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Abstract 

Prostate cancer (PCa) is the second most common cancer in men in the US. Many Prostate 

cancers are Indolent and don’t result in cancer mortality, even without treatment. However, a significant 

proportion of patients with Prostate cancer have aggressive tumors that progress rapidly to metastatic 

disease and are often dangerous. Currently, treatment decisions for PCa patients are guided by various 

stratification algorithms. Among these parameters, the most important predictor of PCa mortality is the 

Gleason Grade (ranges from 6 to 10). Although current risk stratification tools are moderately effective, 

limitation remains in their ability to distinguish truly Indolent from aggressive and potentially lethal 

disease. Here we propose the use of Machine Learning (ML) for the classification of PC patients as having 

either indolent or aggressive using transcriptome data. We hypothesize that genomic alterations could 

lead to measurable changes distinguishing indolent from aggressive tumors. We also trained a Stacking-

based model with a different set of combinations of classifiers. The highest overall accuracy of our 

stacking model (all samples with Gleason Grade: 6, 7, 8, 9, and 10) is 95.758% and (samples with Gleason 

Grade: 6, 8, 9, and 10) is 97.19%. 

 

 

 

 

 

KEYWORDS: Machine Learning, Stacking, Prostate Cancer, Gleason Grade. 
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Chapter 1 – Introduction 
 

Prostate cancer (PCa) is the most common solid tumor and the second most common 

cause of cancer death in the United States [1]. To date, treatment decisions for PCa patients are 

guided by various risk stratification algorithms [2]. These stratification algorithms are used for 

identifying and predicting the patients, who are at high risk or likely to be at high risk with the 

disease. Among the parameters used, the most potent predictor of PCa mortality is the Gleason 

grade (GG) [3, 4]. The GG ranges from 6 to 10. The majority of PCa present GG 6. These cancers 

are associated with very low cancer-specific mortality rates, even in the absence of therapy.  

Intermediated grade PCa presents GG 7. These cancers present a much more variable clinical 

course. Localized high grade (aggressive) with lethal potential PCa presents GG: 8 to 10. These 

tumors are aggressive, progress rapidly to metastatic disease, and are often lethal. Although 

current stratification protocols are moderately effective, significant challenges remain classifying 

PCas into Indolent and Aggressive. A key knowledge gap and critical unmet medical need are 

distinguishing patients with truly indolent tumors from those with aggressive tumors.  

PCa screening using the prostate-specific antigen (PSA) has led to the earlier detection of 

PCa with fewer men today presenting with metastatic disease[5]. However, although PSA has led 

to a reduction in mortality rate, it has also resulted in unintended consequences. The unintended 

consequences include over-diagnosis, which leads to overtreatment of patients indolent PCa, and 

under-treatment of patients with aggressive disease. Concerns about PSA-based screening led to 

the issuing of a D grade recommendation of its use by the US Preventive Services Task Force in 

2012 [6]. Crucially, a review for the U.S. Preventive Services Task Force concluded that PSA-based 
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screening results, either small or no reduction in prostate cancer-specific mortality [7]. It is 

associated with harms related to subsequent treatments and evaluation - some of them may be 

unnecessary. These concerns have heightened the need for the development of novel risk 

stratification algorithms to identify patients at high risk of developing aggressive tumors, which 

could be prioritized for treatment, and discovery of molecular markers separating the truly 

indolent disease from aggressive disease. 

Here we propose the use of machine learning (ML) for classification of PC patients into 

two groups, those with genuinely indolent tumors and those with aggressive tumors using 

transcriptome data. Statistics does simpler things, and when coming to a complex environment, 

it would be hard to predict. Implementing ML can help in predicting things more accurately and 

come up with better results. Our working hypothesis is that genomic alterations in patients 

diagnosed with indolent and aggressive could lead to measurable changes distinguishing the two 

patient groups, and that application of ML to genomics data would accurately distinguish the two 

patient groups. We addressed this hypothesis using transcriptome data on patients diagnosed 

with indolent and aggressive PCa from The Cancer Genome Atlas (TCGA). 
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Chapter 2 – Literature Review 
 

2.1 Background and Related Works 

Prostate cancer is characterized by malignant tumors found within the prostate gland in 

menage 65 and older. Currently, it is diagnosed with a blood test called Prostate Specific Antigen 

(PSA) test. Various attempts were made to classify cancer-based tissue samples using microarray, 

clinical, imaging, and RNA sequencing data. A new approach is developed to improve accuracy 

when using microarray data for classification [8]. Some of the recent studies attempted to 

diagnose prostate cancer with machine learning utilized microarray datasets.  Few of them 

conducted using various methods and were tested on different datasets [9-11]. They aim to 

predict if cancer is metastasizing or not, and the results of all microarray datasets are significant.  

The TCGA database is already used for classifying different types of cancers, and the data 

contained goes beyond RNA sequencing data in the TCGA database. Few published studies used 

breast cancer datasets for cancer classification [12, 13]. The challenges associated with datasets 

from the TCGA database are class imbalanced and are high dimensionality. If the dataset is high 

dimensional, the model cannot separate the classes accurately, and the result obtained will be 

very poor. Moreover, If the dataset is a class imbalance, the number of features will be much 

more than the number of samples, and the model becomes unstable and cause overfitting 

problem. Few studies faced the same problem using TCGA datasets [12, 13]. 

Lei Yang et al. [14] used Random walk with restart algorithm (RWRA) and Graph-regularized 

Nonnegative Matrix Factorization (GNMF) methods for molecular classification of prostate 

adenocarcinoma by the integrated somatic mutation profiles and molecular network. They 
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analyze somatic point mutations in exome sequences from TCGA-prostate samples and obtained 

with better results. 

 In one of the recent study [12], they used Stacked denoising Autoencoder (SDAE), PCA, KPCA, 

and differentially expressed gene methods to reduce the dimensionality. They also tried different 

methods like Artificial Neural network (ANN), Support-Vector Machine (SVM), Support-Vector 

Machine (SVM) with linear kernel, and Support-Vector Machine with Radial basis function kernel 

(SVM-RBF). The highest accuracy was obtained by SVM-RBF using the SDAE method for 

dimensionality reduction, and the highest sensitivity is achieved by the ANN model, followed by 

the SDAE method. The highest specificity and precision are obtained by the SVM-RBF model. 

