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Abstract
Biofluids, such as blood plasma or serum, are currently being evaluated for cancer detection using vibrational spectroscopy.
These fluids contain information of key biomolecules, such as proteins, lipids, carbohydrates and nucleic acids, that comprise
spectrochemical patterns to differentiate samples. Raman is a water-free and practically non-destructive vibrational spectroscopy
technique, capable of recording spectrochemical fingerprints of biofluids with minimum or no sample preparation. Herein, we
compare the performance of these two common biofluids (blood plasma and serum) together with ascitic fluid, towards ovarian
cancer detection using Raman microspectroscopy. Samples from thirty-eight patients were analysed (n = 18 ovarian cancer
patients, n = 20 benign controls) through different spectral pre-processing and discriminant analysis techniques. Ascitic fluid
provided the best class separation in both unsupervised and supervised discrimination approaches, where classification accura-
cies, sensitivities and specificities above 80% were obtained, in comparison to 60–73% with plasma or serum. Ascitic fluid
appears to be rich in collagen information responsible for distinguishing ovarian cancer samples, where collagen-signalling bands
at 1004 cm−1 (phenylalanine), 1334 cm−1 (CH3CH2 wagging vibration), 1448 cm

−1 (CH2 deformation) and 1657 cm−1 (Amide I)
exhibited high statistical significance for class differentiation (P < 0.001). The efficacy of vibrational spectroscopy, in particular
Raman spectroscopy, combined with ascitic fluid analysis, suggests a potential diagnostic method for ovarian cancer.
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Introduction

Ovarian cancer is the seventh most commonly occurring can-
cer in women worldwide, with nearly 300,000 new cases di-
agnosed in 2018 [1]. In the UK, it is the sixth most common
cancer in women, with around 7400 new diagnoses every
year. It is also a leading cause of mortality from
gynaecological malignancies, accounting for 5% of all cancer

deaths in females [2]. This is because its presentation is noto-
riously non-specific with symptoms that are widely experi-
enced among the general population; hence, most women tend
to present with advanced disease [3]. Therefore, its early de-
tection represents the best hope for mortality reduction.

A common feature of women with ovarian cancer is the
presence of ascites (accumulation of free fluid in the peritoneal
cavity). Normally, capillary membranes continuously produce
free fluid to keep the serosal surfaces of the peritoneal lining
lubricated, with two-thirds being reabsorbed into lymphatic
channels [4]. In cases of disseminated intra-abdominal cancer
(such as ovarian cancer), exaggerated production of peritoneal
fluid is induced due to increased leakiness of tumour micro-
vasculature and obstruction of lymphatic vessels [5]. More
than one-third of ovarian cancer patients present with signifi-
cant ascites at diagnosis [6].

Currently used diagnostic modalities include clinical exam-
ination, imaging (such as ultrasound and computed tomogra-
phy), measurement of serum cancer antigen CA125 and tissue
biopsies. However, the aforementioned tools are often
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invasive, expensive and time-consuming. These limitations
fuel the need for development of new less-invasive, quicker,
lower-cost and sensitive methodologies for ovarian cancer
detection. One of these promising new methodologies is vi-
brational spectroscopy.

Vibrational spectroscopy is a bio-analytical tool that has
the potential to classify normal and pathological tissue [7].
Several spectroscopic techniques have been utilised in the past
decades to detect structural alterations that occur in molecules
within cells, according to their chemical bonds [8].
Biomolecules undergo vibrational changes following irradia-
tion with infrared (IR), which can be detected within the IR
region of the electromagnetic spectrum as discrete wavenum-
ber absorption intensities, or following inelastic light scatter-
ing of a monochromatic laser source (Raman effect), where
Raman shifts in the wavenumber frequency, representing mo-
lecular polarisability changes, are detected [9].

Raman is a powerful technique for biological materials
analysis, with applications ranging from cell imaging to can-
cer diagnosis [10–12]. Regarding ovarian cancer, Raman
spectroscopy of tissue [13, 14] as well as blood plasma and
serum [15–18] has been reported. The main advantages of
using biofluids rely in that sample preparation is not needed;
hence, no reagents are required, and the liquid biopsies pro-
cessing is less invasive than traditional tissue ones. In addi-
tion, spectral profile alterations of biofluids can be deter-
mined, making the method suitable for automation [19].

