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ABSTRACT 

Predictive maintenance is increasingly advancing into the aerospace industry, and it comes with 

diverse prognostic health management solutions. This type of maintenance can unlock several 

benefits for aerospace organizations. Such as preventing unexpected equipment downtime and 

improving service quality. In developing data-driven predictive modeling, one of the challenges that 

cause model performance degradation is the data-imbalanced distribution.  The extreme data 

imbalanced problem arises when the distribution of the classes present in the datasets is not uniform. 

Such that the total number of instances in a class far outnumber those of the other classes. Extremely 

skew data distribution can lead to irregular patterns and trends, which affects the learning of 

temporal features.  This paper proposes a hybrid machine learning approach that blends natural 

language processing techniques and ensemble learning for predicting extremely rare aircraft 

component failure. The proposed approach is tested using a real aircraft central maintenance system 

log-based dataset.  The dataset is characterized by extremely rare occurrences of known unscheduled 

component replacements. The results suggest that the proposed approach outperformed the existing 

imbalanced and ensemble learning methods in terms of precision, recall, and f1-score. The proposed 

approach is approximately 10% better than the synthetic minority oversampling technique. It was 

also found that by searching for patterns in the minority class exclusively, the class imbalance 

problem could be overcome. Hence, the model classification performance is improved.  
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Nomenclature 

Aircraft Communications Addressing and Reporting System             ACARS 

Aircraft Condition Monitoring System     ACMS 

Aircraft Functional-Item Number       FIN 

A330 –Long-Range Aircraft Family      LR  

A320 -Single-Aisle Aircraft Family      SA  

Built-in test Equipment       BITE  

Central Maintenance System        CMS 

Electronic Control Unit/ Electronic Engine Unit    4000KS 

Fault Detection, Diagnostics, and Prognostics     FDDP 

Flight Warning Computers       FWCs 

Flight Deck Effect         FDE 

High-Pressure Bleed Valve        4000HA 

Imbalanced Ratio         IR 

Line Replacement Unit        LRU 

Natural Language Processing       NLP 

Pressure Regulating Valve        4001HA 

Synthetic Minority oversampling Techniques     SMOTE  

Term Frequency–Inverse Document Frequency     TF-IDF 

The Air Transport Association       ATA 

Satellite Data unit        5RV1  

Trim Air Valve        438HC 
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1. INTRODUCTION 

Airlines are increasingly concerned about the availability and reliability of assets and services. Most 

of them rely on scheduled maintenance to ensure that equipment is operating correctly in order to 

avoid unplanned breakdowns. Such types of maintenance are usually carried out on independent 

targeted components based on its usage without considering the relationship of components working 

together and influencing each other’s lifetime. Moreover, this type of maintenance is labour-

intensive and ineffective in identifying and predicting failures, especially in a complex system such 

as aircraft.  In contrast, predictive maintenance help in identifying anomalous behaviour from an 

extensive historical failure data and turn it into meaningful, actionable insights for proactive 

maintenance – preventing downtime or accidents. This type of maintenance provides an intelligence 

forecast when or if equipment will fail, so its maintenance and repair can be scheduled before the 

failure occurs. Predictive maintenance requires having the working knowledge of the equipment, 

and this can be achieved by installing sensors to record and monitor target variables. So that alerts 

are triggered when there is a violation of the defined threshold settings. This approach can 

sometimes be an effective solution in a simple system. However, it is unfeasible in a complex system 

since adding sensors to all components is unfeasible, especially in a large fleet, which is cost-

intensive and potential regulatory challenges.  

Furthermore, Fault detection, diagnostics, and prognostics (FDDP) have a huge potential to improve 

aircraft operational reliability and stability since the main aim of FDDP is to minimize losses while 

ensuring the safety of equipment and reduce the risk of unplanned breakdowns [1]. FDDP involves 

detecting the occurrence of fault as early as possible, classifying the fault type accurately, and 

predicting the next occurrences of such a fault. FDDP models are designed to detect anomalies of 

critical components by analyzing historical data to provide actionable alerts to the operators[2]. 

Since the operational and maintenance datasets generated by modern aircraft have become much 

larger as both the number of samples and the dimensionality increased. Therefore, implementing 

the traditional model-based and knowledge-based approaches are becoming too difficult [3]. 
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Moreover, finding abnormal patterns in a large log-based data is extremely challenging due to the 

complex non-linear relationships among the components process and sub-systems. Component 

failure resulting in unplanned breakdowns rarely occur during stable operation.  The rare occurrence 

of component failures creates skewness or imbalanced distribution in the generated dataset [2], [3]. 

The imbalanced data problem has shown to degrade the performance of data-driven models causing 

unreliable prognostics [4], [5]. The aforementioned challenges have motivated more research in the 

application of data-driven prognostics for conditioned-based maintenance in the aerospace industry 

[6].  

In recent times, most of the predictive maintenance deployed in the aerospace industry are trends of 

modelling of some specific data features such as vibration, pressure, and exhaust gas, etc., which 

are more concentrated on the engine and auxiliary power unit [7], [8]. Whereas, considering 

predictive modelling at the system level is more efficient because the model will be able to capture 

the working relationship between components. Therefore, equipment failure logs are fruitful sources 

of information both for diagnoses and prognostics. However, intensive data pre-processing is 

required to harness valuable pieces of information. The recent technological advances have made 

equipment to operate through software applications. For example, modern aircraft are incorporated 

with advanced technology such as monitoring sensors and various aircraft communication systems 

(such as ACARS, ACMS) [9], which generates more extensive datasets. This application produces 

records of their operations, which includes some pre-defined parameters, failure messages, and other 

valuable target variables representing failures detected during the last operations—exploring such 

large historical record help in detecting an impending issue in advance.  Therefore, relying on these 

flight failure records to develop predictive modeling for asset health management is a promising 

technique. That is, the application of advanced analytics to anticipate maintenance needs in order to 

avoid the risk associated with service disruption [10].  

