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Abstract

This paper proposes a novel description of the equations of motion for low-
thrust trajectory design in the presence of a third-body perturbation. The
framework is formulated using Gauss’ Variational Equations (GVE) with
two distinct accelerations: the one produced by the electric engine and the
disturbing term of the third-body effect, which is computed using the dis-
turbing potential of the previously studied Keplerian Map. The presented
GVE third-body (GVE-3B) framework allows for a simple and intuitive de-
scription of the low-thrust optimisation problem. It is accurate until very
close to the sphere of influence of the perturbing body, and thus can be used
to target trajectories in low-energy regimes. Together with the framework,
this paper develops a methodology to generate low-energy first-guess solu-
tions for low-thrust trajectories. Both the methodology and the framework
are showcased in the design of two distinct missions: a rendezvous with as-
teroid 2017 SV19 during its next Earth encounter, after departing from the
unstable invariant manifold of the L2 point in the Sun-Earth system, and
the capture of asteroid 2018 AV2 to a stable invariant manifold of the same
point.
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1. Introduction

With the pursuit of increasingly innovative and complex space missions,
the focus of the space industry has been turning towards low-thrust technolo-
gies. Electric propulsion systems provide large savings in propellant mass,
which can be decisive for the mission’s feasibility: the higher the entire sys-
tem’s mass is, the costlier the endeavour will be, making it less likely to
come into fruition. Since the first interplanetary spacecraft using low-thrust
was successfully flown in 1998 (Rayman and Lehman, 1997), this technology
has allowed for the planning of a range of missions that would otherwise be
infeasible, including visits to the outer planets, comets and asteroids (Noton,
2012).

Designing a low-thrust trajectory is a more complex task than doing so
for a high-thrust one. For the latter case, the short thrust phases can be ap-
proximated by singular events that instantaneously change the spacecraft’s
velocity. In contrast, low-thrust missions require the propulsion system to
operate for a significant part of the transfer, in order to generate the nec-
essary velocity increment—consequently, the thrust vector is a continuous
function of time. Thus, the trajectory optimisation problem comprises find-
ing the optimal control law (Dachwald, 2004), i.e. the best sequence of thrust
controls required for the spacecraft to meet the mission’s objective.

Solving the optimal control problem is an extremely complex task, since
no closed-form solutions exist except for some very specific cases (Ross and
Fahroo, 2002). The problem’s convergence depends on several different fac-
tors. One of them is the definition of bounds, boundary conditions and
constraints for the trajectory. Another is the choice of model of motion in
which the trajectory is developed (Shirazi et al., 2018).

Many authors have selected Gauss’ Variational Equations (GVE) to solve
the optimal control problem, either in their classical or averaged form (Sánchez
and Yárnoz, 2016; Herman and Spencer, 2002; Geffroy and Epenoy, 1997;
Gao, 2007). This formulation models the motion of the spacecraft subject
to a central gravitational force in the two-body problem (2BP) and an ad-
ditional perturbing effect—for instance, the propulsive acceleration from the
spacecraft’s engine. It is a common choice for trajectory design due to the
model’s presentation in Keplerian elements, which provide an intuitive per-
ception of the evolution of the motion (Shirazi et al., 2018). Given that the
solution to an optimal control problem typically relies on the setting of pa-
rameters by an expert in astrodynamics, outside of the actual optimisation
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process (Dachwald, 2004), it is crucial to have an intuitive understanding of
how the trajectory unfolds until a solution is reached.

However, certain design applications, like missions to near-Earth aster-
oids (NEAs) require models of motion of higher complexity than the classical
2BP. In particular, third-body perturbations may have a non-negligible effect,
since many accessible NEAs (Yárnoz et al., 2013) move in low-energy regimes.
These are here defined as regimes of motion in which ballistic capture is the-
oretically possible (Koon et al., 2001). This may occur for objects whose
orbital energy does not differ much from that of the third-body perturbation,
e.g. nearly co-orbital bodies (Nesvornỳ et al., 2007) or, in the case of the
Sun-Earth system, spacecraft departing from or arriving to Earth with a low
excess velocity (v✽). However, the utilisation of an alternative higher-fidelity
method (e.g. the circular restricted three-body problem (CR3BP)) may bring
difficulties related to the definition of the optimal control problem—for in-
stance, boundary conditions are not trivial to set, since the coordinates are
presented in the synodic Cartesian reference frame. Instead, using the Ke-
plerian element formulation provided by the GVE, the bounds, boundary
values and trajectory evolution of the optimal control problem can be more
easily assessed, facilitating its formulation and the convergence to obtain a
control law solution.

Thus, this paper proposes a new set of equations—referred here as the
GVE third-body (GVE-3B) framework—to model third-body motion to-
gether with the acceleration of a low-thrust engine. These are obtained by
propagating the classical GVE with the sum of two disturbing acceleration
vectors. The first is obtained from the thrust produced by the electric en-
gine; the second corresponds to the third-body perturbation, derived from
the Keplerian Third-Body Potential function (K3BP) of the Keplerian Map
(KM). The latter is a method to compute the change of the orbital elements
throughout one period of the motion, as caused by the third-body effect. Its
development started with the works of Petrosky and Broucke (1987) and of
Chirikov and Vecheslavov (1993); the concept was then continued by Ross
and Scheeres (2007) to study distant flybys in the planar CR3BP. Later on,
it was expanded by Alessi and Sánchez (2015) for three-dimensional applica-
tions.

In order to test the capabilities of the GVE-3B, this formulation is used
to design trajectories in the low-energy regime—namely, low-thrust missions
to NEAs. Asteroids have been at the forefront of space exploration for
many years, with the proposal and completion of missions such as JAXA’s
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Hayabusa (Kawaguchi et al., 2008) and NASA’s Dawn (Russell and Ray-
mond, 2011). There are many reasons for the current interest in these bodies:
from the fact that their study may answer questions about the formation and
evolution of the Solar System (Glassmeier et al., 2007), to their abundance in
potentially valuable resources and materials for space manufacturing (Lewis
and Hutson, 1993; Elvis, 2012). Furthermore, although main-belt asteroids
are known since the 19th century, the discovery of NEAs only happened much
later. These asteroids are now considered the easiest celestial bodies to reach
from the Earth and, in consequence, they may represent a potential impact
threat to our planet (Alvarez et al., 1980).

