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Abstract In the presence of unknown disturbances and model parameter uncertainties, this paper develop a 

nonlinear backstepping sliding-mode controller (BSMC) for trajectory tracking control of a stratospheric 

airship using a disturbance-observer (DO). Compared with the conventional sliding mode surface (SMS) 

constructed by a linear combination of the errors, the new SMS manifold is selected as the last back-step error 

to improve independence of the adjustment of the controller gains. Furthermore, a nonlinear 

disturbance-observer is designed to process unknown disturbance inputs and improve the BSMC 

performances. The closed-loop system of trajectory tracking control plant is proved to be globally 

asymptotically stable by using Lyapunov theory. By comparing with traditional backstepping control and 

SMC design, the results obtained demonstrate the capacity of the airship to execute a realistic trajectory 

tracking mission, even in the presence of unknown disturbances, and aerodynamic coefficient uncertainties. 

Keywords:   stratospheric airship system; sliding mode control; nonlinear disturbance observer; backstepping 

control; trajectory tracking 

1. Introduction  

 
The stratospheric airship has been receiving a growing interest from both industry and academia due to 

their potential cost including high altitude, long endurance UAVs with vertical take-off and landing, low 
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power, and hovering advantages. They have growing applications in earth observation, climatological 

monitoring, environmental surveillance and communication relay. The core feature of the airship is 

autonomous capability during the mission.  

The trajectory tracking is one of fundamental functions of the airship control system, but it is an uneasy 

task. The highly nonlinear dynamics together with unpredictable complex environment, which make model 

uncertainties such as varying apparent mass and inertia of the airship, and the authority of control surfaces 

reduced by low airspeeds (Azinheira et al., 2006). There are many studies on trajectory tracking problem of 

the airship in the literatures. Gain scheduling and PID are often preferred because they are easy realized 

(Moutinho  and Azinheira, 2006; Valle, et al., 2015). However, linear control design approaches are hard to 

accomplish when nonlinear of the airship motion is emphasized under environment disturbances and low 

airspeed flight. Therefore nonlinear control methods are often applied to trajectory tracking control of the 

airship (Moutinho and Azinheira, 2004). To apply some ‘good’ nonlinearities, the Lyapunov based 

backstepping approach is proposed , the attractive qualities of backstepping are the asymptotic global 

stability against parametric uncertainty, whether matched or mismatched, and the systematic recursive 

construction of the Lyapunov functions (Slotine and Li, 1991). Azinheira et al.(2006, 2009) proposed 

backstepping control designs for hover stabilization and path-tracking of a nonlinear underactuated airship 

model. Liesk et al. (2013) proposed a waypoint tracking controller for an unmanned finless airship. Liu and 

Sang (2018) developed a vectorial backstepping method with active set control allocation to deal with 

saturation. However, these methods depend on the accurate model and are hard to deal with highly nonlinear 

airship dynamics with aerodynamic model uncertainties.  

The other mainstream nonlinear method of trajectory tracking control is sliding mode control (SMC).  

SMC is widely used due to its attractive features like insensitivity to matched uncertainties, robustness to 

external perturbations, simplicity and ease of implementation, and finite-time convergence (Edwards and 

Spurgeon, 1998; Yang and Yan, 2016; Zheng and Sun, 2018; Lou et al, 2019; Chen and Edwards, 2020). 
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Yang and Yan (2016) proposed a neural network approximation-based sliding-mode approach for positioning 

control of an autonomous airship. After that, Yang (2018) proposed nonsingular terminal sliding mode 

control for trajectory tracking control of a robotic airship. In order to take advantage of the benefits of both 

SMC and backstepping control approaches, Bolivar et al. (1997) combined them and developed a 

backstepping sliding mode controller (BSMC1). Another type, BSMC2 has been developed whose SMS 

manifold is selected as the last back step error to improve independence of the adjustment of the controller 

gains (Bolivar and Zinober, 1994). Adhikary and Mahanta (2013) proposed an integral backstepping sliding 

mode control for the cart–pendulum system. For the airship control, Chen (2017) proposed a BSMC for 

three-degree-of-freedom trajectory tracking of the stratospheric airship. Parsa et al.(2018) presented an 

integral BSMC for station keeping of the stratospheric airship. Vieira (2019) compared three methods of BS, 

SMC, BSMC and applied them to control a NOAMAY airship. To improve system adaptiveness, Liu et al. 

(2020) proposed an adaptive sliding-mode-backstepping trajectory tracking control for underactuated 

airships. 

Since airships working in the stratosphere often meet unknown disturbances such as winds, coupling 

effects from other subsystems, and environmental and sun radiation noise, a nonlinear disturbance 

observer-based control (DOBC) approach is introduced in this paper to enhance the disturbance attenuation 

ability and performance robustness of the BSMC. The disturbance observer-based technique has been applied 

to the control of nonlinear systems and systems with unknown disturbances for decades (Chen et al., 2016), 

where an observer is designed to estimate external disturbances or ignore nonlinear dynamics and then 

compensate for them (Hu et al., 2018). Chen (2003) proposed a composite controller based on DO for the 

autopilot of a missile. Guo and Chen (2005) proposed a DOBC for disturbance attenuation and rejection for 

systems with nonlinearity. Li et al. (2014) gave detailed design methods of DOBC and applied them to control 

a hypersonic vehicle.  

Motivated by the work of Verira (2019) and Chen (2003), this paper mainly concerns trajectory tracking 



 
 

4 

control for the stratospheric airship, and the main contributions are listed as follows: a novel 

disturbance-observer based backstepping sliding-mode control (DO-BSMC) is proposed for a stratospheric 

airship.  A new SMS manifold is selected as the last back-step error to achieve additional degree of freedom. 