Furthermore, building a predictive model from aircraft central maintenance system CMS data 

(which is the record of failure messages) in the total absence of digital sensor data measurements 
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poses many challenges that are not yet fully explored. Many problems arise from learning with 

textual-based datasets. The first problem concerns the multidimensional data treading to be able to 

identify patterns leading to the component replacement. The second problem is mining patterns from 

random failure messages generated from different aircraft in a fleet [11]. The third problem is the 

inherent imbalanced distribution in the dataset. For instance, most of the failure messages in the 

CMS data are related to component replacement due to planned maintenance or not-fault-found 

while the minority are related to unplanned component replacement (that is the real unplanned 

replacements which is our target in this study).   

The imbalance classification problem or rare event occurrence is prevalent in many real-life 

application domains. For instance, detecting fraud in a credit card transaction, where most 

transactions are legitimate, and few are fraudulent. The fraudulent minority transactions are more 

important to predict than the legitimate majority because if any fraudulent transaction goes 

unnoticed, the consequences can be grave [12]. Likewise, in clinical diagnosis where most patients 

can be healthy while a few diagnose to have a certain rare disease [13]. The costs of misclassifying 

infected as healthy cannot be tolerated because of the high risks of deterioration and fatality. 

Similarly, Imbalanced classification can also be applied in aircraft predictive maintenance 

modeling, where most of the generated failure messages represent false alarm or no fault found, and 

the minority represents the real faults that resulted in component replacement. The problem of 

imbalanced data in aircraft predictive maintenance modeling using log-based CMS failure messages 

is that component failure rarely occurs, which creates imbalanced distribution in the generated 

dataset. In some cases, the ratio between class in the dataset can be as high as 10000:1, which is 

known as an extreme imbalanced problem [14]–[16].   Moreover, identifying patterns and learning 

from extreme imbalanced datasets increases classification challenges in machine learning.  Hence, 

an improved method of accurately recognizing the minority class instances is required process [17], 

[18].  
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Several research approaches have been conducted to solve the imbalanced classification problem. 

The solution for the imbalanced classification problem can be categorized into three main 

groups; the data level, the algorithm level, and the hybrid approach see Figure 1. The data level 

approach involves re-sampling the dataset before presenting it as an input to the learning algorithm. 

The algorithm level approach tackles the imbalanced data problem by modifying the traditional 

machine learning algorithms to respond favorably to both classes during learning [19]. The hybrid 

method combines two or more algorithms or data level approaches to achieve better performance. 

Although imbalance classification problems have been extensively researched [20], [21], the open 

literature lacks an exhaustive unified solution to handle the problem for predictive modeling 

generally. Hence, it is still an open area of research. Therefore, this study aims at developing an 

actionable prognostics model, which will enable the anticipation of unscheduled maintenance 

activities relating to aircraft functional items replacements, which can be achieved by identifying 

predictive signatures in the CMS failure messages. Secondly, to provide a suitable approach to 

handle the rare occurrence of unplanned component replacements. 

The main advantage of our proposed approach over other state-of-the-art log-based rare failure 

prediction techniques are.  Firstly, we propose a novel hybrid model that blends natural language 

processing techniques and ensemble learning for predicting rare aircraft component failure using 

imbalanced textual log-based data. The model is based on a log-based pattern identification 

technique, which involves transforming and integrating well-known natural language processing 

techniques (the TF-IDF and Word2vec) and ensemble learning for pattern identification and 

classification. It uses log-based aircraft central maintenance system data, which is not often, use for 

predictive maintenance modelling. In Addition, our approach helps in tackling the extreme 

imbalanced classification problem by searching for patterns exclusively in the minority class, which 

improves model performance.  In predictive maintenance, a state-of-the-art ensemble-learning 

algorithm is adapted as a base classifier; we also show how unscheduled maintenance can be 

mitigated using reliable and robust prognostic models.  
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This paper is structured as follows; in section 2, we present related work and description of the 

datasets. Section 3 explains the methodology and the proposed approach. Section 4 presents the case 

study and experimental setup and discuss the result. Finally, conclusions and future work are 

presented in section 5.   

2. RELATED WORK 

The use of the system’s operational logs is well studied in different application domains [22]. Each 

application domain has its specific requirements that have an impact on the design and development 

of the corresponding solution. Some researchers have focused on log data for troubleshooting and 

anomaly detection solutions [23], [24]. Other application domains that have practically shown its 

use are computer hard-disk failure prediction [25], [26], medical equipment failure [27], [28], and 

many more [29].  System failure-messages obtained from logs can also be used to understand the 

behaviours and common failure patterns of equipment. The most closely related work to our 

approach is failure-messages-based machine learning modelling.  Li et al. [30], provides an 

approach for mining system log files. The authors attempt to provide a way of understanding and 

categorizing common failure patterns that resulted in system failures. Similarly, Tanguy et al. [31] 

show the application of  NLP in mining text-based aviation incident reports data to identify future 

threats. However, they did not go further to show how such failure can be predicted in order to 

prevent its future occurrence.  Similarly, the use of aircraft data has been used for modelling. For 

example, Korvesis et al. [32], use aircraft post-flight report data to developed an event failure 

prediction system via multi-instance regression. In contrary, we focus on classification and finding 

a solution to the rare occurrence of failures instead of regression. Another closes work which uses 

the aircraft CMS dataset to develop the predictive model is Nicchiotti et al. [9],  the authors 

transformed Eigen-face and principal component analysis method which is adapted from image 

processing, they classify their model using Support Vector Machine (SVM). In our study, we 