Herein, the potential of Raman microspectroscopy for
ovarian cancer detection is explored by comparing the perfor-
mance of common available biofluids (plasma and serum),
together with ascitic fluid spectroscopy. The spectral profiles
of ovarian cancer patients are discriminated from patients with
benign gynaecological conditions based on a series of
computer-aided techniques, such as principal component anal-
ysis (PCA), discriminant analysis (DA) and support vector
machines (SVM), and each biofluid performance is compared.

Materials and methods

Patients and samples

Blood plasma and serum, as well as whole ascites from thirty-
eight patients (n = 18 with ovarian cancer; n = 20 with benign
gynaecological conditions—controls), were used for the pur-
poses of this study. The age of the patient cohort, presented as
median value (interquartile range), was 61 (54, 73) years and
52 (41, 58) years for the ovarian cancer and benign groups,
respectively. Informed consent was taken from all partici-
pants. Samples were collected upon patients’ attendance for
surgery at the Royal Preston Hospital and therefore were
fasting samples. Each pair of blood samples was collected
pre-operatively in 7.5-ml tubes containing EDTA

anticoagulant and 7.5-ml serum gel tubes. Ascites was collect-
ed intra-operatively in 20-ml universal container tubes. All
biofluids were initially stored in a fridge at 4–7 °C for up to
2 h. Prior to freezing, blood samples were centrifuged at 20 °C
and 2200 rpm for 15min, to obtain plasma and serum samples
(local protocol). Blood plasma was obtained from EDTA
tubes and serum (which has the same consistency with plasma
but does not contain clotting factors) from serum gel tubes.
Ascites was not centrifuged. All biofluids were snap frozen in
liquid nitrogen and stored at − 80 °C.

Prior to slide preparation samples were thawed at room tem-
perature. Thirty microliters of individual biofluids (plasma, se-
rum and ascites) were pipetted onto aluminium foil–lined
FisherBrand™ glass slides for Raman spectroscopy analysis
[20]. Each slide was labelled with a specific GU (genito-
urinary) number for patient confidentiality. Samples were left
to dry overnight before transportation to the spectroscopy lab-
oratory in the University of Central Lancashire (UCLan) for
Raman analysis. All slides were stored in a de-humidified glass
container to prevent sample condensation and physical damage.
Ethical approval for samples collection was granted by the East
of England - Cambridge Central Research Ethics Committee
(archival genito-urinary tissue, blood, urine, saliva and ascitic
fluid collection; REC reference: 16/EE/0010; IRAS project ID:
195311). Ethical approval for experimental analysis was
granted from UCLan (STEMH 1073 application).

Identification of pathology for all recruited patients, as well
as staging and grading for ovarian cancer patients, was based
on histopathology reports after processing of surgical speci-
mens. Staging of ovarian cancer was conducted according to
the International Federation of Gynecology and Obstetrics
(FIGO) system [21]. Histology diagnoses of benign controls
were (number of cases in brackets) as follows: ovarian cysts
(7), leiomyomas +/− adenomyosis (7), endometriosis (4), no
pathology identified (normal) (2). Ovarian cysts are fluid-
filled sacs on the ovary and leiomyomas (or fibroids) are be-
nign growths in the wall of the uterus. In adenomyosis, the
inner lining of the uterus (endometrium) breaks through its
muscular layer and in endometriosis tissue similar to the en-
dometrium grows in extrauterine locations [22, 23]. All ovar-
ian cancer patients had epithelial tumours (i.e. originating
from the ovarian surface epithelium (OSE)) and relevant his-
tologies were as follows: serous adenocarcinoma (13), clear
cell adenocarcinoma (2), endometrioid adenocarcinoma (1),
mucinous adenocarcinoma (1), carcinosarcoma (1). Different
types represent aberrant differentiation to various non-OSE
histologies (fallopian tube-like for serous, endometrium-like
for endometrioid and clear cell, endocervical-like for mucin-
ous and containing both epithelial and mesenchymal ovarian
components for carcinosarcomas) [24, 25]. With regard to
FIGO staging, six patients had stage I disease, one patient
stage II, nine patients stage III and two patients stage IV.
None of the ovarian cancer patients had received
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chemotherapy prior to their surgery. All demographic data
(including BMI, comorbidities, medications) are available in
non-patient identifiable databases.