Particularly, two specific trajectories in the low-energy regime are here de-
signed: an asteroid rendezvous and a capture mission. The first case consists
on a spacecraft departing the L2 point of the Sun-Earth system through the
unstable invariant manifold orbit and matching its motion to the asteroid’s.
The second entails having a spacecraft attaching itself to another asteroid
and moving it, from its nominal orbit to the stable invariant manifold of the
same point.

The main goal of this paper is to contrast the GVE-3B with the commonly
used 2BP formulation, which models only the single gravitational force of a
central body, together with the low-thrust acceleration of the spacecraft. The
model comparison uses the CR3BP as the baseline with which the propaga-
tion errors are computed. It is postulated that the inclusion of the third-body
effects during the design of the controls for a low thrust transfer will yield
much higher accuracies than with the standard 2BP. Ultimately, this accu-
racy is necessary in order to reap the benefits of low energy transfers.

In addition to this, a methodology to develop first-guess low-thrust trajec-
tories is presented. Solving the optimal control problem to design low-thrust
trajectories is mostly done using direct methods (Shirazi et al., 2018; Betts,
1998), and these generally require the generation of a reasonable initial guess
of the solution parameters (Conway, 2010), i.e. a set of state and control
time-histories that yield a sub-optimal trajectory to be improved by the
NLP problem solver (in this paper, GPOPS-II (Patterson and Rao, 2014)).
The computation of first-guess trajectory is here achieved by a sequential
approach, from an impulsive guess to a multiple shooting correction of the
motion.

This paper is organised in the following manner: Section 2 provides the
necessary background on the classical models used in this paper: the 2BP,
the CR3BP and its related dynamical structures. Section 3 sets up the GVE-
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3B framework, demonstrates the computation of the disturbing accelerations
and provides an overview of the method’s accuracy. Section 4 details the
steps involved in the trajectory design for the capture and rendezvous mis-
sions, until the full low-thrust transfer is obtained. Section 5 presents the
results of the full trajectory designs and compares the obtained control laws
in the previously discussed models. Finally, Section 6 enumerates some rec-
ommendations and future working areas of interest.

2. Models of Motion

2.1. The Two-Body Problem

The mathematical problem of designing a trajectory in the Solar System,
an environment composed of countless bodies, is named the n-body problem,
where n stands for the amount of bodies interacting with the spacecraft. The
2BP is the case when n ✏ 2: in order to compute it, Eq. (1) is used (Ulrich,
2019):

✿r ✏ ✁µC ☎ r

⑥r⑥3 (1)

where r is the position vector relative to the central body, and µC ✏ GmC is
the gravitational parameter of the central body, equal to the product of the
gravitational constant G and the object’s mass.

2.2. Circular Restricted Three-Body Problem

When computing trajectories in the Solar System, the complexity of the
model of motion increases with the number of bodies interacting. The mo-
tion of any system with more than two objects has no general analytical
solutions. Consequently, the main strategy to model movement in a three-
body system is the CR3BP, a simplification of the three-body problem whose
equations are solved using a numerical integrator. In the CR3BP, the com-
puted body’s mass is deemed insignificant compared to the other two, which
move in circular orbits around each other. The former body is regularly
termed the massless particle, while the non-massless ones are named the pri-
maries—alternatively, primary is used for the bigger body, while secondary

is employed for the smaller of the two.
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2.2.1. Equations of Motion

The CR3BP is typically represented in the synodic reference frame; all
the physical quantities are normalised in such a way that both the sum of the
primaries’ mass and the distance that separates them is equal to 1 (Szebehely,
1967). The normalised position and velocity for the massless particle in the
CR3BP obey the following equations of motion:

✿x✁ 2 ✾y ✏ ✁❇Ū
❇x

✿y � 2 ✾x ✏ ✁❇Ū
❇y

✿z ✏ ✁❇Ū
❇z (2)

where Ū is the effective potential function of the system:

Ū ✏ ✁1

2
♣x2 � y2q ✁ 1✁ µ

r1
✁ µ

r2
(3)

in which r1 ✏ ⑥r1⑥ and r2 ✏ ⑥r2⑥ are the distances from the massless particle
to the primary and the secondary, respectively. The normalised gravitational
parameter µ is determined as µ2

µ1�µ2

, in which µ1 and µ2 are the gravitational
parameters of the primary and secondary.

2.2.2. Dynamical Structures

The equations of motion of the CR3BP admit five equilibrium solutions,
known as the libration points Li, i ✏ 1, 2, ...5. In their vicinity, one can find
periodic orbits, also called libration point orbits (LPO): these are character-
ized by a motion that repeats itself after a time period, as seen relative to
the synodic reference frame.

Given that the LPO of the Sun-Earth system are not stable, one can find
hyperbolic invariant manifold structures connected to them (Gomez et al.,
2001). Geometrically, these are dynamical structures composed of countless
orbits. They exist for a range of energies and form a series of ’tubes’ that
connect different regions around the primaries. The unstable manifold is
formed by an infinite set of trajectories that exponentially leaves the LPO.
On the other hand, the stable manifold consists of an infinite number of
trajectories exponentially approaching it.

These manifold orbits can be used to explore new spacecraft trajectories
with interesting characteristics (Koon et al., 2000): by moving a body to an
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invariant manifold trajectory connected to an LPO, it will arrive to the LPO
without any further manoeuvring (Koon et al., 2008). Since their orbits can
be travelled by a spacecraft without any fuel consumption, the exploration
of these dynamical structures is particularly interesting for mission design.

3. Gauss’ Variational Equations’ Framework

3.1. Equations of Motion

The GVE have been extensively used in astrodynamics to compute motion
perturbed by a disturbing acceleration. Following Battin (Battin, 1999), the
equations can be formulated in this manner:

da

dt
✏ 2a2

L

✁
are sin ν � aθ

p

r

✠
de

dt
✏ 1

L

✁
arp sin ν � aθ♣♣p� rq cos ν � req

✠
di

dt
✏ ah

r cos υ

L
dΩ

dt
✏ ah

r sin υ

L sin i
dω

dt
✏ 1

Le

✁
✁ arp cos ν � aθ♣p� rq sin ν

✠
✁ ah

r sin υ cos i

L sin i
dν

dt
✏ L

r2
� 1

Le

✁
arp cos ν ✁ aθ♣p� rq sin ν

✠
(4)

where the set ta, e, i,Ω, ω, ν✉ corresponds to the commonly known orbital
elements with ν as the true anomaly; ar, aθ and ah are the acceleration
components in the Local Vertical, Local Horizontal (LVLH) frame, L is the
angular momentum, p is the semilatus rectum, r is the orbital position and
υ ✏ ν � ω is the argument of latitude.

