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Abstract—Understanding the decision-making process of deep
learning networks is a key challenge which has rarely been
investigated for Synthetic Aperture Radar (SAR) images. In this
paper, a set of new analytical tools is proposed and applied to a
Convolutional Neural Network (CNN) handling Automatic Target
Recognition (ATR) on two SAR datasets containing military
targets.

Firstly, an analysis of the respective influence of target, shadow
and background areas on classification performance is carried
out. The shadow appears to be the least used portion of the
image affecting the decision process, compared to the target and
clutter, respectively.

Secondly, the location of the most influential features is deter-
mined with classification maps obtained by systematically hiding
specific target parts and registering the associated classification
rate (CR) relative to the images to be classified. The location of
the image areas without which classification fails is target type
and orientation specific. Nonetheless, a strong contribution of
specific parts of the target, such as the target top and the areas
facing the radar, is noticed.

Lastly, results show that features are increasingly activated
along the CNN depth according to the target type and its
orientation, even though target orientation is absent from the
loss function.

Index Terms—Deep Learning, SAR, ATR, Explainability, Fea-
tures.

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) data presents multiple

advantages over electro-optical data. Meaningful SAR

data can be collected from long distances under a wider range

of weather conditions and at night. However, the interpretation

of SAR images is challenging and specialised operators are

required to extract the correct information and provide target

classification. To reduce this workload and to speed up the

recognition process, Automatic Target Recognition (ATR) can

be applied to SAR data. ATR is indeed key for current and

future military requirements [1].

ATR methods based on robust and well-known image de-

scriptive features have been developed. Such features could

consist of Krawtchouk Moments, Pseudo-Zernike moments or

Scale-Invariant Feature Transform (SIFT) [2]-[5]. They tend,

however, to provide lower classification performances than

deep learning methods.

Recent breakthroughs in deep learning techniques applied

to several technical domains make deep learning a valuable

choice for ATR application. Artificial intelligence algorithms

developed have been used and outperform classical feature

methods in the SAR domain for several applications, such

as classification, matching or change detection [6]-[8]. The

current state of the art on SAR ATR methods evaluated on the

Moving and Stationary Target Acquisition and Recognition

(MSTAR) dataset [9] rely heavily on Convolutional Neural

Networks (CNNs). Some neural networks have been specifi-

cally developed for SAR applications and are shallower than

those used in the visual domain [10]-[12]. Deep learning net-

works have been also used to simulate realistic SAR synthetic

images with Generative Adversarial Network (GANs) [13]-

[15].

Unlike feature based models, which often extract man-made

target features, features used by neural networks are created

using artificial intelligence concepts. Earlier work addressing

neural networks for ATR on SAR amongst other data exists,

dating back to the 1990s and became more popular around the

2010s particularly with the introduction of CNNs [10], [16].

Deep learning features are quite complex, being the result of

stacked convolutions and activations. This complexity makes

it difficult to understand which information triggers a CNN

classification decision.

Unlike classical features, deep learning features cannot be

easily improved or even understood by humans, especially

when features are generated by the deepest layers of the

network [17]. Knowing and explaining the origin of CNN deci-

sions is a very important problem that, if solved, would help to

choose the most rational network among several solutions. As

a result, deep networks would be more trustworthy and could

take advantage of the impressive human visual understanding

once the networks decision process matched the human rea-

soning and be less biased by the training dataset composition

[18] . The understanding of the internal operations of deep

learning solutions is a new research area and is essential to

further improve deep learning methods, to validate them over

former techniques and to increase the level of trust required

for real-life deployment. Several approaches to explainability

have been proposed in the visual domain with, for example,

deconvolutional networks enabling the visualisation of high

level features selected by the deep network [19], [20], the

analysis of the role of features for each class respectively

[21], the influence of training data selection over specific

misclassifications [22]. However, recognising specific patterns

is already challenging in the visual domain even if humans are

used to it and is even more difficult for SAR images. Indeed,

an untrained person is not able to distinguish different targets
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in SAR images. In any case, as SAR images are based on

vastly different physical processes than visual images, SAR

and visual features are likely to be different and contribute

differently to the network decisions. Deep learning network

understanding in the SAR domain currently remains limited

to the visualisation of low level deep learning features [23]-

[25].

This paper aims at providing more detailed explanations

about the decision process of a CNN regarding SAR ATR.

Thus, three innovative streams of analysis of a trained deep

learning network are proposed:

• Firstly, the individual contribution to classification perfor-

mance of different image parts, respectively the target, the

shadow and the background is assessed. SAR target classi-

fication relying only on the target shadow has already been

investigated and results showed that the addition of features

from the shadow can improve classification performance [26],

[27]. Current SAR ATR algorithms are fed with full or

segmented target images. The extent of the information loss

incurred by target segmentation and thus the removal of the

shadow and multipath should be investigated. This is achieved

with a novel classification analysis technique using masked

images and by studying the presence of critical features in

each image zone as presented in Section III-B.

• Secondly, the location of the areas containing features

critical to achieve correct classification is investigated and

compared to the location of unessential features in Section

III-C. Similar investigations, in the visual domain, studying

the areas of images contributing to classification showed that,

in the case of a biased dataset in which the tested CNN

could base the differentiation between wolves and huskies

by the presence of snow and grass, respectively, instead of

physical characteristics [28]. For the study of critical feature

location, occlusion maps are created to highlight the location

of SAR features essential for correct classification by the

tested deep learning method [19]. Guided backpropagation is

another solution to visualize the patterns learned by the CNN

to characterize an object [29], [30]. Occlusion maps are, in this

paper, extended to novel classification maps to analyse a group

of images rather than a single image. Applying this method on

a group of images with common environmental factors clarifies

the factors role on the choice of features learned by the CNN.