Spectral acquisition

A Renishaw InVia Basis Raman spectrometer coupled to a
confocal microscope (Renishaw plc, UK) was used for spec-
tral acquisition. Samples were analysed with an acquisition
area of approx. 250 × 125 μm using × 20 and laser power of
10% at 785 nmwith 0.1-ms exposure time. The exposure time
was kept reduced to avoid sample damage. Spectral mapping
was acquired via StreamHR™ technique (high-confocality
mode) with a grid area of approx. 23 × 15 pixels, resulting in
345 spectra per sample in an acquisition time of approximate-
ly 10 min per sample. The spectral range was set between 725
and 1813 cm−1 with 1 cm−1 spectral resolution.

Computational analysis

Raman data were converted into suitable files using the
Renishaw WiRE software and processed using MATLAB
R2014b (MathWorks, Inc., USA). Raman mapping data for
each sample were firstly unfolded into two-dimensional ma-
trices (n rows—spectra, m columns—wavenumbers) and av-
eraged every 10 spectra to reduce data size and speed up the
computational analysis time. Resultant data were pre-treated
by spike (cosmic rays) removal.

Three combinations of spectral pre-processing techniques
were tested for data analysis: (i) Savitzky-Golay (SG) smooth-
ing (window of 7 points, 1st-order polynomial fitting) follow-
ed by automatic weighted least squares (AWLS) baseline cor-
rection (3rd-order fit) and vector normalisation; (ii) SG
smoothing (window of 7 points, 1st-order polynomial fitting)
followed by extended multiplicative scatter correction
(EMSC) and AWLS baseline correction (3rd-order fit) and
(iii) SG smoothing (window of 7 points, 1st-order polynomial
fitting) and 1st derivative. SG smoothing corrects for random
noise, AWLS baseline correction and 1st derivative correct for
baseline distortions, and EMSC and vector normalisation cor-
rect for physical differences between samples such as thick-
ness, light scattering and concentrations (for vector normalisa-
tion) [26]. Exploratory and discriminant analyses were per-
formed with the pre-processed and mean-centred data.

Principal component analysis (PCA) [27] was used for ex-
ploratory analysis. PCA reduces the pre-processed spectral
dataset into a small number of principal components (PCs),
responsible for the majority of data variance. Each PC is com-
posed of scores and loadings; the former is used to access
similarity/dissimilarity patterns among samples and the latter
to identify spectral features (wavenumbers), associated with
class separation and therefore possible spectral biomarkers.
For discrimination, the PCA score data were further analysed

by linear discriminant analysis (PCA-LDA), quadratic dis-
criminant analysis (PCA-QDA) and support vector machines
(PCA-SVM). PCA models were built using the PLS Toolbox
version 7.9.3 (Eigenvector Research, Inc., USA) and discrim-
inant analysis was performed using the Classification Toolbox
forMATLAB [28]. Furthermore, partial least squares discrim-
inant analysis (PLS-DA) [29] was also used as a comparative
technique.

LDA and QDA are based on the calculation of the
Mahalanobis distance between samples [30]. The main differ-
ence between them is that LDA considers the classes (i.e.
benign controls and ovarian cancer) having similar variance
structures, thus building a model based on a pooled covariance
matrix, whereas QDA considers the classes having different
variance structures, thus building a model based on an inde-
pendent variance-covariance matrix for each class individual-
ly. On the other hand, SVM is a more complex machine learn-
ing technique that classifies samples by using a non-linear step
called the kernel transformation [31]. The kernel function,
which herein was the radial basis function (RBF), non-
linearly projects data into a feature dimension, where samples
are classified based on a linear threshold. The RBF kernel is
able to adjust to different data distributions and SVM tends to
be a more powerful discriminant technique, though more sus-
ceptible to over-fitting [26]. PLS-DA is one of the most pop-
ular supervised classification techniques, based on a linear
model for which the classification criterion is obtained by
PLS [32]. In PLS-DA, PLS is applied to data reducing the
original variables (wavenumbers) to a few numbers of latent
variables in an iterative process, where the class labels for each
sample are known in the training set. Then, a straight line that
divides the classes’ regions is found [20, 29].