In contrast to Lagrange Planetary Equations (Battin, 1999), GVE can
account for both conservative and non-conservative accelerations. In the
case of the GVE-3B framework, these consist of the sum of the third-body
effect with the low-thrust acceleration of the spacecraft. Without taking into
account the different frame of reference changes, the GVE-3B acceleration
can be described by Eq. (5).

aGV E ✏ tar, aθ, ah✉ ✏ aLT � a3B (5)
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According to Newton’s first law, aLT is easily computed as the quotient of
the thrust vector and the system’s mass. The formulation of a3B is based on
the disturbing function of the KM method (Ross and Scheeres, 2007; Alessi
and Sánchez, 2015). This model is valid for planetary systems where the
normalised gravitational parameter is very small—the case of the Sun-Earth
system, which will be here taken as the main example.

3.2. Disturbing Accelerations

The three-body planetary system from which the disturbing potential
function is derived can be seen on Figure 1. Two reference frames can be
inferred from the picture. The first is the regular inertial Cartesian frame,
centred on the Sun and represented by OIxyz. The second is a novel one
named the Earth-pointing reference frame, denoted by O❈xyz, with its origin
on the barycentre. The definition of this new frame of reference is required
for the computation of the disturbing function, which is used to derive the
GVE-3B acceleration.

r1

r2

r

+

i

Rot

YI

XI

ZI

X

Z

Y

θ

Figure 1: Three-dimensional geometry of the three-body problem, noting the inertial and
Earth-pointing reference frames (Neves and Sánchez, 2018)

Thus, a new element of motion can be observed: ΩRot, which is the rota-
tional longitude of the ascending node of the spacecraft. It is defined in such
a way that the new frame’s X-axis is always aligned with the Earth (Alessi
and Sánchez, 2015). As such, the movement in the Earth-pointing reference
frame is instantaneously inertial, barycentric, measured from the Earth axis.
This ΩRot replaces the regular Ω in Eqs. (4); it is computed using the true
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anomaly of the Earth, and the longitude of the ascending node Ω:

ΩRot ✏ Ω✁ ν❈ (6)

Following Alessi and Sánchez (2015), ν❈ can be formulated as a function
of the orbital elements of the spacecraft, as in Eq. (7). The orbital elements
of the latter are represented without any subscript, in contrast to the orbital
elements of the Earth (subscript ❈). The full derivation of this relationship
can be found in (Neves, 2019):

ν❈ ✁ ν❈0
✏
❞

a3

1✁ µ
M�t0 (7)

in which M is the mean anomaly of the spacecraft.
Thus, the change to the Earth-pointing reference frame can be used to

describe the third-body perturbation without having to explicitly compute
the position of the secondary at all times. However, this comes at the cost
of having a non-autonomous reference frame.

After setting up the desired reference frame, the computation of the dis-
turbing accelerations for Eqs. (4) requires the Hamiltonian of the three-body
problem in an inertial reference frame, Sun-centred:

H3B ✏ 1

2
♣o2x � o2y � o2zq ✁

1✁ µ

r1
✁ µ

r2
(8)

in which ox, oy, and oz are the generalized momenta of the massless particle.
In order to reach a barycentric notation, r1 and r2 have to be written as func-
tions of the distance to the barycentre r. These two variables are described
by the following equations:

r21 ✏ ♣x� µq2 � y2 � z2 (9)

r22 ✏ ♣x✁ 1� µq2 � y2 � z2 (10)

By manipulating Eqs. (10), using polar coordinates and assuming a Tay-
lor expansion around µ ✏ 0, Eqs. (11) and (12) are obtained.

1✁ µ

r1
✓ 1

r
� µ

✁
✁ 1

r
✁ cos θ

r2

✠
�O♣µ2q (11)

µ

r2
✓ µ❄

r2 ✁ 2r cos θ � 1
�O♣µ2q (12)
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Thus, Eq. (8) can be written in the following form:

H3B ✏ T � U3B �O♣µ2q (13)

T ✏ 1

2
♣o2x � o2y � o2zq ✁

1

r
(14)

U3B ✏ µ

✂
1

r
� cos θ

r2
✁ 1❄

1� r2 ✁ 2r cos θ

✡
(15)

where the physical quantities r and cos θ are simply defined as Eq. (16),
following the geometry of Figure 1:

r ✏
❛
x2 � y2 � z2, cos θ ✏ x

r
(16)

The accelerations relative to the third-body effect only are computed
using Eq. (15):

ax ✏ ✁❇U3B

❇x , ay ✏ ✁❇U3B

❇y , az ✏ ✁❇U3B

❇z (17)

Expanding on these relations, the final output is obtained (in the instan-
taneous Earth-pointing reference frame):

a3B ✏ tax, ay, az✉

ax ✏ ✁µ
✄

✁1� x

♣1✁ 2x� r2q 3

2

✁ 3x2

r5
� 1✁ x

r3

☛

ay ✏ ✁y
✄

µ

♣1✁ 2x� r2q 3

2

✁ µ♣3x� r2q
r5

☛

az ✏ ✁z
✄

µ

♣1✁ 2x� r2q 3

2

✁ µ♣3x� r2q
r5

☛
(18)

3.3. Final Framework

The accelerations used in the GVE-3B (Eqs. (4)) have to be written in
the LVLH frame. However, a3B is described in the Earth-pointing reference
frame, while the depiction of aLT depends on the setting of the problem.
For the sake of reaching a formula for aGV E, aLT is here described in a
barycentric, inertial Cartesian frame. Thus, some transformations have to
be taken into account.
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For this, several rotation matrices are derived: R❈I is the rotation matrix
from the inertial Cartesian (OIxyz) to the Earth-pointing frame (O❈xyz); R

I
eph

is used to convert from the orbital plane (Oeph) to the inertial Cartesian

frame; R
eph
rθh rotates a vector from the LVLH frame (Orθh) to the orbital

plane one. These matrices are presented in Appendix B. Eqs. (19) present
the transformations to the acceleration vectors by each rotation matrix.

a❈xyz ✏ R❈I aI , aIxyz ✏ RI
eph aeph, aeph ✏ R

eph
rθh arθh (19)

The accelerations to use in Eqs. (4) in the LVLH frame are, thus, com-
puted as follows:

aGV E ✏
✂
RI

ephR
eph
rθh

✡
✁1✂

R❈
✁1

I a3B � aLT

✡
(20)

The state propagation is done in orbital elements. For a better un-
derstanding of the transformations involved and the overall framework, the
flowchart of Figure 2 can be analysed.