After describing the generating process of classification maps,

these maps are used to determine the location of features

critical for classification of targets of a specific class or of

targets within a specific orientation range. Results achieved

are compared for a well-trained network and a less performing

network, which did not benefit from data augmentation during

training. Results show, amongst other things, the role of the

target turret on classification performance. Such information

could help isolate target areas robust to classification and

inspire greater confidence for algorithms assisting operator

decisions.

• Lastly, Section III-D investigates the specificity of features,

that is how much distinct are the patterns that activate the

corresponding trained filters. The network tends to develop

features to be sensitive to a specific target class. A feature

specific to a target class would not be activated by patterns

issued from other target classes. On the contrary, a non-specific

feature could be activated with any image analysed. In Section

III-C, the specificity of features to the target class and to the

target orientation is examined. The features investigated for

specificity are the features activated the most when the network

is presented with images of a target of a certain category or

with an orientation in a particular range. The objective is to

evaluate the power of discrimination of the network against

target classes and target orientations along the network depth

as the computed features grow in complexity. The specificity

of the features is shown for both a high-performing network

and a less performing one that did not benefit from a data

augmented training. The specificity is shown using a proposed

histogram feature representation on a specifically chosen group

of images. The evaluation of the quality of such features is

important as the same features could be used again by other

SAR detection or classification algorithms.

The next section presents the datasets. Section III introduces

the CNNs investigated and shows the analytical tools pro-

posed. The associated results are presented in section IV.

II. DATASET

The analyses are carried out on two publicly available SAR

ATR dataset. The first dataset is the Moving and Stationary

Target Acquisition and Recognition (MSTAR) in Standard

Operating Condition (SOC) which consists of 10 targets and

that was developed by the U.S. Defense Advanced Research

Projects Agency (DARPA) and the U.S. Air Force Research

Laboratory (AFRL) [9], [31]. This database was collected

under Horizontal Horizontal (HH) polarization in X-Band with

a 30 cm×30 cm resolution. There are ten targets in this dataset:

a bulldozer (D7), a truck (ZIL), a rocket launcher (2S1), an

air defence unit (ZSU), armoured personnel carriers (BRDM2,

BTR60, BTR70, BMP2) and tanks (T62, T72). The images in

the training and testing set are taken with a depression angle

of respectively 17◦ and 15◦.

The second dataset is the Military Ground Target Dataset

(MGTD), generated by our research group at Cranfield Univer-

sity [32], [33]. The emitted signal spans the frequency range

from 13GHz to 18GHz to achieve a resolution of 3 cm in

range and 3.3 cm in cross-range on model targets of 1.5-1.7m.

Single polarised images (Horizontal-Horizontal) are generated

using a backprojection algorithm. This dataset contains three

targets: a T64, a T72 and a BMP1. The training and testing

sets are formed using different target configurations with

depression angles ranging between 21.8◦-23.4◦ for training

and between 17.5◦-20.3◦ for testing respectively, and using

different laboratory backgrounds. For each target, 4 sequences

of 72 images each are allocated for training and 4 other

sequences acquired under different conditions are allocated

for testing [32]. The target configurations consist of different

turret orientations (−90◦, −45◦, 45◦, 90◦ for training and

−30◦, 0◦, 30◦ for testing). The gun is pointed up and down

independently from training and testing. The data was acquired

at three different times, with a different laboratory background.

Series acquired at the same time period are either used in the

training or testing set but not mixed.
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In both cases, the proposed analyses are carried out on the

resulting magnitude images.

III. METHODS

A. Deep learning networks evaluated

The evaluated Convolutional Networks (CNNs) are based

on the AlexNet network with a new last fully connected

layer fitting the number of output classes in the corresponding

database [34]. This architecture is successful for numerous

applications such as pose estimation, video classification or

semantic segmentation [35]-[37]. It benefits from a straightfor-

ward architecture compared to ResNets with a limited number

of weights compared to VGGNet [38], [39]. It is selected for

ease of implementation and to benefit from the availability of

pre-trained models.

These networks are trained using transfer learning from the

visual domain to the appropriate SAR database. Training is

achieved with a small learning rate for the first layers and

a larger one starting from the 4th convolutional layer. The

learning rate is specific to each dataset and determined through

a random grid search. The main location of automatically

chosen features, without which good CR cannot be achieved,

are compared for two CNNs in order to evaluate what makes

good target features. One CNN is trained with data augmen-

tation (translation for the MSTAR SOC10, translation and

additional synthetic Weibull noise based for the MGTD [40])

and one CNN is trained without any data augmentation. As

the translation data augmentation can be applied on the fly, all

of the targets are randomly translated at each epoch. However,

the Weibull noise data augmentation requires to noise the

range profiles before getting the augmented images through

backprojection. Four different noise distribution parameters

are chosen amongst typical SAR target detection SNRs to

complement the original images, making 80% of the total

training data.