Statistical analysis

The discriminant models were evaluated by calculating some
metrics (accuracy, sensitivity, specificity and F-score) via 10-
fold cross-validation. Accuracy represents the proportion of
true positives and true negatives in all evaluated cases.
Sensitivity and specificity represent the proportions of posi-
tives (i.e. ovarian cancers spectra) and negatives (i.e. benign
controls spectra) correctly identified, respectively. The F-
score measures the overall model performance considering
imbalanced data [33]. These parameters are calculated as fol-
lows:

Accuracy %ð Þ ¼ TPþ TNð Þ= TPþ FPþ TNþ FNð Þ½ �
� 100 ð1Þ

Sensitivity %ð Þ ¼ TP= TPþ FNð Þ½ � � 100 ð2Þ
Specificity %ð Þ ¼ TN= TNþ FPð Þ½ � � 100 ð3Þ
F−score %ð Þ ¼ 2� SENS� SPECð Þ= SENSþ SPECð Þ ð4Þ
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where TP stands for true positives, TN for true negatives, FP
for false positives and FN for false negatives. SENS stands for
sensitivity and SPEC for specificity. P-values were calculated
for three-dimensional PCA score plots using a MANOVA test
and for individual wavenumbers based on an ANOVA test.
Statistical significance was considered at P < 0.05 and statis-
tical high significance at P < 0.001.

Results

The raw and pre-processed spectra for cases (ovarian cancers)
and controls (patients with benign gynaecological conditions)
are shown in Fig. 1. Three different pre-processing approaches
were applied to the raw dataset: the first (Baseline + Norm.)
being SG smoothing followed by AWLS baseline correction
and vector normalisation, which removes random noise, cor-
rects the baseline and different sample thickness and concen-
trations; the second (EMSC + Baseline) was SG smoothing
followed by EMSC and AWLS baseline correction, which has
an effect similar to the previous pre-processing, but it corrects
for light scattering and does not correct for samples with dif-
ferent concentrations (one of the effects of vector normalisa-
tion); and the third approach (1st derivative) was SG smooth-
ing followed by 1st derivative, which corrects for random
noise, baseline, sample thickness and light scattering, but in-
creases substantially the noise level [26].

Exploratory analysis was performed with PCA. The PCA
score plots for the three types of pre-processed data are shown
in Fig. 2, where P-values were calculated based on the three-
dimensional score plot by using a MANOVA test with the
score values on PC1, PC2 and PC3. Visually and based on
P-values, it is evident that the second pre-processing approach
(EMSC + Baseline) had the greatest potential for discrimina-
tion. It exhibited the clearest clustering separation in all three
types of biofluids and the lowest P-values in plasma (P ≈
10−43), serum (P ≈ 10−36) and ascitic fluid (P ≈ 10−145). First
derivative had the highest P-values and did not show statisti-
cal significance in serum (P = 0.642). Among biofluids, ascit-
ic fluid had the lowest P-values, followed by plasma and then
serum.

Following exploratory analysis, discriminant analysis algo-
rithms were applied to the PCA scores (PCA-LDA, PCA-
QDA and PCA-SVM) and to the original pre-processed data
by means of PLS-DA. Classification was performed on a
spectral basis to reduce the risk of over-fitting in SVM.
However, SVM-based models carry a higher risk of over-
fitting due to the small sample cohort used in this study.
Discriminant analysis results are shown in Table 1 where ac-
curacy, sensitivity, specificity and F-score are reported for
each model. EMSC + Baseline pre-processing achieved the
best discrimination among biofluids and ascites had the best
discrimination performance overall. The combination of

EMSC + Baseline pre-processing and ascitic fluid generated
the best discriminant analysis model, with an overall perfor-
mance of F-score = 82% both for PCA-LDA (sensitivity =
84%, specificity = 81%) and PCA-SVM (sensitivity = 78%,
specificity = 86%), which were the best discriminant algo-
rithms. In this case, discriminant results were similar among
the different types of algorithm, with PCA-SVM > PLS-DA >
PCA-QDA. Between PCA-LDA and PCA-SVM, the former
has more well-balanced sensitivities and specificities, is the
simplest method (more parsimonic), is more robust and
is less susceptible to over-fitting [26, 34], hence being the
method of choice.

The wavenumbers responsible for class differentiation
were identified by combining the difference-between-mean
(DBM) spectrum with the PCA loadings on PC1 (main dis-
criminant direction). The DBM is produced following sub-
traction between the mean spectrums of ovarian cancer and
benign control classes, using the best pre-processing approach
(EMSC + Baseline). This spectrum indicates the main differ-
ences between the two classes. PCA loadings give more re-
fined details about class differentiation, as they show
wavenumbers with the highest weights towards discrimina-
tion on the PC direction. The coincidence in these two points
of information indicates that the wavenumbers on them are
greatly significant for class separation [35] (Fig. 3).
Regarding ascitic fluid, four wavenumbers (1004, 1334,
1448 and 1657 cm−1) were mainly responsible for class dif-
ferentiation (Fig. 3c), while for plasma and serum, two and
three wavenumbers were identified, respectively (Fig. 3a and
b). All wavenumbers identified as discriminant features in
plasma, serum and, particularly, ascitic fluid are somehow
related to collagen [36], and all of them are less intense in
the case (ovarian cancers) class (Table 2).