The composite controller of the DO-BSMC consists of a BSMC and a nonlinear disturbance observer, thus 

effect of large unknown disturbance inputs and model parameter uncertainties can be effectively reduced. The 

DO-BSM composite controller has a two-level control structure including a trajectory guider and an attitude 

and velocity controller, and its properties such as stability are established. Simulation results show the 

proposed DO-BSMC control has better performances in the trajectory tracking control for a stratospheric 

airship compared with BSMC methods. 

This paper is organized as follows. Section 2 gives the nonlinear dynamics model of the stratospheric 

airship and presents the trajectory tracking problem. Section 3 proposes the DO-BSMC control design, and 

stability is analyzed for the associated closed-loop tracking system. Simulations and performances of two 

scenarios with the DO-BSMC control are demonstrated in Section4. The final section gives some 

conclusions. 

2.  Dynamics modeling and problem formulation   

 

Fig. 1. Structure of the stratospheric airship 

The considered model is a 250m length, 75m diameter airship (Mueller et al., 2004), the structure 
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parameters and aerodynamic coefficients of the stratospheric airship are listed in Table 1.  

Table 1 Parameters and coefficients for the studied airship 

 

Parameter Value Coefficient Value 

m 5.3×104 (kg) k1 0.1054 
ρ 0.072  (kg/m3) k2 0.8259 
vol 7.4×105 (m3) k3 0.1247 
L 250  (m) Cz ﹣657 

xG, zG 0, 20 (m) Cl 2.4×104 
dx, dz 5, 5 (m) Cm ﹣7.7×104 

Ix 4×107(kg·m2) Cn ﹣7.7×104 
Iy 2.3×108(kg·m2) δe (−25, 25) (°) 
Iz 2.2×108(kg·m2) δe (−25, 25) (°) 
Ixz ﹣4.8×106(kg·m2) Tx, Tz 3×106 (N) 

 

2.1 Airship Kinematics Model 

The studied stratospheric airship is shown in Fig.1. The kinematics model of the airship’s position and 

attitude is given by (Moutinho et al. 2016; Liu and Sang, 2018): 

1 2( ) ( )t tx Tx
                                                                   (1)  

where 1

TT T   x   , 2

TT T
a   x   ,  Tx y z  represents the airship position in the inertial frame, 

 T   is the attitude vector,  Ta u v wυ and  Tp q r are the speed and angular rate in 

the body frame respectively, and   

 
 

 
  
 

0

0

R
T

J




                                                               (2) 

where the direction cosine matrix R is 

  R η

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c c c s s s c s s c s c

c s c c s s s s c c s s

s s c c c

           
           

    

   
    
  

                              (3) 

and the transformation matrix J is 
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1 ( ) tan ( ) tan

( ) 0 ( ) ( )

0 ( )sec ( )sec

s c

c s

s c

   
 

   

 
   
 
 

J η

                                            

      (4) 

where |θ| < π/2 is assumed to avoid the singularity of matrix because θ = ±π/2 is not likely to be encountered 

during practical operation of the airship, s(.) and c(.) denote sine and cosine functions respectively.   

2.2 Airship Dynamics Model 
 

The airship dynamics is represented by (Gomes, 1990; Moutinho et al., 2016; Liu et al., 2020): 

( )

( )
k w GB A CPa

a
k w GB A CP

t

t

      
             

f f f f f
M

n n n n n






   ,                                     (5) 

where aM denotes the generalized mass matrix as in Liu  and Sang (2018). kf denotes the kinetics force 

vector, wf  denotes the wind-induced force vector, GBf  denotes sum of the gravity and buoyancy vector, Af  

denotes the aerodynamic force vector, CPf  denotes the control input and thrust vector, 

kn , wn , GBn , An ,and CPn are associated moments generated by kf wf , GBf , Af and CPf ,respectively. 

Let CP

CP

U
 

  
 

f

n
, then (5) can be rewritten as 

2 2 2( ) ( )t U t x f g ,                                                             (6) 

where 

 21 3 1
2

2 3 1( )
k w GB A V

a
k w GB A 

 



     
          

f f f f f
f M

n n n n f
,                                          (7) 

   
   

2 21 3 3 3 3
2

2 23 3 3 3

( ) V V
a

V



 

  

 

 
   

 

g g
g x M

g g
.                                                        (8) 

2Vg , 2Vg , 2 Vg and 2g denote the sub-matrices of 1
a
M . Airship aerodynamic force, kinetics force, sum 

force of gravity and buoyancy, and their moments on the right hand side of (5) are as in Gomes (1990), and 

Liu and Sang (2018). The thrust on the stern is not considered in flight, which is mainly used for hovering. 

For simplicity, two tilt angles and thrusts of the vectored propellers are assumed to be equal, and the effect 
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of rudders on the side force is also ignored. The virtual control force in (5) is described as  

( ) ( )CP

CP

t t
 

  
 

f
U Bu

n  ,                                                      (9) 

where B is the control effectiveness matrix, u represents thrusts and control surface deflections. If the airship 

is underactuated in the y-direction, or lacks lateral force effector to oppose aerodynamic side forces 

(Azinheira et al., 2006), then (9) can be rewritten as follows 

1 0 0 0 0 0

0 1 0 0

0 0

0 0

0 0 0 0

e e

e e r r

e e

r r

x
CPx

z
z z

CPz
eL

l l l lCPx
eR

CPy m m
rU

CPz n n
rB

T
f

TqC qCf
qC qC qC qCn

n dz dx qC qC

n qC qC

 

   

 

 






                                      

,                            (10) 

where , , , ,
e e r e rz l l m nC C C C C     are aerodynamic coefficients of the control surfaces, Tx and Tz are thrust 

components in xb axis and zb axis, respectively. dx and dz denote distances from the CV to the propeller in the 

xb- and zb- axis. The thrusts in (10) can be linearized by the following transformation: 

 
 

cos

sin

x p s

z p s

T T T

T T T





  


  
                                                          (11) 

where Tp and Ts denote thrusts of the port side and starboard side respectively. And then the tilting angle can 

be obtained by =atan( / )z xT T  , the  maximum and minimum values of the tilting angle are 90°and −90°. 