Glocuk et al. [13] aimed to increase accuracy by performing different dimensionality methods 

like PCA, KPCA, and NMF. They tried implementing ladder network and found that it is 

outperforming SDAE and AVM models. 

Takumi et al. [15] tried machine learning to diagnose prostate cancer using clinical data. They 

implemented an Artificial Neural Network (ANN) with the data and found that although their 

model performed well, improvements need to be made before being suitable for clinical 

applications. 

A recent study [16] implemented the SMOTE technique to increase the number of samples in the 

data set to deal with imbalanced class. Using Smote, they created synthetic observations and 

equalized the class distribution. They applied the Recursive Feature Elimination (RFE) algorithm 

to reduce the number of features to identify the tumor. Later, they performed a logistic 
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regression model using 5-fold cross-validation to minimize the false positive rate and improved 

the accuracy compared to previous machine learning attempts. 

Jaideep et al. [17] aimed to classify prostate cancer using a protease activity nanosensor library 

and tried to identify aggressive disease on a different dataset. They implemented a bottom-up 

approach to design nanosensors to classify and detect prostate cancer. To identify proteolytic 

enzymes in human prostate cancer, they used Transcriptomic and proteomic analysis. They also 

tried measuring the activity by building a library of nanosensors. Moreover, they demonstrated 

that these nanosensors could classify aggressive tumors and outperformed a serum maker in 

mouse models. This library can be used at the screening test to identify patients with higher-risk 

tumors. 

Lemana et al. [18] developed an Artificial Neural Network (ANN) to classify normal and prostate 

cancer patients. They obtained the dataset from the research done by Zhou et al. [19]. They used 

Prostate-Specific Antigen (PSA) levels and Mitochondrial DNA copy number (mtDNA) samples. 

They aimed to classify samples with 175 normals and 177 tumors (according to biopsy results). 

The best performance is obtained with two-layer feedforward ANN with a log-sigmoid transfer 

function. The log-sigmoid (log-sig) transfer function is also used in a multilayer network, which 

uses the backpropagation algorithm. Moreover, they applied 10-fold cross-validation and 

resulted in sensitivity as 100%, specificity as 98.8%, and overall accuracy as 99.4%. They used a 

different dataset, which is obtained from the research done by Zhou et al. [19] and tried to 

separate healthy samples (normals) with diseased samples, but we are trying to distinguish 

samples with two diseases (Indolent and Aggressive). 
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2.2 Review of Machine Learning Methods 

In this section, we describe the usage of machine learning methods and their underlying 

principles. We also explained the reason in the introduction section, why we choose the machine 

learning methods. 

2.2.1 Support Vector Machine (SVM) 

A Support Vector Machine (SVM) [20] is a machine learning classifier, which is defined by 

a separating hyperplane. Support Vector Machine algorithm finds a hyperplane in an N-

dimensional space that classifies each data point (where N is the number of features).  

 

Figure 2.1: A two-class classification problem is shown in the above figure. The left side figure shows cases 
where data points may be separated from many different decision boundaries. The right side figure 
represents the optimal hyperplane that has the highest margin and is considered the decision boundary. 
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Figure 2.2: The Left-side graph represents hyperplane separating two classes in 2-dimension as a line, and 
right-side graphs show hyperplane separating two classes in 3-dimension. 

 

Hyperplanes help in classifying data points and depends upon the number of features. If the 

number of features in a dataset is 2, then the hyperplane is just a line. If the number of features 

in a dataset is 3, then the hyperplane is a plane. If the number of features is greater than 3, then 

it would be difficult to imagine a hyperplane. 

2.2.2 Logistic Regression (LogReg) 

Logistic Regression [21] is a technique for analyzing data that determines the dependent 

output (outcome) when there are one or more independent variables. In several cases, the 

outcome variable (dependent) is a dichotomous variable, in which there are only two possible 

outcomes. The goal is to find the best fitting model to describe the relationship between the 

dependent variable and the set of independent variables. Logistic sigmoid (log-sig) function is 

used to return a probability value by transforming the output, which can be mapped to discrete 

classes. Regularization techniques are used to avoid overfitting (any modification made to a 

learning algorithm is intended to reduce the generalization error). 
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Figure 2.3: The sigmoid function takes a real value and maps it to the range [0, 1]. The decision function is 
used to obtain the probability of class. 

 

2.2.3 Random Decision Forest (RDF) 

Random decision Forest [22] is a supervised machine learning algorithm which randomly 

creates and merges more than one decision tree into a forest. During training time, Random 

Decision Forest (RDF) algorithm operates by constructing a multitude of decision trees and 

outputting the class that is Classification or mean prediction (regression) of individual trees. It 

adds additional randomness to the model growing the trees. The best feature is searched among 

a random subset of features, instead of searching for the most crucial feature while splitting a 

node. Random decision forests correct habit of overfitting to their training data-set. The RDF 

operates by constructing a multitude of decision trees on various subsamples of the dataset and 

results in a mean prediction of decision trees to improve accuracy and avoid over-fitting. 
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2.2.4 Extra Tree Classifier (ETC) 

The Extra Tree [23] method is also known as extremely randomized trees. The main 

objective of an Extra Tree classifier is to randomize the input features of a tree, where the large 

proportion of the variance of the induced tree depends on the choice of optimal cut-point. It 

constructs randomized decision trees from the original learning samples and uses the above-

average decision to improve accuracy and avoid over-fitting. The method selects a cut point at 

random and drops the idea of using bootstrap copies of the training sample. Cut-point 

randomization often reduces the variance, when the bootstrapping idea is drooped and can also 

lead to an advantage in terms of bias. This method has yielded state-of-the-art results in high 

dimensional complex problems. 