Discussion

Clinical spectroscopy comprises powerful tools used to obtain
spectrochemical information of biological materials. The
spectral biofingeprint around 1800 to 900 cm−1 generated by
these techniques contains vibrational information of key bio-
molecules (such as proteins, lipids, carbohydrates and nucleic
acids), thus being used as a numeric source of data for disease
diagnosis [8]. Herein, Raman microspectroscopy was used to
identify the potential of plasma, serum and ascites for ovarian
cancer detection. Different pre-processing and discriminant
analysis approaches were tested, where SG smoothing follow-
ed by EMSC and AWLS baseline correction in combination
with PCA-LDA was found to be the best method. An initial
exploratory analysis (Fig. 2) already suggested that ascitic
fluid was the best for differentiation of ovarian cancer from
benign gynaecological conditions, where higher statistically
significant values (P < 0.001) were found in the three-
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dimensional PCA score plot. Discrimination-wise, PCA-LDA
in ascitic fluid was able to separate the classes with accuracies,
sensitivities and specificities above 80%, in comparison with
60–73% for plasma and serum (Table 1).

To our knowledge, Raman spectroscopy of ascites is un-
dertaken for the first time. Three studies have conducted
Raman spectroscopy of blood-derived biofluids in ovarian
cancer, all involving equal numbers of cases and benign con-
trols in their cohorts. The biggest one by Paraskevaidi et al.

(27 ovarian cancer patients) found blood plasma to have sen-
sitivity and specificity ranging from 78 to 99% and from 85 to
99%, respectively, using SVM, and ranging from 72 to 96%
and from 74 to 97%, respectively, using SVM with surface-
enhanced Raman spectroscopy (SERS) [16]. In the smallest
study by Owens et al. (2 ovarian cancer patients), a classifica-
tion accuracy of 74% for plasma was reported, using SVM
[17]. Finally in the study by Ullah et al. (11 ovarian cancer
patients), spectroscopy of serum yielded 90% sensitivity and
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Fig. 1 Average raw and pre-processed Raman spectra for controls (pa-
tients with benign gynaecologic conditions) and cases (ovarian cancer
patients) for different biofluids and pre-processing techniques: ‘Raw’
for raw data; ‘Baseline + Norm.’ for SG smoothing followed by AWLS

baseline correction and vector normalisation; ‘EMSC + Baseline’ for SG
smoothing followed by EMSC and AWLS baseline correction; and
‘1st Derivative’ for SG smoothing followed by 1st derivative
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100% specificity, again with SVM [18]. Herein, plasma and
serum had lower performances. A possible reason for these
differences could be variations in patient characteristics (such
as age, BMI, comorbidities) though regression analyses for
confounding factors were not conducted in any of the afore-
mentioned studies (including ours). Regarding age,
Paraskevaidi et al. performed subgroup analyses in patients
who were more or less than 60 years old and found only minor
changes in sensitivity and specificity, suggesting that this fac-
tor is unlikely to influence outcomes [16]. Another potential
reason could be differences in the spectroscopic technique
used. The study herein used StreamHR™ to investigate
biofluids (i.e. neither single spectral acquisition nor SERS
which were used in the three other studies), consequently hav-
ing a lower signal-to-noise ratio (SNR). Figure 4 shows a SNR
comparison between a regular Raman spectrum and a Raman
spectrum acquired by StreamHR™ for ascites. The SNR for a
regular Raman spectrum is 172 times better than using
StreamHR™.

On the other hand, whole ascites processing has advantages
compared to blood-derived biofluids. Plasma and serum are
obtained following centrifugation of whole blood. However,
there are various centrifugation protocols (in terms of centri-
fugation force and time), which can affect the concentrations

of some plasma and serum metabolites through haemolysis
[37, 38]. This can increase heterogeneity between studies
making comparison of their outcomes less accurate.
Additionally, anticoagulants (such as EDTA) and gel
contained in the tubes used for plasma and serum collection,
respectively, can interfere with analyte concentrations [39].
Ascites can be stored in plain tubes and does not undergo
centrifugation, therefore avoiding changes in its constituency.
It can be speculated that ascites-derived spectra are more pre-
cise in reflecting the true metabolic status of the patient, which
might have contributed to the better classification rates they
achieved.