Since there exist winds, environmental and sun-radiation noise for the stratospheric airship, then the model 

disturbance f is introduced and the system of (6) is modified to 

2 2 2 3( ) ( ) ( ) ( ) ( ) ( )t U t t  x f x g x g x f                                                      (12) 

where 6f denote model uncertainties and external disturbances, and it is assumed that f is bounded with |f| 

< fU, fU is a real value,  3 ( ) ( 1 1 1 1 1 1 )x diagg . 

2.3 The Trajectory Tracking Control Problem 

Consider the airship models of (1) and (12). Let 3( ) :[0, )r t    be a given sufficiently smooth 
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time-varying reference trajectory with its time-derivatives ( ( )r t ， ( )r t ) bounded. The control task is to 

design a trajectory tracking controller such that the closed-loop system is globally asymptotically stable and 

the output trajectory ξ is steered towards a given reference trajectory ξr with 02
lim ( )
t

t 


e , even in specified 

model uncertainty and external disturbance environment, where tracking error ( ) ( ) ( )rt t t e   , ε0 is a 

prescribed constant, 2-norm 
2

( ) Tt e e e .  

3 DO-BSMC trajectory tracking control design 

This section gives an overview of the DO-BSMC control for the airship. The structure of the DO-BSMC 

control design includes a backstepping sliding mode based attitude controller, a nonlinear disturbance 

observer, a CLF based velocity controller, a virtual control calculation part and an active set control allocation 

module. The controller design is presented in detail in the next section.  

3.1 Nonlinear Disturbance Observer Design 

Since the tracking system of (12) has the unknown bounded disturbance f , to improve the tracking 

precision, a nonlinear disturbance observer (NDO) is designed as follows (Chen et al., 2016), 

                             
 3 3 2 2ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

t t

t t

     


 

w l x g x w l x g x p x f x g x U

f w p x
             (13)  

where ˆ qw is the internal state of the nonlinear observer, and p( x ) is the nonlinear function to be designed. 

The NDO gain l( x ) is determined by 

( )
( )=x



p x

l
x

                                                          (14) 

It has been shown in Chen et al. (2016) that the NDO of Eq.(13) asymptotically estimates the disturbance if 

the observer gain l(x) is chosen such that Eq.(15) is global exponentially stable  for all nx , 

( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
d x

t t t t t
dt

          p
d f f f w         
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 3 3 2 2
( )

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
d

t t
dt

    
p x

l x g x w l x g x p x f x g x U     

ˆ( ) ( ) ( ) ( )t t l x f l x f   

                                            3( ) ( ) ( )t l x g x d                                                                                                         (15) 

where d denotes the unobservable part of the overall disturbance f. The observable disturbances is usually can 

be measured and estimated by the observer, such as 1-cosine winds. The unobservable disturbance cannot be 

measured and hard to be observed by the observer, such as white noises. It has been shown that the 

estimation ˆ ( )tf  of the NDO approaches the disturbance f (t) exponentially if the error dynamics of Eq.(15) is 

global exponentially stable (Chen et al., 2016). 

 Hence the disturbance compensator can be designed as 

                                                                     1
2 3

ˆ( ) ( ) ( ) ( )f t t u g x g x f                                                     (16) 

Remark 1 The design of a disturbance observer (13) essentially is to choose an appropriate gain l(x) 

and associated p(x) such that the convergence of estimation error d(t) is guaranteed. It is possible to choose 

l(x) as a constant matrix such that all the eigenvalues of matrix – l(x)g3 have negative real part. Integrating 

l(x) with respect to the airship state x yields p(x) = l x.  

By using the proposed disturbance compensator (16), the effect of disturbances acting on the airship has 

been reduced. Therefore, a composite controller combined a backstepping SMC controller with the 

disturbance compensator is proposed as ( )= ( )+ ( )BSMC ft t tU U u . By using Eqs (16), then the system (12) can 

be transformed as follows, 

2 2 2 3( ) ( ) ( ) ( ) ( ) ( )t t t  x f x g x U g x f   

 2 2 3( ) ( ) ( )+ ( ) ( ) ( )BSMC fx t t t  f g x U u g x f  

 1
2 2 2 2 3 3

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )BSMC t x t t   f x g x U g x g g x f g x d  

 2 2 3
ˆ( ) ( ) ( ) ( ) ( ) ( )BSMC t t t   f x g x U g x f f  



 
 

10 

2 2 3( ) ( ) ( ) ( ) ( )BSMC t t  f x g x U g x d                                                        (17) 

3.2 Backstepping Sliding-mode Control Based Attitude Controller  

This section is to design the backstepping sliding mode controller, and the objective is to make the attitude 

output η converge to the desired value vector ηd. Now consider the kinematics model (1) and the dynamics 

model (17). The attitude controller is derived in two steps. 

Step 1 (Backstepping for the variant of z1).  

The tracking error vector of attitudes is defined as  

1 dz η η ,                                                                (18) 

and its derivative is  

1 d dJ  z η η ω η     .                                                     (19) 

Since the desired behavior for   can still be chosen, it can be considered as the “virtual” control input. In the 

backstepping design this desired dynamic behavior is called the stabilizing function. Define the stabilizing 

function α, as the virtual angular rate vector of r   

1 1d K  z ,                                                           (20) 

where r represents the reference or virtual angular rate vector, K1 > 0 is often chosen as a diagonal matrix to 

simplify the design, i.e., K1 = diag(k11, k12, k13), k1i (i = 1, 2, 3) is constant value. 