In Sections III-B and III-D, the images are not pre-

processed. The CNN trained with data augmentation achieves

98.17% on the MSTAR SOC10 and 92.47% on the MGTD

while, without data augmentation, it only achieves 95.51% and

78.53%, respectively. In Section III-C, the training and testing

images in the MSTAR dataset are rotated and translated so

that all targets are in the same position, centered and facing

the same direction. The position information is provided by the

reference target segmentation [41]. The images in the MGTD

are only rotated as no segmentation information is available.

The well-trained network performs a CR of 98.47% on the

MSTAR SOC10 and 91.32% on the MGTD. The second CNN

is trained without any data augmentation and only achieves

95.12% and 67.00%, respectively.

B. Contribution of the target, shadow and clutter to the

classification

The shadow of a target in SAR images contains information.

For example, the target shape and height can be determined

as the geometrical configuration of acquisition is known.

The additional information provided could improve target

detection and classification [26], [42]. The shadow and the

target parts could also be sharpened to improve the quality

of information extracted from SAR images [43]. Previous

works in the literature investigating the target shadow do not

use deep learning methods. The aim of this section is to

propose an evaluation of the amount of information present

in the pixels containing the target, its shadow and the clutter

respectively used by the CNN. To evaluate their contribution,

the change in classification scores following the occlusion of

the target, shadow and clutter areas and their combinations is

investigated. The results obtained from this method are shown

in Section IV-A.

Classification scores achieved on masked images, and thus

with incomplete information, are compared according to which

zone is masked as seen in Table I. The impact of the

information loss from a specific zone of the image gives

insight about the importance of the features in that zone.

The classification method used in this analysis is the CNN

presented in Section III-A trained on the MSTAR SOC 10

dataset in Section II. Only the MSTAR SOC 10 dataset was

used for this study since it is the only SAR dataset with a

segmentation reference [41].

The method is here detailed to investigate the role of the

target in the classification and is similar for the shadow

and clutter areas. The earlier SARbake segmentation acts as

groundtruth to locate the target, shadow and clutter area [41].

All images in the testing set of the MSTAR SOC 10 dataset

have the target area set to black, so that all information directly

from the target is removed. The CNN is then run on all masked

images in the testing set. The result is a classification score

for which the CNN could not rely on features from the target

area. This process is repeated to obtain the classification scores

corresponding to all possible segmentation combinations of the

three areas as shown in Fig. 1.

Target  

Shadow   

Clutter   

 X                         X             X           X  

 X           X                           X                         X

 X           X            X                                                      X

Fig. 1: Images with segmented area(s) hidden.

C. Influence of the target class and target orientation in the

location of the critical features

Occlusion maps are already used in the visual field [18],

[19]. Their objective is to study the location of features con-

tributing the most to correct classification in one image. The

proposed classification map is an extension of the occlusion

map applied to a group of images containing a target in a fixed

position as seen in Fig. 2. Having a group of images rather

than a single image highlights the role of factors shared within

this group of images. Many variables can be presumed to have

an influence on the activation of specific deep learning features

such as, for example, the target class, target orientation,

depression angle. The influence of one variable on the location

of the most activated deep learning features is studied with

classification maps obtained with images sharing the same
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value for this variable. These groups of images in this section

are images with the same target class or with similar target

orientation.

(a) Targets position in the
MSTAR (Target length around
6−10m, range and cross-range
resolution of 30 cm× 30 cm)

(b) Targets position in the
MGTD (Target length around
1.5m, range and cross-range
resolution of 3.0 cm× 3.3 cm)

Fig. 2: Approximate target position in the classification maps

after translation and rotation.

1) Computation of the classification map: The targets are

first centered using the target center of mass calculated from

the segmented images in SARBake and then rotated so that all

targets are in a 0◦ position, facing the right side of the image.

All targets are thus in the same location in each test image.

Images with the same target or similar target orientation are

then grouped together to evaluate respectively the influence of

the target class or orientation on the location of the critical

features learnt by the CNN. A 11×11 black square mask is

applied to the top left part of all the images belonging to the

studied group. The percentage of correctly classified images

is used as the new intensity of the 5×5 pixels located in the

center of the black square in the classification map. The black

square is shifted on all the images by 5 pixels vertically and

horizontally until the classification map is fully completed

as shown in Fig. 3. A CR of 1, seen as white in the map,

indicates that the features contained in the black square have

few effects on the classification. The classification maps can be

overlaid on the SAR images, with the same range and cross-

range direction and resolution, respectively 30 cm×30 cm for

the MSTAR and 3.0 cm× 3.3 cm for the MGTD.

CNN

Probability 

of correct 

classification

Test images 

partly hidden Classification 

map

Fig. 3: Creation of the classification map.

The classification maps seen in Section IV-B are obtained

both with a well-trained CNN and with a CNN trained without

data augmentation and a result comparison is presented. This

analysis highlights the location of the features leading to

correct classification.

2) Influence of the target class in the location of the critical

features: In order to achieve good classification, CNNs have

to learn differences between targets. The characteristics of the

targets in terms of location of critical features are studied for

each target. The objective is to determine which zone, for

each target, is the most important for classification. The most

relevant features are expected to vary, especially between very

different target types.

The images are grouped to produce classification maps

according to the target they represent. Thus, respectively

10 and 3 classification maps (corresponding to each imaged

target) are produced for the MSTAR and the MGTD. In all

classification maps, all targets after being rotated have their

front facing the right of the image.