3.4. State Transition Matrix

To correctly and efficiently adjust a trajectory in a desired motion model
using, for instance, a differential correction method, the computation of the
state transition matrix (STM) is necessary. The STM provides a linear map-
ping from time t0 to a time t, establishing a relationship between initial and
final deviations that can be used to adjust trajectories in order to match a
final outcome. The propagation of the STM is described by the following
equation:

✾Φ♣t, t0q ✏ Df♣s♣tqqΦ♣t, t0q (21)

where s is the state tx, y, z, ✾x, ✾y, ✾z✉, Φ♣t, t0q denotes the STM and Df♣s♣tqq
is the Jacobian of the STM.

For the GVE-3B framework, the Jacobian of the STM (Df♣sq3B) is pre-
sented in Appendix A of this work.

3.5. Accuracy of the Model

The GVE-3B equations are formulated as a low-fidelity tool for the com-
putation of third-body perturbations in a system with small gravitational
parameter. It is then important to figure out their performance as a function
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(18)

Figure 2: State propagation using the GVE Framework

of the distance to the perturbing body. As such, in the following analysis,
the modelled motion will have no thrusting acceleration: the influence of the
latter will be discussed in the asteroid mission trajectories of the following
sections.

The GVE-3B error is contrasted to the 2BP error—these are defined as
the distance between the position computed with the named model and with
the CR3BP. This work claims that the accuracy of the 2BP is lacking in
the vicinity of the Earth and up to very distant regions from its sphere of
influence (the so-called perturbation region), making it unsuitable for the
proposed asteroid trajectory design and presenting the GVE-3B framework
as a more adequate alternative.
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b) Zoom-in at point B

Figure 3: Propagation of the CR3BP, the GVE-3B and 2BP from point A to point B
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Figure 4: Propagation error for the 2BP and the GVE-3B for the trajectory in Figure 3

The first baseline trajectory for error comparison is found in Figure 3. The
initial conditions are obtained in the following manner: the stable invariant
manifold of the L2 point is propagated backwards in time for a period of
1500 days, in the CR3BP—the final state is named point A. Then, from this
point, the models were used to propagate forward, for the same time period.
It follows that the end state should be the L2 point (point B); however, when
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getting closer to the Earth, the difference between the GVE-3B and the 2BP
increases, with the error of the latter shown to be especially large.

Figure 5: Propagation error (logarithmic scale) for the 2BP and the GVE-3B for 100 initial
states in the Earth’s vicinity

This error can be better analysed in Figure 4, where Figure 4 a) is plotted
as a function of time and Figure 4 b) as a function of the distance to the
Earth. The GVE-3B error remains quite stable in the 104 km value, until
the X-axis of the synodic reference frame is reached. As expected, when the
trajectory approaches the Earth’s sphere of influence (✒ 0.01 AU), there is
an increase in the GVE-3B error. In contrast, the 2BP error increases faster,
starting to do so much earlier.

In order to further establish the inadequacy of the 2BP in modelling
trajectories close to the perturbing body, a different case study is performed—
this time, starting at the vicinity of the Earth and ending away from it.
For this purpose, a hundred initial conditions, each taken from a different
point on the surface of the Earth’s sphere of influence and never crossing it
during the propagation time of 1500 days, are propagated without any initial
velocity. The corresponding error for each trajectory can be seen in Figure
5. The 2BP error is much higher overall, since the trajectories start close
to the disturbing body and consequently accumulate errors very quickly. In
contrast, the GVE-3B error remains similar to the previously shown case,
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demonstrating its consistency in different application scenarios.
From these plots, it can be concluded that the CR3BP and GVE-3B

model behave in a very similar way in the feasible region, which clearly
evidences the quality of the framework presented in this paper and validates
its use up to a very close region to the secondary. However, akin to the KM
method (Alessi and Sánchez, 2015), the GVE-3B model is not adequate for
use inside the sphere of influence of the Earth or for trajectories that remain
for a long time in this vicinity.

4. Trajectory Design for Asteroid Missions

4.1. Mission Summary

The trajectory design for two asteroid missions is here presented: one for
rendezvous, another for capture. Asteroid missions are invariably linked to
the use of low-thrust propulsion systems, since the trajectory will benefit from
their high exhaust velocity (Sánchez et al., 2018). Furthermore, both missions
consider a spacecraft departing from (the rendezvous case) or arriving to (the
capture case) one of the libration points of the Sun-Earth system. The close-
range proximity operations that precede or conclude the missions are not
considered in this work.

The asteroids were chosen using the Accessible NEAs NASA database3,
which was searched to find objects whose estimated trajectory cost does not
surpass 5 km☎s✁1. The choice fell on asteroids 2017 SV19 and 2018 AV2 as
the rendezvous and capture targets. At the time of search, they were the
most recently discovered ones with a clearly defined optical opportunity, i.e.
a set calendar date in which the body will next be observable from the Earth.

Since both asteroids have semi-major axes greater than 1 AU, the L2 point
was selected as the departure for the rendezvous mission and the endgame
for the capture one. This location is connected to several past missions (e.g.
Herschel and Planck in 2009 (Pilbratt, 2001; Tauber, 2006)) and benefits
from the existence of invariant manifold orbits that can be travelled without
spending any fuel, both arriving to and departing from it.

4.1.1. Asteroid Rendezvous

Asteroid 2017 SV19 is an Amor asteroid discovered in September, 2017.
Its diameter is in the 17-78 m range, with an estimated mass of 52,850 tonnes.

3cneos.jpl.nasa.gov/nhats, Accessed 01-09-2019
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The rendezvous trajectory starts with the spacecraft at the L2 point, de-
parting into an unstable invariant manifold orbit. At a certain time, the
trajectory is changed to meet the nominal motion of the asteroid. The ren-
dezvous happens during the asteroid’s next close approach with the Earth,
in 2040.