More importantly, the use of ascites as a spectroscopy
biofluid may have some crucial biological advantages. One
of these is that it is far more physiologically targeted, i.e. it
consists a more accurate representation of the tumour micro-
environment being the exudate of malignant cells; this could
reduce patient heterogeneity in large cohorts, where a variety
of metabolic factors inherent to each individual would com-
plicate the testing of biofluids taken distant from the site of the
lesion. There is evidence that ascites hosts events in ovarian
tumourigenesis earlier than in peripheral blood, which could
lead to earlier spectroscopic changes [40]. The concentration
of inflammatory soluble factors (such as cytokines) is usually
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Fig. 2 Three-dimensional PCA score plot (PC1 vs. PC2 vs. PC3) for
different biofluids and pre-processing techniques: ‘Baseline + Norm.’
for SG smoothing followed by AWLS baseline correction and vector
normalisation; ‘EMSC + Baseline’ for SG smoothing followed by

EMSC and AWLS baseline correction; and ‘1st Derivative’ for SG
smoothing followed by 1st derivative. Numbers inside parentheses repre-
sent the variance on each PC direction. P-values calculated based on a
MANOVA test
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much higher in ascites compared to blood, providing an ex-
cellent source for the discovery of prognostic biomarkers [41].
Additionally, the increased capillary permeability observed in

malignancies favours a shift of protein from the blood vessels
into the peritoneal fluid [6]. Diet-related factors, such as mal-
nutrition frequently observed in patients with cancer, can

Table 1 Discriminant analysis
results for plasma, serum and
ascitic fluid with different pre-
processing techniques: ‘Baseline
+ normalisation’ for SG smooth-
ing followed by AWLS baseline
correction and vector normalisa-
tion; ‘EMSC + baseline’ for SG
smoothing followed by EMSC
and AWLS baseline correction;
and ‘1st Derivative’ for SG
smoothing followed by 1st deriv-
ative. PCs, principal components;
LVs, latent variables

Accuracy (%) Sensitivity (%) Specificity (%) F-score (%)

Plasma Baseline + normalisation

PCA-LDA (7 PCs) 65 56 73 63

PCA-QDA (5 PCs) 65 49 79 60

PCA-SVM (7 PCs) 68 56 78 65

PLS-DA (2 LVs) 65 57 73 64

EMSC + baseline

PCA-LDA (6 PCs) 66 60 72 65

PCA-QDA (3 PCs) 63 78 48 59

PCA-SVM (6 PCs) 67 65 69 67

PLS-DA (2 LVs) 66 69 63 66

1st Derivative

PCA-LDA (8 PCs) 58 41 73 53

PCA-QDA (8 PCs) 59 29 86 43

PCA-SVM (8 PCs) 59 48 70 57

PLS-DA (8 LVs) 61 52 68 59

Serum Baseline + normalisation

PCA-LDA (6 PCs) 65 56 72 63

PCA-QDA (5 PCs) 70 57 82 67

PCA-SVM (5 PCs) 68 57 77 66

PLS-DA (3 LVs) 64 59 68 63

EMSC + baseline

PCA-LDA (4 PCs) 66 59 72 65

PCA-QDA (4 PCs) 67 71 63 67

PCA-SVM (4 PCs) 73 61 84 71

PLS-DA (3 LVs) 65 67 64 65

1st Derivative

PCA-LDA (6 PCs) 65 56 72 63

PCA-QDA (5 PCs) 70 57 82 67

PCA-SVM (5 PCs) 71 59 81 68

PLS-DA (3 LVs) 64 59 68 63

Ascitic fluid Baseline + normalisation

PCA-LDA (2 PCs) 77 71 83 77

PCA-QDA (3 PCs) 78 75 80 77

PCA-SVM (3 PCs) 81 82 80 81

PLS-DA (2 LVs) 79 76 81 78

EMSC + baseline

PCA-LDA (6 PCs) 82 84 81 82

PCA-QDA (2 PCs) 80 86 75 80

PCA-SVM (6 PCs) 82 78 86 82

PLS-DA (2 LVs) 81 87 76 81

1st Derivative

PCA-LDA (4 PCs) 72 60 83 70

PCA-QDA (3 PCs) 71 54 86 66

PCA-SVM (4 PCs) 72 57 85 68

PLS-DA 76 64 87 74
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decrease even further the protein concentration in peripheral
blood [42]. However, not all ovarian cancer patients suffer
frommalnutrition and not all malignant ascites have increased
protein content compared to benign ones [43]. Therefore, it is
questionable whether these factors contribute in better classi-
fications (such as the ones achieved in our study with ascites-
derived spectra). They do appear to play a role though and
could have partially accounted for the differences observed in
blood plasma and serum performance between our study and
the aforementioned ones.