explore a different approach, which is the use of natural language processing techniques to identify 

patterns related to aircraft component failures. Likewise, Yan et al. [33], proposed a predictive 
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model to predict faults with high priority in advance by exploring the historical data of aircraft 

maintenance systems. The authors did not take into consideration the problem of the rare failure 

occurrence, which is part of our focus in this study. Their study also considers single aircraft instead 

of the fleet.  Analysing fleet data can be more challenging; therefore, our methodology considers a 

fleet-based approach instead of a single aircraft. Verhagen et al. [34]  develop an approach to reduce 

unscheduled maintenance by focusing on identifying operational factors affecting component 

reliability. The research uses a statistical data-driven approach and, the authors applied a 

proportional hazard model on aircraft operational and maintenance datasets. Although their work 

uses an aircraft operational dataset, which is closely related to the one used in our study. However, 

our approach focuses on the application of machine learning.   

Another related category for predicting failure from log-based data is the rule-based expert system 

[35], [36]. In this type of approach, preconditioned rules are defined; the rules are then marched 

against the input data. If the predefined condition is met, a failure alert will be triggered. The rules 

are mainly defined by domain experts, not through data mining. Vilalta et al. [37] described the use 

of a rule-based approach to detect patterns in the sequence of events. In practice, rule-based 

approaches are more effective for a small and simple system. Its application in a large and complex 

system is quite challenging and, in some cases, impractical because domain experts need to 

continually update the rules in the event of any upgrades or changes, which is cumbersome.    

Another related category for processing log-based data is the application of sequential pattern 

mining [38], [39], which is mainly about extracting interesting, useful, and unexpected patterns 

across sequential data using a statistical approach. Many studies have shown the applicability of 

using text sequence mining for failure prediction in a complex system [40]–[42]. We explore the 

sequence mining techniques and find out that applying sequence pattern mining alone is not suitable 

for our problem because of the rare occurrence of unplanned aircraft component replacement.  

Although there are many existing approaches in the literature, some are suitable for solving failure 

prediction in specific types of equipment. Hence, the particularities of our data limit us from using 
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out of the shelf approach. Our approach differs from the aforementioned approaches in many 

aspects. We proposed a new approach of pre-processing the aircraft central maintenance log-based 

data. In addition, the new approach provides a solution to the imbalanced classification problem, 

which enhances the model performance. Finally, the proposed hybrid machine learning technique 

for aircraft component replacement prediction is developed.   

Our approach applies a unique combination of TF-IDF and Word2Vec notions from the NLP for 

extracting patterns and categorization of failure messages into common failure.  Considering a text-

based aircraft CMS failure messages, sets of patterns in each segment is considered as a document, 

and each pattern is considered a word. TF-IDF help in pruning out unproductive and redundant 

patterns, while Word2Vec is used to find the most relevant documents related to the target 

component it also helps in converting words into a vector of numbers. This approach improves 

categorization accuracy by considering the temporal characteristics of CMS failure messages to 

provide overall performance improvement (reduce false positive, increase prediction recall, and 

precision). As system failures tend to occur very rarely; therefore, the approach also includes a 

solution to the rare occurrence of target failures by searching for patterns exclusively in the minority 

class. 

3. METHODOLOGICAL APPROACH  

This section describes the methodology used in this study. 

As seen in Figure 2, the traditional machine learning framework is divided into three phases. The 

pre-processing phase, the model training, testing and validation phase, and the model deployment 

phase.  In building a machine-learning model from any data source, one must often deal with the 

fact that data are imperfect. Therefore, we ensure data quality, by cleaning the data, which involves 

correcting outliers, handling missing values, and aggregating impossible combinations, before 

carrying out any further analysis. This is necessary because jumping into analyzing data that has not 

been carefully screened for such problems can produce misleading results [43]. Secondly, we 
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carryout feature engineering to select the best predictors for our problem, at this stage, the datasets 

are merged, and the right features that best describe our target components are selected using the 

feature engineering process. The aircraft operational log data contains timestamp and flight circle 

numbers, which makes it easier for creating windows lags. The third step in the data pre-proceeding 

phase, which involves identifying component failure patterns and trends. We focus on the 

component replacement that occurs due to unplanned maintenance. We aim to find the best 

framework for processing time-series, log-based datasets with rare failures. With a focus on 

addressing the imbalanced classification problem, to improve the performance of the base learning 

algorithm.   

3.1 Problem description:  

We formally describe the log-based rare failure prediction problem as follows. Given a functional 

item number ��� of a particular aircraft family �, with rare failure occurrence. Using a log-based 

failure messages ���(�) collected from a fleet, can we infer the probability of its replacement��(�)  

within a time window �.  This problem can be solved using machine learning; hence, we consider 

it as a binary and multiclass classification problem for predicting aircraft functional item failure 

with a given period �. The training data contains predictive features extracted from the log of failure 

messages obtained from a fleet of civil aircraft. The failure labels are provided from the actual 

aircraft maintenance record.  Note that our solution is targeted at specific functional items 

replacements, not a generic replacement. In addition, the targeted functional items are extremely 

rare, and our goal is to develop a model that can overcome the challenge of rarity while making 

predictions.   The main aim of the prognostic system is to adequately provide failure alerts early 

enough to give maintenance engineers enough time to deal with the problem before it actually 

occurs. Also, the alerts should not come too early to avoid component wastage due to premature 

replacement. Therefore, the prediction window needs to be defined using domain expert knowledge. 