4.1.2. Asteroid Capture

Asteroid 2018 AV2 is an Apollo asteroid discovered in January, 2018.
Currently, there is little data regarding its composition and nature: it is
known that its diameter is on the small range (3.2 - 14 m) and, assuming an
average material composition, its mass is of about 318 tonnes (Bowell et al.,
1989; Chesley et al., 2002). It is postulated that this object may likely be
artificial (Jedicke et al., 2018); still, its dimensions make it a feasible notional
body to study a capture mission, since it has to be small enough to be pushed
by the used propulsion system.

The mission design can be described as the reverse of the rendezvous one:
the spacecraft meets the asteroid at a certain point of the latter’s nominal
orbit and grabs it by any chosen means (Brophy et al., 2012; Cano et al.,
2018). Then, the coupled system uses its propulsive capabilities to insert
itself into a stable invariant manifold trajectory of the L2 point, the target
destination. This happens around the asteroid’s next close approach with
the Earth, starting in 2036.

Both bodies are moving in a very similar energy regime to the one of
the Earth, making them great candidates to test the use of the GVE-3B
framework. In order to better visualize and compare both mission scenarios,
Figure 6 can be observed. The orbital transfer that will be designed in this
chapter concerns the blue dashed segment from t1 to t2, while the rest of
the motion uses no significant propulsion. The required steps in order to
determine the initial and final points of the transfer (A and B, respectively)
will be explained in the following sections.

4.2. Low-Thrust Trajectory Design

The problem of designing a space transfer can be simply stated as the
determination of a trajectory that satisfies some initial and final conditions,
while minimizing a chosen parameter (Conway, 2010). This optimal control
problem takes the information about the dynamical model to determine a set
of controls that yield a trajectory obeying the initial conditions, constraints
and bounds on the variables (Betts, 1998). This set of controls is generally
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a) Rendezvous mission
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Orbital Transfer
Invariant Manifold

b) Capture mission

Figure 6: Trajectory design for the suggested mission scenarios, showing the different
segments and the times in which they happen

analogous to the spacecraft’s acceleration, while the quantity to minimize
relates to the overall fuel spent.

As previously stated, in order to design a low-thrust trajectory, feasible
initial guesses that can be posteriorly transcribed and solved using an optimal
control software solver are very useful. The computation of these first-guesses
is here achieved by implementing the following sequential approach, detailed
in the next sections:

Step 1: Transfer Optimisation. The optimal initial and final dates for
the orbital transfer manoeuvre (t1 and t2) are determined by computing
several possible Lambert arcs with different boundary conditions and
choosing the one with the lowest ∆v.

Step 2: Sims-Flanagan-Inspired Approach. The set transfer dates are
used to compute an initial guess trajectory akin to a Sims-Flanagan
approach (Sims and Flanagan, 1999). This results in a transfer divided
into equal-time segments, with an impulsive ∆v applied in each of them.

Step 3: Continuous Low-Thrust Transfer. The multiple-impulse trans-
fer is transcribed to a continuous one, by converting the ∆v’s and seg-
ment times of the previous step into continuous accelerations and using
a multiple shooting method.
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4.2.1. Step 1: Transfer Optimisation

Finding the best possible trajectory for both asteroid missions requires
defining several potential starting and ending points and calculating the
transfer costs between them. This means choosing the best Lambert arc
out of different values of t1 and t2 and related asteroid ephemerides. In this
case, the best arc is chosen as the one with the lowest ∆v: the corresponding
values of t1 and t2 are the initial and final transfer times and the related aster-
oid ephemerides are fixed to the state of points A and B. These ephemerides
remain the same throughout the following Steps.

More concretely, regarding the capture case: the starting point is to ob-
tain the ephemerides of asteroid 2018 AV2 in a far-away position from the
Earth, point A0 in Figure 6. This state is propagated forward in time to
t1 (point A). In a similar fashion, the invariant manifold of the L2 point is
propagated backwards to t2 (point B). Then, the states corresponding to t1
and t2 are connected via a Lambert arc, obtaining the impulsive transfer
cost. This is done for many different values of t1 and t2, yielding a porkchop

plot of ∆v’s as a function of the initial and final dates.
An analogous methodology is implemented for the rendezvous case: the

spacecraft’s position is propagated forward from the L2 point (at t0) to t1.
Simultaneously, the ephemerides of asteroid 2017 SV19 are retrieved in a
far-away position from the Earth (B0) and propagated backwards to point
B. The resulting ephemerides corresponding to t1 and t2 are connected with
a Lambert arc.

The initial asteroid positions were retrieved from the Horizons JPL data-
base4. The porkchop plots were computed for the two models compared on
this paper: the 2BP and the GVE-3B. For the former case, the propaga-
tions from A0 to A and B0 to B are done in the 2BP, with the Lambert arc
connecting A and B computed in the same model. For the latter case, the
propagations from A0 to A and B0 to B are performed in the GVE-3B frame-
work, and points A and B are connected with an arc in the same model. The
latter is obtained by a single shooting method that employs the Jacobian of
the STM in the GVE-3B model, as derived in Appendix A (Neves, 2019).

4https://ssd.jpl.nasa.gov/?horizons, Accessed 01-18-2019
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4.2.2. Step 2: Sims-Flanagan-Inspired Approach

The Sims-Flanagan method has been extensively used to further refine
impulsive thrust first-guesses into low-thrust trajectories (Sims and Flana-
gan, 1999). This approach consists on adding several short impulses along
the path, making it more similar to a low-thrust trajectory and, thus, more
likely for an optimal control solver to converge easily (Hargraves and Paris,
1987). The trajectory is divided into segments with pre-defined durations.
In the middle of each segment, a small impulsive manoeuvre is implemented.
Each transfer is called a leg, defined from point A to B: the forward and
backward propagations of these two locations meet at a match point, located
usually halfway through the leg.

In other applications of the method, the problem is inserted into an op-
timiser with a constraint on the match point distance (Sims et al., 2006).
In this work, instead of a match point, the forward and backward propaga-
tions from A and B are connected with a Lambert arc. Thus, the method is
merely inspired by the Sims-Flanagan approach, and the named fundamental
differences can be found on the schematic of Figure 7.

