited in measuring the average or median accuracy

achieved through simple error metrics, or the maximum error likely to be observed according
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to a predefined percentile. These practices display many limitations and may lead to mixed

conclusions influenced by error outliers. The suggested approach deals with these issues,

enabling straightforward comparisons and facilitating model selection.

Another important conclusion of this study is that methods with robustness properties

that display good performance under conditions of high uncertainty, may be more accurate

than those performing well for the mainstream majority of the time series. This is because

the majority of the series can be adequately extrapolated by any traditional forecasting

method, generating relatively low errors. On the contrary, unpredictable series are difficult

to deal with and special methods, algorithms and tools are required to improve forecasting

performance. Thus, developing forecasting methods that effectively deal with uncertainty

and the really difficult to forecast series, could notably reduce the risk of large errors and,

therefore, improve decision making under high uncertainty in real life contexts.

For the future we leave the investigation of this approach using more datasets and fore-

casting approaches that would provide further argumentation for the generalization of the

presented empirical results. The sensitivity of the proposed methodology to the existence

of possible autocorrelations and heteroscedasticity in the forecasting errors is another fertile

area for future research which could expand this analysis from dataset level to time series

one.
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