Now let us consider the Lyapunov function V1, which is required positive definite around the desired 

position as follows: 

1 1 1

1

2
TV  z z .                                                               (21) 

Step 2 (Backstepping for the variant of z2). Because there exists a dynamic error between the angular rate 

  and its desired behavior of r , the speed tracking error vector for the attitude dynamics is defined as 

2 r J    z      .                                                 (22) 
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and its derivative is  

2 1 1d K     z z  .                                                       (23) 

Substituting (20) and (22) into (19) yields 

1 2 2 1 1d K    z z z z .                                                  (24) 

that is, 

2 1 1 1+K z z z  .                                                               (25) 

Differentiating (25) and substituting (18) yields 

2 1 1d K    z z   .                                                       (26) 

From (20) and (24), the derivative of the stabilizing function α is 

  2
1 2 1 1 1 2 1 1= +d dK K K K       z z z z  .                               (27) 

The derivative of the first CLF of (21) can be rewritten as follows by substituting (24) 

1 1 1 1 2 1 1 1 1 1 1 2( )T T T TV K K      z z z z z z z z z   .                                  (28) 

Now a SMC control is introduced to improve system adaptiveness; the sliding surface s is defined first. The 

conventional linear sliding surface is designed as (Bolivar et al., 1997) 

1 1 1 2 2B ns     z z z  ,                                                     (29) 

where ( ) ( )i i
i r z   is the attitude error vector, 

( )
( )

( )
=

i
i

i

d

dt

 , i =1,2,…,n, the virtual angular vector of r  

meeting = r  , λ1, λ2,… are the control gains to be determined. By using this sliding surface, the associated 

Backstepping control law can be developed and called BSMC1 (Liu et al., 2020). 

 In this paper a new sliding surface is designed as (Bolivar and Zinober, 1994)  

2B ns  z                                                                      (30) 

the associated Backstepping design is called BSMC2. The sliding surface (30) is a simple relation comparing 

with 1Bs , but the sliding manifold function 2Bs is a combination of the primary error z1 and its (n–1) order 
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derivatives, such as Eq.(25). Therefore, for the 2nd and 3rd order systems, the sliding mode surfaces are 

designed as 

2 2 1 1 1= +Bs K z z z ,                                                               (31.a) 

By using the recursive construction form of the error variables in the backstepping procedure, 

1 1= +i i i i iK  z z z z , we get 2 1 2 2 3= +K z z z z  and 

3 3 2 2 2 1= + +Bs K z z z z    1 1 1 2 1 1 1 1= + + + +K K K  z z z z z 1 1 2 1 2 1 1 1= +( + ) + +K K K Kz z z z ,                  (31.b) 

from (31) it can be seen that the sliding manifold function for BSMC2 is indeed a linear combination of the 

primary error z1 and its n ‒1 derivatives. The essential difference of BSMC1 and BSMC2 is that the 

cross-coupling terms of all the zi are canceled and the independence of the adjustment of the controller gains 

is improved for BSMC2 like in the pure backstepping case (Fossen and Strand, 1999). Although BSMC2 can 

not directly supports additional degree of freedom in the manifold parameter design as BSMC1, it can get 

good performances by using backstepping procedure and linear combination of the error and its n ‒1 

derivatives. 

The well known characteristics of SMC are attraction and invariance (Edwards and Spurgeon, 1998), that 

means the condition for the state to reach the sliding mode surface s in finite time tr and remain it is 

                                                                            0,ss    rt t                                                                 (32) 

0,s s  rt t                                                               (33) 

For the sliding mode surfaces of Eqs.(31), there are different reachability conditions, that are designed as 

(Bolivar and Zinober, 1994; Bolivar et al.,1997 ) 

2 21 22 2 2 21= sgn( )B B B B B Bs h h s s   z ,                                                (34) 

so their corresponding attraction and invariance for the SMC are as follows,  

                                                             
2 2 21 22 2

2
2 1 2 2= | |B B B B Bs s h h    z z z z                                                   (35) 

where 
21Bh , 

22Bh , and ςB2 are sliding mode surface parameters with 
21

0Bh  , 
22

0Bh  , and ςB2 > 0. Note that ςBi 
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can be chosen as small as possible to reduce the amplitude of the switching and hBi can be chosen to determine 

the time taken to attain sliding (Edwards C. and Spurgeon S.K., 1998). 

Consider the unobservable disturbance =
TT T

V   d d d , dω is the associated attitude disturbance. 

Assumption A1. Suppose that the unobservable disturbance dω varies slowly relative to the observer 

dynamics, i.e. 0d  .  

Remark 2. Literature shows that the method is also feasible for fast time-varying disturbances (Chen et al., 

2000). In the presence of uncertainties, the unobservable disturbances would be a function of the states, which 

can be reasonably estimated if the disturbance observer dynamics are faster than that of the closed-loop 

system. The same argument for the state observer based control methods is available. 

According to Assumption A1 0d  , the derivative of the estimated parameter error is 

ˆ ˆ=      d d d d .                                                        (36) 

where ˆ
d and 

d are the estimated parameter vector of dω and the associated estimated parameter error vector.  