In this study, a prediction window is defined as; at least two flights and no more than ten flights in 

advance. In defining the imbalanced problem, we consider the dataset to be imbalanced if the 
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imbalanced ratio (IR) between classes is approximately 5% to 30%. If IR is less than 5%, we 

consider it to be an extremely imbalanced problem. Finally, our prediction aim is, for each selected 

Functional Item Number (FIN), we target to achieve at least 50% prediction of unscheduled 

maintenance 

3.2 Implementation of the proposed approach 

This section discusses the implementation of our novel approach. The approach can be applied in 

multivariate time series, text-based, and imbalanced datasets. Therefore, the raw aircraft  

CMS raw is sequential in time series format, and the flight cycles are also in sequence. The failure 

messages are text-based. Likewise, the record of unplanned components replacements is rare in the 

dataset. This specification makes it suitable to test our approach. We also focus on solving the 

extreme imbalanced problem to enhance the reliability and performance of data-driven models.  

Thus, producing improved predictive models that will mitigate the risk associated with unscheduled 

maintenance.   

We use natural language processing and time series analysis techniques to identify trends and 

patterns. As shown in Figure 3, a combination of natural language processing -Term Frequency-

Inverse Document Frequency (TF-IDF) and word2vec method is applied to detect patterns and 

trends of target components. To handle the infrequent occurrence of component replacement in the 

flight dataset, we made some assumptions. Such as aircraft components replacements are 

characterized by categorical and text-based features and occur in an uneven-intervals. Secondly, we 

also assume that target components are less represented (highly infrequent). Therefore, we develop 

our model to search for all patterns preceding each target component exclusively to predict the next 

replacement. To achieve that, we transform the TF-IDF and word2vec technique to evaluate the 

importance of each failure or error message [33], [44]. TF-IDF is a machine learning Natural 

Language Processing (NLP) word embedding technique that weighs words in text mining [45]. This 

technique provides us with the representation of text in a coordinated system where related error 
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messages, based on the corpus of relationships, are placed closer together.  It helps us also to filter 

out un-related failure messages. The TF-IDF consists of two parts namely, 

1. TF- Term Frequency: which calculates the frequency of word appearance in a document. If a 

given term is � 

 ∴  ��(�) =  
����           (1) 

Where �� is the total number of times � appear in a document and ��  is the total number of terms in 

the document. 

 

2. IDF- Inverse Document Frequency:  which measures the importance of each term in the 

document.  ∴  ���(�) = ��� ����            (2) 

Where,  �� is the total number of documents that contain term � and �� is the total number of 

documents 

Putting it all together ⇒ �� − ���(�) = ��(�). ���(�)        (3) 

Therefore, implementing the above approach, we denote document to be each window in the dataset, 

and term � to be target component and failure messages represent words.  For instance, let �� be the 

first component replaced due to unplanned breakdown of equipment, �� for second replacement and �� for third and so on. Let alphabet (A, B, C, etc.) represent the failure messages. Therefore, all 

failure message in a window, which precedes each replacement, constitute a pattern and is 

represented as follows. ��   ABC, YZP, PPB…. ��   XYZ, AEP, CDB…. ��   CDA, EDM, OPN…. 
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We then identify the pattern for each �� within that window. For instance, looking at Figure 3, W1 

= {��: (ABEG), ��: (ECDB), ��: (GBED), ��: (DEAB)}.  We then find all patterns that are related 

to each target component replacement � across all the datasets. Finally, the extracted patterns are 

then used to train the model.  

Therefore, during model training, taken for example, all failure messages related to  �� are identified 

and all the possible combinations of failure messages related to  �� are created, which produces 

more new different patterns. This is done to increase more patterns that are related to each 

replacement, which will contribute to addressing the imbalanced problem. The combination and 

creation of new patterns are achieved using bootstrapping techniques. To avoid the overfitting 

problem, we use select with replacement approach.  

Furthermore, the model is developed to flag-up component replacement prognostic alert when a 

pattern is detected.  The features, such as date-time and flight cycle numbers, play a vital role in 

defining when in advance, the model should flag up prognostic alerts.  

Furthermore, our pattern recognition strategy is similar to the one developed by Vilalta et al. [37]. 

However, our approach differs in the learning strategy instead of using the rule-based model; we 

make use of supervised learning (classification technique) to build a data-driven model. The 

imbalanced classification problem is overcome by searching for patterns on the minority class 

exclusively. The strategy is shown in Algorithm 1. In addition, having known the patterns. The next 

step is we represent the features into a vector space using the word2vec method. Prior to that, 

categorical features are handled using the one-hot-encoding technique [46].  As shown in Figure 3, 

all the terms in the pattern are selected and then converted into a vector space dimension. To 

illustrate, considering the windows �� and patterns ��� … leading to components replacement� ��. ��= ABEG�� −CBDE�� −DEAB�� −EDCB�� 

��= AEDB�� −BEAG�� −CDCB��-DEBC�� 

��= EDCB�� −ABEG�� −EDBC�� −CBDE�� 



 14

Using TF-IDF and word2vec approach to identify all failure messages related to each target 

component replacement.  

������� ����������� = �(�)   �                           1,   �� � ������ �� ������ 0, ��ℎ������   (4) 

Where �(�)  represents the term frequency of patterns of failure messages leading to each 

component replacements. All corresponding replacements in each window are then sum up. tf (t,w) 

is the total number of patterns present in each window. 

The inverse document frequency measures how much each failure message provides in relation to 

components replaced in each window. That is if it is common or it is rare across all windows. 

��� (�, �) = ��� �
|{� ∈�:� ∈�}|

                   (5) 

 Where N is the total number of failure messages in a window N = |�|, and  |{� ∈ �: � ∈ �}|, 

number of windows where term t appears.   

Therefore �� − ���(�, �, �)  =  ��(�, �). ���(�, �)            (6) 

We then create our feature victor using the following equation.  