To help with the interpretation of these maps, a black cross

in the middle of the target and a contour around the lowest

intensities, are added. The map intensity is indeed the classi-

fication score when the corresponding area is occluded. Thus

the lowest intensity areas represent the most important areas

for classification, The threshold is either an Otsu threshold or

corresponds to the 10% lowest intensities if more than 50%

of the image would have been retained otherwise [44].

3) Influence of the target orientation in the location of the

critical features: The orientation or aspect angle of the target

has an important impact on the appearance of the target in

the image [45], [46]. This characteristic is thus isolated to

investigate its influence and a study of the location of the

zones related to the target orientation the CNN considers as

important is proposed.

The images are grouped to produce classification maps

according to the target orientation. Five bins are chosen to

represent the target azimuth groundtruth provided with each

image starting from 0◦ and equally distributed up to 360◦.

The target looking to the right defines the new 0◦ arbitrarily

in the rotated dataset. In this new frame of reference, the five

groups of target orientations are as seen in Fig. 4. Each group

of images represent all the images with a target orientation

belonging to a single range bin. One classification map is

computed for all these images, resulting in five classification

maps representing the five different orientation bins.

342°-54°

54°-126°

270°-342°

126°-198°

198°-270°

Fig. 4: Definition of the orientation ranges used to compute

the orientation classification maps. Target at 0◦ is facing the

right side of the image

In addition to the black contour and cross marking the

lowest intensities of the classification map as in the previous

subsection, arrows are added to represent the direction of the

main illumination from the radar to the target.

D. Feature specialization along the CNN depth

The previous sections investigate the location of the critical

target features. In this section, the specificity of the CNN

features to a class and to a target orientation are examined.
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Specificity of the feature is defined as the potential of a feature

to be activated only in specific cases, for example only with

a certain target type. This is conducted at different depth

levels of the CNN as the complexity of features increases. An

analysis based on the comparison of histograms summarising

the most used features for specific targets or orientations

is proposed. The histogram comparison shows the growing

specificity of these features along the depth of the network as

they become more complex.
1) Evaluation of the feature specialization: The images

used are the original images from the testing set of the MSTAR

SOC 10 and MGTD datasets. The complete images are fed

to the CNN. The convolution between the input and one

filter of the CNN results in an activation map, highlighting

features associated with this filter. The input can be the original

input image or a previous activation map. Activations maps

obtained throughout the CNN after each convolutional layer

are all extracted. Filters are then ranked, for each convolutional

layer, according to the maximum intensity reached in their

associated activation map. For each convolutional layer, each

image results in a vector K (as seen in Fig. 5) containing

the filter list ordered from the most to the least activated

associated activation maps. The first filter in the vector leads

to the strongest activation and is thus associated to features

important for the classification while the last filter could lead

to a totally black activation map. The filter number is attributed

randomly between 1 and the number of filters in the studied

convolutional layer.
a) Histogram of the most used features: After the com-

putation of the ordered vector K of the filters leading to the

strongest activations, the vector K is truncated to keep the

n = 20 filters leading to the strongest activations as in Eq. (1).

where K(1 : n) =







k1
...

kn






(1)

Once the filter lists have been produced for a group of

images, a histogram of the frequency at which filters are

strongly activated by the network for a specific group of

images is built as shown in Fig. 5. This histogram identifies

the filters which are frequently used in a group of images.

These images can be grouped by target or orientation.

Truncated filter list 
associated with the 

most activated 
activation map

K1(1:n)

K2(1:n)

K3(1:n) Filter number

P
ro

b
ab

il
it
y
 o

f 
o
cc

u
rr

en
ce

Most activated filters histogram 
in a group  of images

Fig. 5: Diagram representing the computation of the histogram

of the most influential filters for a group of images.

b) Comparison of the features mostly used by the CNN

for a specific class (target class or target orientation): The

last step consists in an evaluation of the similarity or difference

between the histograms produced with different groups of

images. To that end, a normalised Chi-Square distance is

introduced in Eq. (2).

D(HA,20, HB,20) =
100

2 ·m

m
∑

j=1

(HA,20(j)−HB,20(j))
2

HA,20(j) +HB,20(j)
(2)

where Hi,20 is the normalised histogram (maximum of 100)

of the lists of top filters K(1 : 20) for the images in the group

i, m is the number of filters present in this convolutional layer

and thus the bin number of HA,20 and HB,20.

The Chi-Square distance is a measure to evaluate histogram

resemblance, and it is here normalised over the number of

bins, so that this distance could be compared for histograms

of different length as the number of filters increases with the

network depth. The average distance expresses the difference

of feature representation by the network for a specific class or

for a specific orientation. For example, 3 histograms using the

method represented in Fig. 5 are computed using all the test

images in the MGTD respectively for the T64, the T72 and

the BMP1. These histograms are produced by investigating the

filters with the most stimulated activation maps. The average

of all normalised Chi-Square distances between the histograms

(T64 to T72, T64 to BMP1, BMP1 to T72) gives an insight

of the specificity of the filters in the first layer to the target

class. The bigger the distance, the more specific the features

are for the concerned target.

This distance will be computed after each convolutional

network between all histograms generated by images with a

specific target class or orientation. For the orientation cate-

gories, five orientation ranges are used as in Section III-C3.

The distance evolution along the network depth is used to

evaluate the feature specialization to a specific category.