Malignant and benign ascites do, however, have some
marked differences in their composition, which could result

in more pronounced spectral variations between the two clas-
ses. A study using nuclear magnetic resonance (1H NMR)
spectroscopy showed that malignant ascites are much more
abundant in lactate and ketone bodies (BHBT, acetoacetate,
acetone) and have lower glucose and citrate concentrations
compared to benign ones. These differences reflect the in-
creased energy demands of malignant cells, leading to accel-
erated glucose consumption and consequent initiation of lipol-
ysis, as glucose stores get gradually depleted [43].

The spectral biomarker analysis in Fig. 3 and Table 2 sug-
gests that collagen was the main discriminant factor between
cases and benign controls, with lower intensity wavenumbers

a 1342 1657 1334 1448 1660

1004 1334 1448 1657

b

c

Fig. 3 Difference-between-mean
(DBM) spectrum and PCA load-
ings on PC1 (for the
pre-processed data using SG
smoothing followed by EMSC
and AWLS baseline correction)
for (a) plasma, (b) serum and (c)
ascitic fluid. Raman shifts (in
cm−1) are assigned for the main
bands

Table 2 Tentative spectral
biomarker assignment [36]. ↓
stands for lower Raman intensity.
P values calculated based on an
ANOVA test

Biofluid Wavenumber (cm−1) Tentative assignment Intensity
in ‘Case’

P value

Plasma 1342 CH deformation (proteins and carbohydrates) ↓ 10−17

1657 Amide I (collagen) ↓ 10−24

Serum 1334 CH3CH2 wagging (collagen) ↓ 10−14

1448 CH2 deformation (collagen) ↓ 10−06

1660 Amide I (proteins) ↓ 10−24

Ascitic fluid 1004 Phenylalanine (collagen) ↓ 10−22

1334 CH3CH2 wagging (collagen) ↓ 10−56

1448 CH2 deformation (collagen) ↓ 10−19

1657 Amide I (collagen) ↓ 10−62
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in ovarian cancer for all biofluids and a wider difference in
ascitic fluid. Collagen has an important role in malignancy,
where it participates in the processes of cancer cell prolifera-
tion, migration and metastasis [44, 45]. Furthermore, in ovar-
ian cancer, there is marked degradation of collagen present in
the extracellular matrix under the peritoneal mesothelium dur-
ing the formation of metastases [46]. In radioimmunoassay
studies, ascites and serum concentrations of collagen
propeptides and degradation products were higher in ovarian
cancer compared to patients with benign ovarian cysts [47,
48]. This is in discrepancy with our finding of lower collagen
signal intensity in ovarian cancer, potentially reflecting vari-
able levels of collagen synthesis and proteolysis in malignan-
cy, and would require further investigation. Interestingly,
these collagen-related peptides were more abundant (up to
200 times higher) in ascites compared to blood in both malig-
nant and benign states [47, 48]. In addition, concentration
differences between cancer and benign patients were wider
in ascites for the majority of these peptides [48]. These find-
ings highlight once again the biological advantages of using
ascites as an experimental biofluid in ovarian cancer research
and may provide another explanation for the better classifica-
tion rates it achieved in our study compared to blood plasma
and serum spectroscopy.

Currently, there are no reliable screening tests for the de-
tection of ovarian cancer. The initial step in women presenting
with suspicious symptoms is the performance of a serum
CA125 test. However, this test has poor sensitivity and spec-
ificity, much lower to the ones achieved with biofluid spec-
troscopy, as many other gynaecological conditions (such as
benign ovarian cysts, endometriosis, uterine fibroids) and
non-gynaecological cancers (such as gastrointestinal ones)
can raise it. Additionally, only 50% of patients with FIGO
stage I ovarian cancer have elevated CA125 levels [49–51].
Predictive models used to differentiate benign frommalignant
ovarian tumours, such as the Risk ofMalignancy Index (RMI)
or the International Ovarian Tumour Analysis (IOTA) rules,
have improved sensitivities and specificities (ranging between
70 and 93%) [52]. These models use ultrasonography alone or
in combination with serum CA125 levels, but rely on the

presence of a tumour mass. Ascites can exist in patients lack-
ing a distinct mass and, apart from ovarian cancer, it can have
significant volumes in benign gynaecological conditions as
well, though less frequently [53]. Nevertheless, in our study,
patients were recruited randomly irrespective of presence or
absence of ascites in their pre-operative investigations, elimi-
nating selection bias in the spectral performances. On the oth-
er hand, although all our patients did have a certain degree of
ascites identified intra-operatively and collected for our re-
search, it can be entirely absent in benign gynaecological con-
ditions or even ovarian cancer, which would preclude its uni-
versal use for diagnostic purposes through spectroscopy.