�����������⃑ = ��(��, ��), ��(��, ��), ��(��, ��), … , ��(��, ��)         (7) 

Using continues bag of words strategy in word2vec, each dimension of the feature vector is 

represented by the pattern, for example, ��(��, ��) represents the frequency of term 1. For example, 

using equation 4 and Table I, patterns for window 1 to 3 are represented as victors as follows: 

����������⃑ = ��(��, ��), ��(��, ��), ��(��, ��), ��(��, ��), … , ��(��, ��) 

����������⃑ = (2,1,1 … n) 

����������⃑ = ��(��, ��), ��(��, ��), ��(��, ��), ��(��, ��), … , ��(��, ��) 

����������⃑ = (2,1,1 … n) 

����������⃑ = ��(��, ��), ��(��, ��), ��(��, ��), ��(��, ��), … , ��(��, ��) 
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����������⃑ = (1,1,1 … n) 

The resulting vectors show that window one  ����������⃑ = (2,1,1 … ) has two patterns that prompt replacement of the component  �� , one pattern 

for ��, and one for ��   We then represent it in a general matric with the shape |�| ∗ �  where |�| is 

the cardinality of the feature vector space in each window, and � is the total number of pattern 

vectors. 

�|�| ∗ � = �2 1 1 … n

2 1 1 … n

1 1 1 … n

1 2 0 … n

� 
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3.2 Algorithm 1: Detecting patterns and trends of target components   

 Find the pattern of failure message preceding the target component within a given 

fixed window.  

 Carry out validation of characters that uniquely identify the target component. 

 Combine the characteristic to build a data-driven predictive model. 

The pseudocode:  

INPUT: 

 Imbalanced time series dataset  

{ 

F = Sequence of failure messages  

fm =failure message  

W = window size 

r = Target replacements  

T= Time 

} 

OUTPUT:  P = Pattern for Target Replacement 

TARGET_PATTERN ( F, W, r, T) 

Step 1∶ Get the Data D 

Initialize variables G= 0, H=0  

Define window size W 

Step 3: loop through the series of event in each W to identify a component 

 replacement. 

 FOREACH  F,   ��(�) = ( ��, �� ) ∈ �   

  (where �� = ������� ����) 

Step 4:  Identify a pattern preceding the component replacement. 

  FOREACH F,  ��(�) = ( ��, �� ) ∈ � 

   If (������� ���� −  ��) > W ; Remove ��(�) from H 

  END  

Step 5: Generate a pattern for each event that occurs together, leading to the 

             replacement of the component.  

  IF ��(�) is a target replacement  

   G = G ∪ {��| ��, …} 

   H ∪ ��(�) 
  Invoke Aprior Algorithm[51] on G  

 END 

Step 6: Next window: Go-to step 3 

Use TF-IDF and Word2Vec on G to find all related pattern P 

Step 7: Output P  
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Algorithm 1 transverse through the sequence of failure messages, which is in time-series 

format. The algorithm store patters of failure messages related to each target functional item 

failure in memory. The identified patterns are then used for fault prediction.  

4. CASE STUDY  

This section describes the case study and the experimental setup. 

Data Description: This study uses more than seven years’ worth of data. The datasets are 

collected from two databases. The first database is the aircraft Central Maintenance System 

(CMS) data, which comprises of error messages from BIT (built-in test) equipment (that is 

aircraft fault report(s) record) and the flight deck effect (FDE). These messages are generated 

at different stages of flight phases (that is take-off, cruise, and lading). The second database is 

the logs of aircraft maintenance activities -that is, the comprehensive description of all aircraft 

maintenances recorded over time. These databases are associated with a fleet of civil aircraft. 

In aircraft, the main purpose of CMS is to facilitate maintenance activities by directly alerting 

fault message, that can be used by pilots and maintenance engineers; to at the main base- 

perform troubleshooting or at the line stop level -perfume component removal[47]. The 

primary function of aircraft CMS is to acquire, and store messages transmitted by the connected 

system Built-In Test Equipment (BITE) or by Flight Warning Computers (FWCs) as seen in 

Figure 4. 

Generally, in aircraft, sensors, and monitoring systems are install and configured to monitor 

components. Based on the configured rules, failure messages are generated when there is a 

violation of any configured rules. As explained in Airbus training manuals [48], each time a 

fault is detected and isolated, a failure message is generated by system BITE. The message is 

memorized in the BITE memory and transmitted to the CMS. Each failure message is made up 

of 48 characters long, which is composed of a faulty line replaceable unit (which is made up 
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of one or more parts depending on the type) and ATA 6-digit reference number. A message 

might contain several Line Replacement Unit (LRU), but only one suspected element is faulty. 

Each message syntax is of the form B-FIN-BUSNAME; B (Most probable suspected 

component) – FIN (Functional Item Number) – BUS NAME (complementary information) as 

seen in Figure 5.    

All the CMS failure messages are recorded in a logbook. Based on the failure messages, 

unplanned maintenance can be scheduled for the malfunctioned items.  After the maintenance, 

the engineers update maintenance records with the repair details. The maintenance record 

provides detailed information about each component or item replaced (such as date of repair, 

part identification number, and time spent on troubleshooting, etc.). In this study, the CMS log 

data is collected from a fleet of civil aircraft over seven years. The data is unique in many 

aspects; It is temporal, and it can be seen as numeric time-series or symbolic sequence with 

features extracted from failure message or with event occurrences over some segments or 

window period. It contains categorical values, both text and numerical, as in the case of failure 

source, failure type, and ATA number. The old traditional approach to predictive maintenance 

using this type of data is to use experience domain experts to examine the historical failure 

message to identify abnormalities.  Then based on such observation, predictive patterns will be 

manually formulated for a targeted functional item using some pre-conditioned rules. Such an 

approach is highly expert experience-based and time-consuming. However, such an approach 

provides an important concept that system failure can be predicted by analysing its historical 

failure history. The concept motivates this study and serves as bases for our problem 