For the sliding mode surface 2Bs , to meet the reachability (32) and (33), that is, denote 
1

2
T

sV s s , 

substituting (26) into the derivative Vs yields  

 2 2 2 1 1
T T

s dV K      z z z z  ,                                                       (37) 

If the disturbance d is neglected, select 
2 21 1 2 2sgn( )B B dK h      z z z  , then 

                                                      
2 22 1 1 2 2 1 1sgn( )T

s B B d dV K h K         z z z z z   

2 22 2 2 2sgn( ) 0T T
B Bh    z z z z ,                                                               (38) 

From kinematics equation (1), we get the desired angular accleration  

 1J J   ω ω  

 
2 2

1
1 1 2 2sgn( )B B dJ K h J      z z z ω                                       (39) 
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and according to dynamics equation of (12), we get 

2 2 3CP     ω f g n g d                                                            (40) 

Therefore, the associated control CPn  can be designed as 

  2 2

1
2 3 1 1 2 2

2

1 ˆ= + sgn( )CP B B dK h J  


       n f g d J z z z ω
g

   

   
2 22 3 1 1 2 2

2

1 ˆ= + sgn( )B B dg K h J  


       f d z z z ω
g

                          (41) 

where ˆ
d is estimation of the attitude disturbance d .  

Since ˆ
 d d ,  needs to be redefined  to meet 0sV  . Now selecting reachability condition as shown in 

(34) with consideration of disturbance estimation errors,  we get 

 
21 22 22 1 2 2 3= sign( )B B Bh h      z z z z Jg d ,                                  (42) 

Substitute (42) into (26) yields  

 
21 22 21 1 1 2 2 3= + sign( )d B B BK h h        z z z z Jg d                         (43) 

By using (26), (43) we obtain 

                                           21 22 22 1 1 1 2 2 3 1 1+ sign( )T T
s d B B B dV s s K h h K              z z z z z Jg d z  

 
21 22 22 1 2 2 3= sign( )T

B B Bh h      z z z z Jg d  

 
22 21 21 3= + + sign( )T T

B B Bs h s s h s    z Jg d                                           (44) 

The second term of the above equation can be rewritten as a function of the individual elements of the 

respective vectors (Vieira, 2019), denote 
2

( ) BI 
z , then (44) can be rewritten as 

 
22 21 1 3= + + ( ) sign( )T T ii i i i

B i B ii is s s h s s h J g I s      
 z d z                            (45) 

To ensure that 0sV  , it is necessary to select a time varying switch gain ( )i z  , so define a critical gain 

1 3 1 3max(| |) max(| |)n         z Jg d z Jg d and consider a positive scalar 0 , it yields (Vieira, 2019) 
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     
21 1 0= + | | 0T T ii i

i B is s s s s h z s                                                  (46) 

Hence the SMC invariance property can be guaranteed even under unknown disturbances.  

From Eqs.(24) and (42), we obtain 

21 2121

222 21

11 1 1

2 32 2 2

0 00 0

sgn( )0 00

B BB

BB B

h K hh

h hI  
           

                              




z z z

z Jg dz z z
            (47) 

Now the second augmented CLF is constructed as follows for BSMC2 

211 1
2

2 2

01 1

2 20

T
B T

d

h
V

I
 

    
     

    
 z z
d d

z z
,
                                              

 (48) 

where γd is a positive constant that determines the convergence speed of the unobservable disturbance 

estimation. Substituting (47) into the derivative of (48) yields 

211 1
2

2 2

0 1
=

0

T
B T

d

h
V

I
 

    
    

    

  


z z
d d

z z
 

  21

2

22

1 1
1 2 2 1 2 3

2

0 1
= || ||

0

B T T
B

B d

h K

h    


   
      

    

  z
z z z z Jg d d d

z
       (49) 

where
1

1

| |
n

i
i

x x


 .  By using (36) and T Ts s  d d , we obtain 

 2 3 3 2

1 1 ˆ=
TT T T T

d d
        

        z Jg d d d d Jg z d d                             (50) 

Choose the update law as: 

3 2
ˆ T T

d 
d g J z ,                                                      (51) 

substitute (51) into (49) yields 

   21

2

22

1 1
2 1 2 2 1

2

0
0

0

B

B
B

h K
V

h


   
      

    
 z

z z z
z

.                                 (52) 

Therefore, robust stability of the closed-loop system can be guaranteed by using the DO-BSMC controller 
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according to Lyapunov theory. The associated d can be obtained from (40) and (41).  

From the above analysis, the structure of the adaptive integral backstepping controller for attitude control 

can be designed as Fig.2, which includes attitude dynamics of the airship and adaptive sliding mode 

backstepping control with an adaptive disturbance estimator.  



BSMC controller  

2

=s z

f

Airship dynamics

d̂

BSMC

U

Control 
allocation

U=[δe,δr,μ,Tx,z]

Nonlinear 
Eq.(13)

g3

f̂

J


1

2 3

g guf+

u

NDO

–

d



d



+

+–

d
+
–

3
ˆ

T T

d s 
d g J

Estimator

z1

+

Eq.(41)

1 2
ˆ( , , , )

d

U z z d 

1

z

2

z

SMC

u

d



SMC 
controller

̂wŵ

u


+
+

+

∫

2

g

2

f

∫

∫

∫

p(x)







+

+

 

Fig.2 Block diagram of the adaptive sliding mode backstepping controller 

3.3 Velocity Control Based on CLF  

This section is to design a backstepping velocity controller, and the objective is to make the airspeed a of 

the airship converge to the desired values ,a d . The velocity can be controlled directly via the acceleration of 

the airship. Now the velocity tracking error vector is defined as 

3 a dz                                                                           (53) 

where  Ta u v w . The associated CLF is chosen as 

3 3 3

1

2
TV  z z .                                                                          (54) 

According to Lyapunov theory, 3V  is required to be semi-negative definite (that is, 
3 3 3 3

TV K z z  ). To ensure 



 
 

17 

the closed-loop system stability, the desired linear acceleration vector is set using (54): 

, 3 3 3 3a d d d d aK K K      z                                               (55) 

where control gain matrices K3 = diag(k31, k32, k33) > 0. k31 , k32 and k33 are constant, and ,a d denotes desired 

linear acceleration vector in Fb. 