2.2.5 Gradient Boosting Classifier (GBC) 

Gradient boosting classifier [24] is a machine learning technique used for classification 

and regression problems. It builds a model in a forward stage-wise fashion like other boosting 

methods. It allows for optimizing arbitrary differentiable loss functions. It involves three 

elements: (a) a loss function to be optimized, (b) a weak learner to make predictions, and (c) an 

additive model to add weak learners to minimize the loss function. The main objective of the 

Gradient boosting classifier is to minimize the loss of the model by adding weak learners in a 

stage-wise fashion using a similar procedure of Gradient descent. While adding a new weak 

learner, the existing weak learners in the model remain unchanged. In order to correct or 

improve the final output, the output of a new learner is added to the existing sequence of 

learners. 
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2.2.6 K Nearest Neighbors (KNN) 

K nearest neighbor [25] is an algorithm that classifies new cases based on a similarity 

measure of all stored available instances. It has been used as a non-parametric technique in 

statistical estimation and pattern recognition. A case is being assigned to the common class 

among the K nearest neighbors, which is measured by a distance function and is also classified 

by a majority vote of its neighbors. If k=3, then the class is assigned to a class of its three nearest 

neighbors shown in Figure 2.4. 

 

Figure 2.4:  The figure above shows the Calculation of distance and finding neighbors and voting for the 
KNN method. 
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2.2.7 eXtreme Gradient Boosting (XGB) 

The implementation of eXtreme Gradient Boosting [26] offers several advanced features 

for model tuning, algorithm enhancement, and computing environments. It can perform in three 

different forms of gradient boosting (Gradient Boosting (GB), Stochastic Gradient Boosting (GB), 

and Regularized Gradient Boosting (GB)). It is strong enough to support fine-tuning and addition 

of regularization parameters. It uses the regularized model formalization to avoid overfitting and 

results in better performance. Moreover, XGB trains faster. 

2.2.8 MultiClassClassifier 

MultiClassClassifier in WEKA is used for handling multi-class datasets with 2-class 

distribution classifiers. It is also capable of applying error-correcting output codes for increased 

accuracy. If the weights are not uniform, the base classifier cannot handle instance weights. So 

the data will be resampled with a replacement before being passed to the base classifier. It 

extends RandomizableSingleClassifierEnhancer and implements OptionHandler and 

weightedInstancesHandler. 

2.2.9 Logistic Model Trees (LMT) 

The logistic model tree (LMT) [27] is a classification model with a logistic regression 

function at the leaves. It is made up of an inner or non-terminal node along with a set of terminal 

nodes. It predicts a continuous numeric value for an instance that is defined over a fixed set of 

attributes. It constructs a piecewise linear approximation to the target function. LMT consists of 

a tree with a linear regression function at leaves. For instance, it is obtained by sorting it down 

to a leaf and also by using the prediction of the linear model associated with that leaf. It doesn’t 
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incorporate all the attributes present in the data in order to avoid building overly complex 

models. 
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Chapter 3 – Experimental Materials and Methods 

3.1 Sources of Transcriptome and Clinical Data Sets 
 

We used publicly available gene expression and clinical data on indolent and aggressive 

PCa from the TCGA. The data were downloaded from the Genomic Data Commons [28], data 

portal using the data transfer tool. Because the same TCGA barcode structure was used for both 

clinical data and transcriptome data, we used the barcodes structure to integrate patient-based 

clinical data with sample-based genomics data. The total data set included N = 547 samples 

distributed as follows: N = 45 samples on indolent (GG=6), 246 samples with intermediate 

(GG=7), 204 of aggressive with lethal potential and 52 control samples. Gene expression data 

used in this thesis were derived from the same patient population. After annotating gene 

expression data with clinical information, we used the American Urological association 

classification protocol to verify and validate the classification of tumors according to GG because 

GG =7 follows a variable clinical course. We used the protocol to assign the tumors to either 

indolent or aggressive consistent with the guidelines. The tumor samples were either classified 

as 3 + 4 (primary + secondary), or 4 + 3 (primary and secondary) grade. The samples with GG: 3 + 

4 grades were assigned to a group of patients with Gleason Grade 6 (Indolent PCa). The samples 

with GG: 4 + 3 grades were assigned to a group of patients with Gleason Grade 8 to 10 (Aggressive 

PCa) [29]. 

 We performed data quality control and processing steps on gene expression data 

containing 60,483 probes across 547 samples. We implemented CPM (counts per million) filter 

(>0) in R to remove the rows with missing data, such that each row had at least ≥ 30% data. After  
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Figure 3.1: Flowchart depicting project design and execution workflow in this project. Only the genes 
significantly differentially expressed between tumors and controls discovered in level 1 analysis were 
considered in the level 2 analysis. COAD: colon adenocarcinoma; DE: differential expression; TF: tumor-
free; TP: tumor presenting. 

 

filtering the data, we obtain a new dataset with 34,956 probes across 547 samples. We corrected 

the data for the library sizes for all the samples in with gene expression data. The resulting data 

set we normalized using CPM function to get log2 counts per million and checked for distribution 

properties.   
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3.2 Data Processing and Analysis for Gene Selection 
 

Using the limma and edgeR packages in R 3.8.0 [30], we processed the data and 

performed quality control by removing probes with low or zero expression values. The remaining 

data set was normalized using quantile normalization. Data normalization was performed using 

TMM. Composition biases are eliminated between libraries and generated a set of normalization 

factors (the product of the library sizes and factors defines the effective library size) using TMM 

normalization. TMM normalization scale relative to one sample and normalization factors 

multiple to unity across all libraries. Below Figure 3.4 shows the biased and unbiased MD plots 

side by side for the same sample (acb3e352-b255-4c41-b90f-5e5ed2273b06) before and after 

TMM normalization. Implemented in R before performing statistical tests. The processed 

normalized data contained 34,956 probes. 

3.2.1 Level-1 Analysis 
 

Using normalized data in R [30], we performed level 1 analysis comparing gene expression 

levels between tumor samples and controls for indolent and aggressive PCa separately. We used 

this baseline analysis to discover a signature of genes significantly (p < 0.05) associated with each 

disease state. We used the false discovery rate (FDR) procedure to correct for multiple hypothesis 

testing. The probes were ranked on p-values and –log fold change (-log FC). Differentially 

expressed significant probes between tumors and controls were considered to be associated with 

PCa. This initial level 1 analysis yielded 18,215 significantly (p < 0.05), and 21,042 significantly (p 

< 0.05) differentially expressed probes associated with Indolent and with aggression for model 1. 