Impulse

Match Point

Lambert arc

Segment BoundaryA B

A' B'

Figure 7: Sims-Flanagan-inspired trajectory scheme

For the mission design cases proposed in this paper, the Sims-Flanagan-
inspired trajectories are composed of 5 segments of equal duration (4 impul-
sive ones and the middle Lambert arc, as depicted in Figure 7). The applica-
tion of this approach is further detailed in the following manner: first, points
A and B are obtained from the optimal impulsive trajectory found via the
porkchop plot. Then, a genetic algorithm5 is employed. The design variable
is the vector of mid-segment impulses; the objective function propagates the
motion forward from A and backwards from B using the GVE-3B model,
implementing the ∆v’s in each segment. This yields match points A’ and B’,

5Using the MATLAB code suite (Chipperfield et al., 1994) with an initial population
of 1000 parameters and the same number of maximum generations for convergence

19



which are then connected via a Lambert arc in the GVE-3B model, obtained
with a single shooting method. The goal is to minimize the sum of ∆v’s of
the mid-segment impulses and the connecting arc (represented respectively
by the purple arrows and the red dashed line of Figure 7).

4.2.3. Step 3: Continuous Low-Thrust Transfer

After obtaining the Sims-Flanagan-inspired solution, a low-thrust trajec-
tory can finally be determined. Since the guiding motivation is to showcase
the capabilities of the GVE-3B framework, the optimal control problem was
simplified in a way that only the acceleration is optimised. The controlled
trajectory design is computed in the following manner:

1. The impulses on each segment from the Sims-Flanagan-inspired ap-
proach are converted into continuous accelerations using the formula
a ✏ v1✁v0

∆t
, in which v0 is the velocity at the beginning of the impulse,

v1 is the velocity at the end of the impulse and ∆t is the segment’s
duration.

2. A is propagated forwards and B backwards, using the respective accel-
erations for each segment. The final points of the trajectory will be
the new match points A” and B”, different from the previous A’ and
B’ since they are achieved with continuous accelerations.

3. A” and B” are linked using a multiple shooting method using the GVE-
3B model, which changes the thrusting accelerations to match the ini-
tial and final states, achieving a fully connected trajectory.

Multiple Shooting Method: As stated in Section 3.4, differential correction
is necessary for various trajectory design applications. A multiple shooting
method is a differential correction technique utilised to connect the initial
and final points of a trajectory with multiple segments, by using several sin-
gle shooting methods between patch points. In this way, the errors associated
with the long integration of segments are reduced. Plus, the shape of the
trajectory can be more easily manipulated by adding constraints to the dif-
ferent patch points. The overall schematic of this method can be found on
Figure 8, from an initial disconnected guess to the fully linked trajectory.

In a multiple shooting scheme, the integration times can be fixed or vari-
able. For the sake of simplicity, this paper utilises the first case. In this
scenario, the vector of free variables corresponds to the linkage of each patch
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Figure 8: Multiple shooting scheme

point’s state vector (sj, j ✏ 1, ...,m). It becomes a column vector of 9m rows
when the position, velocity and acceleration are considered (where m is the
number of patch points).

X ✏ rs1 ... smsT (22)

The solution to the multiple shooting scheme involves iterating through
Equation 23 until the error (⑥G♣X i�1q⑥) is smaller than a convergence toler-
ance (ǫ)—in this paper, chosen as ǫ ✏ 10✁8:

X
i�1 ✏ X

i ✁DG♣X iq✁1G♣X iq (23)

in which the superscript i represents the iteration number, G♣Xq is the
constraint vector and DG♣Xq is the Jacobian of the constraint vector.

Besides position and velocity continuity at the patch points, any other
constraints can be added. The constraint vector takes the particular form of
Eq. (24), where the first 3 conditions represent the patch point continuity
requirements and the latter 2 establish that A” and B” are fixed. The number
of patch points was chosen to be 3, considering the trade-off between having
a solution with more nodes or an easier convergence.

G♣Xq ✏

✔
✖✖✕
s1♣t1 � T1q ✁ s2♣t2q
s2♣t2 � T2q ✁ s3♣t3q
s3♣t3 � T3q ✁ s4♣t4q

s1♣t1q ✁A
✶✶

s4♣t4q ✁B
✶✶

✜
✣✣✢ (24)
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It is important to note that the accelerations are kept free for all the patch
points. Thus, the Jacobian matrix of this constraint vector is presented in
Eq. (25), where Φ represents the STM of the GVE-3B framework computed
in Section 3.4.

DG♣Xq ✏

✔
✖✖✕
Φ1,6x9 ✁IO6x9 06x9 06x9
06x9 Φ2,6x9 ✁IO6x9 06x9
06x9 06x9 Φ3,6x9 ✁IO6x9
IO6x9 06x9 06x9 06x9
06x9 06x9 06x9 IO6x9

✜
✣✣✢ (25)

IO ✏

✔
✖✖✖✕
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

✜
✣✣✣✢ (26)

5. Results and Discussion

This section presents the results from each phase of the trajectory design
approach for the asteroid rendezvous and capture. The benefits of using
the GVE-3B framework as the model of motion for low-thrust design are
highlighted, and fully optimised transfers are presented for asteroids 2017
SV19 and 2018 AV2.

Porkchop Plots: The first step in the trajectory design was to search for
the best possible transfer dates for capture and rendezvous. These start at
a named point A and end at point B, following the coasting motion from
points A0 and B0. As detailed in Section 4.2.1, the ephemerides of A and
B are obtained from the propagation of these specific initial conditions; the
transfer cost is yielded by an arc connecting A to B. For comparison purposes,
the same propagations were done using the 2BP and the GVE-3B models.

The ephemerides of asteroids 2017 SV19 and 2018 AV2 were taken for
the dates: 9 October, 2040 (corresponding to position A0ast of Figure 6 a))
and 6 April, 2036 (position A0 of Figure 6 b)).