Distances are not only computed for specifically chosen

groups of images but also with random groups of images of

the same size to provide a control distance and ensure that

the evolution of the distance is not only due to the feature

complexification but really dependant on the common factor

in the image group. The control distance helps to quantify

how different the features really are. Full results are shown in

Section IV-C.

IV. RESULTS

A. Global contribution of the target, shadow and clutter

The implementation of the method to evaluate the shadow,

target and clutter contribution, described in Section III-B,

results in the classification scores obtained with partially

masked images with a well-trained CNN (see Table I). The

results are target dependant and the relative contributions of

the various areas change greatly from one target to another.

Results suggest that the shadow is rarely used by the

CNN despite contributing significantly to the classification of

the BRDM, D7 and ZIL. The BRDM has a score of 88%

by combining the clutter and shadow areas while the D7
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Visible areas in the images fed to the CNN

Target area X X X X

Shadow area X X X X

Clutter area X X X X

Target Classification scores achieved

2S1 97% 5% 97% 4% 3% 1% 8%

BMP 96% 29% 60% 11% 7% 3% 9%

BRDM 99% 88% 13% 9% 3% 3% 37%

BTR60 97% 5% 44% 23% 30% 2% 2%

BTR70 100% 29% 98% 5% 6% 2% 70%

D7 100% 0% 15% 87% 88% 80% 0%

T62 99% 1% 60% 18% 26% 8% 0%

T72 97% 0% 94% 17% 16% 0% 0%

ZIL 97% 97% 74% 34% 36% 48% 97%

ZSU 99% 4% 72% 99% 99% 4% 4%

All targets 98% 27% 65% 33% 34% 16% 23%

TABLE I: Classification scores attained with partly hidden

images.

and ZIL reach respectively 80% and 48% using the shadow

area only. Most of the time, the target and the clutter areas

contain most of the information required for classification.

The fact that the clutter area contains a lot of information

for the CNN may mean that multipath information is used

but the CNN could also be influenced by the database itself.

There is indeed background correlation between clutter in

the training and testing of the MSTAR SOC 10 dataset for

some targets that can explain the high BTR70 classification

performance [47]. Multipath present in the image background

can also contain information on the electro-magnetic (EM)

wave scatterers height, thus providing information on the target

3D structure [48]. The clutter influence could be investigated

further with images of a segmented SAR dataset without

background correlation. However, the SARBake segmentation

is not supplied for the MSTAR EOCs.

The majority of targets (2S1, BMP, BTR60, BTR70, T62

and T72) main influence is a combination of the target and

clutter areas with respective scores of 97%, 60%, 44%, 98%,

60% and 94%. The BRDM, D7 and ZIL are able to process

more information from the shadow. The classification of the

BRDM reaches 88% by combining the clutter and shadow

areas while the D7 and ZIL reach respectively 80% and 48%

using the shadow area only. The ZSU bases its decision on

the target area alone, reaching 99%.

The higher scores obtained with only the shadow hidden

could also be linked to its higher resemblance to the full orig-

inal image, the shadow having lower intensities than the target

and clutter areas. Further work on the shadow classification

role could thus consist in replacing the occlusion zones with

intensities following the clutter distribution rather than zero-

padding.

B. Classification maps to understand the influence of the

target class and orientation in the location of the critical

features

1) Influence of the target class in the location of the critical

features:

a) MSTAR dataset: Figs. 6(a), 6(b), 6(h) and 6(j) rep-

resenting respectively the 2S1, BMP2, T72, ZSU show that

the back-center area of the target (center left of the image)

(a) 2S1 (b) BMP [49] (c) BRDM (d) BTR60

(e) BTR70 [49] (f) D7 (g) T62 (h) T72

(i) ZIL (j) ZSU
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Fig. 6: Target classification maps with the original target

images. BMP and BTR60 images found in [49].

is the darkest area for tanks and armoured personnel carriers

with the exception of Fig. 6(g) representing a T62. It is the

most critical area of the classification map and represents the

highest and usually the most distinctive part of the target which

corresponds to the turrets for the tanks. It is also true for

the cabin of the D7 bulldozer in Fig. 6(f). However, it is not

noticeable on some of the other target types that do not have

such prominent features. The central darker spot is absent in

Figs. 6(c) to 6(e) representing respectively the BRDM, BTR60

and BTR70.

Some targets are also recognised with the very front of the

target, and this is expected for the bulldozer blade of the D7

as seen in Fig. 6(f). The same occurs for the 2S1, BTR60, T62

and ZSU as seen respectively in Figs. 6(a), 6(d), 6(g) and 6(j).

The darker background in Figs. 6(b) and 6(c) for the BMP2

and BRDM shows that the CNN is less confident in the

classification of these targets in general.

The fact that the target appears brighter than the rest of

the image in Figs. 6(c) and 6(e), representing the BRDM and

BTR70, shows the background correlation in the MSTAR SOC

10 database [47]. In this case, the target is recognised using the

background (clutter and shadow) rather than the target itself.

It seems that the ZIL in Fig. 6(i) has no critical features. As

the ZIL falls in the longest targets of the database, the absence
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of critical features could be linked to one of the shortcomings

of the classification map computation: the impossibility to take

into account combinations of several features. Indeed, only

a part of the target is hidden and, if features in different

locations enable the classification, hiding only one of these

critical features could leave the score of the correct target

unchanged. Another possibility is that the CNN chooses the

ZIL in case of an uncertain prediction.