For model 2, This initial level 1 analysis yielded 15,105 significantly (p < 0.05), and 20,712 
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significantly (p < 0.05) differentially expressed probes associated with Indolent and with 

aggressive. Additionally, an analysis comparing Gleason grade 7 yielded 15,105 significantly 

(p<0.05), and 20,712 significantly (p < 0.05) differentially expressed probes associated with 

Indolent and aggressive for model 1. 

The significant probes were then matched to the corresponding gene symbols and screened for 

duplicates. This analysis resulted in 3513 genes used in the downstream analysis in level 2 and 

classification. In addition to feature selection, multiple data visualization tools were also used to 

identify the most significant subset of probes for further analysis, including volcano plot, principal 

component analysis, and hierarchical clustering to heat-maps. Hierarchical clustering was 

performed only on the most highly significant genes to assess similarity in patterns of gene 

expression among the genes associated with the disease. For hierarchical clustering, we used the 

Pearson correlation as the measure of the distance between pairs of genes, and complete linkage 

as the clustering method. Hierarchical clustering was performed using Morpheus (Versatile 

matrix visualization and analysis software). 

We test for differentially expressed genes using our normalized data, and there are many 

packages to analyze RNA-Seq data. Limma package offers the voom function, which transforms 

the read counts into logCPMs while considering the mean-variance relationship in the data. We 

created a design matrix for the groups and made the column names of the design matrix a bit 

nicer. Here, the decision matrix tells us which samples correspond to each group. Now, we 

perform voom transformation using our decision matrix, and it will adjust the library sizes using 

the norm.factors already calculated and generate a plot of mean-variance trend (shown in Figure 

3.6 below). We can tell, if there are any genes that look really variable in our data and if we have 
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filtered low counts adequately using this plot. Below, Figure 3.3 shows the boxplot for the 

normalized data with expression log-transform values to compare to before normalization. 

Now we used limma to test for differential expression using voom transformed data. First of all, 

we fit a linear model for each gene in limma using the lmFit function. lmFit needs the design 

matrixand the Voom object that are already specified, which is stored within the voom object. 

Since we are interested in differences between groups, we need to specify which comparisons 

we want to test by specifying the comparison of interest using makeContrasts function. Here we 

get the statistics and estimated parameters of our comparison by using contrasts.fit function in 

limma. The final step is performing empirical Bayes shrinkage on the variance and estimates 

moderated t-statistics and the associated p-values by calling eBayes function and to generate a 

quick summary of DE genes for the contrast we used limma decideTests function. We used the 

volcano plot (shown in Figure 3.7 below) using the functions in limma for plotting the data with 

fit.cont as input. 

3.2.2 Level-2 Analysis 
 

We performed level 2 analysis on both the significant genes associated with the indolent 

and with the aggressive disease using gene expression data. We also compared gene expression 

levels between patients with Gleason grade 6 versus patients with Gleason grade 8-10.  

Moreover, we compared patients with Gleason grade 6 (3+4)  versus patients with Gleason score 

8-10 (4+3). Patients presenting with Gleason grade 3+4 versus patients presenting with Gleason 

grade 4 + 3 were also compared. Indolent and Aggressive patients (Ind Vs. Agg) to identify the 

features or genes to be used in classification algorithms. False discovery rate (FDR) procedure is 



18 
 

used to correct for multiple hypothesis testing. The genes were ranked on p-values and –log fold 

change (-log FC). Genes significantly differentially expressed between disease states were using 

the classification algorithms. 

3.2.3 Level-3 Analysis 

Application and evaluation of classification algorithms were involved using selected 

probes or features in this analysis using different cut-offs as determine by the p-values and logFC 

from the 2074 genes identified in the analysis. To test and validate the classification algorithms, 

few features were selected by performing feature selection at different threshold levels using 

the Genetic Algorithm. According to Machine Learning literature, five classifiers were selected 

with different fundamental approaches: Logistic Model Tree (LMT), MultiClassClassifier, SGD, 

SMO, SimpleLogistic. We also performed the stacking technique with few other classifiers with 

different fundamental principles: 

(a) Support vector machine (SVM). 

(b) Logistic Regression (LogReg). 

(c) Random Decision Forest (RDF). 

(d) Extra Tree Classifier (ETC). 

(e) Gradient Boosting Classifier (GBC). 

(f) K nearest neighbor (KNN). 

(g) eXtreme Gradient Boosting (XGBoost). 

To address the deficiency, we standardized the data and later processed it using a class-balancing 

algorithm due to the unstable design of the project. This algorithm is applied to each classifier as 
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well after the poor initial performance. Five subsets of 2074 significant genes were taken based 

on log-fold-change cutoffs of 0.5, 0.7, 1, 1.5, and 2. Here, we used 10-fold cross-validation 

technique on all mentioned subsets to prevent overfitting, with metrics averaged over all 10 folds 

and tested on each classifier. Weka 3.8.2 software [31] and the Genetic Algorithm are used to 

perform all classification and evaluation. 

In Figure 3.2, all the library sizes of samples in TCGA data are expressed using a barplot to see 

whether there are any major discrepancies between samples. It shows that the data quality is 

not good and is not normally distributed. To examine the distributions of raw counts, we need to 

log the counts. Here, we used box plots to check the distribution of the read counts on the log2 

scale. Figure 3.3 represents the boxplots of logCPM (log counts per million) before normalization. 

 

Figure 3.2: Library sizes of all samples expressed using a barplot constitutes the data quality and 

unnormalized library sizes. 
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Figure 3.3: Figure checks the distribution of the read counts on the log2 scale of logCPM (log counts per 
million) before normalization. 

 

3.2.4 Normalization for Composite Bias 

We used TMM normalization to eliminate composition biases between libraries and 

generated a set of normalization factors (the product of the library sizes and factors defines the 

effective library size) [32]. TMM normalization scale relative to one sample and normalization 

factors multiple to unity across all libraries. Below Figure 3.4 shows the biased and unbiased MD 

plots side by side for the same sample (acb3e352-b255-4c41-b90f-5e5ed2273b06) before and 

after TMM normalization.  
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Figure 3.4: Biases and unbiased MD plots side by side for the same sample. 