formulation. So far, the CMS data have only been used for short time troubleshooting, anomaly 

detection, Line Replacement Unit (LRU) removal, and system failure analysis or test, no much 

work have been found to use this type of data for building predictive maintenance models.  
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Validation: to validate the performance of predicting aircraft components failure from 

imbalanced log-based data with the proposed approach. We modelled it in two categories, 

binary classification, and multi-class classification.  In the first scenario, we modelled it as a 

multi-class classification problem that is predicting all the targeted component failure at the 

same time. Secondly, we modelled it as a binary classification problem that is predicting 

individual functional items. In both instances, we use ensemble-learning algorithms as base-

classifier. We choose to evaluate the approach using ensemble learning because of its capability 

of combining more than once classifiers to achieve better results, which has an advantage over 

a single classifier, especially in a skewed data distribution context.  To evaluate the model in 

terms of imbalance classification, we compare our proposed approach with the existing 

synthetic minority oversampling technique (SMOTE). 

As shown in Table I, the data is group into two categories representing different types of aircraft 

in the fleet. The A330 –long-range (LR) and the A320 -Single-aisle (SA) aircraft.  The dataset 

ranging from the year 2011 to 2015 is used for training the model, while from 2016 to 2018 is 

used for testing. After the pattern identification-using algorithm 1, the resulting dataset is then 

divided into two (for training and testing). Data ranging from the year 2011 to 2015 is used for 

model training, while from 2016 to 2018 is used for evaluation and testing.   

The effectiveness of the proposed approach was demonstrated on the log-based CMS dataset. 

For each aircraft family, we choose a target functional item Number (FIN) of high practical 

value with an adequate number of known failure cases.  We select out of many, the following 

aircraft functional items to be used in the experiment. The target components selected for this 

study are based on some group of common failures in an aircraft subsystem that happens with 

a frequency of 0.1 - 1% over some time.   
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LRU for A330 –long-range (LR) aircraft family: 4000KS - Electronic Control Unit/ 

Electronic Engine Unit,  4001HA – Pressure Regulating Valve, 5RV1 – Satellite Data unit, and 

438HC – Trim Air Valve. 

LRU for A320 -Single-aisle (SA) aircraft family: 11HB – Flow control valve, 10HQ - 

Avionics equipment ventilation computer, 1TX1 - Air traffic service unit, and 8HB - Flow 

control valve 2.   

Imbalanced Ratio (IR): In the A330 aircraft family, the size of the training dataset is 360575, 

and the A320 family size is 389829. The frequency of functional items replacement emanating 

from unscheduled maintenance is as follows. In the A330 aircraft family, 4001HA is replaced 

17 times giving us the imbalance ratio (IR) of 360558: 17, 4000KS is replaced 15 times given 

us IR of 360560: 15, 5RV1 is replaced 16 times given us IR of 360559: 16, and 438HC is 

replaced 25 times given us IR of 360550: 25. Similarly, in the A320 aircraft family, 11HB is 

replaced 11 times giving us the imbalance ratio (IR) of 389818: 11, 10HQ is replaced 12 times 

given us IR of 389817: 12, 1TX1 is replaced 25 times given us IR of 389804:  25, and 8HB is 

replaced 14 times given us IR of 389815: 14. 

�� =  �������� ������������� ����� ∗ 100          (8) 

4.1 Evaluation  

The performance of the model is measured using precision, recall, f1-score, and ROC curves. 

The experimental results are displayed in Table II and Figures 10-13.  

Prognostic Criteria: Prognostics alerts for component replacement should flag up in a 

reasonable time, not too early to avoid wasting the useful component life due to premature 

removal. Also, not too close to failure to give enough time to prepare for maintenance. As seen 

in Figure 6, in this study, we denote a maximum wasted life as (MWL), which are alerts that 
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flag off not more than ten flight cycles before replacement. Similarly, the minimum notice 

period (MNP), as alerts that are flag off not less than two flight cycles before replacement. We 

define the metrics as follows. 

True Positive Rate- TPR:  alerts that flag off in-between MWL and MNP and truly 

replacement occur.  

��� =  ������� = ������                      (9) 

False Negative Rate – FNR: alerts that flag off in-between MWL and MNP, and no 

replacement occur (no fault found). 

��� =  (�� + ��) / (�� + �� + ��)  = 1 − ���               (10) 

False Negative –FN: – alerts triggered much earlier before failure occur, which are ten flight 

cycles away from replacement (less than MWL) and alerts too close to replacement (more than 

MNP), and truly replacement is needed.  

True Negative – TN: alerts triggered much earlier before failure occur, which are ten flight 

cycles away from replacement (less than MWL) and alerts too close to replacement (more than 

MNP), and no replacement is needed.  

Sensitivity and specificity: The goal of our method is to make sure actual positives are not 

overlooked, which is to minimize false negatives to the best acceptance tolerance level. Also, 

the effort is to make sure actual negatives are classified as negatives that are achieving low 

false negatives. Perfect precision will mean no false positive (FP =0), and perfect recall means 

no false-negative (FN=0). 

Precision: Measure of classifier exactness, the percentage of true positive predictions made by 

the classifier that is truly correct. So, low precision indicates a large number of False Positives. 

��������� =  ��/ (�� + ��)             (11) 
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Recall: Measure of classifier Completeness recall is defined as the percentage of true positives 

that are correctly detected by the classifier. So, low recall indicates many False Negatives. 

������ =  ��/ (�� + ��)                 (12) 

F1-Score: is the mean average between the precision and the recall 

��_����� =  (2 ∗ ((���������) ∗ (������)))/ ((���������)  +  (������))           (13) 

Receiver Operating Characteristic Curve (ROC) Curves: it is a graphical representation that 

illustrates the diagnostic ability of the classifier as a discriminant threshold is varied.  