In order to generate the departure and arrival dates for the porkchops,
the characteristics of each mission had to be considered. For the rendezvous
case, the departure time coincides with leaving the manifold orbit, while the
arrival date corresponds to the matching with the asteroid’s motion. The
reverse happens for the capture case. Given this, from their initial collection
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a) Rendezvous in the GVE-3B model b) Capture in the GVE-3B model

c) Rendezvous in the 2BP model d) Capture in the 2BP model

Figure 9: Contour plots of the ∆v cost as a function of departure and arrival transfer
dates (Year/Month/Day)

date, the ephemerides of each asteroid were propagated for a half-year period
(corresponding to the arrival and departure time intervals of the rendezvous
and capture missions, respectively). The manifold’s state was sampled for a
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Table 1: Detailed minimal ∆v solutions for the porkchop plots computed in the GVE-3B
model

Trajectory Rendezvous

Departure Date 2040/09/21
Arrival Date 2041/03/28

Departure State✝ r1.55E8,✁4.57E7,✁202.59, 7.74, 27.10,✁3.24E✁6s
Arrival State✝ r✁1.40E8, 6.17E7, 2.65E5,✁12.19,✁27.38,✁0.68s
∆v [m.s✁1] 680.61

Trajectory Capture

Departure Date 2036/04/06
Arrival Date 2037/01/19

Departure State✝ r✁1.18E8,✁1.01E8,✁3.05E5, 18.32,✁22.65,✁0.04s
Arrival State✝ r✁7.92E7, 1.30E8, 75.18,✁25.35,✁15.94, 4.54E✁5s
∆v [m.s✁1] 249.89

✝ Sun-centred inertial reference frame, [km, km.s✁1]

1-year period. The arrival dates were taken to be at most 2 years after the
latest departure date. In total, 10,000 Lambert arcs were computed, with
100 departure and 100 arrival points.

The contour plots indicating the transfer ∆v cost as a function of the
initial and final manoeuvre dates can be found on Figure 9: images a) and b)
depict the rendezvous and capture cases in which the arc connecting A to B is
computed in the GVE-3B framework, while c) and d) show the computation
using the 2BP. The Lambert arc optimisation allowed up to one revolution.

The optimal ∆v manoeuvres are marked with a red circle, and the de-
tails of the corresponding trajectories for the GVE-3B case can be found in
Table 1. The rendezvous trajectory yields a cost of about 681 m☎s✁1, while
the capture requires 250 m☎s✁1. The optimal values obtained with the 2BP
propagation are slightly different, as well as the optimal dates.

Preliminary Transfer Design: The ephemerides of points A and B were ob-
tained for both mission scenarios, corresponding to the points detailed in
Table 1. The same set of dates is used for the trajectories computed in
the 2BP, for an easier comparison. For each of these solutions, the Sims-
Flanagan-inspired approach was implemented.

In the GVE-3B model, the total ∆v for the optimal solutions was 865
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B0

B

a) Rendezvous with Asteroid 2017 SV19

B0

B

A0
A

b) Capture of Asteroid 2018 AV2

Figure 10: Trajectory segments in the Sims-Flanagan-inspired approach

A0

B0

a) Rendezvous with Asteroid 2017 SV19

B0

A0

b) Capture of Asteroid 2018 AV2

Figure 11: Final trajectories with control laws determined with the GVE-3B framework
(in red) and with the 2BP (in black), propagated with the CR3BP
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m☎s✁1 and 403 m☎s✁1, respectively for the rendezvous and capture cases. The
obtained trajectories can be found in Figure 10. Figure 10 a) contains the
rendezvous trajectory, from point A0 in the invariant manifold orbit to point
B0 of the nominal motion of 2017 SV19. Figure 10 b) depicts the capture
transfer starting from point A0 in the nominal motion of 2018 AV2 and
finishing at point B0 of the invariant manifold orbit. The purple arrows
indicate the small manoeuvres of the Sims-Flanagan-inspired approach, with
the red dashed line outlining the Lambert arc that connects patch points A’
and B’.

As detailed in the Step 3 of Section 4.2, two control laws for the transfer
part of the motion (A to B) were devised, using the Sims-Flanagan-inspired
approach and the multiple shooting method—again, one uses the GVE-3B
framework, while the other employs the 2BP.

Figure 11 shows the propagation of both control sequences with the base-
line CR3BP model. The trajectories that employ the GVE-3B control law
end up much closer to the target than the corresponding 2BP ones, something
particularly evident in the asteroid rendezvous case.

Optimal Control Solver: To study the convergence of the optimal control
problem, a preliminary analysis employing the optimal control solver GPOPS-
II was performed.

The optimal control solver uses the previously obtained trajectories from
A to B as a first-guess to achieve the desired motion in the CR3BP model.
The inputs of the solver are these trajectory states, the control history vectors
and the ephemerides of points A and B.

In practical terms, both the state and acceleration vectors are first dis-
cretized into 200 points each. These are then used by the GPOPS-II opti-
mizer; in this implementation, the objective was only to have the state vector
converge to target point B within a 1 km error radius; no minimization of
acceleration was considered and no other constraints were imposed, such as
maximum thrust or spacecraft’s mass. This choice intended to make the
convergence faster and highlight the importance of the first-guess inputs.

Figure 12 details the first-guess control histories and the GPOPS-II so-
lution for each of the previously determined control laws (computed in the
GVE-3B and 2BP). When compared to the first-guesses, the trajectory seg-
ments can be easily distinguished. In the cases of Figures 12 b), c) and d),
where the multiple shooting phase leads to acceleration peaks, the solver
returns a solution that smooths them out.
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a) Control law for rendezvous in the GVE-3B model
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b) Control law for capture in the GVE-3B model
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c) Control law for rendezvous in the 2BP model
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d) Control law for capture in the 2BP model

Figure 12: Acceleration norm throughout the transfer from A to B

Final Considerations: The ∆v solutions found at each of the Steps in this
preliminary mission design are summarized in Table 2.

The optimal control solver converges easily for the GVE-3B and 2BP
control laws, with a similar number of iterations—however, the solution of the
former model is more optimal in terms of total acceleration. In the capture
case, the final GVE-3B control law yields a ∆v of only 362 m.s✁1, compared to
the 884 m.s✁1 of the 2BP solution. The difference is not as pronounced in the
rendezvous case, since the performance improvement generated by employing
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Table 2: ∆v solutions for each of the steps in the trajectory design, from the porkchop
computation (Step 1) to the optimal control solver (GPOPS-II).

∆v✝ Step 1 Step 2 Step 3 GPOPS-II

Rendezvous GVE-3B model 680.61 864.83 916.73 857.86
2BP model 680.62 906.85 1311.38 954.18

Capture GVE-3B model 249.89 403.41 505.03 361.68
2BP model 303.69 381.71 451.03 883.78

✝All of the trajectories start and finish at the A and B dates found to be the best
solution of the GVE-3B porkchop plot, in Table 1

the GVE-3B model will depend on how close the trajectories move in regards
to the Earth, and for how long they are propagated.