 

 

Figure 3.5: Figure represents the comparison of the data set before and after normalization of logCPM log 
counts per million. 
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3.2.5 Differential Expression with limma-voom 

We test for differentially expressed genes using our normalized data, and there are many 

packages to analyze RNA-Seq data. Limma package offers the voom function, which transforms 

the read counts into logCPMs while considering the mean-variance relationship in the data. We 

created a design matrix for the groups and made the column names of the design matrix a bit 

nicer. Here decision matrix tells us which samples correspond to each group. Now, we perform 

voom transformation using our decision matrix, and it will adjust the library sizes using the 

norm.factors already calculated and generate a plot of mean-variance trend (Figure 3.6). We can 

also say that if there are any genes in our normalized dataset that look really variable using this 

plot and if we have filtered low counts fairly. 

 

Figure 3.6: Figure showing the voom transformation using a decision matrix and mean-variance trend. 
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3.2.6 Testing for Differential Expression 

Now we used limma to test for differential expression using voom transformed data. First 

of all, we fit a linear model for each gene in limma using the lmFit function. lmFit needs the design 

matrix and the Vvoom object that are specified previously, which is stored within the voom 

object. Since we are interested in differences between groups, we need to specify which 

comparisons we want to test by specifying the comparison of interest using makeContrasts 

function. Here we get the statistics and estimated parameters of our comparison by using 

contrasts.fit function in limma. The final step is performing empirical Bayes shrinkage on the 

variance and estimates moderated t-statistics and the associated p-values by calling eBayes 

function and to generate a quick summary of DE genes for the contrast we used limma decide 

Tests function. We used the volcano plot (Figure 3.7) using the functions in limma for plotting the 

data with fit.cont as input. 

 

Figure 3.7: Figure showing that we used the threshold values to obtain the probes associated with 2 
different diseases (Indolent and Aggressive). 
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3.2.7 Multidimensional scaling plots (MDS) 
 

Multidimensional scaling plots (MDS) is a visualization of a principal components analysis, 

which determines the sources of variation in the given data. We used MDS-plots after analyzing 

our RNS-Seq data set. To make the plot more informative, we colored the samples (Aggressive: 

blue, Indolent: red) according to the grouping information and plotted them using points. Leading 

log fold change is used to calculate the distance between each pair of samples in the MDS plot, 

defined as the root-mean-square of the largest 500 log2-fold changes between that pair of 

samples. 

3.2.8 Hierarchical clustering with heatmaps 

Hierarchical clustering is an alternative for examining the relationships between samples. 

Heatmaps are a nice visualization to examine hierarchical clustering, and it is done using 

heatmap.2 function from the gplots package. It will calculate a matrix of Euclidean distances from 

the logCPM (logcounts objects) for the top 500 most variable genes from our normalized dataset. 

The top 500 most variable genes across samples are shown in the heatmap. 
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Figure 3.8: Figure representing a matrix of Euclidean distances from the logCPM (logcounts objects) for 
the 500 most variable genes. 

 

3.3 Application of Machine Learning 

We perform differential expression (D.E.) using both data sets (voom-normalized and 

clinical) and by comparing Indolent VS Normal and Aggressive Vs. Normal, we generate two probe 

sets with values of logFC, p-values, adjacent p-values, etc. 
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Now we filter the probes with adjacent p-values <0.05 in both the data sets (Indolent Vs. Normal, 

Aggressive Vs. Normal) and merged these two datasets by eliminating the common probes. We 

filter the latest normalized data with all the unique probes we obtained from the two datasets 

(Indolent Vs. Normal, Aggressive Vs. Normal). Applied Differential Expression (D.E) on this data 

and generated a Probe set (Indolent Vs. Aggressive) by comparing Indolent Vs. Aggressive. Later 

on, filtered the probe set with adjacent p-values <0.05 along with different log fold change values 

(0.5, 0.7, 1, 1.5, and 2). 

We further filtered the generated latest normalized data with the probes obtained from the 

probe set (Indolent Vs. Aggressive) and removed the normal samples. Now, we apply 10-fold 

cross-validation on the filtered normalized data and find the error rate. As the error rate is high, 

we can conclude that the data set containing samples with Gleason grade 7 are more 

misclassified. 

Now, we remove the samples which have Gleason grade 7 from the normalized dataset and 

perform differential expression (D.E) using both data sets (Normalized (without GG: 7) and 

clinical), and by comparing Indolent VS Normal and Aggressive Vs. Normal, we generate two 

probe sets with values of logFC, p-values, adjacent p-values, etc. 

We filter the probes with adjacent p-values <0.05 in both the data sets (Indolent Vs. Normal, 

Aggressive Vs. Normal) and merged these two datasets by deleting the common probes. We filter 

the latest normalized data (without GS: 7) with all the unique probes, we obtained from the two 

datasets (Indolent Vs. Normal, Aggressive Vs. Normal). Applied Differential Expression (D.E) on 

this data and generated a probe set (Indolent Vs. Aggressive) by comparing Indolent Vs. 



27 
 

Aggressive. Later on, we filtered the probe set with adjacent p-values <0.05 along with different 

log fold change values (0.5, 0.7, 1, 1.5, and 2). 

We again filtered the generated latest normalized data (without GG: 7) with the probes obtained 

from the probe set (Indolent Vs. Aggressive) and removed the normal samples. Now, we apply 

10-fold cross-validation on the filtered normalized data and find the error rate. As the error rate 

is low, we can say that almost all samples in the normalized data set (without GG: 7) are classified 

correctly. 

Here, we have classified above that the normalized data set with the samples (without GG: 7) 

correctly. So, we take the normalized dataset (without GG: 7) for training and the normalized 

data set with samples (only GG: 7) for testing. Now, we apply 10-fold cross-validation on these 

data sets and find out the samples which are misclassified. 