(a) 2S1 (b) BMP2 (c) BRDM (d) BTR60

(e) BTR70 (f) D7 (g) T62 (h) T72

(i) ZIL (j) ZSU
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Fig. 7: Target classification maps using a CNN trained without

data augmentation.

In order to better understand which areas are essential

for classification, the location of the features critical for

classification for a well-trained network are compared to the

location deemed critical by a network trained without data

augmentation and achieving lower classification scores. The

classification maps of the less performing CNN can be seen

in Fig. 7. The images are overall darker as the probability

of correct classification is lower. The CNN trained without

data augmentation seems to rely, in some cases, more on the

background than the target itself as the lighter shade shows in

the 2S1, BRDM, BTR70 and ZIL. The CNN did not narrow

down the areas of importance like the CNN trained with data

augmentation did. The darker areas on the targets are larger

and blurry. They are not centered on specific areas of the target

as could be seen for the well-trained CNN. Less explanations

can be given for the classification choices of the CNN without

data augmented training. The augmented training not only

improves the classification score of the network but also

improves its explainability. This is key, as the explainability

of classification decisions is at least equally important to

performances for implementing classification solutions under

real conditions.
b) MGTD: The previous experiments are also conducted

on the MGTD database and give different results as shown in

Fig. 8. The CNN focused on different areas for each target

unlike in the MSTAR database where the higher turret central

area seemed to be a general focus points. For the BMP1, it

is the top and bottom parts of the Fig. 8(a), corresponding to

the target sides, which are darker. Fig. 8(b) which represents

the T64 target, shows that the CNN is focused on the central

part. The CNN highlights the front and back of the T72 target

represented in Fig. 8(c) as the right and left part of the image.

(a) BMP1 (b) T64 (c) T72
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Fig. 8: Target classification maps with the original target image

from the MGTD.

The darker classification maps for Figs. 8(b) and 8(c)

representing the T64 and the T72, indicate that the confidence

of the network in classifying these targets is lower and that

they are harder to classify. The CNN indeed is less likely to

mistake the BMP1 for another target than the T64 or the T72.

Indeed, the T64 and T72 are very similar and differ largely

from the BMP1. This explains the higher confidence of the

network in the BMP1 classification.

To better understand the reasons of the location of critical

features, the locations of critical areas found by a well-trained

network are compared to those of a less performing one. The

results can be seen in Fig. 9. The darker images overall are

due to the lower CR on the testing set achieved by the CNN

trained without data augmentation. The two CNNs, one trained

with and the other without data augmentation, concentrate on

different areas for each target. However, the reasons behind the

difference of location of the critical area seem more uncertain

than for the MSTAR database. The first difference with the

results achieved on the MSTAR is that the critical areas for

each target are different. The CNN without data augmentation

focuses only on the front of the T72, the rear of the BMP1 and

the sides and center of the T64 whereas the well-trained CNN

focuses respectively on the sides of the BMP1, the center of

the T64 and on both the front and the rear of the T72. This

strategy could be because only 3 targets are present in the

MGTD but this cannot be reproduced in the MSTAR which

contains 10 targets.

2) Influence of the target orientation in the location of the

critical features:

a) MSTAR dataset: The classification maps obtained are

summarised in Fig. 10. Fig. 10(a) shows that the bottom right

of the map is the most critical for a radar placed between

270◦ and 342◦. This corresponds to the area with the best

signal reflection. Because of the shape of the tank, the parts

of the target facing the radar are likely to produce a specular

reflection and therefore generate stronger reflections than the

sides perpendicular to the radar. The target rear is not directly
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Fig. 9: Target classification maps from the MGTD with a CNN

trained without data augmentation.

(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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Fig. 10: Illumination direction and contour of the most critical

areas in each orientation range classification map with a well-

trained CNN for the MSTAR SOC 10.

illuminated but can be slightly visible through diffraction

effects. Thus, the area surrounding the surface facing the radar,

and the closest to the radar, is brighter in the SAR images.

This area is also the critical area in most of classification

maps with respectively Fig. 10(c) highlighting the top of the

map, Fig. 10(d) focusing on the left of the map and Fig. 10(e)

highlighting the bottom left of the map. It is however less

clear for Fig. 10(b) that the most critical area is the front of

the target on the right of the map, even though this part is

still critical. The zones reflecting the strongest signal, usually

in the area the closest to the radar as the front side faces the

receiver, appear to be more critical.

It can also be noticed that the target rear, in the left part

of the classification maps is always highlighted. It is indeed

always inside the blue contour, which shows the darkest

parts of the classification maps. This is the higher area that

corresponds to the tanks turrets or the bulldozer cabin. It was

also highlighted as a critical area in the target classification

maps in Section IV-B1.

In order to better understand which areas are essential for

classification, the location of the features critical for classifi-

cation for a well-trained network are compared to the location

deemed critical by a less performing network. The resulting

classification maps can be seen in Fig. 11. A first observation

is that the classification maps are overall darker, meaning that

this CNN does not achieve the same quality of classification as

the CNN with data augmented training. Moreover, the intensity

on the target is not a lot darker compared to the intensity seen

in the background area. The network seems to less optimize

the information present in the target even though it is still the

most important area. It can be also seen that the darkest areas

are not always on the area that is facing the radar in Fig. 11(c)

as previously seen. The critical zone is smaller and the rear

of the target is not used in all orientations as it was the case

for the CNN trained with data augmentation.