Area under the curve AUC = 1/2(TP1/ (TP +F) + TN / (TN + FP))           (14) 

To test the performance of our approach for extreme imbalance problem and in log-based 

failure prediction. We set the experiments based on the aircraft CMS dataset. We consider data 

from two categories of aircraft family, -A330 and -A320. We compare the performance of our 

approach with the existing imbalance learning method (we choose synthetic minority 

oversampling techniques because of its wide industrial application).  In each case, five different 

ensemble machine learning algorithms are considered as base classifiers. 

Scenario 1: multiclass approach   

We make a prediction for all FIN and compare it against the baseline imbalanced learning 

algorithm -SMOTE.   

1. SMOTE + Random Forest (RF), XGboost (XGB), Decision Tree (DT), Naïve Bayes (NB), 

Light Gradient Boosting Machine (LGBM), Gradient Booting Decision Tree (GBDT), and 

Support Vector Machine (SVM): After cleaning the data. We divided the data into training and 

testing. The training data was resampled using SMOTE. Then the different machine learning 

algorithms are used to train the classifier.  
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2. Our approach + Random Forest (RF), XGboost (XGB), Decision Tree (DT), Naïve Bayes 

(NB), Light Gradient Boosting Machine (LGBM), Gradient Booting Decision Tree (GBDT), 

and Support Vector Machine (SVM):  After cleaning the data. We carry out behavioral pattern 

analysis.  We then divided the data into training and testing. We train the model without 

applying any existing imbalanced learning method. Then the different machine learning 

algorithms are used to train the classifier.  

In the first instance, we consider all failure related to the aforementioned targeted FIN. During 

evaluation, accuracy, recall, and precision is used as performance metrics. The comparison 

result of the two cases is shown in Figures 7 and 8. Random forest outperformed other ensemble 

classifiers. Therefore, in the second scenario, which is predicting individual functional items 

(binary classification approach), we use  only random forest. 

Scenario 2: Binary classification approach- Individual component failure prediction 

model: 

We make a prediction for each FIN and compare it against the baseline imbalanced learning 

algorithm -SMOTE.   

 In choosing the base-classifier for binary classification, any machine-learning algorithm for 

classification can be used. Our choice of an ensemble-learning algorithm as a base-classifier is 

because it is effective in improving predictive performance, especially in classifying skew 

dataset. In addition, because RF is an ensemble bagging technique that combines multiple 

decision trees to achieve a better result. The trees in RF create high variance and low bias, 

making it a suitable choice. Also, since data is distributed over different trees in the forest and 

each tree sees a different set of data, therefore in general, RF does not over-fit, and also because 

they are made of low bias trees, it does not suffer from the under-fitting problem. Thus, among 
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the ensemble algorithm, we choose a random forest because it gives better precision and recall 

compared to others.  

We use algorithm 1 to generate patterns related to each targeted FIN. We then adept the RF  

algorithm to crate the individual failure prognostic model. RF is an ensemble learning method 

where the training data is divided into several subsamples, and each subsample is trained using 

a decision tree classifier know as a weaker learner. The result is then aggregated by majority 

voting providing a stronger base learning algorithm. Apart from sampling on the dataset, trees 

are randomized by using boosting and bagging techniques to generate splits [49], [50]. This 

approach enhances the performance of the model.  

In predicting targeted individual functional items, their failures are extremely rare. Normally, 

accuracy is mostly considered as an important metric to evaluate the performance of a 

classifier. However, the use of accuracy to evaluate performance under extreme imbalanced 

problems can be misleading because classifies will be biased towards the majority class to 

achieve high overall accuracy. Therefore, to evaluate the performance of the classifiers more 

precisely, some alternative metrics are adapted, which include precision, recall, f1-score, and 

area under the curve.  

4.2 Result and Discussion  

As shown in Figures 7 and 8, it is observed that comparing our approach with SMOTE using 

different ensemble learning algorithms as base-classifier. The performance of all the base-

classifiers is better with the proposed approach compared to SMOTE. Furthermore, RF 

outperformed other ensemble algorithms; it shows comparative performance in recall and 

precision, which means RF is able to identify more faults compared to other base-classifiers. 

Although, the multiclass approach produced a significant improvement, however, the majority 

of predictions fall close to the defined maximum wasted life.  
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As shown in Table II. For individual FIN prediction. It can be observed that for all the 

functional items, our model has a precision of more than 70%. It means whenever the model  

predicts aircraft failure that leads to component replacement. It is correct 70% of the time. In 

other words, this indicates that out of the total prediction, the model prognoses more than 

seventy percent of failures that lead to LRU replacement. The precision score also shows the 

model produces less than thirty percent of false-positive alerts. Similarly, an average recall of 

more than 60% is achieved in all the considered FIN’s.  Indicating that the model correctly 

predicts more than sixty percent of actual failure that leads to LRU replacement. It is important 

to note that for individual prediction (binary classification), the majority of prediction fall close 

to the defined the minimum notice period, which means component will be adequately utilized. 

This means binary classification has an advantage over multiclass prediction. Since high cost 

associated with false-negative is the main concern in this study- that is a misclassifying real 

failure as not failure, especially for safety-critical equipment were the consequence is grave. 

Therefore, the recall score shows that the model trigger 60% of the actual failure alert that leads 

to LRU replacement.   