3.4 Correlation between ML and GG = validation 

3.4.1 Model-1: 

We applied a machine learning approach on all the probes with all the samples (495) with 

Gleason Grade (6, 7, 8, 9, 10) for all log-fold change values (0.5, 0.7, 1, 1.5, 2). We observed that 

the correctly classified instances in the normalized data set represented in Figure 5.1 is 

approximately 80%. The remaining 20% is mostly caused because of the misclassification in the 

samples (246) with Gleason Grade: 7 (3+4 and 4+3). We conclude that few samples with Gleason 

Grade: 6, 8, 9, and 10 are also misclassified. The below table represents the number of probes 

for each log-fold-change value. 
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Figure 5.4 in the result section shows that most of the samples with Gleason Grade: 7 are 

misclassified after applying the machine learning approach using different classifiers. 

3.4.2 Model-2: 

Here, we assume the samples (246) with Gleason Grade: 7 (3+4 and 4+3) are misclassified 

and removed these samples from the normalized data and apply machine learning on the 

remaining data set with samples (249) using the 5 classifiers mentioned above.  

Figure 5.12: in the result section shows that most of the samples (249) with Gleason Grade (6, 8, 

9, and 10) are classified with almost 90% correctly classified instances. We can also say that there 

are few incorrectly misclassified instances in these samples, too (Gleason Grade: 6, 8, 9, and 10). 

So, we used the samples (249) with Gleason Grade (6, 8, 9, and 10) to find the misclassified 

samples (246) with Gleason Grade: 7 by using machine learning.  

We applied machine learning on all the samples after classifying the misclassified instances with 

Gleason Grade: 7. Figure 4.1 shows the number of misclassified cases in the complete data set.  
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Chapter 4 – Performance Evaluation 

In the section, We plot a graph with misclassified instances in Figure 4.1. We performed 

machine learning approach on the normalized data-set using five different classifiers based on 

their principles and observed that the misclassified instances in samples with GG: 7 are more 

using MultiClassClassifier classifier and also found that the total number of misclassified 

instances in the whole data-set is more using Logistic Model Tree (LMT) followed by 

SimpleLogistic classifiers. The below-mentioned Table-1 and Table-2 contain the log-fold change 

values and the number of probes associated with the disease for both models (Model-1 and 

Model-2). We also created a performance evaluation matrics with their names and definitions 

mentioned in Table-3 below. 

 

Figure 4.1: Figure representing the misclassified instances in samples with both datasets (Samples with 
GG: 7 and Samples with GG: 6, 7, 8, 9, 10). 
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Figure 5.6 in the result section represents the normalized data set after classifying all the 

misclassified instances (495 samples) using a machine learning approach with different threshold 

values (0.5, 0.7, 1, 1.5, and 2) using Weka software tool. The below table is the final normalized 

data set contains 495 samples with a different set of probes for different threshold values. 

Table 1: Representation of the number of probes and log-fold change values for model-1. 

Model-1 

LogFc No. of genes 

0.5 2074 

0.7 821 

1 213 

1.5 24 

2 3 

 

Table 2: Representation of the number of probes and log-fold change (LogFc) values for model-2. 

Model-2 

LogFC No. of genes 

0.5 3513 

0.7 2028 

1 836 

1.5 186 

2 52 
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Table 3: Name and definition of performance evaluation metrics. 

Name of Metric Definition 

True Positive (TP) Correctly predicted sand boil images 

True Negative (TN) Correctly predicted sand boil images 

False Positive (FP) Incorrectly predicted sand boil images 

False Negative (FN) Incorrectly predicted sand boil images 

Recall/Sensitivity (Sens.) /True 

Positive Rate (TPR) 

TP

TP + FN
 

Specificity (Spec.) /True Negative 

Rate (TNR) 

TN

TN + FP
 

Fall Out Rate (FOR) /False Positive 

Rate (FPR) 

FP

FP + TN
 

Miss Rate (MR) /False Negative Rate 

(FNR) 

FN

FN + TP
 

Accuracy (ACC) 
TP + TN

FP + TP + TN + FN
 

Balanced Accuracy (BACC) 
1

2
(

TP

TP + FN
+

TN

TN + FP
) 

Precision (Prec.) 
TP

TP + FP
 

F1 score (Harmonic mean of 

precision and recall) 

2TP

2TP + FP + FN
 

Mathews Correlation Coefficient 

(MCC) 

(TP  TN) − (FP  FN)

√(TP + FN)  (TP + FP)  (TN + FP)  (TN + FN)
 

 

4.1 Stacking 

The idea of stacking based machine learning technique [33] has recently been successfully 

applied to solve bioinformatics and computer vision problems [34-39]. Stacking is a model, which 

obtains information from multiple different models and aggregates them to obtain a new model. 
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The generalized error rate will be minimized and yields to more accurate results when the 

information is gained from more than one predictive model. 

There are two stages of learners in stacking. The first stage of classifiers is known as base 

classifiers, and the second stage of classifiers are considered as meta classifiers. In stacking, more 

than one classifier is used in the first stage as base classifiers. The generalized error rate is 

reduced by combining the prediction probabilities from the base classifiers using a meta-

classifier. To supply the meta classifier with complementary clues, the classifiers in the first stage 

(base classifiers) must be different from one another based on their operating principles. 

To find the meta classifiers and base classifiers to use in the second and first stages of the stacking 

framework. we examined nine different machine learning algorithms: 

(h) Support vector machine (SVM). 

(i) Logistic Regression (LogReg). 

(j) Random Decision Forest (RDF). 

(k) Extra Tree Classifier (ETC). 

(l) Gradient Boosting Classifier (GBC). 

(m) K Nearest Neighbor (KNN). 

(n) eXtreme Gradient Boosting (XGBoost). 

We examined four different stacking models. The mentioned stacking models are built and 

optimized using Scikit-learn [40]. We used 2 sets of datasets (dataset with All-Samples and 

dataset with All-Samples except for Gleason grade: 7) in stacking. 
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The below-mentioned stacking models are performed using a dataset with All-Samples (Gleason 

grade: 6, 7, 8, 9, 10): 

i. LogReg, KNN, SVM as the base classifiers, SVM as the meta classifier. 

ii. LogReg, KNN, SVM as the base classifiers, XGBC as the meta classifier. 

iii. LogReg, KNN, SVM, XGBC as the base classifiers, XGBC as the meta classifier. 

iv. RDF, LogReg, KNN as the base classifiers, GBC as the meta classifier. 

v. RDF, LogReg, GBC as the base classifiers, KNN as the meta classifier. 