Once all of the control laws of the desired linear accelerations and angular accelerations are obtained, the 

associated control forces and moments can be achieved by the following equation: 

a k w GB AM    U V F F F F .                                                 (56) 

To obtain the practical control surfaces and thruster inputs, a control allocation problem is presented to 

solve (9) with actuator saturation constraints, the control allocation problem can be solved as in Liu and Sang 

(2018). When the optimal solution u∗  is found, the practical control input signals, including thrust, tilt angle 

and control surface deflections, are obtained. 

3.4 The trajectory guider controller 

The objective of the trajectory guider is to generate the desired attitude and velocity commands. It is 

described in this section. The trajectory guider controller has to calculate the desired attitudes and speeds in 

the x–and z–directions such that the airship follows the desired path despite the inability to exert direct 

control over the speed in the y-direction. According to the virtual spring damping principle, the desired or 

commanded velocity 
c in Fg is first obtained by the following differential equation as in Liu and Sang (2018). 

It can be seen that perfect tracking without wind requires that
g g c    r   , and the desired attitude 

d  

and velocity d in the body-fixed frame are generated by using kinematics relation and the command velocity 

of c , the detailed design procedure of the high-level controller is in Liu and Sang (2018), so is  not described 

here.  
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3.5 Stability Analysis 

Lemma 1. (Fossen, 1994) Consider the nonlinear system ( ) ( )t fx x with the equilibrium point x*. Let 

( ) :V x   be a continuously differentiable function such that for x∈  ( n  ) 

1) ( ) 0V x (positive definite) with ( ) 0V  x (negative definite),                

2) ( )V x as 
2 x (radially unbounded),                 

then the equilibrium point x = 0 satisfying f(x*) = 0 is globally asymptotically stable. 

 Assumption A2. The reference trajectory ( ) :r t  3[0, )    is sufficiently smooth with its time-derivatives 

( ( ) ( )r rt t   ， ( )r t ) bounded. 

Because the trajectory tracking control is based on guidance, the control objective of the speed loop is that 

the guidance-based command signal ( )c t  can be tracked by the system output of velocity ( )t . 

Assumption A3.  The output signal ( )t  or ( )g tr tracks the commanded signal ( )c t  in (58) without steady 

tracking error, i.e., lim ( ) lim ( )c
t t

t t
 

  with ( ) ( ) at   R .  

Theorem 1. Consider the system of (1) and (12) with Assumption A2 and A3 being satisfied. If there exist 

appropriately dimensional diagonal matrices of K1, K3, λ1, constant parameters of 
21Bh , 

22Bh , ςB2, γd, and 

sufficiently small scalar parameter ε, such that K1 > 0, K3 > 0, 
21

0Bh  , 
22

0Bh  , and ςB2 > 0, γd meeting with 

(48), 
1 2 1 2 1 2min{ ,4 (4 )}        ,then the DO-BSMC control, given by (16), (41) and (56), can guarantee 

the requirements of 1) and 2) in section 2.3. 

Proof. 

 Define the tracking error of position and velocity for the trajectory guider controller as 4
r

c r

 
  

z
 
 

.  A 

Lyapunov function for the entire system is established in accordance with (48) and (54): 

211 1
3 3 4 4

2 2

01 1 1 1

2 2 2 20

T
B T T T

l h
d

h
V V V P

I
 

     
                

 z z
d d z z z z

z z
 ,                          (57) 
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where zi (i = 1, 2, 3, 4) are the tracking error vectors defined in Section 3.1 and 3.2, P is positive definite for 

sufficiently small values of ε,  and the Lyapunov function in (57) is chosen for the high-level controller as: 

4 4

1

2
T

hV P z z  ,    
                          

                                 (58)
 

where 

1 2

1 2 1 2

1

1
P


 


   

 
 
 
 
 
 

,                                                        (59) 

Then the derivative with respect to time of (58) can be obtained by using (59) 

1 2
4 4 4 4

2 1 2 2

0 0 11
0

12
T T

hV P P Q
 
   

    
             

 z z z z  

 

,

                         

(60) 

where 1

2

1 1 2

2

2

Q




 
  

 
 
 
 
 
 

.  Substituting (52), and (54) into the derivative of (57) yields 

                                                        21

2

22

1 1
1 2 2 3 4 41

2

0
( )

0

B T T
B d

B

h K
V Q

h
  

   
       

    
  z

z z z z z z
z  

22 2 1

T
B   z z z

 

2
T  z z  

min 2( ) T   z z  ,                                                                         (61) 

where  
21 222 1 3diag , , ,B Bh K h K Q  , and λmin (Ʌ2) is the minimum eigenvalue of Ʌ2. 

1 2 3 4
T T T T T   z z z z z . For sufficiently small value of ε less than

1 2 1 2 1 2min{ ,4 (4 )}      , then 0Q  , 

1 0K  , 3 0K  , 
21

0Bh  ,
22

0Bh  , and ςB2 > 0, so Ʌ2 is positive definite, and V is negative definite. According 

to Lemma 1, the system is globally asymptotically stable at z = 0. Thus, the reference trajectory r  is precisely 
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tracked with lim ( ) ( ) 0rt
t t


   .   

4. Simulation and Analysis 

The considered model is a 250m length, 75m diameter airship, and the structure parameters and 

aerodynamic coefficients of the stratospheric airship are listed in Table 1.   

Scenario I: Trajectory tracking control under unknown external disturbance. 