(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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Fig. 11: Illumination direction and contour of the most critical

areas in each orientation range classification map with a CNN

trained without data augmentation for the MSTAR SOC 10

targets obtained.

b) MGTD: As for the MSTAR, classification maps rel-

ative to orientation ranges are produced using the data from

the MGTD. Similarly to what was shown in the MSTAR in

Section IV-B2, the critical areas are mostly located in the areas

facing the radar as can be seen in Fig. 12. Indeed, Figs. 12(a)

to 12(e) highlight respectively the bottom right, the right, the

top, the left and the bottom-left of the map.

(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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Fig. 12: Illumination direction and contour of the most critical

areas in each orientation range classification map with a well-

trained CNN for the MGTD.
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The results in Fig. 12(a) show that, in this case, the

classification relies on both the bottom-right but also the right

and top-right of the map, that corresponds to the front of the

target. The whole front of the target is used, even the further

points that could be less illuminated. These further points are

located around the areas containing corners. Corners can be

modelled as trihedrals. Their EM response is known to be

stable and strong over a wide range of azimuth and depression

angles, easing further target recognition. Corners are present

in the T72 and the T64 in the targets front as shown in Fig. 8.

However, unlike for the MSTAR, the highest part of the

target, on the left of the map is not always a critical area.

Indeed, it is not always inside the blue contour showing

the most critical areas. This could be due to the different

depression angle used to acquire both databases. Another cause

for these differences could be linked to the turret material

which is plastic in the MGTD and metal in the real targets in

the MSTAR. Only the tracks of the model tank are in metal in

the MGTD. Also, all targets in the MGTD have round turrets

which minimize returns of the signal in the receiver direction

compared to turrets with planar areas.

As for the MSTAR, classification maps related to orientation

ranges in the MGTD are both created with a well-trained CNN

and, here, with a CNN trained without data augmentation.

The resulting classification maps can be seen in Fig. 13(e).

Results show that the classification maps are overall darker,

as it was for the MSTAR, suggesting that the classification

quality dropped over the whole testing set.

(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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Fig. 13: Illumination direction and contour of the most critical

areas in each orientation range classification map with a CNN

trained without data augmentation for the MGTD.

The location of the most important parts of the classification

maps are relatively comparable for the first three ranges in

Figs. 13(a) to 13(c). However, they are quite different for the

last two ranges in Figs. 13(d) and 13(e). Indeed, the CNN,

in this case, does not seem to use the most illuminated areas

which should contain most of the information on the target.

In Fig. 13(e), parts of the background are also used. It is not

known whether the background is used because of correlation

or a multipath effect. The well-trained CNN focuses on the

target unlike the CNN trained without data augmentation.

As stated for the MSTAR, the features of the CNN trained

with data augmentation seem better learnt. Besides achieving

higher classification scores, the CNN trained with data aug-

mentation can also be better understood. Indeed, its critical

areas are focused on the target and especially on the target area

surrounding the surface facing the radar, thus reflecting well

the signal because of the target geometry. The front surface

facing the radar is more likely to reflect the signal towards the

radar than the perpendicular surfaces or surfaces at the back.

Having a better explainable network is essential when deep

learning is implemented to operate in real scenarios.

C. Feature specialization along the CNN depth

1) Feature specialization to the target class along the

network depth:

a) Results obtained with the well-trained network: The

average distance between histograms representing the most

active filters specific to each target class grows constantly as

shown in Fig. 14 and goes from 5 to 15 times the control

distance in the MSTAR dataset and from 2 to 6 times the

control distance in the MGTD. The CNN manages to increase

the distance between targets class with features whose com-

plexity reflects specificities of each target. The distance is more

than 5 times higher in the MSTAR with 10 targets compared

to the MGTD with only 3 targets. Various hypothesis can be

made on the reasons of a greater distance between targets on

the MSTAR trained CNN. The data from the MGTD could

be harder to classify as the model targets are mainly made of

hard plastic and not of metal, reflecting less clearly the emitted

radar signal. If this causes the features to be less distinctive and

thus less target specific, the resulting distance would indeed

be lowered. The training includes more targets in the MSTAR

dataset, enhancing the discrimination capability of the CNN

after training. As the distance continues to increase even at

the deepest layer, increasing the depth of the network could

lead to better scores. The more complex the features become

along the CNN depth, the more specific they are.

b) Results obtained with the network trained without data

augmentation: This process is repeated with CNNs trained

without data augmentation and the feature specialization can

be seen in Fig. 15. Similarly to the more robust CNN, the

distance between features dedicated to a specific target class

grows larger in the network. However, it can be noticed that

those features are less specific than those of the well-trained

network as the ratios between the average distance between

targets and the control distance are much lower for both

the MSTAR and MGTD than in Fig.??. Data augmentation

enhanced the specificity of features to the target class.

2) Feature specialization to the target orientation along the

network depth:

a) Results obtained with the well-trained network: It can

be seen in Fig. 16 that both for the MSTAR dataset and

the MGTD, the average distance between specific orientation

groups is a lot higher than the control distance. The maximum

ratio is of 8 and 6 for the MSTAR and MGTD respectively.

Images within each group represent targets of different types

in similar orientations. This high distance cannot be only due
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(b) Average distance between the histograms rep-
resenting the most active filters used in each
MGTD target group.