The below-mentioned stacking models are performed using a dataset with All-Samples except:7 

(Gleason grade: 6, 8, 9, 10): 

i. LogReg, KNN, SVM as the base classifier, SVM as the meta classifier. 

ii. LogReg, KNN, SVM as the base classifier, XGBC as the meta classifier. 

iii. LogReg, KNN, SVM, XGBC as the base classifier, XGBC as the meta classifier. 

iv. RDF, LogReg, KNN as the base classifier, GBC as the meta classifier. 

v. RDF, LogReg, GBC as base classifier, KNN as meta classifier.  
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Chapter 5 – Results and Discussions 
 

In this section, We used Principal component analysis to check the misclassified instances 

in our normalized data-set. The machine learning approach is also implemented for classifying 

the misclassified samples. We assume that the misclassification rate is high in samples with GG: 

7. Initially, the accuracy of our normalized dataset was around 75%, and Using weka, we classified 

most of the samples and improved accuracy to around 85%. Moreover, We implemented stacking 

techniques using different combinations of classifiers (a few of them as base classifiers and few 

as meta classifier) and improved the accuracy and reduced the error rate.  

 

 

Figure 5.1: Figure showing the accuracy percentage of all the samples with Gleason Grade: 6, 7, 8, 9, 10 
before classification. 
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Figure 5.2: Principal component analysis on normalized data with all the samples (Gleason grade: 6, 7, 8, 

9, 10). 

 

 

Figure 5.3: Principal component analysis on normalized data with all the samples except GG: 7 (Gleason 
Score: 6, 8, 9, 10). 
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Figure 5.6 represents the percentage of correctly classified instances for all the samples using 5 

different classifiers, and Figure 5.2 and Figure 5.3 contain the principal component analysis of 2 

data sets before classification. One is the principal component of all samples (495) with Gleason 

Grade: 6, 7, 8, 9, and 10 containing 2074 probes and the other is the principal component analysis 

of the samples (249) with Gleason Grade: 6, 8, 9, and 10 containing 3513 probes. As we can see, 

the samples ( Indolent and Aggressive) are mixing a little bit. We assumed this case as Model 1 

and applied machine learning approach. 

 

 

Figure 5.4: Figure showing the accuracy of samples with GG: 7 (3+4 and 4+3). 
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Figure 5.5: Principal component analysis of samples with GG: 7  in 3-dimension. 

Figure 5.6 represents the percentage of correctly classified instances in the normalized data 

(Indolent Vs. Aggressive) with the samples containing 7, which consists of 3+4 (primary grade as 

3 and secondary grade as 4) or 4+3 (primary grade as 4 and secondary grade as 3) and Figure 5.5 

represents the principal component analysis of samples with Gleason Grade 7 (3+4 and 4+3) in 

3-dimension. 
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GG: Gleason grade 

Figure 5.6: Figure represents the accuracy of all the samples after classifying only samples with GG: 7 for 
5 different classifiers with different log-fold change values. 
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PCA diagram of All-Samples 

 

Figure 5.7: Principal component analysis of LMT classifier of all samples in 3-dimension with Gleason 
Grade: 6, 7, 8, 9, and 10. 

 

Figure 5.8: Principal component analysis of MultiClassClassifier classifier of all samples in 3-dimension 
with Gleason Grade: 6, 7, 8, 9, and 10. 
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Figure 5.9: Principal component analysis of SGD classifier of all samples in 3-dimension with Gleason 
Grade: 6, 7, 8, 9, and 10. 

 

Figure 5.10: Principal component analysis of SimpleLogistic classifier of all samples in 3-dimension with 
Gleason Grade: 6, 7, 8, 9, and 10. 
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Figure 5.11: Principal component analysis of SMO classifier of all samples in 3-dimension with Gleason 
Grade: 6, 7, 8, 9, and 10. 

 

The above figures from Figure 5.7 to Figure 5.11 are the principal component analysis of all the 

samples (495) obtained by applying machine learning using 5 different classifiers after classifying 

the misclassified samples in the normalized data with the threshold (1.5). As the above Figure 5.6 

shows, the percentage of correctly classified instances is high for threshold (1.5). There are few 

samples still mix with others. The reason behind not finding all misclassified instances in GG: 7 is 

because our normalized data-set with samples (GG: 6, 8, 9, 10) contains few misclassified 

instances.  
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Figure 5.12: The figure represents the accuracy of all samples (with GG: 6, 8, 9, 10) for 5 different classifiers 
with different log-fold change values. 
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PCA of ALL-Samples except for GG: 7 

 

Figure 5.13: Principal component analysis of LMT classifier of samples with Gleason Grade: 6, 8, 9, and 10 
in 3-dimension. 

 

Figure 5.14: Principal component analysis of MultiClassClassifier classifier of samples with Gleason Grade: 
6, 8, 9, and 10 in 3-dimension. 
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Figure 5.15: Principal component analysis of SGD classifier of samples with Gleason Grade: 6, 8, 9, and 10 
in 3-dimension. 

 

 

Figure 5.16: Principal component analysis of SimpleLogistic classifier of samples with Gleason Grade: 6, 
8, 9, and 10 in 3-dimension. 
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Figure 5.17: Principal component analysis of SMO classifier of samples with Gleason Grade: 6, 8, 9, and 10 
in 3-dimension. 

 

The above figures from Figure 5.13 to Figure 5.17 are the principal component analysis of the 

samples (249) with Gleason Grade: (6, 8, 9, 10) obtained by applying machine learning using 5 

different classifiers after classifying the misclassified samples in the normalized data with the 

threshold value: 1 and by eliminating the samples with Gleason Grade: 7. From the above Figure 

5.12, the percentage of correctly classified instances is high for threshold value: 1 in normalized 

data set.  