 In this case suppose that there is the unknown disturbance vector f acting on the airship, given by  

f(t) = [0.4, -0.5, 0.4, 0.05, 0.1, 0.1]T                                                      (62) 

where the units are m/s2 for linear acceleration and rad/s2 for angular acceleration respectively.   

The gains of the disturbance observer (13) are designed as  

l(x) = diag( [2.6 0.0088 1.8 0.5 .198 1]),          (BSMC1)                               (63.a) 

l(x) =  diag([7.8 0.008 2.4 1.8 0.275 0.45]),         (BSMC2)                              (63.b) 
    

To illustrate our method in attitude control, a control design, the controller parameters are designed as 

follows  

2 2

1 2

1 3 3 3 6

6 0

1 1 deg s
0.1  , 0.2  , 12  ,

s s m

0.5 , 4 , ,

, 0.2, 1, 0.4, 0
v

u d B B

c

K I K I W I

W I h

 

   

                 
  

                  

(BSMC2)             (64) 

To analyze the DO-BSMC2 control performance, the BSMC1 (Liu et al., 2020) with disturbance observer 

is used to compare, where the parameters of DO-BSMC1 are designed as follows, 

1 1

1 2

1 3 1 3 3 3 5 6

0

1 1 deg s deg s
0.1  , 0.2  , 1  , 12  ,

s s m m

0.5 , 0.5 , 4 , , ,

0.2, 1, 1, 0.4, 0
v u

d B B

c c

K I I K I W I W I

h

  


   

                        
    

            

 (BSMC1)         (65) 

where K1 and K3 are chosen to meet the requirements 1) and 2) in Section 2 through iterative design. Ii denotes 

the i ×i unit matrix, i =3, 6. 
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The position range for the actuators are [−25, 25](°), and their rate is confined in [−80, 80](°/s ). The initial 

position 
0 = [0, 0, −20000]T (m), and initial body velocity υ0 = [18,0,0]T (m/s), initial attitude η0 = [0, 0, 0]T, 

and initial angular velocity ω0 = [0, 0, 0]T. 

To validate the trajectory tracking control performance of the DO-BSMC design, a helix reference 

trajectory function is defined as 

0

0

( ) [ , , ] ( )
t

T
r r r r r rt x y z t d      ,                                               (66) 

where the reference velocity 2 2
( ) [ cos( ), sin( ), ]T

r r h h zt V t V t V
T T

   π π  and its initial reference position 

0 [40, 50, 19960]T
r     (m). The horizontal tracking speed Vh = 20 m/s, the ascending speed is Vz = 1 (m/s), and 

the motion period T = 300 (s). 

The simulation results are shown in Fig.3-Fig.8.  
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Fig. 3. Position tracking responses with disturbance inputs 
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Fig. 4. Attitude angles tracking responses with disturbance inputs 

0 20 40 60 80 100

0

0.2

0.4

p
 (

d
e

g
/s

) DO-BSMC1
DO-BSMC2
BSMC1
BSMC2

0 20 40 60 80 100
-1

-0.5

0

0.5

q
 (

d
e

g
/s

)

0 20 40 60 80 100

time (s)

0

5

r 
(d

e
g

/s
)

 
Fig. 5. Angular rate tracking responses with unknown disturbance inputs 
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Fig. 6. Estimation of the observable position disturbances  
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Fig. 7. Estimation of the observable attitude disturbances  
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Fig. 8. Estimation of unobservable attitude disturbances 

  

From Fig.3-4, it is clear that the reference trajectory and attitudes have been accurately tracked using the 

DO-BSMC2 method and the tracking errors converge to the desired position and attitude within 60 seconds, 

even in the presence of unknown disturbances. For the roll motion response there are some oscillations 

because of weak roll damping of the airship, so the convergence time is longer. Comparing with the BSMC, 

the proposed DO-BSMC control has lower tracking errors in attitude and position responses, which shows 

DO-BSMC control has more capability to deal with unknown disturbances for the airship. Comparison with 

BSMC1, responses of BSMC2 have more tracking errors and larger fluctuating in roll motion, so the linear 

sliding surface (29) applies position feedback and improves the output tracking performances. From Fig.5 the 

tracking roll rate and yaw rate responses have small oscillations, and amplitudes of oscillations of the 

BSMC1 and BSMC2 tracking responses are more than those of the DO-BSMC1 and DO-BSMC2, 

meanwhile attenuation speeds of the BSMC1 tracking responses are fast than those of the BSMC2 

tracking responses. Figures 6 and 7 show the observable disturbance vector can be accurately estimated by 
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the NDO of (13) although there are some errors in the transition phase. Fig.8 shows the unobservable attitude 

disturbances have been adaptively estimated by the observer (51), and the responses of DO-BSMC have 

smaller overshoots and are faster converging than those of the BSMC design, which show DO can improve 

the tracking performances and disturbance rejection levels.  

Scenario II: Trajectory tracking control under parameter uncertainty and unknown disturbances  

This scenario considers model parameter uncertainty due to aerodynamic derivatives varying accordingly 

with angle of attack (AOA). So aerodynamic coefficients are set as follows 
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   
  

       

,                                                         (67) 

where △ denotes perturbation value. In this scenario the parameter uncertainty and external disturbances are 

considered simultaneously. 