Furthermore, although no constrains were included for the hypothetical
spacecraft used, the maximum acceleration showcased in the GVE-3B control
law is adequate for a ship with similar specifications to that of BepiColombo6,
pointing towards the feasibility of a possible mission even without further
trajectory optimizations.

The trajectories presented intend to showcase the usage of the GVE-
3B framework for mission trajectory design as a valuable model to study
motions under a third-body perturbation. Since the goal was to highlight
the model of motion, the trajectory design was simplified in some respects.
For instance, the setting up of optimal control solver parameters and cost
function can be more detailed and actively try to minimize the total mission
acceleration. Future implementations could see the first-guess improved by
having the multiple shooter be used throughout the entire motion, so that a
smoother control is attained. In addition to this, it is clear that fixing the
departure and arrival dates of the first-guess and optimal control solvers is a
very strict constraint that prevents finding even better solutions. Still, it is
shown that the GVE-3B equations allow the generation of control laws that
are substantially more accurate when propagated in high-fidelity dynamics.

6https://sci.esa.int/web/bepicolombo/-/47346-fact-sheet
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6. Conclusions

This paper presents a novel formulation of the third-body perturbation,
ideal for a GVE approach to the propagation of trajectories within low-
energy regions and subject to low-thrust propulsive accelerations. This is
especially useful for mission design in low-energy regimes, where the simul-
taneous perturbation of both primaries cannot be approximated by a lower
fidelity method like the 2BP.

The nature of the GVE equations makes them very advantageous for
low-thrust trajectory design. Particularly, their formulation in Keplerian
elements provides an intuitive observation of the trajectory evolution and
an easy definition of boundaries and constraints, facilitating the set up and
convergence of the optimal control problem solver. Thus, its utilisation for
preliminary mission design can be extremely valuable, providing important
insights into the time evolution of the orbital elements.

The developed equations of motion are valid for planetary systems with
gravitational parameters of orders of magnitude similar to the Sun-Earth
one. This makes them ideal for the computation of low-thrust trajectories
for asteroid capture or rendezvous missions to the libration points, since the
trajectory design can target low-energy invariant manifold structures very
close to the periodic orbit.

Future work may consider the improvement of the preliminary trajectory
design techniques presented in this paper. One idea would be to further
minimize the mission ∆v costs by picking out optimal libration point orbits
(LPOs) and connected manifold orbits (i.e. closer to the asteroids’ energy),
instead of the generic L2 point. Another would be to free the times corre-
sponding to each manoeuvre instead of having them fixed, which may be
sub-optimal for the final solution, as low-thrust trajectories are generally
slower than impulsive ones.

With respect to the GVE-3B framework, it is also envisaged to integrate
it with multiple planetary systems to perform trajectory design for Jovian
or Saturnian moon tours. Furthermore, given the existence of singularities
for the inclination and longitude of the ascending node elements in the GVE
equations, an application of modified orbital elements can be considered.
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Appendix

A - Jacobian of the State Transition Matrix for the GVE-3B model

The Jacobian of the STM for the GVE-3B model takes the form of Eq.
(27). The size of Df♣s♣tqq3B is 9x9 instead of the commonly found 6x6, since
it includes the acceleration component on the state vector, as required by the
multiple shooting scheme presented in this work.

Df♣s♣tqq3B ✏

✔
✖✖✕

03x3 I3x3 03x3

R❈
✁1

I A3B 03x3 I3x3

03x3 03x3 03x3

✜
✣✣✢ ,A3B ✏

✓❇xax ❇yax ❇zax❇xay ❇yay ❇zay❇xaz ❇yaz ❇zaz

✛

(27)

where ❇βaα (α P tx, y, z✉ and β P tx, y, z✉) are the first partial derivatives of
the accelerations tax, ay, az✉ presented in Eq. (18). These are expanded into
the following:

❇xax ✏ µ

✂
3♣x✁ 1q2

r53
✁ 1

r33
✁ 15x3

r7
� 9x✁ 3x2

r5
� 1

r3

✡

❇yax ✏ ✁3yµ

✂
1✁ x

r53
� 5x2

r7
✁ 1✁ x

r5

✡

❇zax ✏ ✁3zµ

✂
1✁ x

r53
� 5x2

r7
✁ 1✁ x

r5

✡

❇xay ✏ yµ

✂
3♣x✁ 1q

r53
� 3� 2x

r5
✁ 5x♣3x� r2q

r7

✡

❇yay ✏ µ

✂
3x� r2

r5
✁ 1

r33
� 3y2

✁ 1

r53
✁ 5x� r2

r7

✠✡

❇zay ✏ 3yzµ

✂
1

r53
✁ 5x� r2q

r7

✡

❇xaz ✏ zµ

✂
3♣x✁ 1q

r53
� 3� 2x

r5
✁ 5x♣3x� r2q

r7

✡

❇yaz ✏ 3yzµ

✂
1

r53
✁ 5x� r2q

r7

✡

❇zaz ✏ µ

✂
3x� r2

r5
✁ 1

r33
� 3z2

✁ 1

r53
✁ 5x� r2

r7

✠✡
(28)

where r3 ✏
❛
1✁ 2x� x2 � y2 � z2.
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B - Transformation between Coordinate Frames

The rotation matrix from the inertial Cartesian frame to the Earth-
pointing frame is given by:

R❈I ✏
✓
cos♣t� ν❈0

q ✁ sin♣t� ν❈0
q 0

sin♣t� ν❈0
q cos♣t� ν❈0

q 0
0 0 1

✛
(29)

The rotation of the LVLH frame to the orbital plane frame is done using
Eq. (30). Eq. (31) converts vectors from the orbital plane to the inertial
reference frame, complying with the definitions in Battin (Battin, 1999).

R
eph
rθh ✏

✓
cos ν ✁ sin ν 0
sin ν cos ν 0
0 0 1

✛
(30)

RI
eph ✏

✓
cosΩ ✁ sinΩ 0
sinΩ cosΩ 0
0 0 1

✛✓
1 0 0
0 cos i ✁ sin i
0 sin i cos i

✛✓
cosω ✁ sinω 0
sinω cosω 0
0 0 1

✛
(31)
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