5.1 Stacking 

We tried different combinations of base classifiers and meta classifiers in the stacking 

technique. These classifiers were chosen based on different principles and their accuracies 

independently. The below tables shows the comparison of these stacking models. The 

performance of the stacking technique depends on the principles that each of base classifiers 
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helps the meta-learner to perform better. In our case, the model performs the best with better 

accuracy with data set containing all the samples with Gleason grade: 6, 7, 8, 9, and 10 and the 

model performs the best with the best accuracy with data set containing all the samples except 

Gleason grade: 7 (samples with Gleason grade: 6, 8, 9, and 10). Model and have almost a similar 

accuracy with all the samples with Gleason grade: 6, 7, 8, 9, and 10 and Model and have almost 

a similar accuracy with all the samples except Gleason grade: 7 (samples with Gleason Grade: 6, 

8, 9, 10). 

Table 4: Performance of various Classifiers with data set containing all the samples with Gleason 
grade: 6, 7, 8, 9, and 10. 

Model type and 
Description 
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I. Suppert Vector 
Machine (SVM) 

0.91351 0.68800 0.85657 0.89655 0.90495 0.61332 0.80076 

II. Logistic Regression 
(LogReg) 

0.84865 0.67200 0.80404 0.88451 0.86621 0.50225 0.76032 

III. Random Decision 
Forest (RDF) 

0.92432 0.51200 0.82020 0.84864 0.88486 0.48733 0.71286 

IV. Extra Tree Classifier 
(ETC) 

0.92703 0.48800 0.81616 0.84275 0.88288 0.84275 0.71946 

V. Gradient Boosting 
Classifier (GBC) 

0.91081 0.54400 0.81818 0.85533 0.88220 0.49032 0.71941 

VI. K nearest neighbor 
(KNN) 

0.85676 0.59200 0.78990 0.86141 0.85908 0.44642 0.72438 

VII. eXtreme Gradient 
Boosting (XGBC) 

0.90210 0.66892 0.85051 0.88761 0.88914 0.60723 0.79830 
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Table 5: Performance of various Stacking methods with data set containing all the samples with 
Gleason grade: 6, 7, 8, 9, and 10. 

Model type and Description 
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I. LogReg, KNN, SVM as 
Base, SVM as Meta-
classifier 

0.99198 0.85124 0.95758 0.95373 0.97248 0.88337 0.92161 

II. LogReg, SVM, KNN, 
XGBC as Base, XGBC 
as Meta-classifier 

0.95989 0.83471 0.92929 0.94723 0.95352 0.80618 0.87295 

III. LogReg, KNN, SVM as 
Base, XGBC as Meta-
classifier 

0.972 0.8368 0.93131 0.949 0.961 0.8369 0.90690 

IV. RDF, LogReg, KNN as 
Base, GBC as Meta-
classifier 

0.98396 0.67769 0.90909 0.90418 0.94238 0.74373 0.83082 

V. RDF, LogReg, GBC as 
Base, KNN as Meta-
classifier 

0.93583 0.80992 0.90505 0.93834 0.93708 0.74368 0.87287 

 

Table 6: Performance of various Stacking methods with data set containing all the samples with 
Gleason grade: 6, 8, 9, and 10. 

Model type and Description 
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I. LogReg, KNN, SVM as 
Base, SVM as Meta-
classifier 

0.98182 0.89655 0.97189 0.98630 0.98405 0.86558 0.93918 

II. LogReg, SVM, KNN, 
XGBC as Base, XGBC 
as Meta-classifier 

0.95127 0.7911 0.93812 0.96976 0.95991 0.71929 0.90869 

III. LogReg, KNN, SVM as 
Base, XGBC as Meta-
classifier 

0.95909 0.79310 0.94779 0.97235 0.96568 0.72100 0.91513 

IV. RDF, LogReg, KNN as 
Base, GBC as Meta-
classifier 

0.97727 0.62069 0.93574 0.95133 0.96413 0.66247 0.79898 

V. RDF, LogReg, GBC as 
Base, KNN as Meta-
classifier 

0.97727 0.58621 0.93173 0.94714 0.96197 0.63689 0.78174 
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Chapter 6 – Conclusions 

In this thesis, we compared different classifiers and determined the best one to use for 

classifying prostate cancer patients. We also implemented a stacking-based machine learning 

technique to increase the prediction accuracy of the machine learning model using a different 

combination of classifiers. Yes, the results were improved by using a stacking based machine 

learning technique. The accuracy was increased from ~85.657% to ~95.758%. 

 We also used the Genetic Algorithm method for feature elimination on both the data sets 

(samples with GG: 6, 7, 8, 9, 10, and samples with GG: 6, 8, 9, 10). The number of genes obtained 

for samples with GG: 6, 7, 8, 9, and 10 is 1020. The number of genes obtained for samples with 

GG: 6, 8, 9, and 10 is 1681. The best fitness values for all log-fold change values (0.5, 0.7, 1, 1.5, 

2) for both data sets were obtained using the Genetic Algorithm. The fitness value oftained for 

samples with GG: 6, 7, 8, 9, and 10 is 1.6140201. and the fitness value obtained for samples with 

GG: 6, 8, 9, and 10 is 1.74722.The highest accuracy obtained for our data set before applying 

machine learning is  about 75% for all classifiers. We also used the Weka software [41]  tool for 

classifying prostate cancer patients using different classifiers individually, and the highest 

accuracy obtained by Weka is about 85% for different classifiers individually.  

 Furthermore, we tried with few other classifiers separately and found that SVM performs 

the best 10-fold-cross-validation, achieving high accuracy of 86.465%, and XGBoost was also 

performing with high accuracy of 85.051%.  Moreover, stacking on all machine learning methods 

revealed an even better performance of 95.758% accuracy for data set containing GG: 6, 7, 8, 9, 

and 10, and 97.19% accuracy for the data set containing GG: 6, 8, 9, and 10. Hence, we found 
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that the samples with GG:7 are more misclassified compared to samples with GG: 6, 8, 9, and 10. 

The stacking machine learning technique might prove to be useful in classifying prostate cancer 

patients. In order to improve the accuracy or classify all the patients correctly, mutation-based 

or methylation-based analysis can be implemented to yield better results in the classification of 

prostate cancer patients. 
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