The reference trajectory function is the same as Scenario I. To compare control performances, Scenario II is 

simulated by using the BSMC2 with the same parameters as (64) ~ (65) in the three channels of roll, pitch and 

yaw. Meanwhile the parameters in the guidance loop are chosen as (64) ~ (65). The trajectory tracking 

responses are shown in Fig.9 and Fig.10. From Fig.10, it can be seen that responses of attitude angles for 

BSMC without the NDO estimation have more overshoot and bigger steady tracking errors than those for the 

DO-BSMC method, which shows the DO-BSMC design has more adaptive capability for aerodynamic 

coefficient uncertainty and unknown disturbances environment. Meanwhile, the roll responses are fluctuating 

with small amplitude, see Fig.10, the reason is low damping in the roll motion.  
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Fig.9. Position tracking responses with model uncertainty and unknown disturbances 
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Fig.10. Euler angle tracking responses with model uncertainty and unknown disturbances. 
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Fig.11 Angular rate tracking responses with model uncertainty and unknown disturbances 
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Fig.12 Flight speed responses with model uncertainty and unknown disturbances 
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From Fig.11 the tracking roll rate and yaw rate responses have small oscillations due to small damping, 

and amplitudes of oscillations of the BSMC1 and BSMC2 tracking responses are more than those of 

the DO-BSMC1 and DO-BSMC2, meanwhile attenuation speeds of the BSMC1 tracking responses are 

fast than those of the BSMC2 tracking responses. From Fig.12, it can be seen that speed responses of the 

DO-BSMC have less overshoot than those of the BSMC design due to the disturbance estimation effect. 

Figures 13 and 14 show the observable disturbance vector can be accurately estimated by the NDO of (13) 

although there are some errors in the transition phase. Fig.15 shows the unobservable attitude disturbances 

have been adaptively estimated, and the responses of DO-BSMC have smaller overshoots and are faster 

converging than those of the BSMC design, which show DO can improve the tracking performances and 

disturbance rejection levels.  
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Fig. 13. Estimation of the observable position disturbances 
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Fig. 14. Estimation of the observable attitude disturbances 

 

Fig. 15. Estimation of the unobservable attitude disturbances 
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Fig. 16. Control inputs with model uncertainty and external disturbances. 

Fig.16 shows the control inputs by using the DO-BSMC design are bigger than those by using the BSMC 

method due to disturbance observer based compensation, and the inputs of the BSMC2 approach are bigger 

than those by using the BSMC1 method. 

Scenario III: Trajectory tracking control under parameter uncertainty and unknown disturbances and 

winds  

In this scenario a 1- cosine wind is introduced to the system with above model uncertainties and constant 

disturbances. The shape of the wind is set as (Valente C. and Jones D., 2015) 

                                        
1 cos ,      0 2

( ) 2

0,                                     

ds d
d

w d

U x
for x H

V x H

otherwise

            



                                       (68) 
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where xd is the distance penetrated into the wind, H is the distance parallel to the flight path of the airship for 

the wind to reach its peak velocity meeting  H = 0.5 Lw,  Lw is wavelength of the wind, Uds is the design wind 

velocity in equivalent air speed as follows 

1/6

=
106.68ds ref w

H
U U F

 
 
 

                                                           (69) 

where Uref is the reference gust velocity, Fw is the flight profile alleviation factor,  Uref = 6.3m/s at the altitude 

of 20000m,  Fw =1, and set wxV   0 2dfor x H  , wyV   2 4dfor H x H  , zwV   4 6dfor x H  . 

Choose a wind observer with the states
ˆ

ˆw

 
 
 




, ̂ and ˆw denote estimation of  and w , υw denotes the wind 

speed vector, and design its dynamics as (Liu S. Q. andSang Y.J., 2020)  

3
ˆ ˆ( )

ˆˆ

a

w ww

L I

L
             

         00




  



R
                                              (70) 

The estimation error can be obtained as 

3
ˆ

ˆ e
ww w

A
  

   
         0

 L I
e e e

L

 
 

                                              (71) 

where L , wL are gain matrices subject to eA  be Hurwitz,they are chosen as  (1,1,1)L diag   , 

(0.75,0.75,0.75)wL diag  . 

By using the proposed BSMC and DO-BSMC design, the simulation results are shown in Figs 17-21. 
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Fig. 17. Position tracking responses with disturbances, model uncertainties and winds 
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Fig. 18. Attitude tracking responses with disturbances, model uncertainties and winds 



 
 

33 

0 20 40 60 80 100

16

18

20
u

(m
/s

)

DO-BSMC1
DO-BSMC2
BSMC1
BSMC2
Ref

0 20 40 60 80 100
-15

-10

-5

0

v(
m

/s
)

0 20 40 60 80 100

time(s)

-1

0

1

w
(m

/s
)

 

Fig. 19. Flight speed tracking responses with disturbances, model uncertainties and winds 
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Fig. 20. Angular rate tracking responses with disturbances, model uncertainties and winds 
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Fig. 21. Wind estimations under disturbances, model uncertainties and winds 

From Fig.17-Fig.20, winds will affect the flight speed and position tracking responses, and generate some 

tracking errors, but the time of winds acting on the airship is bounded, so the tracking responses will 

approximate the desired values when the airship pass the wind field. Form Fig.21, it can be seen that the wind 

speeds have been precisely estimated by the proposed wind estimator. The estimation responses of winds 

have some time delay due to bandwidth limitation of the wind observer. 

5. Conclusion   

In this paper we propose two DO-BSMC control approaches for a stratospheric airship. Based on a full 

6-DOF nonlinear model, the trajectory tracking controller is designed. The developed controller stabilizes the 

attitude and velocity of the airship via a backstepping sliding mode control method. Furthermore, a nonlinear 

disturbance observer is designed to reduce effect of the external unknown disturbances and model 

uncertainties for the trajectory tracking control. Stability analysis shows that the closed-loop trajectory 
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tracking error dynamics are globally asymptotically stable. Two cases of the unknown disturbances and 

model parameter uncertainties were simulated and show the proposed robustness. Compared with the BSMC 

controller, the DO-BSMC design achieve better trajectory tracking performances even though the airship is 

affected by parametric uncertainties and external bounded disturbances. Therefore, the effectiveness and 

availability of the DO-BSMC design are demonstrated.     
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