Ascitic fluid spectroscopymay, however, have some prom-
ising clinical applications. For example, it could provide an
alternative to cytological examination of ascites collected dur-
ing diagnostic procedures, which is limited by very low sen-
sitivity (40–62%) for detection of malignant cells [43]. It
could also help to determine the extent of staging laparotomy,
when it is doubtful whether an ovarian mass is cancerous. In
these cases, intra-operative consultation by a pathologist is
pursued, which utilises “frozen section” of the specimen, but
has several limitations (such as sampling difficulties and in-
terpretation errors). It also increases the surgical time, with
potentially higher patient morbidity, and adds significantly
to the cost of the operation [54]. Importantly, it is currently
undertaken only in tertiary gynaecology oncology centres and
requires histopathologists with expert specialist knowledge,
limiting the availability of its use. In contrast, ascitic fluid
spectroscopy only takes a few minutes, is much cheaper and
does not require specialised medical professionals.

A drawback of ascites is its more complicated acquisition
compared to other readily collectable biofluids, such as blood.
It requires a surgical procedure (paracentesis), which is under-
taken by trained medical specialists, requires the use of anaes-
thesia (usually local) and has associated uncommon but sig-
nificant risks (bleeding, infection, injury to intra-abdominal
organs) [55]. In contrast, blood collection is performed
through simple phlebotomy which is minimally invasive,
has minor risks (such as bruising at the puncture site) and
can be conducted by non-medical healthcare professionals.

StreamHRTMRegular Raman SpectrumFig. 4 Comparison between the
signal-to-noise ratio (SNR) for a
regular Raman spectrum and a
Raman spectrum acquired by the
StreamHR™ technique for ascites
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Another issue is the timely identification of ascitic fluid. There
is a progressive relationship between ovarian cancer stage and
proportion of cases with ascites as well as quantity of ascites.
As patients can remain asymptomatic even with significant
volumes, their majority is already in advanced stage upon
diagnosis [53]. Additionally, although modern ultrasonogra-
phy can detect even tiny amounts of peritoneal fluid (down to
1 ml), there would be technical difficulties with its safe col-
lection in very small volumes [56]. Therefore, early identifi-
cation of asymptomatic ovarian cancer patients will be a chal-
lenge, if ascitic fluid spectroscopy is considered for clinical
application in the future. It could, however, facilitate the de-
tection of early-stage malignancy in cases with presumed be-
nign ovarian pathology and some degree of ascites, as these
patients do not routinely undergo a diagnostic biopsy.

In a broader perspective, clinical translation of spectrosco-
py faces some more general issues. For example, Raman
equipment is robust, difficult to transfer and expensive.
Additionally, many clinicians are unaware of spectroscopy’s
potential in diagnosis and classification of disease.
Development of user-friendly software programs and educa-
tion of healthcare professionals could increase knowledge
about spectroscopic techniques and gradually lead to their
routine use in clinical practice [57].

A limitation of this study is the small size of its patient
cohort. This is a common problem in research studies
using human biological samples, which are often difficult
to obtain and require complex consent forms for their
acquisition. Additionally, ovarian cancer is an uncommon
disease, making the recruitment of large patient cohorts
challenging.

In conclusion, our study found that ascites, by means of
predominantly collagen-related spectrochemical changes,
achieved better classification between ovarian cancer and be-
nign gynaecological conditions. However, its superiority to
blood plasma and serum should be considered with caution,
as other studies have shown better performances for these two
biofluids. The obtained sensitivities, specificities and accura-
cies of around 80% with ascitic fluid Raman spectroscopy are
satisfactory, though not high enough to allow for immediate
translation into clinical practice. Future studies with larger
cohorts, conducting regression analyses to eliminate possible
confounding factors, could lead to optimised outcomes. The
potential of ascitic fluid should be further investigated with
other spectroscopic techniques, as well.
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