Fig. 14: Average distance along the depth of the CNN between

groups of images of different targets.

to the difference of target classes, which could be the case

when some target classes are more represented in a specific

orientation range. The CNN specifically learned the orientation

features. The network is thus able to learn environmental

variable even when they are not included directly in the loss

computation during training. The fact that the network is able

to independently learn related environmental variables linked

to the classification task is probably part of the success of

neural networks on SAR images which are affected by many

variables. It puts into perspective the inclusion of external

variables in the loss to force the network learning regarding

the target environment, as the network already carry this task

to a certain extent on its own [50].

Features getting specific to environmental variables with-

out dedicated training indicates that transfer learning could

potentially be pushed further. Instead of retraining a CNN

to only fit another database or different targets, the purpose

of a network already trained on SAR data could be changed

while still benefiting from its knowledge of the environment

variables learned during training even if they were not included

in the loss function. Indeed, the network has already learned

potentially interesting features in addition to the features

directly related to the initial task. In the presented case, a

network determining target orientations could be learned from

a network classifying target types.

b) Results obtained with the less performing network:

All of the above is conducted again with a CNN trained

without data augmentation as can be seen in Fig. 17. The

same conclusion can be drawn looking at the distance between
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resenting the most active filters used in each
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Fig. 15: Average distance along the depth of the CNN between

groups of images of different targets for the network trained

without data augmentation.

orientation specific features learned by this CNN. The distance

grows as the complexity increases with the depth of the

network. It can be also noticed that the distance between

features is lower at all depths for the CNN without data

augmentation than for the well-trained CNN. The maximum

ratios between the average distance between targets with

different orientations compared to the control group are of only

7 and 5 for the MSTAR and MGTD respectively. The data

augmentation creates a more challenging training set which

means more specific features are needed to be able to tell the

target classes apart. The features learnt by the CNN trained

with data augmentation, because they are more specific to

each target, enable better classification as the targets are more

precisely described. Some of the learnt features relate also to

the target orientation, hence the higher distances that can be

seen for both the distance of features specific to targets and

features specific to orientation ranges as seen in Fig. 16.

V. CONCLUSION

In this paper, some insights are given on the decision process

of a trained CNN on both the MSTAR dataset and the MGTD.

The analyses are carried out with two AlexNets [34]: trained

with or without data augmentation in order to give an idea of

the results variability for different neural networks.

The first investigation quantifies the influence of the target,

shadow and background zone respectively in the deep learning

classification process. It appears that the shadow area alone is

mainly ignored by the CNN with an essential role in only two
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(a) MSTAR database.
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(b) MGTD.

Fig. 16: Average distance along the network’s depth between

histograms of filters activated the most for 5 different orien-

tation bins.

cases out of ten. However, the removal of the shadow incurs

a classification loss of minimum 23% on 70% of the targets

tested. The information deemed important for classification

is mainly taken from the target and clutter zones. However,

results on each zone contribution cannot be totally generalised

as the impact of the shadow, target and background area can

be very different from one target to another.

The second analysis with classification maps shows that

the most important areas for the CNN are often located on

specific parts of the target. The location of these areas are

also influenced by the target orientation during the measure-

ments with the areas facing the radar contributing more. The

important features are located on zones specific to each target

but the higher parts of the target such as the cabin or turret

are often a focus point. A network that benefits from data

augmentation during training not only performed better but

also has a classification process more easily explained. This

makes the usage of such networks for real solutions better

from a reliability and acceptability point of view.

It is shown that the features become specific to a precise tar-

get as they increase in complexity. Classes become more easily

distinguishable with the network depth which is coherent with

the current trend of deep networks. The last analysis shows that

without adapting the loss, which is focused on target classes

only, the CNN still learns to build features specific to other

environmental variables such as the target orientation.

The various approaches proposed give a better understand-

ing of the significant target areas for deep learning classi-

fication such as the top target parts and the areas directly

facing the radar. Information on the shadow seems not to be

exploited as much as the other areas but supplementary work
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(a) MSTAR database.
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(b) MGTD.

Fig. 17: Average distance along the network’s depth between

histograms of filters activated the most for 5 different orien-

tation bins with networks trained without data augmentation.

is required to further validate this hypothesis. Lastly, it can

be seen that when correctly trained, CNNs are able to learn

features specific to their environment without direct motivation

from the loss function.
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des Télécommunications de Bretagne (Telecom Bre-
tagne) in the 2IP (Information and Image Process-
ing) department. He obtained the degree of Engineer
in Telecommunications in 1992 from Telecom Bre-
tagne. He received the Ph.D. degree in Mathematics
and Signal Processing of the University of Rennes I
in 1992. From 1997 to 1999, he worked for Thomson
AirSys (now Thales AirSys). He joined Telecom
Bretagne as associate professor in 1999 and became

professor in 2007. He is in charge of the division CID (Knowledge, Informa-
tion, Decision) of the Lab-STICC (Laboratory of sciences and technique for
information, communication and knowledge, UMR 6285). His main research
interests are statistics, nonlinear system modeling, mathematics and signal
processing for applications in remote sensing and finance.

Thomas Merlet has graduated in 1993 from Ecole
Supérieure de Physique et Chimie Industrielle, Paris,
France and received his PhD degree on Opto-RF
components from University of Paris XI, France in
1997. He is currently the head of the joint Lab LAT-
ERAL (Lab-STICC Thales Research Alliance) and
managing Future Products & Innovation activities in
the Seeker Division at Thales, Elancourt France.