The goal is to obtain both a high percentage of precision and recall in all cases. However, more 

than 20% of false-positives rate and 30% false-negative rate is still recorded. Nevertheless, our 

approach achieved our target, which is to predict more than 50% of aircraft component 

replacement within the desired define range (in-between MNP and MWL), this can be seen by 

the overall percentage F1-score, which is approximately 65% in all cases.  Similarly, to obtain 

the trade-off between the model sensitivity (TPR) and specificity (1-FPR), ROC Curves of each 

target component replaced is acquired. The graphical representation of the average result 

obtained is presented in Figure 10 to 13,  as seen in most of the cases the area under the curve 

(AUC for the testing dataset is above 70%. Indicating good overall sensitivity of classifier to 

predicting component replacement due to unscheduled maintenance). Note that the ROC curve 
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does not depend on data distribution. This makes it useful in evaluating classifiers predicting 

imbalanced datasets. 

Furthermore, although the proposed approach achieved approximately 20% of the overall 

percentage of the false-positive rate, in contrast, SMOTE achieved an approximately overall 

false-positive rate of 30%. This shows a difference of 10%, indicating that our approach 

achieved a significant improvement compared to synthetic minority oversampling techniques.  

Furthermore, it can be observed that the imbalanced ratio has an impact on performance. For 

instance, in cases with extreme IR, we obtain a lower precision and recall compared to the ones 

with higher IR.  Despite the extreme imbalance ratio in all the cases considered, our approach 

still achieved better performance compared to SMOTE, which indicates its robustness in 

handling extreme imbalanced datasets. 

5.  CONCLUSION 

This paper proposes an integrated data-driven learning technique for predicting aircraft 

component failure using imbalanced, textual, and log-based data. A hybrid model involves 

blending natural language processing techniques and ensemble prediction is developed to 

tackle extreme imbalanced classification problem and forecast aircraft component failures. We 

utilize real-life aircraft Central Maintenance System (CMS) data to develop a predictive 

maintenance model for predicting aircraft component replacement in advance to avoid 

unscheduled maintenance. A well-known natural language processing technique, the TF-IDF 

and Word2vec, are transformed for pattern identification and text vectorization. Then an 

ensemble random forest algorithm was successfully adapted for individual functional item 

prediction.  In predictive maintenance, we show how unscheduled maintenance can be 

mitigated using the proposed robust prognostic model. The model can flag off component 

replacement alerts within the desired define range. In evaluation, we suggest an evaluation 

criterion that combines the prognostics alerts with the precision and recall within a reasonable 
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timeframe. We compare the performance of our proposed approach against state-of-the-art 

imbalanced learning techniques (SMOTE). The proposed approach is approximately 10% 

better than SMOTE. It was also found that by searching for patterns in the minority class 

exclusively, the class imbalance problem can be overcome. Hence, the model classification 

performance is improved. Finally, even though the proposed method can predict more than 

50% of unscheduled aircraft component failure, it did not go further to determine the root cause 

of the failure. Therefore, this work can be extended to enhancing aircraft failure diagnosis using 

proactive logging data. Future work will also aim to increase the performance of the model by 

exploiting information from a variety of sources, such as sensors and other related variables. 
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TABLES 

Table I. Sample of the pre-processed aircraft CMS dataset 

Date Time Flight circle A/C No Window lag FM pattern FIN Rplmt 

10-03-15 09.03 -91 1 �� ABEG �� 

10-03-15 10.03 -88 2 �� DEAB �� 

11-03-15 10.00 -81 8 �� EDCB �� 

11-03-15 11.05 -80 21 �� CBED �� 

13-04-15 09.08 -79 12 �� AEDB �� 

13-04-15 10.03 -76 9 �� BEAG �� 

14-04-15 22.00 -73 23 �� EDCB �� 

15-04-15 09.05 -71 2 �� CBED �� 

16-04-15 09.02 -70 3 �� BEAH �� 

16-04-15 21.08 -65 18 �� ABCG �� 

17-04-15 13.00 -64 28 �� EDBC �� 

 

Table II. Showing experiment results using binary classification approach with, RF as 

base classifier 

A330 Aircraft 

  RF+ SMOTE RF + Our approach 

IR FIN Precision Recall F1 AUC Precision Recall F1 AUC TPR FPR 

0.0047 4001HA 0.83 0.62 0.70 0.72 0.94 0.79 0.86 0.87 0.79 0.21 

0.0043 4000KS 0.80 0.60 0.68 0.69 0.90 0.76 0.82 0.83 0.76 0.24 

0.0044 5RV1 0.80 0.60 0.68 0.69 0.91 0.77 0.83 0.84 0.77 0.23 

0.0069 438HC 0.90 0.85 0.87 0.88 0.96 0.85 0.84 0.86 0.85 0.15 

A320 Aircraft 

0.0028 11HB 0.70 0.59 0.64 0.65 0.81 0.70 0.75 0.76 0.70 0.30 

0.0031 10HQ 0.75 0.62 0.68 0.67 0.86 0.72 0.78 0.79 0.72 0.28 

0.0064 1TX1 0.88 0.80 0.83 0.84 0.91 0.82 0.86 0.87 0.82 0.18 

0.0036 8HB 0.80 0.66 0.72 0.73 0.88 0.74 0.80 0.81 0.74 0.26 
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FIGURES  

 

Figure 2. Shows the basic three approaches to solving the imbalanced dataset problem 

Figure 2. The pipeline for developing predictive model using imbalanced dataset 

 

Figure 3. Failure message patterns- A, B, C... represents CMS failures messages and R1, 

R2...  represents LRU replacements   
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Figure 4. Traditional Troubleshooting Philosophy in A330 CMS 

 

 

Figure 5. An example of a real CMS messages with event date, aircraft tail number, 

LRU, ATA reference number, and maintenance message. 

 

 

Figure 6. Representation of flight cycles from replacement 
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Figure 7. Showing the performance of ensemble-classifiers with SMOTE 

Using a multiclass approach 

 

 

Figure 8. Showing the performance of ensemble-classifiers with the proposed approach 

Using a multiclass approach 
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Figure 9. Random Forest Ensemble 
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